
SPINV code

User's guide

1

1 General information

SPINV is a 2D Matlab code which allows to solve forward and inverse problems
for electrical potential equation. It gives also the possibility to couple ground water
equation with electrical potential equation. Simulations can be run in transient and
stationary modes.
The main folder named SPINV is divided into �ve subfolders :

• Distmesh : contains functions for generating geometry and meshes.
• Finite Elements Functions : contains all functions necessary for implemen-
ting the �nite elements method.

• Inverse-Reg : contains inversion and regularization functions.
• Plot tools : contains post-processing functions which permit to visualize re-
sults.

• Examples : contains several forward and inverse problems solved using the
code.

Separating all the functions in di�erent folders depending on their functionality
makes the code cleaner and easier to understand nevertheless in order to run a
simulation, the user needs to add all folders to the Matlab root folder. This can be
simply done using the prede�ned Matlab function set path as follows :
In the main terminal of Matlab, click on File, then go to Set Path then click on
Add with Subfolders.

2 How to run a simulation ?

In order to solve any forward problem four steps are required :
� Creating Geometry and Mesh.
� Fixing boundary conditions.
� Assembling Sti�ness, Mass matrices and right hand side.
� Solving resulting linear system.

2.1 Creating Geometry and Mesh

This step is performed by distmesh code. For more informations see Per-Olof
Persson, 2005. Mesh Generation for Implicit Geometries.

2.2 Fixing boundary conditions

SPINV uses logical indexing for de�ning boundary conditions.

Suppose you want to solve your problem on unit square and apply non homo-
geneous Dirichlet boundary conditions on top and bottom boundaries and non
homogeneous Neumann boundary conditions on remaining borders.
You can de�ne your borders as follows :

gamm0=(abs(p(:,2)-ymax<epsilon);

gamma1=(abs(p(:,2)-ymin)<epsilon);

gamma2=(abs(p(:,1)-xmin)<epsilon);

gamma3=(abs(p(:,1)-xmax)<epsilon);

where p is a 2 column vector containing all nodes coordinates, epsilon is a
tolerance value choosen by the user depending on to which extinct the mesh
is re�ned. xmin, xmax, ymin, ymax are domain limits ; in unit square case
xmin = 0, ymin = 0, xmax = 1 and ymax = 1.
After de�ning your boundaries you create vectors containing values you want
to a�ect to those boundaries. For example, if we want to impose Dirichlet
boundary conditions with values 1.5 and 4 on top and bottom boundaries and
Neumann boundaries(left and right borders) with values 2 and 5 , we do as
follows :

For Dirichlet boundary conditions

gammaD=gamma0 | gamma1 % defining Dirichlet boundary

zD=zeros(size(p,1),1) % initializing vector of Dirichlet values

zD(gamma0)=1.5;

zD(gamma1)=4;

The sign | denotes the logical operator OR.

For Neumann boundary conditions

gammaN=gamma2 | gamma3 % defining Neumann boundary

zN=zerops(size(p,1),1) % initializing vector of Neumann values

zN(gamma2)=2;

zN(gamma3)=5;

2.3 Assembling Sti�ness, Mass matrices, right hand side and

Solving linear system of the problem

Local, global Sti�ness and Mass matrices and right hand side are all computed
by Quasi_static function or Time_dependent function depending on whether
we use stationary or unstationary simulations.Those functions return the solution of
the problem and the Sti�ness/Mass matrices. Code syntax is used as follows :

[K_global,second_term,U]=Quasi_static(Q,GammaD,coord,nodes,S,zD,zN,boolean,r1,r2)

• Inputs
• Q : sink source.
• coord : node coordinates (in the example given in section 2.2 coord was
represented by p).

• nodes : mesh connectivities (in the example given in section 2.2 nodes was
represented by t).

• S : parameter of the equation, in case of ground water �ow it represents hy-
draulic conductivity, in the case of electrical potential equation, it represents
electrical conductivity.

• zD : values of Dirichlet boundary conditions.
• zN : values of Neumann boundary conditions.
• boolean : if boolean = 1 parameter S is taken into account in the equation
as 10−S

ρg
where ρ is water density, g is intensity of gravity and parameter S

represents though in this case the decimal logarithm of hydraulic conducti-
vity. If boolean = 0 the parameter S is directly included in the equation ;
this should be used when we want to solve electrical problem (in this case S
represents electrical conductivity).

• r1, r2 : anisotropy coe�cients. (r1 coe�cient in x direction r2 coe�cient in
y direction). If r1=r2=1, parameter is considered as isotropic.

• Outputs
• K_global : matrix problem.
• second_term : right-hand side.
• U : solution of the problem.

3 Inverse problem

The inverse problem consists to recover the horizontal and vertical components
of the source current density. The most time-consuming part of the inversion process
is the compute of the kernel matrix. In SPINV code, this is done with Kernel
function which take as inputs the inverse problem discretization sizes and gives as
output the kernel matrix.

Another important step in the inversion process is the regularization. It can be
done with the function named Regularization.There are two implemented regula-
rization methods : Tikhonov method and Truncated Singular Value Decomposition
method. The regularization parameter is computed using the function named Re-
gularization_parameter.This function uses two di�erent methods : L-curve and
GCV methods.
For example, suppose we want to use Tikhonov method and computes the regulari-
zation parameter with the GCV method, we do like this :

Regularization('TIKHONOV','GCV');

List of functions used in the code :

Function Description

bndproj Project boundary points to true boundary
BOUNDEDGES Find boundary edges from triangular mesh
center computes triangle centers coordinates
CIRCUMCENTER computes the circumcenters of a set of triangles
CSVD Compact singular value decomposition
dcircle returns the signed distance of one or more points

to a circle
dam_test solves Darcy's equation coupled with electrical po-

tential equation for the dam study case
ddi� returns the signed distance to a region that is the

di�erence of two regions
dexpr computes the signed distance for a general implicit

expression
dintersect sets the signed distance to the intersection of two

regions
DISTMESH2D 2-D Mesh Generator using Distance Functions
distmesh2doriginal 2-D Mesh Generator using Distance Functions
DISTMESHND N-D Mesh Generator using Distance Functions
DISTMESHSURFACE 3-D Surface Mesh Generator using Distance Func-

tions
Divergence_Operator computes discrete divergence
Divergence_Operator_time computes transient discrete divergence
dmatrix returns the signed distance by interpolation from

known values on a Cartesian grid
dmatrix3d returns the signed distance by interpolation from

known values on a Cartesian grid in 3D
dpoly returns the signed distance of one or more points

to a polygon
drectangle returns the signed distance of one or more points

to a rectangle
DSEGMENT computes the distance of points to line segments
dsphere returns the signed distance of one or more points

to a sphere
dunion returns the signed distance to a union of two re-

gions
edgelist Compute a list of edges in a triangulation
Fast_Forward_Problem computes forward problem solution for the inverse

problem
fast_geothermy solves inverse problem for the geothermal study

case
Fast_Kernel computes kernel matrix faster than classical me-

thod
fast_synthetic solves inverse problem for a synthetic test case
�nd_edge computes connectivities of nodes of a border
�nd_element �nds an element (triangle) knowing one of its edges
�nd_indice �nd nodes indices of a boundary

�ndinterior Returns a list of which edges in a triangulation are
edges

FIXMESH Remove duplicated/unused nodes and �x element
orientation

Forward_Problem computes forward problem solution for the inverse
problem

geothermy solves inverse problem for the geothermal study
case

GET_L Compute discrete derivative operators
Gradient_operator computes discrete gradient
hmatrix computes the mesh size function from values spe-

ci�ed on a Cartesian grid
hmatrix3d computes the mesh size function from values spe-

ci�ed on a Cartesian grid in 3D
huniform returns a uniform mesh size function
interpolation interpolates electric density current (de�ned on a

grid) on a �nite element mesh
inversion_plot plots exact solution and inverted solution
Kernel computes kernel matrix
KMG2D 2D-mesh generator using signed distance and size

functions
KMG2DREF Re�ne a two-dimensional triangular mesh
L_CORNER Locate the corner of the L-curve
L_CURVE Plot the L-curve and �nd its corner
MESHDEMO2d Distmesh2d examples
MESHDEMOND distmeshnd examples
MKT2T Compute element connectivities from element in-

dices
nearest_point gives index of the nearest point in the mesh to the

point which coordinates are (x,y)
nearest_point_border gives index of the nearest point in the mesh to the

point which abscissa is x and which is belonging
to the boundary "border"

Neumann_border computes integrals of shape functions on a Neu-
mann border for P1 �nite elements

Neumann_borderP2 computes integrals of shape functions on a Neu-
mann border for P2 �nite elements

normal_orientation computes outward normal (using cosine directions)
on an edge

normal_orientation_border �nd nodes indexes of a boundary
plot_num plots linear �nite elements solution

plot_QFEM plots quadratic �nite elements solution
plot_QFEM_interp interpolates a distribution "data" (de�ned on a

grid) on a quadratic �nite element mesh and plots
it

plot_solution plots solution on a �nite element mesh
plot_tri_interp this function interpolates a distribution "data"

(de�ned on a grid)on a linear �nite element mesh
and plots it

plot_vector plots vector de�ned on a grid
plotmesh_num plotmesh plots an unstrucured grid in 2D
plotmesh_tru plotmesh plots an unstrucured grid in 2D
protate rotates a set of points by a given angle
pshift shifts a set of points by a given increment
Quadratic solves Darcy equation on a square using quadratic

�nite element
Quasi_static computes sti�ness matrix, right hand-side and so-

lution U
Quasi_static_bis computes right hand-side and solution U while

sti�ness matrix is already known
Quasi_staticP2 computes sti�ness matrix, right hand-side and so-

lution U using P2 �nite
Regularization computes the regularized solution of optimization

problem
Regularization_parameter computes regularization parameter
Regularization_term computes the regularization term
scdm evaluates a function f on a set of points
secondM computes time-dependent sink source
simpplot simplex plot
simpqual Simplex quality
SIMPVOL Simplex volume
SURFTRI Find surface triangles from tetrahedral mesh
synthetic solves inverse problem for a synthetic test case

tarea computes triangle area
Tikhonov_gcv_function computes GCV function for Tikhonov regulariza-

tion
Time_dependent computes sti�ness matrix, right hand-side and so-

lution for time-dependent problem
Time_dependentP2 computes sti�ness matrix, right hand-side and so-

lution for time-dependent problem using P2 fem
Transformation transforms a general inverse problem into a stan-

dard one
Transformation_back computes solution of standard inverse problem

using its general formulation
Triangulation_order6_contour contour plots data at the nodes of a six node tri-

angle
Triangulation_order6_to_order3 linearizes a quadratic triangulation
uniformity determines the uniformity of a mesh
UNIREF Uniform mesh re�nement
Velocity computes Darcy's velocity
volcano_test solves Darcy's equation coupled with electrical po-

tential equation for the volcano study case

