
Intraband and interband scattering of an electron from an initial state 
ki to a final state kf.
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ELECTRONS IN ELECTROMAGNETIC FIELD: PERTURBATION
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H = H0 + H'

H0 =

To first order:

H' =

–h2

2mo
 2 + V(r)     Bandstructure∆

ieh
mo

∆
A •

Vector potential:

A = A0 exp iωt

A0 =              (b† + b)

b†: creation operator for photons

b: destruction operator for photons

h
2ωεV
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–

Electromagnetic Field 

H' = ieh  A·
         mo
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destruction operator

∆

hkf

A schematic of the scattering of an electron by the electromagnetic field.



PHOTON ABSORPTION AND EMISSION
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(a) Schematic of an absorption process where a photon is absorbed 
(destroyed) and the energy and momentum of the electron is altered. 
(b) The emission of a photon where a photon is created.
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STIMULATED AND SPONTANEOUS PROCESSES
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The positions of the electron and hole energies at vetical k-values. The 
electron and hole energies are determined by the photon energy and the 
carrier masses. Since the photon momentum is negligible the transitions 
are vertical.

Absorption of photons       proportional to photon number nph
Emission of photons        proportional to (nph +1)
Stimulated process    nph
Spontaneous process    1

Band to band processes in semiconductors       “vertical” transitions in k-space
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Ec

Eg

Ev

hω

k=0

VALENCE BAND

hω = (Ec – Ev) + (     )h2k2      1         1
  2        me      mh

+ 

Transitions are 
“vertical”



BULK SEMICONDUCTORS: BAND TO BAND ABSORPTION
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Absorption coefficient for several semiconductors.
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INTERBAND OPTICAL PROCESSES IN QUANTUM WELLS
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Quantum wells (and strain) alter the cubic symmetry of fcc based 
structures and makes the optical transitions' polarization sensitive.
For confinement along (001) direction:

z-polarized light: HH c-band: No coupling
LH c-band: pif 

2 = 2/3  px px s  2      

x-polarized light: HH c-band: pif 
2 = 1/2  px px s  2

      LH c-band: pif 
2 = 1/6  px px s  2 

y-polarized light: HH c-band: pif 
2 = 1/2  px px s  2      

LH c-band: pif 
2 = 1/6  px px s  2          

E1
e

HH1
LH1

HH-state     3/2, + 3/2
LH-state     3/2, + 1/2



INTERBAND TRANSITIONS IN INDIRECT GAP MATERIALS
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Due to momentum conservation requirements (photon momentum is 
essentially zero) first order transitions in indirect gap materials are  
forbidden. Second order transitions involving phonons or impurities are 
allowed.

Much smaller absorption coefficient:

        (indirect) ~       (direct) x <∆u>
Eg

phonon 
transition

 |i > Ek

EvL

L X

Ev X

| f >, Egk

Γ

EgΓ

EgΓ

photon 
transition

photon 
transition

phonon 
transition

Two processes showing how a photon and a phonon can take an electron from 
state |i> to state |f>. The photon energy need not be equal to the vertical energy, 
since the intermediate transitions are “virtual,” i.e., the electron does not reside 
there for any length of time.



INTERSUBBAND TRANSITIONS IN QUANTUM WELLS
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Intersubband transitions are allowed in quantum wells (dots) and 
can be used for long wavelength detection.

Symmetry based selection rules apply:  Conduction band states have s-type central cell character       
     only light polarized along z-axis can cause transitions, i.e., light has to travel in the plane of the 
quantum well.
In quantum dots intersubband transitions normal incidence absorption is allowed.

σ = linewidth

z-polarized
Wabs

E12 = E2 – E1

hω

E(2)(k) = E2 +
h2k2

   2m*

E(1)(k) = E1 +
h2k2

   2m*

E2

E1

k11

(a)

(b)

(c)

g1(z)g2(z)

z

Schematic presentation of the (a) envelope functions for two levels in a quantum well, 
(b) subband structure in the well, and (c) absorption rate for z-polarized light in a 
quantum well.



CARRIER INJECTION AND LIGHT EMISSION
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Excess electrons and holes in semiconductor will recombine to 
create photons
A radiative lifetime for carriers can be defined by the relation

Rspon =

The dependence of the radiative lifetime in GaAs as a funciton of carrier 
injection (n = p) or minority carrier injection into a doped region with doping 
density as shown.

∆n
τ or ∆p
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OPTICAL GAIN IN SEMICONDUCTORS
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gain = emission coefficient – absorption coefficient

  fe (Ee) + fh (Eh) – 1

Propagation of an optical wave in a medium with a gain of

I(z) = Io exp(gz) 
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Gain vs. photon energy curves for a variety of carrier injections for 
GaAs at 300 K. The electron and hole injections are the same. The 
injected carrier densities are increased in steps of 0.25 x 1018 cm–3 

from the lowest value shown.



LIGHT EMITTERS: LEDS AND LASER DIODES
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LEDs: Emit light by spontaneous emission

Laser diodes: Emit light through stimulated emission

(a) In the absence of any photons, electron-hole recombination 
produces photons with no phase coherence. (b) In the presence of 
photons, electron-hole recombination produces photons which are 
coherent with the previously existing photons.

+

CONDUCTION 
BAND

Photons

VALENCE

BAND

(a)

(b)

Spontaneous emission

—

No photons

Eg

+

—

hω hω

+

CONDUCTION 
BAND

VALENCE

BAND

Stimulated emission

—

+

—

hω
hω

hω

Coherent 
emission



TYPICAL LASER DIODE STRUCTURE
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(a) A typical laser structure showing the cavity and the mirrors used to confine photons. The 
active region can be quite simple as in the case of double heterostructure lasers or quite 
complicated as in the case of quantum well lasers. (b) The stationary states of the cavity. The 
mirrors are responsible for these resonant states. (c) The variation in dielectric constant is 
responsible for the optical confinement.

• Gain region for photon generation
• Waveguide region to guide the optical wave
• Mirrors to provide feedback
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LASER DIODE: OPTICAL OUTPUT
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(a) The laser below threshold. The gain is less than the cavity loss and the light emission 
is broad as in an LED. (b) The laser at threshold. A few modes start to dominate the 
emission spectrum. (c) The laser above threshold. The gain spectrum does not change, 
but, due to the stimulated emission, a dominant mode takes over the light emission.
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LONG WAVELENGTH LASERS
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Staggered band offset quantum wells can be used to make 
longwavelength devices.
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