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A Multi- criteria Decision Analysis of the Risk 
of Injury to the Public from Rock Falls at 
Worbarrow Bay, Southern UK

Background Information and Objectives

This exercise outlines the key steps taken in a multi- criteria decision analysis to iden-
tify areas where members of the public may be at risk from rockfall at Worbarrow 
Bay, Lulworth Cove on the southern coast of the UK. Worbarrow Bay lies at the cen-
tre of the Dorset and East Devon Coast World Heritage Site, otherwise known as the 
Jurassic Coast, which receives over 17 million “visitor nights” each year (May, 1993). 
The area is popular because of its historical, spiritual and cultural significance, as well 
as the unique geological features here that are often the subject of school and univer-
sity fieldtrips (Figure 1). In recent years, numerous rockfalls and landslides along this 
section of coastline have led to hazard assessment becoming a management priority 
for this coastal landscape.

Figure 2 illustrates a multi- criteria analysis to identify geographical areas that pose 
a high risk of injury to members of the public from rockfall events. High risk areas 
are defined as those that meet three equally weighted criteria relating to proximity to 
footpaths, topographic slope and the nature of the underlying geology:

• Criterion 1: Areas located within 50m of footpaths,

• Criterion 2: Areas with a slope gradient exceeding 10%, and

• Criterion 3: Areas underlain by softer, less consolidated chalk deposits.

Geographic areas meeting all three of these criteria were identified as being of high 
risk. The practical value of such an analysis is that it identifies geographical areas 
where management activities. These might include the introduction of signage and 
handrails to reduce risk of injury. As the Jurassic Coast is 155 km long, and a lot of 
this length is subject to intense pressure from tourism, identifying areas in which to 
focus management resources can produce significant practical efficiencies.
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Data

You are provided with an aerial photograph of Worbarrow Bay that can be used as 
a backdrop onto which the data layers can be overlaid (filename “Worbarrow_ Bay_ 
AOI’ note: it is not used as a data layer for the analysis specified), the locations of the 
footpaths (‘Footpaths’), a geological map (‘Geology_ AOI’) and a map of areas where 
the slope exceeds 10% (‘Slope_ over_ 10_ AOI’).

Data Sources: The aerial photograph was supplied by Infoterra UK, footpaths were 
digitised by the author at a scale of 1:500 from the aerial photograph, geological 
classes were also digitised by the author at a scale of 1:500 from the Ordnance Survey 
Geological Map of the British Islands (available from DigiMap), and areas where the 
slope exceeded 10% were generated from a 20 m digital elevation model (also available 
from the topographic data layers of Digimap).

Instructions

It may be useful to work in the model maker facility of ArcGIS so that you are able to 
outline and implement this multi- criteria analysis as a series of sub- steps.

Create a model that implements each of the three criteria listed above, then bring 
those criteria together into a final step to identify areas that are “At risk” of rockfalls.

• Criterion 1: Areas that were located within 50m of footpaths:
Drag the Footpaths layer into the dataframe
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Figure 1 Worbarrow Bay, east of  Lulworth Cove. Headland and bay coast- line exposing 
strata from Portland Stone to Chalk. Features include A Iron Age hill- fort on chalk ridge, B 
recent landslides in chalk cliffs with talus ex- tending below sea level, C coastal path at risk 
from cliff- top retreat, D stacks resulting from erosion of  limestone steeply dipping strata 
which continue as a submerged ridge to the headland in the left foreground, E incised dry 
valley in chalk,  F landslides in chalk, sands and clays, G shingle beach with occasional 
landslides.
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Instructions3

Use the buffer tool (Analysis –  Proximity –  Buffer) to identify areas within 50 m of foot-
paths. Specify ‘50’ as the distance and metres as the units from the drop down menu. 
This will output a vector polygon shapefile that covers all areas within 50 m of footpaths.

• Criterion 2: Areas that had a slope gradient that exceeded 10%:
This data layer has been provided and can go straight into the final model stage that 

brings the multiple criteria together

Define criteria thresholds

Combine results to obtain geographic areas
where all criteria are met

Paths < 50m distance

Footpath

Footpath

50m path buffer

Slope %

Slope value

Geology

Geology

High

Implement criteria

Clay/sand

Limestone/
shale
Upper chalk

Upper chalk

SandstoneLower chalk

Lower chalk

Low : 0

>10%

Slope > 10% Geology = chalk

0 0.325 0.65 1.3 Km

Figure 2 A hypothetical illustrative example of multi- criteria spatial analysis at Worbarrow 
Bay near Lulworth Cove along the coastline of southern England. The risk of injury from 
rock falls can be modelled based on distance to footpath, topographic slope and underlying 
geological character. Text boxes indicate key parts of the process of multi- criteria analysis.
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• Criterion 3: Areas that were underlain by softer, less consolidated chalk deposits.
Drag the Geology layer into the data frame. Open the attributes table and you will see 

an attribute called ‘Geol_ class’ that specifies the underlying geology for each part 
of the map. We are interested in the ‘Lower chalk’ and ‘Upper chalk’ classes. Use 
the Select tool (Analysis tools –  Extract –  Select) to define an SQL Expression 
that selects the classes of interest. This will take the following form:

“Geol_ class” = ‘Lower chalk’ OR “Geol_ class” = ‘Upper chalk’
Once the correct classes have been selected, you should have generated a new file 

identifying all areas underlain by chalk

• The final step of the analysis brings together the three layers relating to each of the 
criteria specified. Only areas that meet all three of the criteria are identified as being 
at risk of rockfalls.
Use the intersect tool (Analysis –  Overlay –  Intersect) to identify areas on the map 

that meet all three criteria specified. Put in all three of the datasets as input features.
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Calculating Changes to the Lagoon Volume at 
Diego Garcia Atoll, Chagos Islands

Background Information and Objectives

Diego Garcia is a horse- shoe shaped atoll (9 × 22 km2) that lies 55 km south of the 
Great Chagos Bank in the central Indian Ocean (Figure 1). Approximately 70% of the 
atoll area is comprised of the extensive lagoon (11 km2), which is enclosed by a mostly 
continuous land rim around the periphery, which has an open channel to the North. 
In the 1970s an American air base was built along the north western sector of Diego 
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Figure 1 (a) The location of the British Indian Ocean Territory in the central 
Indian Ocean, (b) the location of Diego Garcia at the southern end of the Chagos 
archipelago (BIOT), and (c) Diego Garcia atoll.
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Garcia atoll rim, thus, recent anthropogenic influences associated with the construction 
of military infrastructure include dredging and dumping of sands within the lagoon.

Data

For this exercise, two raster layers are provided that depict bathymetric models of the 
lagoon at Diego Garcia Atoll, Chagos Islands. These have been produced by digitising 
2590 numbered points into a georeferenced point file from hydrographic charts. These were 
developed from the basis of two surveys of the atoll lagoon, undertaken in 1967 (H.M.S. 
Vidal) and 1998 (UK Hydrographic Office) (Figure 2). A kriging interpolation was applied 
to digitised sounding points to derive a continuous bathymetric model representing water 
depth across the entire lagoon floor. More detail on the collection of sounding points and 
production of the bathymetric model can be found in Hamylton and East (2012).

Data Sources:  Hydrographic charts were accessed via Cambridge University Map 
Library and digitised by Holly East.

Figure 2 Point file displaying the 3,584 soundings from the 1998 UK Hydrographic Office 
bathymetric chart.
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Instructions3

The net change in volume of sediment between the two different survey times can 
be calculated by summing across the raster pixels that comprised the bathymetric 
change model and subtracting those that represented sediment loss from sediment 
accumulation (Equation 1).

∆ = −∑VSed VSed VSedac rem  (1)

Instructions

Overall change in lagoon volume can be estimated via a two- step process that calculates 
a ‘change raster’ to estimate bathymetric change on a pixel by pixel basis (step one), 
then sums these to generate overall estimates of change for the entire lagoon (step two).

Note that conventionally, bathymetric maps are datasets that represent water 
depths as negative values because they are beneath the sea surface. A change raster 
can be calculated by subtracting the earlier survey (1967) from the later survey (1998). 
This can be achieved in the raster calculator (spatial analyst, map algebra). This will 
produce a new layer with positive values where the water depth has reduced (i.e. sedi-
ment has accumulated) and negative values where the water depth has increased (i.e. 
sediment has been removed) (see Figure 3).

Figure 3 Calculation of net change in sediment volume between two raster bathymetry layers 
of the lagoon floor at Diego Garcia.
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  where ∆VSed = Net change in sediment volume, 

  VSed ac  = Total volume of sediment accumulated,  
  VSed rem  = Total volume of sediment removed.   

  The values of VSed and VSed ac can be calculated by summing up the total negative 
and total positive pixels values from the change raster derived in step one, then mul-
tiplying through by the volume of a single pixel. Pixels where the water depth has not 
changed (value = 0) are excluded from the analysis. Thus, estimated change (in Tonnes) 
for these datasets would be 116 − 3163 = – 3047 Tonnes (see  Table 1  for values)        

  Table 1      Per pixel change in volume of the Diego Garcia Lagoon  

Sediment accumulated Sediment removed

VALUE COUNT Total (value *  
count*pixel 
volume/ m 3 )

VALUE COUNT Total (value *  
count*pixel 
volume/ m3)

1 3031 378875000 – 8 4 – 4000000
2 560 140000000 – 7 29 – 25375000
3 97 36375000 –6 72 – 54000000
4 23 11500000 – 5 423 – 264375000
5 16 10000000 – 4 828 – 414000000
6 11 8250000 – 3 1603 – 601125000
7 11 9625000 – 2 3204 – 801000000
8 13 13000000 – 1 7990 – 998750000
9 15 16875000 0 10575 0

10 15 18750000 Total/ m 3 – 3162625000
11 9 12375000 Total/ Tonnes – 3163
12 10 15000000
13 6 9750000
14 5 8750000
15 4 7500000
16 9 18000000
17 3 6375000
18 3 6750000
19 8 19000000
20 8 20000000
21 9 23625000
22 5 13750000
23 5 14375000
24 4 12000000
26 2 6500000
27 1 3375000
Total/ m 3 116000000
Total/ Tonnes 116

Table 1      Per pixel change in volume of the Diego Garcia Lagoon  

Sediment accumulated Sediment removed

VALUE COUNT Total (value *  
count*pixel 
volume/ m 3 )

VALUE COUNT Total (value *  
count*pixel 
volume/ m3)

1 3031 378875000 – 8 4 – 4000000
2 560 140000000 – 7 29 – 25375000
3 97 36375000 –6 72 – 54000000
4 23 11500000 – 5 423 – 264375000
5 16 10000000 – 4 828 – 414000000
6 11 8250000 – 3 1603 – 601125000
7 11 9625000 – 2 3204 – 801000000
8 13 13000000 – 1 7990 – 998750000
9 15 16875000 0 10575 0

10 15 18750000 Total/ m 3 – 3162625000
11 9 12375000 Total/ Tonnes – 3163
12 10 15000000
13 6 9750000
14 5 8750000
15 4 7500000
16 9 18000000
17 3 6375000
18 3 6750000
19 8 19000000
20 8 20000000
21 9 23625000
22 5 13750000
23 5 14375000
24 4 12000000
26 2 6500000
27 1 3375000
Total/ m 3 116000000
Total/ Tonnes 116
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Interpolating Sediment Samples from   
Lady Musgrave Island

Background Information and Objectives

This dataset has been selected to illustrate the how the different interpolations and sym-
bologies applied to a point dataset can influence the way that the dataset is visualised and 
interpreted. The point data represent sediment samples and their associated characteris-
tics derived from sediment size analysis (carried out on a Malvern Mastersizer laser par-
ticle analyzer). More information on the data can be found in the following publication:

Hamylton, S. M., Carvalho, R. C., Duce, S., Roelfsema, C. M., & Vila- Concejo, A. 
(2016). Linking pattern to process in reef sediment dynamics at Lady Musgrave 
Island, southern Great Barrier Reef. Sedimentology, 63, 1634–1650.

Data

The data provided for this exercise include a vector polygon shapefile “Reef_ flat” and 
a vector point shapefile “Musgrave_ SedimentGrabs”. The polygon shapefile is an 
outline of the reef platform at Lady Musgrave Island, southern Great Barrier Reef. 
This vector polygon file outlines the reef flat (composed of three polygons indicating 
the outlines of the reef flat, island and lagoon). The point shapefile is a series of 24 
sediment samples collected across the reef system at Lady Musgrave. The attributes 
table contains results of a sediment size analysis, including percentage composition 
for gravel, sand and mud and a measure of overall sediment size (Phi).

Data Sources: Sediment samples were collected by Dr Chris Roelfsema and Dr Rafael 
Carvalho. The reef outline was digitised by the author from a Geo- Eye satellite image 
of the reef.

Instructions

Part 1: Create Three Interpolated Layers

(Note: You may need to turn on the Spatial Analyst extension before you are able to 
use this tool via customise, extensions).

Use the interpolation tools within the spatial analyst toolbox to apply the following 
three interpolations to the Musgrave_ SedimentGrabs dataset:

• Inverse distance weighting

• Spline

• Kriging
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The Z value field (i.e. the value within the dataset that you wish to interpolate) is the 
proportion of sand that was measured in each sample, labelled “Sand2”. You may 
need to adjust the processing extent within the environments tab at the bottom of the 
tool so that the extent window says “same as layer Reef_ flat”. This means that your 
interpolated surface layer covers the entire reef platform.

Part 2: Adjust the Visualisation Properties of the Interpolated Layers

Clip the Interpolated Layer to the Extent of Lady Musgrave Reef:

One you have produced the three interpolated raster layers, you will need to clip them 
to the extent of the Musgrave reef flat (Data Management, Raster, Raster Processing, 
Clip). The clip function acts like a cookie- cutter to reduce the layer to the specific 
geographic area that you are interested in.

You will need to run the clip tool three times, each time setting the input raster to 
the interpolated raster layer you have produced, setting the output extent to that of 
the Reef_ flat shapefile and putting a tick in the box that says “Use input features for 
Clipping Geometry”.

Figure 1 Upper left: Lady Musgrave reef, showing the island on the west side, the blue lagoon 
in the centre and the reef flat around the periphery. Illustrative examples of the interpolated 
raster layers using IDW, spline and Kriging methods.
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Instructions3

Adjust the Symbology of the Clipped Raster Layer:

Within the properties window of each clipped and interpolated raster dataset, apply 
the following symbology settings: Show = Stretched, select the color ramp that pro-
gresses from red to green (15th option from the bottom in the drop down menu), within 
the stretch options, select histogram equalize and then add a tick in the invert box.

Part 3: Compare your Output Layers

Use the questions below as a basis for comparing the interpolated outputs of the sedi-
ments dataset:

• What are the upper and lower values for the inverse distance weighting, spline and 
kriging interpolated layers? How do these values compare to the range of the input 
dataset?

• Which areas appear to be associated with the largest concentrations of sand?

• Adjust the symbology settings (try changing the colours or the stretch type applied 
to the layer). How does this affect the way you interpret the output dataset?
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Predicting Live Coral Reef Occurrence Around 
The Lizard Island Group, Great Barrier Reef

Background Information and Objectives

This exercise introduces quantitative methodologies for hypothesis testing using 
mapped variables. It tests whether there is a statistically significant relationship 
between physical variables (e.g. those related to bathymetry) and a biological vari-
able (e.g. the presence of live coral). It covers classical regression (the ordinary least 
squares model) and spatial regression (spatially lagged autocorrelation). The objec-
tives of Part 1 are to statistically test the relationship between the presence (or absence) 
of coral reef and physical parameters (in this case, we will be using a combination of 
bathymetry, rugosity, BPI and variety-  all information layers that you generated in the 
last practical). In Part 2, the relationship defined in Part 1 will be used to predictively 
map the presence of coral reef around Lizard Island.

Data

Filename = Ground_ ref.shp This dataset was collected from 365 snapshots of under-
water video footage during an expedition to Lizard Island (December 7– 17th, 2011). 
It contains coral reef benthic information combined with relevant physical informa-
tion at the same point locations. It has been generated by applying the “Add surface 
information” to the underwater video shapefile to extract physical information into 
a series of new fields (in each case, the new “Z” field generated was copied across 
to a new field). Also supplied is a vector file indicating the shoreline around Lizard 
Island (Lizard_ land_ outline). Additional data supplied for part 2 include a model of 
water depth around Lizard Island (see Hamylton et al. 2015 for more information on 
how this was derived), associated terrain variables of variety (a measure of localised 
variability in water depth) and slope. Both variability and slope are derived using the 
Spatial Analyst tools in ArcGIS. Finally, wavebands 1 to 4 of a WorldView2 satellite 
image of Lizard Island are provided.

Data Sources: Field data for the Ground_ ref shapefile were collected by the author, 
the water depth model and associated terrain variables were produced by the author from 
a combination of satellite imagery and field data. The shoreline file (Lizard_ land_ out-
line) was digitised by the author at a resolution of 1:500 from the satellite image.

Hamylton, Sarah M., John D. Hedley, and Robin J. Beaman. “Derivation of high- 
resolution bathymetry from multispectral satellite imagery:  a comparison of 
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empirical and optimisation methods through geographical error analysis.”Remote 
Sensing 7.12 (2015): 16257– 16273.

Software: GeoDa (GeoDa is free spatial software that can be downloaded at http:// 
geodacenter.asu.edu/ ).

Instructions

 Part 1: Modelling Coral Reef Occurrence

1. Open the point file
 File>open shapefile,  or left click the  icon to input the shapefile. Browse to 

where you have stored the Ground_ ref shapefile and open.

2. Check the attribute table
 Left click the  button to open the table and check that it contains the variables 

described above.

3. Perform a classical (ordinary least squares) regression
 Methods > Regress. As with ArcGIS, you need to type in the file name and location. 

It is also necessary to type in a report title (if  you want to run several regressions, use 
a naming convention that will remind you which iteration you have run). Hit okay.

 Add your Dependent variable, which denotes the presence of live coral cover (in 
this case we use the logarithm of live coral cover because it is necessary to) and 
your independent variables, which denote physical aspects of the environment 
(bathy, rugosity, variety and BPI). Click Run to execute the model.
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4. When the model has run, click “view results” to examine the diagnostics associated 
with the regression analysis.

5. What is the R- squared value and its associated p- value?

R2=  p  <

 R2 is a measure of  the proportion of  variation in live coral occurrence that 
is being explained by the combination of  reflectance (bands 1– 4), variety and 
slope. Is the relationship between coral reef  occurrence and the physical vari-
ables statistically significant (probability < 0.05)?
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

 Note down the T- statistic associated with each of  the independent variables 
(this is a measure of  how powerful these are independently as predictors of  coral 
reef  occurrence),

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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6. Map the residuals of the model.
 Save the predicted values and residuals of the regression to the Ground_ ref shapefile 

table of attributes > save to table > tick “predicted value” and “residual” and click okay.

 These should now appear as new columns in the shapefile table of attributes. With 
the map window open, select Map>Standard Deviation.

 Does the map display any spatial pattern of the residuals? Based on the regression 
model used, explain what positive and negative residuals indicate:

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

7. Quantify the spatial structure of the residuals, if  any, using Moran’s I
 Create a spatial weight matrix Tools > weights > Create. Browse and select the input 

file (Ground_ ref) from which the weight matrix is to be created. Select POLY_ ID 
(the default) as the ID variable and highlight the Threshold Distance box for the 
Distance Weight. Hit Create and save the.gwt file.
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 Create a Moran’s I scatter plot of the residuals using the variable “OLS_ RESIDU” 
that you have already created. This can be done by selecting Space > Univariate 
Moran’s I and then selecting the variable “OLS_ RESIDU”.

 Does it suggest from the value of the Moran’s I  that the residuals are spatially 
autocorrelated?

8. Re-run the classical regression as a spatially lagged autoregression.
 Menu > Regress. Specify a name for the output file (e.g. Spatial_ regression). Tick 

the predicted value and residual box. Run the model as before, but this time as a 
“Spatial lag” model with the weights matrix specified.
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 When done, click “Save to Table” and save the predicted values and residuals 
of  the regression result to the attribute table. Then click “View Results”. The 
results of  the regression analysis for the spatial lag model should appear.

 Does the spatial lag model perform any better for explaining the spatial distribu-
tion of the coral reef ?

R2 

 Re- run the Moran’s I scatter plot for the residuals of the spatially lagged regression 
(you will need to re- add the new residuals data column to the Table of attributes 
and specify the weights file for this plot).

What is the new value of the Moran’s I statistic? What does this mean?

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _   
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Instructions7

 Part 2: Predict the Presence of Live Coral Around the Lizard Island Group

Finally, it is possible to use the coefficients from the regression equations you have just 
generated to predict the presence of live coral around the Lizard Island Group (as a 
spatially continuous layer), given the physical information you already have (reflec-
tance bands 1– 4, variety, slope).

The form of the classic ordinary least squares regression is as follows:

Y X X X X X Xi i i i i i i( ) ( ) ( ) ( ) ( ) ( ) ( )= + + + + + +β β β β β β β0 1 1 2 2 3 3 4 4 5 5 6 6

Where Y(i) is a predicted measure of the dependent variable for location i (in this 
case, the cover of live coral on the reef) and X1 through to X6 are the independent 
physical variables (reflectance bands 1– 4, variety, slope), multiplied by their associ-
ated regression coefficients. It is necessary to insert the constant regression coefficient 
β0  to complete the expression in the map calculator, which should read as follows on 
the basis of the results from the classic ordinary least squares model:

1.287918 + (0.007821 * “%depth%”) + (–0.000814 * “%band_ 1%”) + (–0.001849* 
“%band_ 2%”) + (–0.001709* “%band_ 3%”) + (–0.005203* “%band_ 4%”) + 
(0.319601* “%variety%”) + (0.134707* “%slope%”)

Build and run this model using the model builder in ArcGIS. The output should 
look like a feasible distribution for coral reef around Lizard Island. This is a simple 
predictive habitat model for coral reef. (NB It may be necessary to rescale the output 
values so that they fall between 0 and 1).
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     How Long is the Length of Britain’s Coastline?   

   Background Information and Objectives 

 This exercise poses the question  “How long is the length of Britain’s coastline?”  to 
demonstrate that the uncertainty associated with any measurement or estimation is a 
function of the spatial scale at which that measurement or estimation was generated.  

  Data 

 The imagery basemap supplied by ArcGIS can used as a back drop against which the 
coastline of Britain can be digitised across at a series of different geographical scales 
in order to measure, or estimate, its length.  

  Instructions 

 Using the ESRI Imagery Basemap as a guide, create a polyline shapefi le and edit this 
to digitise the length of the coastline of Britain at a given scale. Then generate a new 
fi eld in the table of attributes for the fi le and use the calculate geometry function to 
estimate the length of the coastline in kilometres. Repeat this procedure to create 
several different shapefi les for which digitisation can be carried out while the screen is 
zoomed in on the image at a different scale. Compare your results to those presented 
here using the Table and plot provided. 

 A table is supplied below to illustrate estimates of the coastline length, alongside 
the scale at which the coastline was digitised in order to generate the overall length 
estimate. 

Scale Scale factor Coastline length/  km Ln Coastline length

1:25000000 0.00000004 7219 8.884472
1:30000000 3.33333E- 08 6011 8.701346
1:50000000 0.00000002 5779 8.661986
1:100000000 0.000000001 5430 8.599694

 The natural logs of the perimeter length estimations for the UK coastline are plot-
ted against the scaling factor (area on the map divided by the areas on the ground) for 
a series of estimation values derived across a range of geographical scales to explore 
the infl uence of scale on measurement. 

Scale Scale factor Coastline length/  km Ln Coastline length

1:25000000 0.00000004 7219 8.884472
1:30000000 3.33333E- 08 6011 8.701346
1:50000000 0.00000002 5779 8.661986
1:100000000 0.000000001 5430 8.599694
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This question can be answered by digitising the coastline as a vector dataset com-
posed of many lines. The overall length can then be calculated by adding together 
the lengths of all the individual lines. If  several digitisations are carried out across a 
range of scales, it becomes apparent that the greater the scale at which the coastline 
is viewed during the digitization procedure (i.e. the more ‘zoomed in’ the analyst is to 
the coastline), the longer the overall length that is estimated. This is because the more 
you zoom in on the coastline, the more detail is apparent. Thus, a line digitised at a 
larger scale more closely follows the intricate meandering shape of the coastline. As a 
consequence, the estimated length increased as a function of scale. 

Figure 8.2 illustrates the lines digitised to estimate the length of the mainland UK 
coastline at a scale of 1:1,000,000 (the largest scale), 1:10,000,000 and 1:30,000,000 
(the smallest scale). It can be seen that a greater degree of error is associated with the 
line digitised at the smallest scale. This is because it is not possible to see the detailed 
meanderings of the coastline. Indeed, the lines digitised at this smaller scale often miss 
the coastline altogether. Such an error can be quantified through repeat digitisations 
of the coastline and statistical analysis of the distribution spread associated with the 
resulting coordinates belonging to the vertices of the digitised lines (see Chapter 8 of 
textbook, section 8.5.1). To get a more accurate measure, it is necessary to increase the 
scale. The estimate of length will continue to increase as the scale is increased. Even 
if  the length is measured of every boulder, rock, pebble or grain of sand, this estimate 
will continue to increase as the scale or precision increases, approaching infinity. This 
phenomenon makes it very difficult to provide a definitive answer to the question of 
how long the coast of Britain is!
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Evaluating Uncertainty in the Vulnerability of 
Manhattan, New York to a Tsunami

Background Information and Objectives

This case study assesses the land area that would be inundated in the event of a 6m 
height tsunami wave hitting the borough of Manhattan in New York City. The exer-
cise illustrates how the uncertainty associated with a dataset can translate into a sub-
stantially different result for any analysis that is carried out on this dataset. This can 
have considerable implications for the practical objectives of the analysis. This inun-
dation assessment is a common spatial analysis exercise used for coastal vulnerability 
assessment.

Due to the relevance of the results for infrastructure planning, it is important to 
explicitly report the main limitations and uncertainty of the analysis. To do this, dif-
ferent scenarios will be presented to explore the uncertainty inherent in the data. This 
exercise consists of two steps:

1. Calculating the 95% confidence interval associated with a DEM of the Manhattan 
area, and

2. Mapping the areas of Manhattan inundated by a 6 m tsunami, accounting for the 
vertical accuracy of the DEM dataset

Data

Two datasets are used for this case study: a two metre resolution digital elevation model 
(DEM) that indicates the height above sea level for each pixel (filename: Manhattan_ 
2mDEM) and an independent set of 100 point elevations extracted from a LiDAR 
survey of Manhattan (filename: NYC_ spot_ heights).

Data Source:  Both datasets were sourced from the Department of Environmental 
Protection and accessed through the NYC Open Data portal.

Calculating the 95% Confidence Interval of the Digital 
Elevation Model

In the first step, values of the LiDAR point elevations are compared to the DEM in 
order to calculate the root mean square error and associated 95% confidence inter-
vals for the DEM. The 95% confidence interval allows the analyst to state a range of 
values within which they are 95% confident that their data point lies. This is a con-
ventional way of expressing the uncertainty associated with DEMs. Vertical accuracy 
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Evaluating Uncertainty in the Vulnerability of Manhattan, New York to a Tsunami2

of the DEM is essential for this assessment. Vertical accuracy is an expression of the 
overall quality of the elevations contained in the DEM in comparison to “true” (i.e. 
more accurate) ground elevations. Accuracy standards and guidelines exist in general 
for geospatial data and specifically for elevation data. A common way to report the 
vertical accuracy of a DEM is by using the root mean square error (RMSE):

RMSE
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−( )
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Where n = number of data points

zi = estimated value at location i (extracted from the DEM)
z  = true or expected value at location i (provided from the LiDAR survey)

For a standard normal distribution (or Gaussian distribution), the central limit theo-
rem states that 95% of the area under the curve lies within plus or minus 1.96 standard 
deviations of the mean (Figure 1). For a given dataset, it is therefore possible to calcu-
late the mean, standard deviation and a 95% confidence interval for any value within 
the dataset. A corresponding vertical linear error (LE) with confidence levels can be 
established by multiplying the RMSE by 1.96 (see spreadsheet provided).

To calculate the DEM’s vertical accuracy based on the Lidar point dataset using 
the root mean square error (RMSE), it is necessary to extract values from the 2m 
DEM that correspond to the locations for which independent Lidar height points are 
known. Both sets of elevations can then be exported to a spreadsheet to perform the 
required calculations. Calculating the DEM root mean square error and correspond-
ing vertical accuracy proceeds as follows:

• Load both the DEM dataset (Manhattan_ 2mDEM) and the spot heights dataset 
(NYC_ spot_ heights) into ArcGIS

• Make sure the 3D Analyst extension is activated (Customize –  Extensions).

Figure 1 A standard normal distribution, or Gaussian curve. The total area under the curve is 
100% and the central limit theorem states that 95% of this area lies within plus or minus 1.96 
standard deviations of the mean.
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Calculating the Area of Manhattan Inundated by a 6m Tsunami3

• Open the Surface Information tool from 3D Analyst Tools –  Functional Surface –  Add   
Surface information

• Use NYC_ spot_ heights as your input Feature Class and Manhattan_ 2mDEM as 
the Input Surface. Place a tick in the z box in output property. Press OK and run 
the model.

• Open the NYC_ spot_ heights attribute table. You should have a new field called ‘z’ 
with the 2m DEM values.

• Export the table to dbf format. From the attribute table, select Table Option/ 
Export.

• Open the dbf table using Excel. You can now calculate the RMSE in Excel. check the 
Excel file ‘RMSE.xlsx’.

What is the confidence interval for 6m if  the linear error at 95% confidence level is 7.91 m?

A. 6m [    m,    m]

Mapping the Areas of Manhattan Inundated by a 6m Tsunami, 
Accounting for the Vertical Accuracy of the DEM Dataset

In the second step, the land area of  Manhattan that falls below an elevation of  6m 
is calculated. Following application of  the Bruun Rule, this corresponds to the area 
that would be inundated by a 6m tsunami (Bruun, 1988, Bruun, 1983). Note that 
the Bruun rule has been widely criticised as an over simplification of  complex inun-
dation dynamics, but is still widely used as a guide for coastal vulnerability mod-
eling. The area mapped must therefore be adjusted to incorporate the uncertainty 
associated with the DEM into the analysis. This is achieved by adding the vertical 
error corresponding to the upper 95% confidence limit to the height of  the tsunami 
and re- evaluating the area inundated by an adjusted, larger tsunami height. Finally, 
a comparison of  the land areas inundated in the first and second models runs is 
undertaken to illustrate the implications of  uncertainty associated with DEM for 
the overall results of  the coastal vulnerability analysis (see Figure 1).

Calculating the Area of Manhattan Inundated by a 6m Tsunami

• Use the conditional tool (Spatial Analyst Tools –  Conditional –  Con). Double click 
‘Con’ to convert elevations less than 6 m to a value of 1 (this is the conventional 
value assigned to raster pixels if  the condition is true). Select ‘dem_ 2m’ in Input 
conditional raster. Create the following SQL condition ‘Value < 6’. Type 1 for the 
Input true raster or constant value. Leave blank for the Input false raster or con-
stant value (optional).

• Save the output raster as ‘tsunami_ 6m’ and hit okay to run the model
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• You have defined areas prone to tsunami flooding as a new raster dataset.

• To calculate the area (sq.km) that is prone to flooding, it may be easier to work 
in vector data format so that the associated area geometry of the polygon shape-
files can be calculated. Convert the raster dataset ‘‘tsunami_ 6m’ to vector using the 
Raster to Polygon tool (Conversion tools –  From Raster –  Raster to Polygon)

• Add the vector layer representing ‘tsunami_ 6m’ and open the attributes table.

• Add a new field (float) and name it ‘flooded’.

• Right- click on the field and select Calculate Geometry…

• Calculate Area in Square Kilometers [sq km]. To get the total area covered by 
the vector dataset, right click on the header of the column that contains the area 
values, hit statistics and read off  the ‘sum’ value. (Note: this area could also be 
calculated by multiplying the number of raster cells coded one by the area of a 
raster pixel, i.e. 4sqm, there may be a small offset between the asnwers reached 
from these different approaches because of the differing precisions of the raster 
and vector datasets)

• Repeat the process to include the maximum interval defined by the 95% confidence 
interval (you will need to adjust the height of the tsunami to 13.91 m for this step, 
which corresponds to adding the additional 7.91m height onto the initial 6m tsunami)

Solution

Comparison of the LiDAR point elevations with the DEM yielded a root mean square 
error of approximately 4.04 m for the DEM. The central limit theorem could be used 
to calculate the associated 95% confidence interval limit as 1.96 * RMSE under the 
assumption that the error was random (i.e. equally likely to an over or underestima-
tion of the actual elevation) and normally distributed. This yielded a vertical linear 
error of 7.91 m (see spreadsheet provided). Thus, the analyst can make the statement 
for the elevation value associated with every pixel in the DEM that they can be 95% 
confident that the accepted elevation in real life of the ground area corresponding to 
that particular pixel falls within the range of the value specified by the DEM grid, 
plus or minus 7.91 m.

In the second step of the analysis, the area of the DEM that falls beneath an eleva-
tion of 6 m was calculated to be 25.36 sq.km. In the third step of the analysis, the 
uncertainty associated with the DEM was incorporated into the assessment of the   
area inundated. For this coastal vulnerability exercise, which involves projecting 
the  height of a hypothetical tsunami onto a DEM, this uncertainty range can be 
transferred to the height of the tsunami because vulnerability is assessed as a func-
tion of the vertical relationship between the tsunami height and the DEM height. The 
confidence limit of 7.91 m was therefore added to the tsunami, to project a tsunami 
of 13.91 m in height. This step was taken because it is possible, within the 95% confi-
dence limit that the DEM could actually lie 7.91 m lower than indicated by the values 
quoted. This would have the same effect on the area inundated as raising the height of 
the tsunami. The area of the DEM falling beneath an elevation of 13.91 m was found 
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Solution5

to be 35.30 sq.km. When the uncertainty of the DEM dataset is accounted for, this 
therefore equated to an additional land area of 9.94 sq.km (Figure 2).

In practical terms, this difference in area related to some of the world’s highest 
density, most expensive land. At real estate prices of $1363 per square foot (http:// 
www.dnainfo.com/ new- york/ 20140401/ upper- east- side/ manhattans- real- estate- 
prices- reach- record- 1363- foot), the difference in value of the land inundated equates 
to US $1400 Billion. This figure assumed single storey properties, which is clearly not 
the case in the high- rise suburb of Manhattan. Accounting for sky scrapers would 
likely make this number much higher. It would therefore be of interest to an insur-
ance company calculating the vulnerability of Manhattan properties to incorporate 
uncertainty into their calculations!

Figure 2 Uncertainty associated with an assessment of the vulnerability of Manhattan, 
New York to a 6 m tsunami (a) Location of Manhattan on the North American continent, 
(b) Digital elevation model (DEM) overlaid onto a satellite image of Manhattan (c) DEM of 
Manhattan, (d) Area inundated by a 6 m tsunami indicated in light blue, (e) Area inundated 
by a 13.91 m tsunami indicated in dark blue (the upper 95% confidence limit) (f) Area 
inundated by a 6m tsunami (light blue) overlaid onto the are inundated by a 13.91 m tsunami 
for comparison of assessment outputs, allowing for uncertainty associated with the DEM.


