

Figure 2.6. Schematic illustration of a Monte-Carlo simulation. Three independent (input) variables X_{n+1} , X_{n+2} , and X_{n+3} , are distributed as shown on the left. Their distributions lead to output, such as X_1 , X_2 , X_3 , and X_4 , that is also distributed. The output distributions may have a variety of shapes that depend on the model and are often difficult to predict without an actual execution of the simulation.

Figure 3.10. Dynamic system response to a twofold increase in glucose 6-phosphate (X_1) . At time 1, the glucose 6-phosphate pool (X_1) was increased to twice the steady state. The eight metabolites represented are glucose 6-phosphate (X_1) , fructose 6-phosphate (X_2) , phosphoenol pyruvate (X_3) , pyruvate (X_4) , oxalacetate (X_5) , malate (X_6) , NADH (X_7) , and ATP (X_8) . Each concentration is normalized with respect to its nominal steady-state value. The long time scale of the response is cause for concern.

Figure 3.18. Dynamic system response to a twofold increase in cytosolic glucose (X_1) . At time zero, the cytosolic glucose pool (X_1) was increased to twice the steady state. The six metabolites represented are glucose 6-phosphate (X_2) , fructose 6-phosphate (X_3) , fructose-2,6-bisphosphate (X_4) , phosphoenol pyruvate (X_5) , cytosolic pyruvate (X_6) , and cytosolic oxalacetate (X_7) . The remaining metabolites exhibit negligible deviations form the basal steady-state values (below 0.5%). Each concentration is normalized with respect to its nominal steady-state value. The response in the revised model is much improved over the initial model (compare γ axis with Figure 3.10).

Figure 4.6. The graph of the two-variable function $z = 3 - 2 \cdot \sqrt{1 + 6.25 \cdot (x^2 + y^2)}$ is a smooth surface.

z = f(0.22, y)

Figure 4.7. The intersection of the graph in Figure 4.6 and the plane x = 0.22 shows the projection of z = f(0.22, y), which now is a univariate function of y.

Figure 4.8. The center of the saddle is characterized by a zero gradient, yet this center is not a maximum or minimum. It is minimal in *x*-direction and maximal in *y*-direction.

Figure 4.9. Paraboloid described in Eq. (4.47).
The wire mesh shows the *x-y* plane. The intersection between the paraboloid and the solid plane is the circle of constrained minima.

 $\begin{bmatrix} 4 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 2 & -2 & -1 \end{bmatrix}$

Figure 4.12. Three paths, C_1 , C_2 , and C_3 , run along a three-dimensional surface, defined by the function f. They intersect at point P, where their tangents, T_1 , T_2 , and T_3 , along with the tangents of all other paths intersecting at P, form the tangent plane at P. The gradient is perpendicular to the tangent plane at P.

