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Exercises on Ch.19 Modelling of disorder 

19.1 Introduction. Exercise 1 

19.2 Thermal vacancies in a crystal. Exercises 1 and 2 

19.4 Heat capacity due to thermal vibrations. Exercises 1 and 2 

19.7 Random mixture of atoms. Exercises 1 and 2 

19.9 Crystals with stoichiometric vacancies. Exercise 1 

19.10 Interstial solutions. Exercise 1 

 

19.1 Introduction 

Exercise 19.1.1 

Boltzmann's relation relates the configurational entropy, ΔS, to the number of ways, W, 
the system can be arranged under the conditions given, ΔS = klnW, where k is 
Boltzmann's constant. Use this relation to prove that the configurational entropy of a 
system, consisting of two parts, is equal to the sum of the configuration entropy for each 
part. 

Hint 

If each part can be arranged in W1 and W2 ways, respectively, then the whole system can 
be arranged in W = W1·W2 ways. 

Solution 

ΔS = klnW = kln(W1 W2) = klnW1 + klnW2 = ΔS1 + ΔS2. 

19.2 Thermal vacancies in a crystal 

Exercise 19.2.1 

Suppose a solid metal in equilibrium has 10-3 vacancies per atom at the melting point. 
How much lower would the melting point be if there were no vacancies? 
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Hint 

Apply Richard's rule, ΔS ≅ R on melting. Close to the melting point it yields 
 ΔG ≅ (TTm.p. – T)R. 

Solution 

With vacancies we have Gliquid – Gsolid = ΔG = (TTm.p. – T)R and without we get <inline>. 

Exercise 19.2.2 

The temperature dependence of the entropy due to thermal vacancies in a metal is 
sometimes given by the expression  where  is 

the value of  at T = T
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Hint 

We are asked to compare an expression in  with our known expression in . For 

equilibrium at all T we know  and thus  if g is 
independent of T, because  at T = T

o
Vy eq

Vy
eq
VykTg ln=− TTo

V
eq
V

pmyy /..)(=
o
VV yy = Tm.p.. 

Solution 

The new expression gives  which is the approximate value of 
 for small . 
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19.4 Heat capacity due to thermal vibrations 

Exercise 19.4.1 

Derive the expression for S as a function of T at constant P by integrating CP = CV(1 + 
2αT) assuming that α is a constant. Examine if there are any other approximations. 

Hint 

V changes during this integration since P is kept constant. 

Solution 

Debye gave CV(x) where x = Θ/T and Θ was treated as independent of T. Now we must 
assume that Θ is also independent of P, which cannot be quite true. Then we get, under 
constant P:  S = ∫(CP/T)dT = ∫(CV/T)dT + 2α∫CVdT = S(x) + 2αU(x). 
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Exercise 19.4.2 

Einstein's treatment of lattice vibrations gave the following contribution to the Helmholtz 
energy ΔF = 3RTln[1 – exp( – Θ/T)]. Debye's treatment is much more complicated but, in 
principle, the result can also be expressed as ΔF = T·Φ(Θ/T). In a simple approach we 
may assume that Θ is independent of T but it certainly depends upon V. Show that the 
following expression for the Grüneisen parameter can then be derived, γ = – dlnΘ/dlnV. 

Hint 

Neglect all other contributions to F. Then we have F as a function of its natural variables 
T and V and should be able to calculate any thermodynamic quantity. Calculate α/κTT from 
– FVT. Denote dΦ/d(Θ/T) with Φ′, etc. 

Solution 

F = TФ(Θ/T); FTT = Ф + T·Ф'·( – Θ/TT

2) = Ф – (Θ/T)·Ф'; 
CV = – TFTT = – T·[Ф'·( – Θ/TT

2) + (Θ/TT

2)·Ф' – (Θ/T)·Ф"·( – Θ/TT

2)] = – (Θ2/TT

2)·Ф"; α/κTT = 
(∂V/∂T)P/( – ∂V/∂P)TT = (∂P/∂T)V = ( – ∂FV/∂T) = – FVT = – FTV = – [Ф'·(1/T)·(1/T)·dΘ/dV – 
dΘ/dV·(1/T)·Ф' – (Θ/T)·Ф"·dΘ/dV·(1/T)] = (Θ/TT

2)·dΘ/dV·Ф"; γ = Vα/CVκTT = 
V·(Θ/TT

2)·dΘ/dV·Ф"/( – Ф"Θ2/TT

2) = V·(dΘ/dV)/( – Θ) = – dlnΘ/dlnV. 

19.7 Random mixture of atoms 

Exercise 19.7.1 

Stirling's approximation to three terms is: lnN! ≅ NlnN – N + ln(2πN)1/2. Derive S for a 
mixture of A and B using one, two and three terms. 

Hint 

Only the first term was used in the text. 

Solution 

lnN! – lnNA! – lnNB! = NlnN – NAlnNA – NBlnNB – N + NA + NB + 0.5ln[2πN(2πNA·2πNB)] = 
– N(xAlnxA + xBlnxB) – (1/2)ln(2πNANB/N) ≅ – N(xAlnxA + xBlnxB) for large N. The first term 
gives the ideal expression, the second term gives no contribution. The third term is 
negligible for large N. 

Exercise 19.7.2 

From the treatment of thermal vacancies we obtained ΔSm/R = – ln(1 – yv) – [yv/(1 – 
yv)]·lnyv. Compare with the expression obtained for a binary alloy A–B if we identify B 
with vacancies. 
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Hint 

Examine for what size of a system each expression is defined. 

Solution 

ΔSm/R = – xAlnxA – xBlnxB = – (1 – xB)ln(1 –xB) – xBlnxB holds for one mole of an alloy. The 
quantity yv is the site fraction but xB is also a site fraction because there is only one kind 
of site and in the A–B alloy they are all filled by atoms. We could thus get complete 
agreement between the two cases by expressing ΔSm for the case with vacancies per mole 
of sites, i.e., by multiplying with 1 – yv, the number of atoms per site. 

19.9 Crystals with stoichiometric vacancies 

Exercise 19.9.1 

At 1300 K the molar content of Fe in wüstite can vary between 0.467 and 0.488 and the 
O content from 0.533 to 0.512. What is the range of variation of the vacancy content? 

Hint 

Wüstite has the NaCl structure with at = ar. Evidently the O sublattice is filled. We have 
Fe vacancies. It is convenient to use y fractions. 

Solution 

Eq. 19.7.2 yields (a)  
   (b)  

124.0;876.0533.01/1467.0 ==⋅⋅= t
V

t
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V

t
Fe yy

19.10 Interstitial solutions 

Exercise 19.10.1 

Consider the interstitial solution of C and N in bcc-Fe. Assume random mixing of them 
and derive an expression for the contribution to the chemical potential of C from the 
mixing. 

Hint 

Derive µC from ΔGm, using µC = µC – µVa. Use yN = 1 – yVa – yC; ∂yN/∂yVa = ∂yN/∂yC = – 1 if 
yN is chosen as a dependent variable. 

Solution 

ΔGm = 3RT(yValnyVa + yClnyC + yNlnyN) per mole Fe. 
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ΔμC = (1/3)(∂ΔGm/∂yC – ∂Gm/∂yVa) = RT(yC/yC + lnyC – yVa/yVa – lnyVa = RTln(yC/yVa) = 
RTln[yC/(1 – yC – yN)] 

Exercise 19.10.2 

Express the contribution to the chemical potential of carbon from random mixing in the 
interstitial sublattice in bcc-Fe in terms of the ordinary molar content, xC. 

Hint 

The problem is to express yC in terms of xC. Start with the definition of yC. 

Solution 

yC = xC/3xFe = xC/3(1 – xC); 1 – yC = (3 – 4xC)/3(1 – xC); ΔμC = RTln[yC/(1 – yC)]  
    = RTln[xC/3 – 4xC] 
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