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Problems and solutions for Chapter 3 

 

P.A. The exoergicity of the reaction is defined as the change in energy between the 

ground state of the reactants and that of the products. Why is the 

H + D2(v = 0)!D + HD just a shade endoergic? Much of our understanding of isotope 

effects on reactivity stems from the considerations you will make in solving this problem. 

 

A. !E0 , the exoergicity of the reaction is the difference between the ground state energy 

of the products and the ground state energy of the reactants, see figure 1.1. In purely 

classical mechanics the reaction will have !E0 = 0 because the potential energy curve of 

D2 and of HD are the same+. But the ground state energies of D2 and of HD are not quite 

equal because of the different zero point energy of the vibration. To simplify the 

discussion we take the potentials for small displacements to be harmonic and the mass of 

the D atom to be twice that of H. The harmonic frequency is ke / µ  where the force 

constant ke  is invariant for the different isotopomers. The reduced mass of D2 is twice 

that of H2 so its zero point energy is 1 / 2  that of H2 . The reduced mass of HD is 4/3 

that of H2 so the ZPE of HD is 3 / 2  that of the vibrational quantum of H2. The  

reaction is a shade endoergic, !E0 " ( 3 # 2) / 2  the vibrational quantum of H2. 

 

P.C. One sometimes loosely writes k(T ) = v!R(v) " v !R(v)  where the brackets 

denote an average over a thermal velocity distribution. The exact result, equation (3.8), 

                                                

+ Strictly speaking, the two potentials are the same only in the Born-Oppenheimer 

approximation.  
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shows that this is really not so. To correctly factor out the mean (relative) velocity out of 

the thermal rate constant we can proceed as follows. One can define not just the number 

density of molecules with velocity in a given range. It is also possible to determine the 

flux density of molecules with velocity in a given range. (a) Show that the flux density 

gives a somewhat higher weight to faster molecules and then (b) verify the comment after 

equation (3.8). Historically, the velocity distribution of molecules was measured (by O. 

Stern, 1911) in a setup similar in principle to figure 2.1 with a velocity selector but 

without any scattering cell. The raw experimental results did not fit the Boltzmann 

distribution. Einstein then pointed out that what the experiment measures is the flux 

density and not the number density. All fell into place but we still sometimes fail to 

distinguish between a number and a flux density. 

 

 

S.C. Refer to equation (3.7). The number density of molecules with a speed in the range v 

to v+dv is, at thermal equilibrium, f (v)dv  where f (v)  is the Maxwell-Boltzmann density 

function 4!v2 exp("µv2 / 2kBT ) / N  where N = 2!kBT / µ( )3/2  insures that the density 

is normalized, f (v)dv = 1
0
!
" . The flux density is the fraction of molecules with flux in a 

given range. Since, cf. Equation (2.1), the flux is the velocity times the number density, 

the flux density is proportional to vf (v)with a proportionality constant determined by 

normalization. The most probable speed is 2kBT / µ  for the number density and 

3kBT / µ  for the flux density showing, as is only to be expected, that the flux density 

gives more weight to faster moving molecules. 

 

P.E. The entropy of activation. If, as is quite often the case, the reaction requires some 

restrictions on how the reactants come together, then the entropy of the reactive reactants 

should be lower than that of the reactants. You could then say that there is an entropic 

barrier to reaction. By examining the temperature dependence of the activation energy, 
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equation (3.9), you can come up with a rigorous expression for the entropy of activation. 

Do so. Later we shall recognize that there can be situations where entropic considerations 

act in the opposite direction and favor the reaction. (This is most common for 

unimolecular elimination or dissociation processes). Can you suggest an example where 

the reactive reactants will be less constrained than the reactants?  

 

S.E. Thermodynamic+ shows that at thermal equilibrium when we are given F(T ) , the 

Helmholtz free energy as a function of temperature, we can compute the mean energy by 

the (Gibbs-Helmholtz) equation 

 E = !kBT
2 "
"T

F(T )

kBT

#

$%
&

'(
 

It follows from the definition of the Arrhenius activation energy by equation (3.3) that we 

can write the rate constant in a ‘thermodynamic form’ 

 k(T ) = Aexp !
Fa

kBT

"

#$
%

&'
 

where the exponent is the free energy of actication rather than simply the energy of 

activation Ea . The energy of activation can still be written and evaluated as the slope of 

the Arrhenius plot of ln k(T ) vs. 1/T 

 Ea = kBT
2 ! ln k(T )

!T
= "kBT

2 !
!T

Fa (T )

kBT

#

$%
&

'(
 

                                                

+ We offer a thermodynamic approach. A stat mech formulation can be found in R. D. 

Levine, J. Phys. Chem. 83, 159 (1979). 
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By comparing with the Tolman definition of the activation energy, equation (3.9), we 

identify the free energy of activation Fa (T ) as the difference between the free energy of 

the reactive reactants and the free energy of the reactants. The entropy of activation Sa  is 

read from the usual expression for the Helmholtz free energy 

 Fa (T ) = Ea (T ) ! T Sa (T )  

so that an equivalent thermodynamic form is  

 k(T ) = Aexp
Sa

kB

!

"#
$

%&
exp '

Ea

kBT

!

"#
$

%&
 

If the activation energy is nearly temperature independent so is the entropy of activation 

and we can put the Arrhenius pre-exponential factor to equal Aexp Sa kB( ) . In general 

both the activation energy and entropy vary with temperature and these two variations are 

not independent but are related by the Clausius form 

  !Sa !T =T
"1

!Ea !T  

that can also be written in the Gibbs-Helmholtz form 

 Sa = !
"Fa

"T
 

The entropy of activation favors reaction whenever the reactive reactants are less 

constrained than all the reactants. For most bimolecular reactions the opposite is the case, 

as reaction requires partial or complete freezing of degrees of freedom of the separated 

and non interacting reactants, see chapter 6, section 6.1.4.1 in particular. 

 

P.G. The Tolman expression for the activation energy. The derivation of the Tolman 

result for the activation energy as the difference between the mean energy of the reactive 

reactants and the mean energy of all reactants , equation (3.9), was for the special case 

that there was only translational energy. In appendix 3.A we showed how to express the 
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reaction rate constant as an average of contributions from different internal states of the 

reactants. Show that in this more general case we have 

� 

Ea ! ET + EInternal reactive reactants
" ET + EInternal all reactants

 

 

S.G. The rule ‘average over states of the reactants’ means that the thermal reaction rate 

constant can be written as 

k(T ) = pii! (T )ki (T )  

Here i sums over the internal states of the reactants, pi (T )  is the fraction of reactants in 

the state i at thermal equilibrium and ki (T )  is the reaction rate constant for state-selected 

reactants. ki (T )  is temperature dependent because of the collision energy dependence of 

the cross section for reaction for reactants in the state i. For ki (T )  we have the Tolman 

result  

 Ea
(i)

= kBT
2 ! ln ki (T )

!T
= ET reactive reactants for

reactants in state i
" ET reactants

 

where the mean translational energy of the reactants, 3kBT 2  is independent of their 

internal state. 

The first contribution to the overall activation energy is then pii! (T )Ea
(i) . There is a 

second contribution due to the temperature dependence of the Boltzmann factors 

pi (T ) = exp(!Ei / kBT ) /Q(T ) . The partition function Q(T), appendix 6A , is the sum 

over states,  so that the mean internal energy is , equation (6.A.7), kBT
2
! lnQ / !T . The 

second contribution to the overall activation energy is 

kBT
2

ki (T )i!
"

"T
pi (T )

ki (T )i! pi (T )
=

ki (T )i! Ei pi (T )

ki (T )i! pi (T )
# EI reactants

= EI reactive
reactants

# EI reactants
 

where EI  is the internal energy. 
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P.*I. The harpoon mechanism for excited states. Excited electronic states have a lower 

I.P.’s and so are generally more likely to react by a harpoon mechanism. But the lowest 

I.P.’s are for excited electronic states of the alkali metals. (a) The first excited state of Na 

is about 2.1 eV and of K about 1.56 eV above the ground state. How will the reaction 

cross section in the table above change if these atoms are used as reagents? (b) Why stop 

at the first excited state? How will the reaction cross section change if higher excited 

state atoms are used as reagents? Experimental answer: the reaction cross section will not 

continue to grow indefinitely, Bersohn (1976). Why not? Hint: look at the value of the 

crossing radius. For more insight see section 9.3.2.  

 

S.I. (a). The excited states of the alkali atoms have even lower ionization potentials than 

the ground state atoms. Therefore the energy required to transfer an electron to a halogen 

molecule is lower and the crossing radius R x , equation (3.18), is even larger. The 

estimated reaction cross section, !R x
2 , is consequnetly expected to be higher than for 

ground state atoms. (b). The expectation expressed in (a) can fail if the crossing radius 

R x becomes so large that the charge fails to transfer from the alkali atom to the halogen 

molecule even though it is energetically possible. In section 9.3.3 we relate the 

probability of charge transfer to a so-called energy gap at R x . Empirically, the energy 

gap decreases exponentially as R x  increases. 

 

P.K. Steric factor for ion-molecule reactions. Purpose: to compute the cone of acceptance 

for reaction, section 3.2.8.1, for the model discussed in problem H. When the molecule is 

not spherical, e.g., H2, the long range potential depends not only on the ion-molecule 

distance but also on the orientation angle, γ, between the axis of the molecule and the ion-

molecule distance R, see equation (2.18). (a) For a non polar molecule we can take this 

into account by allowing the polarizability of the molecule to be different along its axis 
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and perpendicular to it. Using the second Legendre polynomial, a convenient functional 

representation is V(R,! )
long range

" # " " " " $(C / R
4

)(1+ aP2(cos! )) . a is the asymmetry 

parameter and C = e
2
! / 2 for a singly charged ion. If you have access to a suitable 

program, plot the potential on a polar grid where R is the radius and γ is the angle. If not, 

plot the potential vs. R for γ = 0 and 90o. (b) Determine the maximal impact parameter for 

which reaction is allowed as a function of the approach angle γ. (c) If the molecule is 

polar, e.g., HCl, it will have a dipole moment. Then the leading terms in the long range 

potential are V(R,! )
long range

" # " " " " $(C / R
4

)$ eµcos! / R
2 . For this case too, determine 

the maximal impact parameter for which reaction is allowed as a function of the approach 

angle γ. In the general case, one should also allow for the asymmetry of the R-4 term and 

for the polarization of the ion by the dipole, which gives rise to a R-6 term. 

 

S.K. (b). The determination of the impact parameter for which reaction between an ion 

and a molecule is possible proceeds as in section 3.2.5.1 except that the strength 

parameter C, equation (3.25), is now dependent on the angle of approach γ.  We provide 

the details for the case (c) when the molecule has a dipole. (c) The long range effective 

potential is 

 Veff (R)
long range

! "!!!! #
C

R
4
#
eµ cos$

R
2

+
ETb

2

R
2

 

The location of the barrier in the effective potential is at the root of equation (3.22) 

!

!R
Veff (R)

R=Rmax

=
4C

Rmax
5

+
2eµ cos"

Rmax
3

#
2ETb

2

Rmax
3

= 0$
4C

Rmax
2

= 2(ETb
2 # eµ cos" )  

The height of the barrier is  
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Veff (Rmax ) = !
(ETb

2
! eµ cos" )2

4C
!
(ETb

2
! eµ cos" )eµ cos"

2C
+
(ETb

2
! eµ cos" )ETb

2

2C

=
(ETb

2
! eµ cos" )2

4C

Reaction is possible for such values of the impact parameter b when ET !Veff (Rmax )  or 

for the range of impact parameters limited as 

 b
2
!

4C

ET

+
eµ cos"

ET

 

The range of impact parameters that lead to reaction is seen to be strongly dependent on 

the angle of approach but the effect diminishes the higher is the collision energy. 

 

P. O. Laser assisted recombination. The problem is to compute the cross section for 

forming a bound species during the collision∗. The key consideration is that the colliding 

Hg atoms, as described in figure 3.B.1, will absorb light when they are at a distance Rx 

apart. This is the distance when the electronic energy separation between the ground and 

excited states equals the energy of the laser photon. Say that all collisions absorb light. 

(a) Show that the cross section for formation of the bound excited state is 

� 

!Rx
2
(1"Vg (Rx ) / ET ) . (b) Plot this cross section vs. the collision energy and show that it 

is monotonically decreasing, being largest for very slow collisions. (c) Argue that your 

                                                

∗ Ordinarily, when two atoms collide they will not recombine to form a stable bound diatomic. 

Rather, they will emerge as two unbound atoms. This is so even when their potential is attractive 

and has a deep well corresponding to a stable diatomic. The reason is that the total energy needs 

to be conserved. In the region where the potential energy is attractive the kinetic energy increases 

so as to keep the sum constant. To form a bound state we need some mechanism for removing the 

energy from the pair of atoms. Typically this is done by a third body that takes the excess energy 

away. Following Gross and Dantus (1997), appendix 3.B suggests that we can do something else: 

use a laser to form a bound, electronically excited, stable molecule.  
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result in (a) also provides a small correction for the cross section of harpoon reactions. 

[See P. Gross and M. Dantus, J. Chem. Phys. 106, 8013 (1997), Dantus (2001) and J. 

Kohel and J. W. Keto, J. Chem. Phys. 113, 10551 (2000) and references therein for 

examples of laser assisted reactions]. 

 

 

 

S.O. (a). Reaction is assumed to occur when the reactants can reach the distance 

R xwhile moving under an attractive potential V (R) . The distance R x  is determined by 

the special conditions of the problem like a crossing from a weakly attractive covalent 

potential to a strongly attractive ionic one as in a harpoon mechanism or it is the 

(‘Condon’, see section 7.0.1) distance at which an absorption of a photon takes place as 

in appendix 3.B and figure B3.1. The condition for the classical turning point being to the 

left of R x  defines the maximal impact parameter that leads to reaction  

 ET 1!
b

2

Rx
2

"

#
$

%

&
' !V (Rx ) ( 0 or bmax

2
= Rx

2
1!

V (Rx )

ET

"

#$
%

&'
= Rx

2
1+

V (Rx )

ET

"

#$
%

&'
 

The potential V (R) is attractive so V (Rx )< 0. The cross section is therefore decreasing 

with increasing collision energy. (c) For the harpoon mechanism the potential V (R) is the 

weakly attractive long range potential between the covalent reactants. At the large value 

of the crossing radius V (Rx ) is small so the correction to the estimate !Rx
2 for the cross 

section is small except at very low collision energies. 
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