user’s guide

1IDMC

interactive Dynamical Model Calculator

iDMC (©M. Lines and A. Medio

available at www.dss.uniud.it/nonlinear!

1Tast revised 26 April 2005. A special thanks to Daniele Pizzoni, Alexei Grigoriev and Gianluca
Gazzola for their help in various aspects of the guide’s preparation. As usual the author, Marji Lines
takes all responsibility for errors. Please address comments, criticisms, corrections and suggestions
to lines@dss.uniud.it



GNU notice

iDMC the interactive Dynamical Model Calculator simulates and performs graphical
and numerical analysis of systems of differential and difference equations.

Copyright (C) 2004 Marji Lines and Alfredo Medio

The source code was written and designed by Daniele Pizzoni in collaboration with
Alexei Grigoriev.

The software program was developed within a research project financed by the Italian
Ministry of Universities, the Universities of Udine and Ca’ Foscari of Venice, the
Friuli-Venezia Giulia Region.

This program is free software; you can redistribute it and /or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

contents
1. Main menu page 3
2. User input for algorithms 5
3. Absorbing area 6
4. Basin of attraction 7
5. Bifurcation 8
6. Cycles 10
7. Lyapunov exponents 10
8. Manifolds 11
9. Shifted and Cobweb 11
10. Trajectory 12
11. Model references 13

12. New models 16



1. Main menu
File

a. New model Clicking on this button brings up the directory models from which
one is chosen to be opened.

b. Close model Clicking on this button closes the current model and all related
plots.

c. New plot This is the heart of the program. Clicking on this button brings up
the menu for plot types, that is, the menu from which the user chooses the routine to
be applied to the opened model. The options available for the class of model selected
(basically, whether time is continuous or discrete and how many dimensions there are
to the model system) will be highlighted as you drag the mouse over the plot name.
See Sections 3-9 for detailed descriptions of specific routines.

d. Close plot Clicking on this button closes the current plot.

e. Save image as This button allows the user to save a plot to a file. Clicking
on this button from a plot produced by one of the routines brings up the window in
which the directory and file name are chosen. Plots are saved as .png files.

f. Quit Clicking on this button closes the current window.

g. Exit Clicking on this button closes the session and exits the program.

Command

The composition of the Command menu varies with the routine.
a. Start Clicking on this button resets ranges and starts the algorithm.

b. Stop Clicking on this button stops any calculation. This is particularly useful if
a long calculation has been configured incorrectly.

c. Clear Clicking on this button clears the current plot.

d. Redraw Clicking on this button allows the user to redraw the same plot with
newly defined ranges.

e. Reset Clicking on this button releases the start button or menu.



Plot

The composition of the Plot menu varies greatly with the algorithm and the details
are given in the next section under the routine type.

Options

This menu permits the user to change certain plot characteristics from the default.
The Big dots and Connect dots options are available only for some discrete-time
routines.

a. S1ze Clicking on this button opens a menu giving the following choices
500x500
600X 600
Fit to window
Custom size This button opens a window in which the plot dimensions are fixed.

b. Show axes Clicking on this button opens a menu giving the following choices
Both
None
Domain only
Range only

¢. Colors Clicking on this button opens a menu giving the following choices
Chart background
Plot background

d. Transparency Clicking on this button makes it possible to see points plotted
beneath other points, giving an idea of how often that point is visited.

e. Transparency factor Clicking on this button opens a window in which it is
possible to change the transparency factor (which varies over (0,1) from the default
(0.2) to increase transparency (smaller number) or decrease transparency (larger num-

ber).
f. Gridlines Clicking on this button produces gridlines on the plot.

g. Big dots Clicking on this button magnifies the dots on the plot. This option is
useful especially when studying trajectories and orbits of discrete-time systems.

h. Connect dots Clicking on this button produces a plot in which the points
plotted are connected, again useful in studying discrete-time systems.

i. Crosshair Clicking on this button connects a crosshair to the mouse. The
coordinates of the crosshair are visible to the left of the plot.



j- Not listed is a zoom option which is activated by selecting with the mouse the
desired area of the plot that is to be magnified. Notice that since the area is re-
calculated, zooming requires as much time as the original plot.

Samples

The Sample button permits the user to save, and later recall, the constellation of
values used to produce the current plot. Sample constellations for intersting plots of
some models and algorithms are already saved and can be seen by clicking on the
Samples button. It is also possible to delete samples.

a. Add sample Clicking on this button opens a window in which there appears a
default name for the sample (the values chosen). The name can be changed as desired.

b. Remove sample Clicking on this button opens a window in which are displayed
the existing samples for a specific model and specific algorithm. Choose the samples
to be eliminated.

2. User input for algorithms
In this section the main categories of user input for the various algorithms are
explained. All fields must be completed before the Start button actually initi-
ates the chosen routine. For further explanation and a short example of a ses-
sion download the file getting started from the Documentation part of the website
www.dss.uniud.it /nonlinear.

Initial values Variables of the model appear in the order they were given in the
model definition, see Model text in the Model window. By assigning intial values the
user tells the algorithm at what point in the state space to begin the trajectory. A
random choice is not a good choice for the starting point. The user should be either
fairly familiar with the system’s dynamics or have some guidance (see, for example,
Nonlinear dynamics: computer erercises, a computer exercise workbook making use
of iDMC and available at www.dss.uniud.it /nonlinear).

Parameters Again, parameters appear in the order in which they were given in the
model definition. The choice of values is again a delicate matter and the user should
have a good idea of range of values that lead to stable asymptotic limit sets, otherwise
the trajectory will quickly take on very large values.

Algorithm The input fields required depend also on the type of plot chosen. Other
specific terms will be discussed as they appear in particular routines.

a. transients The user provides the number of iterations, starting from the des-



ignated initial values, that will not be represented in the graph. If the user wants the
entire trajectory plotted the input value is 0. If the user is interested in asymptotic
behavior a nonzero input value for transients will be necessary. At just what point
the behavior can be considered “asymptotic” is a delicate issue, the choice depends
on the model and the objective of the simulation.

b. iterations The user provides the number of iterations for the trajectory, beyond
the designated number of transients. For example, if the user assigns transients
1000 and iterations 1500, the algorithm calculates 2500 iterations and plots from
iteration 1001 through 2500.

Auto ranges iterations The user provides the number of iterations to be used
as the basis for calculating the domain and range of the plot. Following the exam-
ple in b. above, if the user assigns iterations 2500 the entire calculation will be
performed, the axes calculated and then the points plotted. If, instead, a smaller
number is assigned, such as iterations 500, the axes are calculated and appear after
500 iterations. In this case another 500 transients are calculated, but do not appear.
The final 1500 points are plotted as they are calculated.

Axes The user can decide which variables to plot and on which axes.

3. Absorbing area

This routine allows the user to plot the absorbing area of an iterated map using
the method of crtical lines (see, for example, Abraham, Gardini and Mira, Chaos in
Discrete Dynamical Systems, New York: Springer-Verlag, 1997). There are a number
of steps, which should be followed in the order given below. The input fields will be
explained in the step descriptions. Notice that the Jacobian matrix must be provided
in the model file and currently the maximum is 2 diimensions.

a. Plot critical set Pressing this button causes the algorithm to calculate
and plot the points for which the determinant of the Jacobian matrix is zero, with
precision as indicated by epsilon.

b. Plot attractor Pressing this button starts the attractor algorithm which
works in the following way. Click on a point of the plot displayed. The algorithm
uses the information provided in the fields to plot the attractor initiating a trajectory
from that chosen point. To be sure that only the attractor appears, give a sufficient
number of transients to be ignored. For a denser plot of the attractor use a higher
number of iterations. Not all points on the plot necessarily converge to the attractor
and there may be more than one attractor, so that clicking several points is probably
useful. Once the plotted attractor is satisfactory, press the Stop button to get out of



the attractor plotting mode.

c. Choose segments The critical lines method iterates segments which are inter-
sections of the critical sets and the attractor. If steps a. and b. have been followed
the intersections should be clearly visible on the screen. Press the Choose segments
button. Each segment is selected, one segment per dimension, by using 3 clicks of the
mouse. First, click near the critical set. Next, click near the left end of the intersec-
tion of the set and the attractor. Finally, click near the right end of the intersection
of the set and the attractor. If “holes” are present in the chosen segments the ap-
proximation of the trapping region will be less acurate (the region will be larger than
necessary, but anyway contain the attractor). Press the Stop button to get out of
segment selection mode.

d. Clear Having selected the segments to be iterated, press the clear button. The
attractor can be plotted again later, and there is also a button Hide attractor that
can be used to produce different figures.

e. Iterate chosen segments Currently the iteration is accomplished by press-
ing the button, each time it is pressed another iterate of the segment is plotted, with
the given precision. The user can again press Plot attractor to see the attractor
enclosed in the absorbing area. The Hide attractor button permits the user to re-
move the attractor from the figure, the Plot attractor button permits the user to
redraw the attractor.

4. Basin of attraction
This routine allows the user to represent the basins of attraction for attracting
limit sets over a user-specified region of the state space. In the current version this
routine is available only for maps, that is, systems of difference equations. Go to the
File menu and select from New plot the Basin of attraction routine.

a. Basin of infinity This is the default algorithm which gives a relatively quick
idea of the basin of attraction if there is only one attractor. Basically the screen is
divided into a grid of initial points which are iterated until they reach the value
assigned as infinity or converge to the unique attractor. In this case, points are either
part of the basin of infinity or part of the basin of the attractor. The input fields are
described in c. below.

b. All basins If there are multiple basins this algorithm should be chosen by
clicking on A1l basins from the Plot menu.

c. Algorithm attractor The algorithms first iterate a number (designated in
the trials field) of random initial points and as these trajectories converge to the
various attractors, draw points in the limit set on the screen. In order to get all of



the attractors set the number of initial values fairly high, say 100.

The other two input fields improve the appearance and accuracy of the representa-
tion. In this routine the number assigned to the transients input field is the number
of times the algorithm iterates each point on the screen not yet colored as attractors,
before checking where the trajectory is. After that number of transients the alorithm
checks if the trajectory has hit some part of an attactor appearing on the screen. If
this is true, all of the points on the trajectory from the initial grid point through the
transients are marked with the appropriate color.

The user can decide to change the rectangle defined in the Ranges input field, but
the rectangle must include a part of the attractor, otherwise the algorithm finds no
visible attractor (and nothing to which points can converge, leaving a black screen).
Defining a rectangle which contains only a part of the attractor (without changing the
attractor inputs) will likely lead to: thinner basins and possibly to the disappearance
of some basins if their attractors are not in the selected rectangle; thinner attractors.

Thin attractors may be fattened up by increasing the number of points in the
trajectory, that is, the number of iterations. Thin basins may be fattened by
increasing the number of transients for two possible reasons. If trajectories are slow
to converge and the number of transients is low, increasing the number should allow
more points of the basin to be plotted. If only a part of the attractor is visible
trajectories may be attracted to the part not displayed but if enough transients are
allowed (and the attractor is sufficiently “ergodic”) the trajectory should eventually
reach the visible part of the attractor.

5. Bifurcation

This routine represents the limit sets of a dynamical system as one or two param-
eters are varied. In the current version the algorithm is available for maps and a
rudimentary version is available for 3-dimensional differential systems. An improved
routine for differential systems should be available in the next version. The case for
discrete-time systems is straight-forward and given below. Differences in applying
the routine to systems of differential equations are discussed subsequently. Go to the
File menu and select from New plot the Bifurcation routine. In the Plot menu
the Fixed initial point option should be ignored.

a. Single parameter The default setting it to plot the asymptotic behavior of
the system as a single parameter value is varied over a defined range of values. Under
the Parameters section the user must select: the parameter to be varied (if there is
more than one); the minimum and maximum values to be used for that parameter
(min and max respectively). The Vertical range refers to the axis values for the
limit sets of the variable which will be plotted on the ordinate axis.

In the Algorithm section the user must carefully choose the number of transients
to be excluded and the number of iterations to be included in the calculation. In



order to be assured that the trajectory has reached the attractor a sufficiently large
number of transients must be excluded, otherwise the plot will contain points that
are not really part of the limit set. Further, to avoid misleading plots, the number
of iterations should be sufficiently large so as to cover the entire limit set. On the
other hand, the total number of transients and iterations is positively related to the
time necessary to obtain the plot. The usual trade-off between speed and precision
applies. The user must also select which variable to represent on the ordinate axis (if
there is more than one).

b. Double parameter From the list of parameters two must be selected and the
min and max values chosen for each. This algorithm requires input values for the
necessary Approximation parameters precision and infinity. Fpsilon is an indication
at how fine-grained the user wants the plot to be. The smaller epsilon, the closer
a value must be to the point to be defined as that point. For example, setting
epsilon= 10e — 10 means that all points within approximately 0.0005 radius of a
point is taken as that point (and 10e — 5 & 0.0674). The infinity field defines a
cut-off value for unstable orbits. The value assigned to infinity tells the algorithm
at what variable value the trajectory can be considered on its way to infinity. Very
large values will do, but in many cases even relatively small values can be used, unless
there are othere attractors existing far from those under consideration. Changes in the
values assigned to these approximation parameters have little effect on the calculation
speed.

It is the choice of transients that does effect the speed but, again, to avoid
plotting the limit set and transients approaching it, the value of transients must be
sufficiently high. Finally, the plot represents periodic limit sets and the user must fix
the highest number of periods (up to 35) to be considered for a given simulation. It
will be tempting to take all higher-order cycles as quasiperiodic, but that is not the
case.

c¢. Bifurcation for differential systems in 3-d. The bifurcation for continuous sys-
tems routine that is currently available works in two steps. First it uses the Poincaré
or first-return map to obtain a sequence of points in the plane (see Section 4.4). From
this set of discrete points the algorithm calculates the bifurcation map. The Plot op-
tions are again Single parameter, Double parameter, Fixed initial point and
the Step function used in the integration routine.

The Inital values, Parameters and Vertical range fields are the same as dis-
cussed previously. In the Poincaré section plane coefficientsfield the user must
supply the coefficients of the equation that defines the cutting plane. If the dimension
is 3 then 4 values are entered. For example if the user enters 1 2 3 4 the resulting
plane is 1x 4+ 2y 4+ 3z = 4.

The Algorithm fields must be given some attention. The input field Transient
regards the sequence of points defined by trajectory intersections with the Poincaré



10

section (which are not situated at regular time intervals). The user supplies the
number of initial (transient) intersections to be ignored. The Time field specifies
the number of time periods the trajectory and its intersections are observed. The
Step field is the usual step size for the ODE solution approximation and should be
set sufficiently small in order to assure that the intersections with the section are
accurately observed.

6. Cycles

This algorithm calculates all k-cycles of a map for a given period and all values of
the k£ periodic points. The algorithm uses an iterative Newton method to solve the
system G*(z) = (x). Once a periodic point is found the others are determined by
iteration.

Go to the File menu and select from New plot the Cycles routine. The algorithm
is especially sensitive to the user input required to calculate the periodic points. For
example, if 2 periodic points are very close and the precision parameter epsilon is
fairly large, the period-k cycle may not be distinguished because, for that precision,
the cycle has a period of & — 1. The algorithm starts from a random initial point.
If the trajectory from that initial value does not converge to a point on the cycle
the program randomly chooses the next initial point and so on up to the maximum
number of attempts specified in the max.tries field. In order to get all cycles this
value should be fixed large, depending also on the precision chosen, but even setting
10000 will not reduce the speed too much.

In this version the points are plotted without reference to stability or to which
particular cycle the periodic points belong. This should be available in the next
version.

7. Lyapunov exponents

a. Parameter This is the default routine. The user selects which parameter to
vary and gives the min and max values to be considered. The Vertical range refers
to the values of the Lyapunov exponents, which typically have fairly large negative
exponents and small positive exponents. However most interest centers around zero
and positive exponents for which a very small ranges can be used. The Lyapunov
exponent is a time-averaged value and sufficient iterations should be specified. If in
doubt as to the iterations required for convergence use the Time plot over a number
of paramter values.

b. Time Clear the current plot and select the Time option from the Plot routine.
Click on Crosshair from the Option menu to see the zero line better and estimate
values (crosshair coordinates appear on the left).

c. Parameter space This option considers a sub-region of parameter space and



11

uses a color coding to resperesent the number of positive, negative and zero exponents.
The user must supply inputs for the Algorithm. The epsilon field refers to the
Lyapunov exponent. This value gives the symmetric range around zero that is used
by the algorithm to define positive, negative and zero and should be chosen carefully.
If the point is to distinguish a negative value and zero an epsilon such as 0.001 might
be appropriate. It the user wants to make sure that a positive value is definitely
positive a less precise value should be specified.

8. Manifolds

The manifold routines are available only for maps, that is, systems of difference
equations, for which the manifold of interest is a curve in the plane (see, for example,
Nusse and Yorke, Dynamics: Numerical Explorations, New York: Springer, 1998). In
the current version only manifolds of fixed points are calculated and in some cases
the repositioning of the points lying in the lockout region seems to be malfunctioning.
Go to the File menu and select from New plot the Manifolds routine.

a. Unstable Stable Both From the Plot menu the user selects the manifold(s) to
be calculated. The default option is Unstable.

b. Right Left Both From the Plot menu the user selects the branch(es) of the
indicated manifolds to be calculated. The default option is Right. Note that the
right and left branches may actually be the same.

c. Node approximation The user supplies the approximate position of the fixed
point. If the values are close to the fixed point the algorithm will find it.

d. Algorithm input fields. epsilon specifies how long is the segment starting close
to the fixed point. A long segment will extend over more of the manifold at each
iterate, consequently, there will be fewer estimated points on the curve. The number
of iterates of the given segment is specified in iterations.

e. Lockout region ranges In the calculation of the manifolds the points on the
curve may take on very large values. While the Plot ranges defines the screen plot,
the lockout ranges define the region in which the calculation occurs. This avoids the
problem of overflow errors due to excessively large numbers. Again, in the current
version, the repositioning function for points lying in the lockout region may not be
working.

9. Shifted and cobweb

These two routines are available only for one-dimensional maps, that is, a single
difference equation. Go to the File menu and select from New plot the Shifted &
Cobweb routine.



12

a. Shifted The default is the Shifted plot which permits the user to plot the
values of the variable, shifted forward k periods, on the ordinate axis against the
current values on the abscissa. That is, the kth iterate of the map is represented in
the (2, %,11) plane. The user provides k in the Algorithm field labelled order.

b. Cobweb animation From the Plot menu select Cobweb animation. This rou-
tine draws the kth iterate of the map in the (2, Z,+k) plane as in the Shifted plot.
It also draws the bisector and the forward trajectory using the bisector to reflect back
to the abscissa at each pass in order to determine the next iterate value from the
curve. The user supplies the Initial value and should avoid critical values for the
map. The user chooses to view transient behavior by assigning 0 to transients or
chooses to view asymptotic behavior by assigning transients a high value. The mo-
tion is slowed down and the speed can be adjusting by dragging on the arrow above
the plot. Use the Stop button to stop the trajectory plotting.

10. Trajectory

This set of routines form an efficient and flexible way of viewing trajectories and
orbits. Go to the File menu and select from New plot the Trajectory routine.
Notice that in the Options menu for discrete-time models the Trajectory plots can
be drawn with Big dots and/or Connect dots to render the results visible to the
user. The following description is based on a model represented by a system of
difference equations, that is, equation(s) in discrete time. Additional information
for systems of differential equations, that is, equations in continuous time, is given
subsequently.

Plot There are options for viewing the trajectory.

a. State space This is the default choice for systems of more than one variable.
The user must simply provide values and then click on Start. Other options available:
zoom, Big dots and Connect dots (click redraw).

b. Time plot The plot represents the time evolution of the variable chosen for the
Range axis. This is the default plot for one-dimensional maps. To change to Time
plot click Reset first.

c¢. Variation Multiple trajectories can be displayed in a single plot by using this
option. The user can increase or decrease the value of a parameter or initial condition
by specifying the amount to change at each variation in the second column of input
fields that appears when the Variation routine is clicked on. Place a 0 in the second
field for all parameters or initial conditions that do not change. For example, suppose
a parameter parameter b is set at 0.2 in the first field and 0.1 is indicated in the
second field, while all the other second input fields have zeroes. In the Algorithm



13

part the user must indicate how many simulations should be done. Suppose the user
has set this value to 10. The Variation routine then produces a plot for which, at
each subsequent simulation (after the first), the value of the parameter b is increased
by 0.1. The first trajectory is calculated with b = 0.2, the second trajectory with
b = 0.3, and so on.

This option is useful for viewing how limit sets change as a parameter changes, or
how sensitive the dynamics are to initial conditions. Simulations are color-coded and
the number next to each color defines which simulation is represented by that color.

d. Automatic bounds The default for these plots is that the axes ranges are
calculated by the algorithm according to the choice made by the user in Auto ranges
(see Section 2).

e. Manual bounds This option allows the user to define the ranges of the axes (in
some cases one axis may be determined). This is particularly useful for the Variation
routine.

Continuous-time systems Differential equations must be integrated rather than
simply iterated. The default integrator in iDMC is a Runge—Kutta procedure (rk8pd,
see description and list of alternatives in appendix 1) which uses the fixed step size
provided by the user. To change the integrator click on Plot and click on the new
choice from the Step function options.

The accuracy of the integration is inversely related to the size of the fixed step.
The choice of step size depends on the model and on the purpose of the simulation.
Setting the step too large may result in such erroneous representations of the curve
that the dynamics are not even qualitatively the same. Setting the step very small
will, however, increase the time necessary for calculation.

For systems in continuous time the number of iterations and the number of periods
are related but not equal. For example, a step size of 0.02 means that the interval be-
tween time ¢ and time ¢+1 is divided into 50 equal intervals. The number of iterates
multiplied by the step size gives the number of time periods. Using 1000 iterations
with a step size of 0.02 means 20 time periods have been simulated. Trajectories and
orbits are made smoother by fixing smaller steps but the number of iterations must
be adjusted accordingly to cover the same time period.

11. Model references
The model directory is composed of well-known prototypical models plus: a direc-
tory with models used in computer and analytical exercises (see below) and a direc-
tory with a collection of economic models (see below). A reference for each model is
given where information on the model, including further bibliographical references,
are provided.



14

Cremona. See Alberich-Carramiana, 2002.

Gingerman. See Phaser software.

Hénon. See Medio and Lines, 2001, chapter 7.

Ikeda. See Alligood, Sauer and Yorke, 1996.

Logistic. See Medio and Lines, 2001, chapter 8.
Lorenz. See Medio and Lines, 2001, chapter 6.

Lv. See Medio and Lines, 2001, chapter 4.

MSmith. See Maynard Smith, 1986.

Nordmark. See Nusse and Yorke, 1998.

Quasi2. See Nusse and Yorke, 1998.

Rossler. See Medio and Lines, 2001, chapter 7.

Rotor. See Nusse and Yorke, 1998.

Silnikov. See Medio, 1992, chapter 4.

Sine circle map. See Medio and Lines, 2001, chapter 8.
Standard. See Alligood, Sauer and Yorke, 1996.

Tent. See Medio and Lines, 2001, chapter 6 and Elaydi, 2000.
Tinkerbell. See Alliggod, Sauer and Yorke, 1996.
Vanderpol. See Medio and Lines, 2001, chapter 8.

Primer models These models are used in connection with the book Nonlinear dy-
namics: a primer (Medio and Lines, 2001) and the accompanying computer exercise
workbook Nonlinear dynamics: computer exercises available at the software website
www.dss.uniud.it /nonlinear.

Con2d. See Medio and Lines, 2001, chapter 2.

Cona. Model created by Gianluca Gazzola as exercise.

Conb. Model created by Gianluca Gazzola as exercise.

Conlyapa. See Medio and Lines, 2001, ex. 3.11 (b).

Conlyapb. See Medio and Lines, 2001, ex. 3.11 (d).

Conbif. See Medio and Lines, 2001, ex. 5.6.

Conlocal. See Medio and Lines, 2001, ex. 3.11 (a).

Conpar. See Medio and Lines, 2001, chapter 1.

Disa. Model created by Gianluca Gazzola as exercise.

Disbif. See Medio and Lines, 2001, ex. 5.8 (c).

Dispar. See Medio and Lines, 2001, chapter 1.

Disparlag. See Medio and Lines, 2001, chapter 2.

Flip. See Medio and Lines, 2001, ex. 5.8 (a).

Hopf. See Medio and Lines, 2001, ex. 5.7.

Quasi. See Medio and Lines, 2001, chapter 4.

Vanderpol. See Medio and Lines, 2001, chapter 8.



15

Economic models These are models used in teaching with the book Advanced
Macroeconomics (Romer, 2001) and the accompanying computer exercises Macroe-
conomic models: computer erercises available at www.dss.uniud.it/nonlinear.

BH. See Brock and Hommes, 1989.
Cournot. See Puu, 2003.
Cournotad. See Puu, 2003.

Diamond. An overlapping generations model with logaritmic utility and Cobb-
Douglas production. See Romer, 2002 chapter 2.

Olgl. See Medio, 1992, chapter 12.
Olgns. See Medio and Lines, 2001, ex. 5.11 and Medio, 1992, chapter 12.

Ramsey. A macroeconomic model with logaritmic utility, Cobb-Douglas produc-
tion and technology. See Romer, 2002 chapter 2.

Solow. The Solow growth model in per-capita terms. See Romer, 2002 chapter 1.

Alberich-Carraminiana, M. 2002. Geometry of the plane Cremona maps, Berlin:
Springer-Verlag.

Alligood, K. T., Sauer, T. D. and Yorke, J. A. 1996. Chaos: and introduction to
dynamical systems. New York: Springer-Verlag

Brock W. and Hommes,C. 1989. Heterogeneous beliefs and routes to chaos in a simple
asset pricing model Journal of Fconomic Dynamics and Control 22, 1235-1274.

Elaydi S. N. 2000. Discrete chaos, Boca Raton, FL: Chapman & Hall/CRC Press.
Maynard Smith, J. Evolution, games and learning Physica D 22, 43-49.

Medio, A. 1992. Chaotic dynamics. Theory and applications to economics. Cam-
bridge: Cambridge University Press.

Medio A. and Lines M. 2001. Nonlinear dynamics: a primer. Cambridge: Cambridge
University Press.

Nusse H. E. and Yorke J. A. 1998. Dynamics: numerical explorations. New York:
Springer-Verlag

Phaser software, see site at www.phaser.com

Puu, T. Attractors, Bifurcations, € Chaos - Nonlinear Phenomena in Economics,
Berlin: Springer-Verlag, 2003.

Romer D. 2001. Advanced Macroeconomics. New York: McGraw-Hill.



16

12. New models

New models can be introduced without having to re-compile iDMC because they
are written and read by the powerful Lua programming language (see below and the
site www.lua.org). The easiest method is to use an editor to call up an existing model,
make the necessary changes and save the new file, for example, mymodel.lua, in the
directory Models. The basic structure for the model file can be seen in the logistic
model example below:

name = “Logistic”

escription = “See Model Info
d t “See Model Info”
type — L4D77
parameters = “mu”
variables = “x”

function f(mu, x)

y = mu*x*(1 - x)

return y

end

function Jf(mu, x)

*

return mu - 2 * mu * x

end

For continuous-time systems change type to “C”. Typical mistakes are forgetting
to put the parameters and variables always in the same order when defining functions
and not making proper use of quotation marks.

The Lua language (Copyright, 2003 Tecgraf, PUC-Rio) is “a powerful, light-weight
programming language designed for extending applications”. This description and
the following excerpts are from the Lua 5.0 Reference Manual, Roberto lerusalim-
schy, Luiz Henrique de Figueiredo and Waldemar Celes, Tecgraf Computer Science
Department PUC-Rio, 2003 (downloadable from www.lua.org). That document de-
scribes version 5.0 of the Lua programming language and the Application Program
Interface that allows interaction between Lua programs and their host C programs.
For our purposes only the following characteristics of the language are central.

Page 3. Numerical constants may be written with an optional decimal part and an
optional decimal exponent. Examples of valid numerical constants are

3 3.0 3.1416 314.16e-2 0.31416E1

Pages 8-10. Lua supports the usual arithmetic operators: the binary + (addition),
- (subtraction), * (multiplication), / (division), and "~ (exponentiation); and unary -
(negation).

The relational operators in Lua are



17

These operators always result in false or true. Equality (==) first compares the
type of its operands. If the types are different, then the result is false. Otherwise,
the values of the operands are compared. Numbers and strings are compared in the
usual way. The operator = is exactly the negation of equality (==). The order
operators work as follows. If both arguments are numbers, then they are compared
as such. Otherwise, if both arguments are strings, then their values are compared
according to the current locale.

The logical operators in Lua are

and or not
All logical operators consider both false and nil as false and anything else as true.
The operator not always return false or true. The conjunction operator and returns
its first argument if this value is false or nil; otherwise, and returns its second
argument. The disjunction operator or returns its first argument if this value is
different from nil and false; otherwise, or returns its second argument. Both and
and or use short-cut evaluation, that is, the second operand is evaluated only if
necessary.

Operator precedence in Lua follows, from lower to higher priority:

or

and

< > <= >= T= ==

_|_ _

*/

not - (unary)

You can use parentheses to change the precedences in an expression. The exponen-
tiation operator is right associative. All other binary operators are left associative.

Page 50. The library is an interface to most of the functions of the standard C math
library. (Some have slightly different names.) It provides all its functions inside the
table math. In addition, it registers the global_pow for the binary exponentiation
operator = so that x"y returns Y. The library provides the following functions:
math.abs math.acos math.asin math.atan math.atan2
math.ceil math.cos math.deg math.exp math.floor
math.log math.logl0 math.max math.min math.mod
math.pow math.rad math.sin math.sqrt math.tan
math.frexp math.ldexp math.random math.randomseed
math.pi.

Most of them are only interfaces to the corresponding functions in the C library. All
trigonometric functions work in radians (previous versions of Lua used degrees). The
functions math.deg and math.rad convert between radians and degrees. The function



18

math.max returns the maximum value of its numeric arguments. Similarly, math.min
computes the minimum. Both can be used with 1, 2, or more arguments. The func-
tions math.random and math.randomseed are interfaces to the simple random gener-
ator functions rand and srand that are provided by ANSI C. (No guarantees can be
given for their statistical properties.) When called without arguments, math.random
returns a pseudo-random real number in the range [0, 1). When called with a number
n, math.random returns a pseudorandom integer in the range [1, n]. When called with
two arguments, 1 and u, math.random returns a pseudo-random integer in the range
[, u]. The math.randomseed function sets a seed for the pseudo-random generator:
Equal seeds produce equal sequences of numbers.

For the following formats refer to the indicated model file which uses that format:
if then, see cournot.lua; math.mod, see sinecircle.lua; for inserting many constants
and the use of intermediate variables, see quasi2.lua.



