
Problems for Chapter 23 of ‘Ultra Low Power Bioelectronics’ 
 
Problem 23.1 

a) Rewrite the pair of first-order differential equations shown in Equation 
(23.7) as functions only of ns , the normalized frequency variable. 

b) Show that the pair of equations derived in part a) can be combined into a 
single second-order differential equation given by 
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Where kn is a quantity to be determined. 
c) Under what conditions can the equation derived in part b) be treated as a 

wave equation? Are these conditions satisfied in our cochlear model?  
d) Write down an expression for kn. Is it constant? Use physical reasoning to 

study the dependence of kn on sn, and discuss how this dependence affects 
wave propagation in our model. 

 
Problem 23.2 

a) Explain why the presence of zeros in Figure 23.3 (b) sharpens the frequency 
rolloff of a filtering stage in the cochlea. How is this rolloff affected by the Q 
of the complex zeros or poles (which are kept proportional to each other)?   

b) Group delay is formally defined as ,g
φτ
ω
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where φ  is the phase of the 

frequency response. Problem P13.3 in Chapter 13 also discusses group delay. 
Why do the presence of zeros in Figure 23.3 (b) reduce group delay? 

 
Problem 23.3 

A model of the admittance of the basilar membrane is shown in Figure 
P23.3. Note that the inductances L1 and L2 also exhibit a mutual-inductance 
coupling of  M amongst themselves.  

 
Figure P23.3: A model of the admittance of the basilar membrane. 



a) Use physical reasoning to sketch the input admittance of this circuit as a 
function of frequency. Is it qualitatively similar to that of the actual basilar 
membrane in the biological cochlea? 

b) Find the input admittance Y(s) in terms of R1, R2, C1, C2, Cc, L1, L2, and M. 
Are there any constraints on the values of these components? [Hint: if the 
algebra becomes tedious, use a software package that supports symbolic 
mathematics.] 

c) What is the resonant frequency ωc of this portion of the basilar membrane?  
d) Normalize the values of R1, R2, C1, C2, Cc, L1, L2, and M such that ωc = 1. 

Use these normalized values to rewrite the input admittance function in 
terms of the normalized frequency variable sn, i.e., find Y(sn). 

e) Show that the function you derived in part d) can be written in the canonical 
form described in Chapter 23, i.e., it can implement Equation (23.12). 
Express the parameters µ, Qz, and Qp in terms of normalized values of the 
circuit elements. 

f) Find circuit element values that result in the following parameter values: μ = 
0.76, Qz = 3.8, and Qp = 5.0. [Hint: there are multiple solutions to this 
problem. Use a numerical optimization algorithm instead of hand analysis.] 

g) Are the parameter values used in part f) realizable using only passive circuit 
elements? Explain. 

 
Problem 23.4 

a) Derive Equation (23.32) by analyzing the circuit of the retina shown in 
Figure 23.12. 

b) Assume that Vxyc and Vxyh, i.e., solutions to the equation derived in part a), 
are both proportional to ( )exp x yx k yk + , where xk and yk are unknowns. 

Show that ( )2 2
x yk k+  is then given by Equation (23.34). 

 
Problem 23.5 
Consider the diode-capacitor circuit shown in P23.5, which was described in the text 
for fly-vision-inspired motion processing. Assume that the circuit is in steady state 
when the switch opens at t = 0.  

 
Figure P23.5: A simple diode-capacitor circuit. 

 



a) Prove that i(t), the current in the diode, and vS(t), the voltage across the 
capacitor, are given by Equation (23.35). 

b) Show that i(t) is independent of I(0) for / (0)tt C Iφ . Find the function 
that describes i(t) in this regime. 

 
Problem 23.6 
In this problem you will study a unidirectional cochlear model that consists of Noct 
stages per octave and that can analyze signals over β octaves. Each stage consists of a 
filter with transfer function given by Equation (23.27). 

a) The model requires a total of N stages. What is the value of N? Also, how is 
Noct related to Nnat? 

b) Implement the model on a computer. You may use your favorite language, or 
take advantage of high-level programming environments such as MATLAB 
or Mathematica. Use the following default parameter values: Noct = 12, Qp = 
5, ηcf = 0.5, and μ = 0.2. 

c) Plot cochlear transfer functions at various values of n. Here n describes 
position along the filter cascade, and is an integer that varies between 1 and 
N. Does the model perform a frequency-to-place transformation, as 
expected? 

d) Plot the maximum gain and quality factor of the cochlear transfer function as 
a function of n. Explain important characteristics of these plots. 

e) Repeat part d) for various values of Noct, and comment on your results. 
f) In a practical implementation of this cochlear model, which parameter would 

you vary as a function of signal amplitude to increase the dynamic range of 
the system? Explain. 

 
Problem 23.7 

a) Use the WKB solution shown in Equation (23.18) to plot the magnitude and 
phase of the transfer function that describes the bidirectional cochlea in 
normalized frequency space. Assume that the shunt admittance is described 
by Equation (23.12), with μ = 0.76, Qz = 3.8, and Qp = 5.  Also assume the 
following default values of other relevant parameters: Nnat = 20, 

10(0) 2 10cω π= × rad/s, L0 = 0.5 nH, and C0 = 70 fF. 
b) Numerically differentiate the phase of the transfer function found in part a) 

to find its group delay. Plot your results. What is the practical significance of 
group delay? At what frequency does maximum group delay occur? 

c) Repeat parts a) and b) for other values of Nnat. Summarize, in words, the 
resultant changes in the cochlear transfer function. Is this behavior similar to 
that observed for the unidirectional cochlea model analyzed in Problem 
23.6? If not, what are the major differences? 

 
Problem 23.8 
Show that if the Equation (23.31), which is used to create the analog vocal tract, is to 
faithfully model the biological vocal tract described by Equation (23.30), then 

a) The product, L(x)C(x) is invariant with A(x), the local areal cross section of 
the vocal tract. What is the physical reason for this invariance? 

b) How does the local impedance of the vocal-tract transmission line, 
√(L(x)/C(x)) vary with A(x)? 



c) In [43], a translinear circuit is described to implement a linear I-V 
conductance that models laminar fluid flow in the vocal tract or to 
implement a square-root conductance that models turbulent fluid flow in the 
vocal tract. Show how to create a square-law conductance using this circuit.  

d) Phase locked loops and the speech locked loop shown in Figure 23.9 
represent examples of an ‘analysis-by-synthesis’ technique. What is being 
synthesized in a phase locked loop? 

 
Problem 23.9 
Many systems in neurobiology, such as nerve axons and retinal cell layers, can be 
modeled using RC transmission lines. A section of an RC transmission line is shown 
in Figure P23.9. Assume that R and C, the resistance and capacitance per unit length 
of the line, are both independent of x. 

 
Figure P23.9: An RC transmission line. 

 
a) Show that wave propagation along the line is governed by the following 

partial differential equation: 
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b) Rewrite this equation in sinusoidal steady state, i.e., when the voltage and 
current both vary with time as exp( )j tω . 

c) Show that the amplitude of a propagating sinusoid decays exponentially with 
x, with the characteristic decay length being given by 
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d) Show that the characteristic impedance of the RC transmission line is given 
by 
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e) Explain qualitatively why the characteristic impedance of the RC 
transmission line, unlike that of the LC transmission line, is frequency-
dependent. 

f) Can the characteristic impedance derived in part d) be emulated by a finite 
network of lumped circuit elements? Explain. 

 
Problem 23.10 
In order to implement RC transmission lines on-chip we may have to discretize them 
in space. The process is similar to that used for discretizing the LC transmission line 



that models the cochlea: lengths of line Δx long are represented by lumped circuit 
elements. In this case the elements consist of a series resistor of value R(Δx) and a 
shunt capacitor of value C(Δx). Assume that R and C are both independent of x. 

a) Describe the discretized RC transmission line with a set of difference 
equations, and show that, in the limit 0xΔ → , they reduce to the same partial 
differential equations that describe the continuous transmission line 
(analyzed in Problem 23.9). 

b) Show that the characteristic impedance of the discretized line in sinusoidal 
steady state is given by 
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c) Under what conditions does the characteristic impedance derived in part b) 
become equal to that of the continuous transmission line? Use qualitative 
reasoning to explain your result. 

d) Explain (in words) the behavior of Z0 at very high frequencies, i.e., 
asω →∞ .  


