
Solutions to exercises in chapter 5

1. Interference

Maxima are at sin(θ) = mλ/d, for the third order maximum we have m = 3. Using the small angle
approximation this gives θ = 3λ/d = 3 · 2π · 0.1µm/(18µm) = 6π/180 or θ = 6◦

2. Interference 2

We are looking in the direct back direction, so we have constructive interference in the case of
(m1 + 1/2)λ1 = 2nD and destructive interference at m2λ2 = 2nD. As there is no maximum
between 450 and 600 nm, these are neighbouring orders. Therefore (m2 − 1/2)λ1 = m2λ2 oder
2m2 = λ1/(λ1 − λ2) and hence D = 1/(4n) · λ2λ1/(λ1 − λ2) = 1/6 · 600nm · 450nm/150nm =
1/6 · 600nm · 3 = 300nm.

3. Diffraction

The first minimum is at sin(θ) = m · λ/a with m = 1. The first side-maximum is at sin(θ) =
1.5 · λ/a = 1.5 · 0.5/2 = 0.375. This gives a distance of d = D · tan(θ) ' 0.4m.

4. Reading glasses

If the eye is able to image object far away (at g = ∞), the focal length needs to be equal to the
object distance. Therefore we have fglass = 25cm = 1/4m or in other words 4 dioptries.

5. Magnifying glass

a)

b) A virtual image.

c) This image equation says: 1
f = 1

b + 1
g . We want a 10 times magnification, therefore |B| = 10G,

hence |b| = 10g. The image is supposed to be behind the lens, such that the sign of b needs to be
negative, i.e. b = −10g = −25 cm. Inserting this we obtain: 1

f = − 1
25cm + 1

2.5cm = 10−1
25cm = 9

25cm
or f = 25/9 cm ' 2.8 cm.

6. Lens

The magnification is: M = f/(f − g), hence we need: ∂M/∂f and ∂M/∂g.

∂M/∂f = 1/(f − g)− f/(f − g)2 = −g/(f − g)2

∂M/∂g = f/(f − g)2

Inserting this in error propagation:

σ2
M = g2/(f − g)4σ2

f + f2/(f − g)4σ2
g .

Numerically:

f/(f − g)2 = 10/25cm−1 = 0.4cm−1 and g/(f − g)2 = 15/25cm−1 = 0.6cm−1.

With σg = 0.5 cm and σf = 0.1 cm we obtain: sigma2M = (0.6·0.1)2+(0.4·0.5)2 = (36+400)·10−4 '
4.4 · 10−2. Hence σM = 0.22 with M = 2.

7. Lens 2

The focal length of such a lens is given by f = n2 · r/(2(n2 − n1)). The lenses refractive index is
always n2 = 1.45. For the three different cases we have: nair1 = 1, nwater1 = 1.33, noil1 = 1.5. And
hence: n2/(n2 − n1)air = 1.45/(1.45− 1) = 3.22, n2/(n2 − n1)water = 1.45/(1.45− 1.33)) = 12.08,
n2/(n2 − n1)oil = 1.45/(1.45 − 1.5) = −29. With r=5mm, this gives the respective focal lengths:
fair = 1.6r = 8 mm, fwater = 6r = 30 mm, foil = −14.5r = -72.5 mm. Hence the lens is a
diverging lens in oil!
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8. Microscope

a) The total magnification is given by the product of the magnifications of the two lenses making
up the microscope. For the first lens we have: M1 = b1/g1 and 1/g1 = −1/b1 + 1/f1 or b1 =
−f1 · g1/(f1 − g1), and hence M1 = f1/(f1 − g1). For the second lens we have: M2 = b2/g2,
where g2 = d − b1 and in the same way as before: b2 = f2 · g2/(f2 − g2) and hence M2 ==
f2/(f2 − g2) = f2/(f2 − d + b1) = f2/(f2 − d + f1g1/(f1 − g1)). The total magnification hence
becomes: M = f1f2/((f1−g1) · (f2−d+f1g1/(f1−g1))) = f1f2/(f1f2 +g1d−f2g1−f1d+f1g1)) or
numerically: M1 = 5mm/(5− 6)mm = −5 and b1 = 30mm = 3cm, giving g2 = 20− 3cm = 17cm
and M2 = 18cm/(18− 17)cm = 18, which finally yields M = −18 · 5 = −90.

b) We need ∂M
∂f1

; ∂M
∂f2

; ∂M
∂g1

; and ∂M
∂d

∂M
∂f1

= f2g1(d−f2)
(f1f2+g1d−f2g1−f1d+f1g1)2

∂M
∂f2

= f1(g1d−f1d+f1g1)
(f1f2+g1d−f2g1−f1d+f1g1)2

∂M
∂g1

= f1f2(d−f2+f1)
(f1f2+g1d−f2g1−f1d+f1g1)2

∂M
∂d = f1f2g1

(f1f2+g1d−f2g1−f1d+f1g1)2

σM =

√
(f2g1(d−f2))2σ2

f1
+(f1(g1d−f1d+f1g1))2σ2

f2
+(f1f2(d−f2+f1))2σ2

g1
+(f1f2g1)2σ2

d

(f1f2+g1d−f2g1−f1d+f1g1)2

9. Spherical mirror

To get an upright image in a spherical mirror, the object needs to be inside the focal length,
such that a virtual image is formed. The image position should be 50 cm from the object, hence
g−b = 50cm. In addition, we want a twofold magnification, i.e. B

G = − b
g = 2. Combining these two

criteria gives 3g = 50cm. Finally we use the image equation: 1
f = 1

g + 1
b = 1

g −
1
2g = 1

2g , and find

f = 2g. Using 3g = 50cm, we thus get f = 1
3m and hence the radius of curvature is r = 2f = 2

3m.

10. Resolution limit

a) Diffraction at the lens: the angle of the first diffraction minimum of the first source must be
smaller than the angle at which the second source is located. This means that the smallest possible
angle separation of the sources is ∆α ' λ/D, where D is the diameter of the objective lens. For a
circular opening, the exact result is (the previous result would actually be for a square opening):
∆α ' 1.22λ/D.

b) If the object is positioned at the focal length, the angle between two objects is in the small-angle
approximation: α ' d/f , where d is the distance between the objects and f is the focal length.
This is the angle limited by diffraction according to a), i.e. we obtain for the smallest distance
being resolved: d = 1.22 fλD .

c) The ratio of D and f of a lens determines its numerical aperture. For D = 2f , NA = 1, so we
guess NA = D

2f . Insert this in the result in b) we obtain Abbe’s resolution limit: d = 1.22λ
2NA or for

the given NA: d ' 0.6λ. This means that the resolution is basically limited by the wave-length of
the light used.

d) Due to the change in speed of light in materials, the wave-length is actually materials dependent:
λn = λ/n. This means that the resolution limit in a different material can be somewhat lower than
in air (e.g. immersion oil). Using this, the resolution limit can be improved by a factor of noil ' 1.5
compared to an air objective.

11. Resolution limit 2

a) Diffraction limit: D · sin(θ) = 1.22λ, where D is the size of the iris, i.e. D=2 mm. Therefore
the eye’s angular resolution is sin(θ) = 1.22λ/D = 1.22 · 2π · 10−7m/(2·10−3m) = 1.22π · 10−4 or
measured in degrees:

θ = 1.22 · 10−4 · 180◦ = 10−22.2◦ ' 1/45◦.
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In order to be able to distinguish two point on an image, they need to have at least this angle
separation, therefore ∆L/L = 1.22π · 10−4 or L = 104∆L/(1.22π) = 104 · 1.5 · 10−3/(1.22π) m =
15/(1.22π) m = 15/3.8 m ' 4 m.

b) The ratio of image to object size is equal to the ratio of image and object distance. With b = 2.5
cm, g = 4 m and G = 1.5 mm we get the image size B = G · b/g = 2.5 · 1.5 · 10−5m2/4m = 3.75/4
10−5 m ' 10µ m.

12. Resolution limit 3

a) From the previous exercise we know that the distance between the headlights, d = 1.8m has
to be larger than an arc minute to be resolved. Therefore the distance to the car D needs to be
smaller than d/D = π/180 · 1/60 or D = d · 60 · 180/π = 1.8 · 3 · 3.6 · 103/πm ' 6.2km.

13. Radio protection

a) The definition of the shielding length says that after a thickness of d = 1mm the intensity of
radiation has fallen to 1/e of its initial value. With ln(10) = 2.3, we need to have 6 · 2.3 ' 14
shielding lengths for an intensity reduction of a factor of 106. This means we need 14 mm of lead.

b) We can obtain the absorption rate in 10 m of water from the particle current density and the
detector volume. At a current density of 1011 particles per second and cm2, there are 1017 particles
impinging on the detector (surface 100 m2) every second. A year has about π · 107 s, so there are
π ·1024 particles hitting the detector every year. From all of these, there are 105 actually detected, so
the absorption rate is 1

π·1019 = π · 10−20. This rate corresponds to (I0− I0 exp(−d/λ))/I0simeqd/λ
for small values of d/λ, which is certainly the case here. Given the detector size, we know d = 10m,
such that we can directly obtain λ ' π · 1020m. This is actually about the distance to the centre of
the milky way or 30’000 light years!
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