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Integrating Rational Functions

We have seen several examples of integration of rational functions:∫
dx

x − a
= log |x − a|,∫

dx

x2 + a2
=

1

a
arctan

(x
a

)
,∫

x dx

x2 + a2
=

1

2
log(x2 + a2),

with the following holding when n > 1:∫
dx

(x − a)n
=

−1

n − 1

1

(x − a)n−1
,∫

dx

(x2 + a2)n
=

x

2a2(n − 1)(x2 + a2)n−1
+

2n − 3

2a2(n − 1)

∫
dx

(x2 + a2)n−1
,∫

x dx

(x2 + a2)n
=

−1

2(n − 1)(x2 + a2)n−1
.
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Integrating Rational Functions

We will integrate a general rational function by resolving it into a sum of
rational functions with simple denominators, and then applying suitable
substitutions or integration by parts.

Our approach is based on the fact that every real polynomial can be
expressed as a product of factors, each of which is either linear or
quadratic with no real roots.

We can focus on rational functions p(x)/q(x) with deg p < deg q. For
we can always divide p by q to get p(x) = s(x)q(x) + r(x) with r either
being 0 or satisfying deg r < deg q. Then,

p(x)

q(x)
= s(x) +

r(x)

q(x)
.

Now s(x) is a polynomial and easy to integrate, so we need only analyze
r(x)/q(x).

A pair of polynomials q1 and q2 is called coprime if the only polynomials
which are their common factors are constants.
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Partial Fractions

Theorem 1

Suppose deg p < deg q and q = q1q2 is a factoring into non-constant
coprime polynomials. Then there are polynomials r1 and r2 such that
deg ri < deg qi for i = 1, 2, and

p(x)

q(x)
=

r1(x)

q1(x)
+

r2(x)

q2(x)
.
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Partial Fractions

Proof. We need to show that p = r1q2 + r2q1.
Let I be the collection of all p1q2 + p2q1, where p1, p2 are polynomials.

Let ℓ ∈ I be a non-zero polynomial of least degree. Then qi = tiℓ+ si
where deg si < deg ℓ or si = 0. Now,

qi = ti (p1q2 + p2q1) + si =⇒ si ∈ I =⇒ si = 0 =⇒ ℓ divides qi .

So we may take ℓ = 1. It follows that every polynomial belongs to I!
Therefore p = p1q2 + p2q1. Now p1 = p′1q1 + r1 and p2 = p′2q2 + r2, with
ri = 0 or deg ri < deg qi . This gives

p = (p′1q1 + r1)q2 + (p′2q2 + r2)q1 = (p′1 + p′2)q + r2q1 + r1q2.

On matching degrees, we see we must have p′1 + p′2 = 0 and hence
p = r2q1 + r1q2. □
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Example

We have noted that every polynomial is a product of linear and quadratic
factors, with the quadratic factors having no real roots. For example, the
factoring may look as follows:

q(x) = (x + 1)2(x2 + 1)2.

Further, let p(x) = x5 + 7x4 + 5x3 + 12x2 + 4x + 7. By application of
the previous Theorem, we see that

x5 + 7x4 + 5x3 + 12x2 + 4x + 7

(x + 1)2(x2 + 1)2
=

Ax + B

(x + 1)2
+

Cx3 + Dx2 + Ex + F

(x2 + 1)2
.

From the preceding theorem and example, we see that we need to work
on two fronts:

1 Methods to find the unknown constants on the right hand side.

2 Methods to integrate rational functions of the form p(x)/q(x)n

where q(x) is either linear or quadratic.
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Case of p(x)/q(x)n

Theorem 2

Consider a rational function p(x)/q(x)n with deg p < n(deg q). It can be
expressed as

p(x)

q(x)n
=

r1(x)

q(x)n
+

r2(x)

q(x)n−1
+ · · ·+ rn(x)

q(x)
,

with each ri satisfying either ri = 0 or deg ri < deg q.

Proof. Divide by q repeatedly. This gives

p(x) = p1(x)q(x) + r1(x) = (p2(x)q(x) + r2(x))q(x) + r1(x)

= ((p3(x)q(x) + r3(x))q(x) + r2(x))q(x) + r1(x)

= · · · =
n∑

i=1

ri (x)q(x)
i−1,

with each ri (x) satisfying either ri = 0 or deg ri < deg q. Now divide by
q(x)n to get the result. □
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Case of p(x)/q(x)n

Corollary 3

Consider p(x)/q(x)n with deg p < n(deg q).

1 If q(x) = x − a, the function can be expressed as

p(x)

q(x)n
=

A1

(x − a)n
+

A2

(x − a)n−1
+ · · ·+ An

(x − a)

with Ai ∈ R.

2 If q(x) = x2 + αx + β, the function can be expressed as

p(x)

q(x)n
=

B1x + C1

(x2 + αx + β)n
+

B2x + C2

(x2 + αx + β)n−1
+· · ·+ Bnx + Cn

(x2 + αx + β)

with Bi ,Ci ∈ R.
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Anti-derivatives

On combining Theorem 1 with Corollary 3 we see that any rational
function p(x)/q(x) with deg p < deg q can be expressed as a sum
of terms of the form A/(x − a)k or (Bx + C )/(x2 + αx + β)k ,
which we shall call its partial fractions decomposition.

Example 4

x5 + 7x4 + 5x3 + 12x2 + 4x + 7

(x + 1)2(x2 + 1)2
=

2∑
i=1

Ai

(x + 1)i
+

2∑
i=1

Bix + Ci

(x2 + 1)i
.
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Example

Consider
x2 + 2x + 2

(x − 1)3
=

A

(x − 1)3
+

B

(x − 1)2
+

C

(x − 1)
.

Multiply both sides by (x − 1)3:

x2 + 2x + 2 = A+ B(x − 1) + C (x − 1)2.

Put x = 1 to get A = 5. If we substitute this in the last expression and
also move the A term to the left hand side, we see that both sides must
be divisible by x − 1. Dividing by x − 1 gives

x + 3 = B + C (x − 1).

Again, x = 1 gives B = 4, and then C = 1. So the partial fractions
decomposition is

x2 + 2x + 2

(x − 1)3
=

5

(x − 1)3
+

4

(x − 1)2
+

1

(x − 1)
.

This is easy to integrate:∫
x2 + 2x + 2

(x − 1)3
dx = − 5/2

(x − 1)2
− 4

(x − 1)
+ 2 log |x − 1|+ C .
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Example

Consider
x3 + 9x2 + 8

(x − 1)2(x + 2)2
=

A

(x − 1)2
+

B

(x − 1)
+

C

(x + 2)2
+

D

(x + 2)
.

Multiplying by (x − 1)2 and then evaluating at x = 1 gives A = 2.
Substitute this and simplify to get

x2 + 8x

(x − 1)(x + 2)2
=

B

(x − 1)
+

C

(x + 2)2
+

D

(x + 2)
.

Multiply by x − 1 and evaluate at x = 1 to obtain B = 1. Then

4

(x + 2)2
=

C

(x + 2)2
+

D

(x + 2)
.

This immediately gives D = 0 and C = 4. Therefore,

x3 + 9x2 + 8

(x − 1)2(x + 2)2
=

2

(x − 1)2
+

1

(x − 1)
+

4

(x + 2)2
.

Hence,∫
x3 + 9x2 + 8

(x − 1)2(x + 2)2
dx =

−2

x − 1
+ log |x − 1| − 4

x + 2
+ C .
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Example

Consider
x5 + 4x3 − x2 + 3x

(x2 + 1)3
. Apply the proof of Theorem 2:

x5 + 4x3 − x2 + 3x = (x3 + 3x − 1)(x2 + 1) + 1

= (x(x2 + 1) + 2x − 1)(x2 + 1) + 1

= x(x2 + 1)2 + (2x − 1)(x2 + 1) + 1.

Hence,

x5 + 4x3 − x2 + 3x

(x2 + 1)3
=

x

x2 + 1
+

2x − 1

(x2 + 1)2
+

1

(x2 + 1)3
.

We carry out the integration using the results stated at the start of this
section. The result is∫

x5 + 4x3 − x2 + 3x

(x2 + 1)3
dx =

1

2
log(x2 + 1)− arctan x

8
− 2 + x

2(x2 + 1)

+
3x3 + 5x

8(x2 + 1)2
+ C .
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Example

Consider
1

(x2 + 1)2(x2 + x + 1)
=

Ax + B

x2 + 1
+

Cx + D

(x2 + 1)2
+

Ex + F

x2 + x + 1
.

Multiply through by (x2 + 1)2(x2 + x + 1):

1 = (Ax + B)(x2 + 1)(x2 + x + 1) + (Cx + D)(x2 + x + 1)

+ (Ex + F )(x2 + 1)2.

Each side must have remainder 1 if we divide by x2 + 1. This gives
1 = Dx − C and hence C = −1, D = 0. The decomposition becomes

x + 1

(x2 + 1)(x2 + x + 1)
=

Ax + B

x2 + 1
+

Ex + F

x2 + x + 1
.

This gives x + 1 = (Ax + B)(x2 + x + 1) + (Ex + F )(x2 + 1).
Comparing remainders on dividing by x2 + 1 gives x + 1 = Bx − A, so
A = −1 and B = 1. The decomposition now reduces to

x

x2 + x + 1
=

Ex + F

x2 + x + 1
.

Hence E = 1 and F = 0, and the partial fraction decomposition is
completely worked out.
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Example

Consider the partial fractions decomposition

x5 + 7x4 + 5x3 + 12x2 + 4x + 7

(x + 1)2(x2 + 1)2
=

2∑
i=1

Ai

(x + 1)i
+

2∑
i=1

Bix + Ci

(x2 + 1)i
.

We deal with the linear factors first. Multiply both sides by (x + 1)2:

x5 + 7x4 + 5x3 + 12x2 + 4x + 7

(x2 + 1)2
= A1(x+1)+A2+

2∑
i=1

Bix + Ci

(x2 + 1)i
(x+1)2.

Put x = −1 to get A2 = 4. Substitute this to get

x4 + 2x3 + 3x2 + x + 3

(x2 + 1)2
= A1 +

2∑
i=1

Bix + Ci

(x2 + 1)i
(x + 1).

Again put x = −1 and get A1 = 1. Substitute and simplify:

2x2 − x + 2

(x2 + 1)2
=

2∑
i=1

Bix + Ci

(x2 + 1)i
.

(continued)
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Example - continued

Multiply both sides by (x2 + 1)2:

2x2 − x + 2 = (B1x + C1)(x
2 + 1) + (B2x + C2).

At this stage, we only have a few terms to deal with, and we can read off
the coefficients easily: B1 = 0, C1 = 2, B2 = −1, C2 = 0.

We have finally reached our goal:

x5 + 7x4 + 5x3 + 12x2 + 4x + 7

(x + 1)2(x2 + 1)2
=

1

x + 1
+

4

(x + 1)2
+

2

x2 + 1
− x

(x2 + 1)2
.

The integration is left to you!
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Improper Integrals

Our definition of definite integrals requires a bounded function f
over a closed and bounded domain [a, b].

Applications of integration often involve situations where these
requirements are not met, and either the function or the domain is
unbounded. Such integrals are called improper. We shall evaluate
them by considering them as limits of ‘proper’ ones.

On the other hand, the requirement of taking a closed interval is
not important. Suppose f is bounded on [a, b). One can define

f (b) = 0 and consider

∫ b

a
f (x) dx . You can easily check that the

result is independent of the number assigned to f (b). Further, the

result equals lim
t→b−

∫ t

a
f (x) dx .
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Improper integrals of the first kind

If the integrand f is bounded but the interval of integration is not, we
have an improper integral of the first kind. These integrals are defined
via limits as follows:∫ ∞

a

f (x) dx = lim
b→∞

∫ b

a

f (x) dx ,∫ b

−∞
f (x) dx = lim

a→−∞

∫ b

a

f (x) dx ,∫ ∞

−∞
f (x) dx =

∫ a

−∞
f (x) dx +

∫ ∞

a

f (x) dx .

Obviously, we first need f to be integrable on each interval of integration
[a, b] in these definitions. In particular, f needs to be bounded on each
[a, b], though it need not be bounded on the entire unbounded interval.

If the defining limit exists and is finite, we say the improper integral
converges. Else, we say it diverges.
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Anti-derivatives

In the definition of
∫∞
−∞ f (x) dx we can use any convenient a, and

then both
∫ a
−∞ f (x) dx and

∫∞
a f (x) dx need to converge for∫∞

−∞ f (x) dx to be defined.

Example 5

∫ ∞

0
e−x dx = lim

b→∞

∫ b

0
e−x dx = lim

b→∞
−e−x

∣∣∣b
0
= lim

b→∞
(1−e−b) = 1.
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Example

Consider

∫ ∞

1

1

xp
dx when p > 0.

If p = 1:

∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞
log b = ∞.

If p ̸= 1:

∫ ∞

1

1

xp
dx = lim

b→∞

∫ b

1

1

xp
dx =

1

1− p
lim

b→∞

1

xp−1

∣∣∣b
1

=
1

1− p
lim

b→∞

(
1

bp−1
− 1

)
=


1

p − 1
if p > 1,

∞ if p < 1.

Overall, ∫ ∞

1

1

xp
dx =


1

p − 1
if p > 1,

∞ if p ≤ 1.

Thus the integral converges when p > 1 and diverges when p ≤ 1.
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xp
dx =

1

1− p
lim

b→∞

1

xp−1

∣∣∣b
1

=
1

1− p
lim

b→∞

(
1

bp−1
− 1

)
=


1

p − 1
if p > 1,

∞ if p < 1.

Overall, ∫ ∞

1

1

xp
dx =


1

p − 1
if p > 1,

∞ if p ≤ 1.

Thus the integral converges when p > 1 and diverges when p ≤ 1.
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Comparison Theorem

Theorem 6

Suppose f , g : [a,∞) → R are continuous functions and
0 ≤ f (x) ≤ g(x) for every x ∈ [a,∞). If

∫∞
a g(x) dx converges,

then
∫∞
a f (x) dx converges and

∫∞
a f (x) dx ≤

∫∞
a g(x) dx.

Proof. Let F (t) =
∫ t
a f (x) dx and G (t) =

∫ t
a g(x) dx .

Since f , g ≥ 0, the functions F ,G are increasing.
By the Monotone Convergence Theorem,∫ ∞

a
g(x) dx = lim

b→∞
G (b) ≥ G (t) ≥ F (t) for every t ≥ a.

Hence F is bounded, and by the Monotone Convergence Theorem

again, we have the convergence of lim
b→∞

F (b) =

∫ ∞

a
f (x) dx . □

Amber Habib Calculus



Partial Fractions Improper Integrals Ordinary Differential Equations

Comparison Theorem

Theorem 6

Suppose f , g : [a,∞) → R are continuous functions and
0 ≤ f (x) ≤ g(x) for every x ∈ [a,∞). If

∫∞
a g(x) dx converges,

then
∫∞
a f (x) dx converges and

∫∞
a f (x) dx ≤

∫∞
a g(x) dx.

Proof. Let F (t) =
∫ t
a f (x) dx and G (t) =

∫ t
a g(x) dx .

Since f , g ≥ 0, the functions F ,G are increasing.
By the Monotone Convergence Theorem,∫ ∞

a
g(x) dx = lim

b→∞
G (b) ≥ G (t) ≥ F (t) for every t ≥ a.

Hence F is bounded, and by the Monotone Convergence Theorem

again, we have the convergence of lim
b→∞

F (b) =

∫ ∞

a
f (x) dx . □

Amber Habib Calculus



Partial Fractions Improper Integrals Ordinary Differential Equations

Comparison Theorem

Theorem 6

Suppose f , g : [a,∞) → R are continuous functions and
0 ≤ f (x) ≤ g(x) for every x ∈ [a,∞). If

∫∞
a g(x) dx converges,

then
∫∞
a f (x) dx converges and

∫∞
a f (x) dx ≤

∫∞
a g(x) dx.

Proof. Let F (t) =
∫ t
a f (x) dx and G (t) =

∫ t
a g(x) dx .

Since f , g ≥ 0, the functions F ,G are increasing.

By the Monotone Convergence Theorem,∫ ∞

a
g(x) dx = lim

b→∞
G (b) ≥ G (t) ≥ F (t) for every t ≥ a.

Hence F is bounded, and by the Monotone Convergence Theorem

again, we have the convergence of lim
b→∞

F (b) =

∫ ∞

a
f (x) dx . □

Amber Habib Calculus



Partial Fractions Improper Integrals Ordinary Differential Equations

Comparison Theorem

Theorem 6

Suppose f , g : [a,∞) → R are continuous functions and
0 ≤ f (x) ≤ g(x) for every x ∈ [a,∞). If

∫∞
a g(x) dx converges,

then
∫∞
a f (x) dx converges and

∫∞
a f (x) dx ≤

∫∞
a g(x) dx.

Proof. Let F (t) =
∫ t
a f (x) dx and G (t) =

∫ t
a g(x) dx .

Since f , g ≥ 0, the functions F ,G are increasing.
By the Monotone Convergence Theorem,∫ ∞

a
g(x) dx = lim

b→∞
G (b) ≥ G (t) ≥ F (t) for every t ≥ a.

Hence F is bounded, and by the Monotone Convergence Theorem

again, we have the convergence of lim
b→∞

F (b) =

∫ ∞

a
f (x) dx . □

Amber Habib Calculus



Partial Fractions Improper Integrals Ordinary Differential Equations

Comparison Theorem

Theorem 6

Suppose f , g : [a,∞) → R are continuous functions and
0 ≤ f (x) ≤ g(x) for every x ∈ [a,∞). If

∫∞
a g(x) dx converges,

then
∫∞
a f (x) dx converges and

∫∞
a f (x) dx ≤

∫∞
a g(x) dx.

Proof. Let F (t) =
∫ t
a f (x) dx and G (t) =

∫ t
a g(x) dx .

Since f , g ≥ 0, the functions F ,G are increasing.
By the Monotone Convergence Theorem,∫ ∞

a
g(x) dx = lim

b→∞
G (b) ≥ G (t) ≥ F (t) for every t ≥ a.

Hence F is bounded, and by the Monotone Convergence Theorem

again, we have the convergence of lim
b→∞

F (b) =

∫ ∞

a
f (x) dx . □

Amber Habib Calculus



Partial Fractions Improper Integrals Ordinary Differential Equations

Gaussian Integral

Consider the improper integral
∫∞
0

e−x2

dx . We have∫ ∞

0

e−x2

dx =

∫ 1

0

e−x2

dx +

∫ ∞

1

e−x2

dx .

0.5 1 1.5 2

0.5

1 For x ≥ 1 we have x2 ≥ x
and hence 0 ≤ e−x2 ≤ e−x .
Since

∫∞
1

e−x dx converges, so does∫∞
1

e−x2

dx . Therefore
∫∞
0

e−x2

dx

converges. Similarly,
∫ 0

−∞ e−x2

dx
converges.

Hence
∫∞
−∞ e−x2

dx =
∫ 0

−∞ e−x2

dx +
∫∞
0

e−x2

dx converges.
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Gaussian Integral – estimates

We can find numerical approximations for
∫∞
0

e−x2

dx as follows. First
truncate the interval of integration to some [0, b]. Then use a step

function to get an approximate value of
∫ b

0
e−x2

dx .

As an example let us first set b = 3. Next we set n = 6 and partition
[0, 3] into 6 equal subintervals. On the i th subinterval we approximate

f (x) = e−x2

by its value at the midpoint ci .

ci 0.25 0.75 1.25 1.75 2.25 2.75
f (ci ) 0.9394 0.5698 0.2096 0.0468 0.0063 0.0005

Now, ∫ ∞

0

e−x2

dx ≈
∫ 3

0

e−x2

dx ≈
6∑

i=1

f (ci )× 0.5 = 0.886213 . . . .

The exact value of the integral is
√
π/2 = 0.886226 . . . . With these few

calculations we already have accuracy to 4 decimal places!
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Improper integrals of the second kind

Improper integrals of the second kind occur when f has a vertical
asymptote, such as when we try to integrate 1/

√
x over [0, 1].

These are defined by taking limits at the points where f has a vertical
asymptote.

Example 7

The function 1/
√
x is unbounded on (0, 1]. On the other hand, it is

continuous on [a, 1] for every a ∈ (0, 1). Therefore we can define its
improper integral on [0, 1] by integrating on [a, 1] and then letting
a → 0+:∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx = lim

a→0+
2
√
x
∣∣∣1
a
= 2 lim

a→0+
(1−

√
a) = 2.

Task 1

Show that
∫ 1

0
xα dx converges for −1 < α < 0 and diverges for α ≤ −1.
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Comparison Theorem
Theorem 8

Suppose f , g : (a, b] → R are continuous functions that are unbounded
on (a, b] but bounded on every [x , b] with a < x < b, and

0 ≤ f (x) ≤ g(x) for every x ∈ (a, b]. If
∫ b

a
g(x) dx converges, then∫ b

a
f (x) dx converges and

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx.

Proof. Exercise. □

Example 9

Consider the improper integral
∫ 1

0
e−xxα dx with α < 0. It is improper

because lim
x→0+

e−xxα = ∞. We compute as follows for 0 < x ≤ 1:

−1 < α < 0 =⇒ 0 < e−xxα ≤ xα and

∫ 1

0

xα dx converges.

α ≤ −1 =⇒ e−xxα ≥ e−1xα > 0 and

∫ 1

0

xα dx diverges.

Hence, by Comparison Theorem, the integral converges for −1 < α < 0.
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Gamma Function

The Gamma function is an instance of an improper integral that
involves both an unbounded interval as well as an unbounded function.

Γ(x) =

∫ ∞

0

e−ttx−1 dt (x > 0).

Note that apart from the unbounded interval of integration, the integrand
goes to infinity at zero when 0 < x < 1. We split the integral as follows:

Γ(x) =

∫ 1

0

e−ttx−1 dt +

∫ ∞

1

e−ttx−1 dt.

The convergence of the integral is established by the following
calculations:

1 The integral from 0 to 1 is improper when 0 < x < 1 and we have
already established its convergence in the previous Example.

2 For any fixed x > 0, e−t/2tx−1 → 0 as t → ∞. Hence there is an a
such that t ≥ a implies e−t/2tx−1 ≤ 1. Therefore, for x ≥ a,
0 ≤ e−ttx−1 ≤ e−t/2. Again, the Comparison Theorem gives the
convergence of

∫∞
a

e−ttx−1 dt and hence of
∫∞
1

e−ttx−1 dt.
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Gamma Function – Properties

We now apply integration by parts to obtain a relationship between
different values of Γ(x). Let 0 < a < b. Then,∫ b

a

e−ttx dt = −e−ttx
∣∣∣b
a
+ x

∫ b

a

e−ttx−1 dt.

We have lim
t→∞

e−ttx = lim
t→0+

e−ttx = 0.

Hence, letting a → 0+ and b → ∞, we get

Γ(x + 1) = xΓ(x).

It is easy to compute that Γ(1) = 1. Hence

Γ(2) = 1·Γ(1) = 1, Γ(3) = 2·Γ(2) = 2·1, Γ(4) = 3·Γ(3) = 3·2·1, . . . .
In general,

Γ(n + 1) = n! n = 0, 1, 2, . . . .

Task 2

Show that Γ(1/2) equals the Gaussian integral
∫∞
−∞ e−x2

dx.
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Ordinary Differential Equations

An Ordinary Differential Equation or ODE is an equation involving a
function f (x) and some of its derivatives, as well as the variable x . The
task is to solve for f .

The order of the highest derivative of f that occurs in the ODE is called
the order of the ODE. Here are some ODEs for an unknown function
y = f (x).

1 y ′ = cos x (first-order).

2 y ′ = 5xy (first-order).

3 y ′′ = −3y + 1 (second-order).

4 (y ′′′)2 + y sec(y ′′) + y ′/y + tan x = 0 (third-order).

Of course, one may use different variable and function names. For
example, the variable may be time t, the unknown function may be
position x(t), and the ODE may be x ′′ = −5x .
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Existence and Uniqueness of Solutions

An ODE may have no solution. For example, (y ′)2 + 1 = 0 has no
solution.

A typical ODE will have multiple solutions. The reason is that a
differential equation has information about how a quantity changes. The
final value of the quantity depends on how it changes (described by the
ODE) as well as its starting state. If we know the starting state, we may
be able to narrow down to exactly one solution.

Example 10

We have seen that every solution of y ′ = y has the form y = Aex . Each
value of A leads to a different solution. If we know that y(0) = 5, we can
solve for A and get a unique solution,

y(0) = 5 =⇒ 5 = Ae0 =⇒ A = 5 =⇒ y(x) = 5ex .

A collection of data of the form y (k)(a) = 0, with k = 0, 1, . . . , n − 1, for
an nth-order ODE is called its initial conditions.
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Separable First-Order ODE
The typical form for a first-order ODE is y ′ = h(x , y).

It is called separable it is possible to separate h(x , y) into a factor
involving only x and a factor involving only y :

y ′ = f (x)g(y) (1)

Rearrange (1):
y ′

g(y)
= f (x).

Both sides are functions of x and we integrate them with respect to x .∫
y ′

g(y)
dx =

∫
f (x) dx .

According to the substitution method we can replace y ′ dx with dy , to
get ∫

dy

g(y)
=

∫
f (x) dx , (2)

provided that f , g and y ′ are continuous.
This gives an equation involving y . If we are fortunate, we can solve it to
obtain an explicit formula for y .
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Exponential Growth and Decay

Consider the separable ODE y ′ = ky . Applying (2), we get∫
dy

y
=

∫
k dx .

Hence,
log |y | = kx + c .

Therefore,
|y | = ekx+c = ecekx and y = Aekx .

While this process gives a solution with A ̸= 0, we see that A = 0 also
gives a valid solution.
When k > 0 we have exponential growth, and when k < 0 we have
exponential decay.

Task 3

Show that the solutions y(t) of y ′ = M − ky have the form
y = (M − Ae−kt)/k if k ̸= 0.
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Logistic Growth

Consider a population y(t) governed by the separable ODE
y ′ = ky(M − y) and with values in [0,M]. We have the following
implications:

y ′ = ky(M − y) =⇒
∫

dy

y(M − y)
=

∫
k dt

=⇒ 1

M

∫ ( 1

y
+

1

M − y

)
dy =

∫
k dt

=⇒ log
( y

M − y

)
= kMt + d

=⇒ y

M − y
= AekMt

=⇒ y =
AMekMt

1 + AekMt
=

AM

e−kMt + A
.

This model describes a population whose growth is initially exponential
but then tapers off as it approaches a maximum sustainable value of M.
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Logistic Growth

Here is a graph of the solution with k = M = 1 and A = 0.01:
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1

The solid curve shows the logistic growth. In its early stages it resembles
the exponential growth corresponding to y ′ = y and y(0) = 0.01. The
parameter A in the logistic growth solution can be determined if we know
the initial value y(0).

y(0) =
AM

1 + A
=⇒ (1 + A)y(0) = AM =⇒ A =

y(0)

M − y(0)
.
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General and Particular Solutions

When we solve a first-order ODE we typically get a family of
solutions, generated by one parameter. The common formula for
this family is called a general solution of the ODE.

ODE General Solution

y ′ = ky y = Aekt

y ′ = M − ky y =
1

k
(M − Ae−kt)

y ′ = ky(M − y) y =
AMekMt

1 + AekMt

When the parameter A is given a specific value, we get an
individual solution, which is called a particular solution.
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Example

Consider the equation y ′ = −xy . Separating variables gives y ′/y = −x

and then log |y | = −x2

2
+ C . So the general solution is

y(x) = Ae−x2/2.

Knowledge of any y(a) value will give a particular solution. For example,

the initial condition y(0) = 2 gives y(x) = 2e−x2/2.
Various particular solutions of y ′ = −xy are shown below.
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Example

Consider the initial value problem y ′ = y1/3, y(0) = 0.

We can obtain a general solution by separation of variables.

y ′ = y1/3 =⇒
∫

y−1/3 dy =

∫
1 dx

=⇒ 3

2
y2/3 = x + c

=⇒ y = (
2

3
x + A)3/2.

This gives the solution y = ( 23x)
3/2, for x ≥ 0, of the given initial value

problem. However, this is not the only solution, as y = 0 is another.

This shows that a general solution may not catch all solutions, and an
initial value problem may have multiple solutions.
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Linear First Order ODE

A first-order ODE is called linear if it has the form

y ′ + P(x)y = Q(x). (3)

For example, the ODE y ′ = ky is linear as it can be arranged into
y ′ − ky = 0, with P(x) = −k and Q(x) = 0.
A first-order linear ODE is called homogeneous if it has the form

y ′ + P(x)y = 0. (4)

This is a separable ODE and we have learned how to solve it. We have,

y ′

y
= −P(x) =⇒

∫
dy

y
= −

∫
P(x) dx

=⇒ log |y(x)| = −R(x) + C

=⇒ y(x) = Ae−R(x).

However, due to the preceding example, we are concerned whether we
have really found all solutions. The next theorem gives a positive answer.
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Homogeneous Case

Theorem 11

Suppose that the function P(x) in (4) is continuous on an interval I .
Then every solution of (4) has the form y(x) = Ae−R(x), with A ∈ R and
R ′(x) = P(x).

Proof. Since P(x) is continuous, it has an anti-derivative R(x), and we
can easily verify that y(x) = Ae−R(x) is a solution.

Conversely, let y be a solution. Consider the ratio of y and e−R(x):( y

e−R(x)

)′
= (yeR(x))′ = (y ′ + P(x)y)eR(x) = 0 =⇒ y

e−R(x)
= A.

□
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Example

Consider the ODE xy ′ + (1− x)y = 0. Put it in standard form:

y ′ +

(
1

x
− 1

)
︸ ︷︷ ︸

P(x)

y = 0.

Now,

∫ (
1

x
− 1

)
dx = log(x)− x .

So the general solution is

y = Aex−log(x) = A
ex

x
.
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Non-homogeneous Case

The ODE (3) is called non-homogeneous if Q(x) is not identically zero.

Theorem 12

Consider a non-homogeneous linear ODE of the form (3). Let yp be a
particular solution of this ODE and let yh be the general solution of the
corresponding homogeneous ODE (4). Then yh + yp is the general
solution of (3).

Proof. It is trivial to check that yh + yp is a solution of
y ′ + P(x)y = Q(x). Now let y be any solution of y ′ + P(x)y = Q(x).
Then

(y − yp)
′ + P(x)(y − yp) = Q(x)− Q(x) = 0,

hence y − yp solves the homogeneous ODE and equals one of the
members of the family yh. □
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Variation of Parameters

Theorem 13

Suppose that the functions P(x) and Q(x) in (3) are continuous. Then a
particular solution yp of (3) can be obtained by

yp =
(∫

Q(x) eR(x) dx
)
e−R(x),

where R ′(x) = P(x).

Proof. Let R ′(x) = P(x). We have seen that the general solution of (4)
is yh = Ae−R(x). We substitute a function h(x) for the parameter A to
obtain a candidate solution of (3),

y = h(x) e−R(x).

Then y ′ = h′(x) e−R(x) − h(x)P(x) e−R(x) = h′(x) e−R(x) −P(x)y , hence
y ′ + P(x)y = h′(x) e−R(x). Therefore, we need h′(x) e−R(x) = Q(x), or
h(x) =

∫
Q(x) eR(x) dx . □
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Example

Consider xy ′ + (1− x)y = e2x . First we put it in the standard form,

y ′ +

(
1

x
− 1

)
y =

e2x

x
.

We have already worked out the general solution of the homogeneous

part as yh = A
ex

x
. By variation of parameters, a particular solution is

calculated as follows:

h(x) =

∫
e2x

x
eR(x) dx =

∫
e2x

x
e log(x)−x dx = ex =⇒ yp =

e2x

x
.

Therefore the general solution of this non-homogeneous equation is,

y = yh + yp = A
ex

x
+

e2x

x
.
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Existence and Uniqueness

Theorem 14

Suppose that P(x) and Q(x) in (3) are continuous on an interval I .
Consider an initial condition y(x0) = y0 with x0 ∈ I and y0 ∈ R. Then
(3) has a unique solution which satisfies this initial condition.

Proof. We already know that the general solution of (3) is

y =
(∫

Q(x) eR(x) dx
)
e−R(x) + Ae−R(x),

with R ′(x) = P(x). We can take any choice of anti-derivative for∫
Q(x) eR(x) dx . Let us take

∫ x

x0
Q(t) eR(t) dt. Then:

y0 =
(∫ x0

x0

Q(t) eR(t) dt
)
e−R(x0) + Ae−R(x0) = Ae−R(x0).

Choose R(x) =
∫ x

x0
P(t) dt. Then R(x0) = 0 and we get A = y0.

(continued)

Amber Habib Calculus



Partial Fractions Improper Integrals Ordinary Differential Equations

Existence and Uniqueness – continued

We have reached the following solution that also satisfies the initial
condition:

y =
(∫ x

x0

Q(t) eR(t) dt
)
e−R(x) + y0e

−R(x), with R(x) =

∫ x

x0

P(t) dt.

As for uniqueness, let y1 be another solution of (3). Then y1 − y solves
(4), hence we have y1 − y = Ae−R(x). The common initial condition then
gives 0 = Ae−R(x0), so A = 0 and y1 − y = 0. □

Task 4

Find a solution of the initial value problem xy ′ + (1− x)y = e2x and
y(1) = 0.

Amber Habib Calculus



Partial Fractions Improper Integrals Ordinary Differential Equations

Autonomous ODE

A first-order ODE y ′ = F (x , y) is autonomous if the variable x
does not explicitly appear in it. That is, it has the form y ′ = f (y).

An autonomous ODE is separable and we can solve it as follows.

y ′ = f (y) =⇒
∫

dy

f (y)
= x + c if f (y) ̸= 0.

In principle, we have solved the ODE. Practically, we may find it
difficult to carry out the integration, or solve the resulting equation
for y .

In this section we shall see that we can obtain a qualitative
description of the solutions of an autonomous ODE without
actually solving it.
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Autonomous ODE

We begin with two key observations about an autonomous ODE
y ′ = f (y).

1 If f (y0) = 0 for some y0, then the constant function y = y0 is
a solution. Such a constant solution is called an equilibrium
solution and the value y0 is called a critical value.

2 If y(x) is a solution then so is the shift yc(x) = y(x + c):

y ′c(x) = y ′(x + c) = f (y(x + c)) = f (yc(x)).
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Example – Logistic equation

The logistic equation y ′ = ky(M − y) is an autonomous equation with
critical values 0 and M. Its equilibrium solutions are y = 0 and y = M.
First, we plot f (y) = ky(M − y) and the two equilibrium solutions. We
have also marked an initial value y(0) = y0 for a particular solution.

y0 M

y

f

y0

M

x

y

Since y ′(0) = f (y0) is positive, the solution is initially an increasing one.
As y increases from y0, so does y ′ = f (y) and so the graph of y(x) is
initially convex. It stays convex until y reaches M/2.
(continued)
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Example – Logistic equation

At this stage we have the following picture:

y0 M/2 M

y

f

y0

M/2

M

x

y

As y increases past M/2, y ′ becomes decreasing. Hence the graph of y
becomes concave and flattens out.
(continued)
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Example – Logistic equation

The completed graph is shown below, along with a few shifts
corresponding to different initial conditions between 0 and M. We have
also shown examples of solutions with initial conditions that are either
negative or more than 1. For these solutions, y ′ is always negative and so
they are decreasing.

y0

M/2

M

x

y
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Types of Equilibria

In the logistic equation, solutions starting near y = 0 move away from it
and so y = 0 is called an unstable equilibrium. Solutions starting near
y = M approach it asymptotically, hence y = M is called a stable
equilibrium. We may also have equilibrium points with mixed behaviour,
these are called semistable.

Example 15

Consider the autonomous ODE y ′ = y2(1− y).

y0 1

y

f

y0

1

x

y

There is a stable equilibrium at y = 1 and a semistable one at y = 0.
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Asymptotic Behaviour
Theorem 16

Consider an initial value problem y ′ = f (y), y(0) = y0, where
f : (a, b) → R is positive and continuous, and y0 ∈ (a, b). This initial
value problem has a unique solution y : (α, β) → (a, b) which is a strictly
increasing bijection. In particular, lim

x→β−
y(x) = b. (We may have

β = ∞.)

Proof. Since f is positive and continuous on (a, b), so is 1/f . Therefore
1/f has a strictly increasing and surjective anti-derivative
F : (a, b) → (α, β). We may assume F (y0) = 0. Define y(x) = F−1(x).
Then y : (α, β) → (a, b) is a strictly increasing bijection, such that

y ′(x) =
1

F ′(F−1(x))
= f (F−1(x)) = f (y(x)) and y ′(0) = F−1(0) = y0.

So y(x) is a solution. If z(x) is any solution then integrating both sides of
z ′(x)

f (z(x))
= 1 gives F (z(x)) = x + c and hence 0 = F (y0) = F (z(0)) = c .

Therefore z(x) = F−1(x), establishing uniqueness as well. □
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Asymptotic Behaviour

Task 5

State and prove a version of Theorem 16 in which the hypothesis f > 0 is
replaced by f < 0.

Task 6

Consider an initial value problem y ′ = f (y), y(0) = y0, where f is
continuous and y0 belongs to the domain of f . Will there be a solution?
Will it be unique?
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Classification of Equilibria

Theorem 17

Consider an autonomous ODE y ′ = f (y), with f being differentiable. Let
c be a critical value.

1 If f ′(c) < 0 then y = c is a stable equilibrium solution.

2 If f ′(c) > 0 then y = c is an unstable equilibrium solution.

Proof. The main effort in proving the first part is in showing that for y0
close to c the solution’s domain will include [0,∞).
We have δ > 0 such that 0 < |y − c | < δ implies

−ϵ =
3

2
f ′(c) <

f (y)

y − c
<

1

2
f ′(c) = −ϵ′.

Note that c < y < c + δ =⇒ f (y) < 0 and
c − δ < y < c =⇒ f (y) > 0.
(continued)
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Classification of Equilibria – continued

Now consider the case c − δ < y0 < c . From Theorem 16 we know there
is a unique strictly increasing solution y(x) with y(0) = y0. Take any y
in (y0, c). Then

−ϵ < − f (y)

c − y
=⇒ ϵ(c − y) > f (y) =⇒ 1

f (y)
>

1

ϵ(c − y)
.

Using the notation of the proof of Theorem 16, we have

F (y) =

∫ y

y0

dt

f (t)
≥

∫ y

y0

dt

ϵ(c − t)
= −1

ϵ
log

( c − y

c − y0

)
→ ∞ as y → c − .

Hence y(x) = F−1(x) → c as x → ∞.

The proof for the c < y0 < c + δ case is similar and uses
f (y)

y − c
< −ϵ′.

For the second part, since f ′(c) > 0, there is a δ > 0 such that

0 < |y − c | < δ implies
f (y)

y − c
> 0.

Hence f (y) > 0 if c < y < c + δ and f (y) < 0 if c − δ < y < c .
Now apply Theorem 16 and Task 5 to (c , c + δ) and (c − δ, c). □
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Classification of Equilibria – continued
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Classification of Equilibria – continued
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Hence f (y) > 0 if c < y < c + δ and f (y) < 0 if c − δ < y < c .
Now apply Theorem 16 and Task 5 to (c , c + δ) and (c − δ, c). □
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