
Solutions to the Tutorial Problems in
the book “Magnetohydrodynamics of the Sun”

by ER Priest (2014)
CHAPTER 13

PROBLEM 13.1. Isothermal Static Corona.
Find the pressure p(r) and density ρ(r) for a spherically symmetric isother-
mal static corona.

SOLUTION.
Writing ρ = mn and taking account of the inverse square law fall-off of
gravity (g = GM⊙/r

2), where M⊙ is the mass of the Sun, the equation of
hydrostatic equilibrium for a spherically symmetric corona is

dp

dr
= −ρg = −

GM⊙ρ

r2
.

Coupling this with the equation of state (p = R̃ρT/µ̃) and putting rc =
GM⊙/(2v

2
c ) = GM⊙µ̃/(2R̃T ), we find

dp

dr
= −

2rcp

r2
.

Integrating gives

loge p =
2rc
r

+ C,

where the condition p = p0 at r = r0 determines the constant of integration
as C = loge p0 − 2rc/r0.

Taking exponentials determines the pressure as

p = p0e
−2rc(1/r0−1/r).

It can be seen that, as r → ∞, so p tends to a constant value, but it transpires
that this constant value far exceeds any reasonable inter-stellar pressure.

The corresponding density is

ρ = ρ0e
−2rc(1/r0−1/r),

were rc = GM⊙µ̃/(2R̃T ).
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PROBLEM 13.2. Effect of Depositing Heat at a Single Radius.

Find the temperature T (r) for a corona with heat conduction inwards and
outwards from a level (r0) where heat is deposited.

SOLUTION (adapted from Goossens (2003, An Introduction to Plasma
Astrophysics and MHD).
When energy transfer is by conduction alone, the heat flux across a sphere
of radius r is constant, so that

r2κ
dT

dr
=

2κ0C

7
, (1)

say, where κdT/dr is the heat flux density, κ = κ0T
5/2 is the coefficient of

thermal conduction and C is constant.
For r > r0, this equation may be integrated to give

T = T0

(r0
r

)2/7

after imposing the boundary conditions that T = T0 at r = r0 (the assumed
level of discrete heat deposition) and that T vanishes at infinity.

For r < r0 (i.e., below the location of heat deposition), Eq.(1) may be
integrated to give

T 7/2 =
C

r
+D.

Here the constants C and D are determined by the two conditions that
T (r0)=T0 and T (R⊙)=T⊙, say, so that

T =

[

T
7/2
⊙

r0/r − 1

r0/R⊙ − 1
+ T

7/2
0

R⊙/r − 1

R⊙/r0 − 1

]2/7

.

PROBLEM 13.3. Properties of the Isothermal Solar Wind Solu-
tion.
Show that:

(a) in the low corona, the flow speed is 0.1–10 km s−1, depending on the
coronal temperature;

(b) below the critical point, the density variation is very similar to a static
atmosphere;
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(c) the mass-loss rate is of the order of 10−14M⊙ per year.

SOLUTION

(a) Flow Speed Low Down in Corona.
For the isothermal solar wind solution we have from Eq.(13.6)

(

v

vc

)2

− loge

(

v

vc

)2

= 4 loge
r

rc
+

4rc
r

− 3,

where, for T0 = 1 MK, we find vc = 120 km s−1 and rc = 7 R⊙, while for,
say, T0 = 2 MK we find vc = 170 km s−1 and rc = 3.5 R⊙.

Now, close to the Sun at, say, r = r0, where v = v0, we have v ≪ vc,
so that the first term on the left of the above equation is negligible and it
reduces approximately to

− loge

(

v0
vc

)2

= 4 loge
r0
rc

+
4rc
r0

− 3,

or
v0
vc

=

(

rc
r0

)2

exp

(

3

2
−

2rc
r0

)

.

Thus, if, for example, T0 = 1 MK and r0 = 1.2R⊙, we have

v0
vc

=

(

6.89

1.2

)2

exp

(

3

2
−

6.89

0.6

)

≈ 0.0015,

so that v0 = 0.2 km s−1. On the other hand, if T0 = 2 MK, then v0 = 3 km
s−1.

(b) Density Variation
First of all, we note that from PROBLEM 13.1 the density in an isother-

mal hydrostatic atmosphere is

ρ = ρ0e
2rc(1/r−1/r0),

were rc = GM⊙/(2RT0).
Now, Eq.(13.4) is

ρv
dv

dr
= −

dp

dr
−

GM⊙ρ

r2
,
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where p = R̃ρT/µ̃. It may be integrated to give Bernoulli’s law, namely,

v2

2
−

GM⊙

r
+ v2c loge

ρ

ρ0
= E,

where ρ0 = ρ(r0) and evaluating this at r = r0 gives E = 1
2
v20 − GM⊙/r0.

Thus, this equation may be rewritten as an equation for ρ(r) in terms of
v(r), namely,

ρ(r) = ρ0 exp

[

−2rc

(

1

r0
−

1

r

)]

exp−
v2 − v20
2v2c

,

where rc = GM⊙µ̃/(2R̃T ) and v2c = R̃T/µ̃. The first exponential is sim-
ply the hydrostatic expression for the density variation, whereas the second
exponential represents a factor which is close to but less than unity since
v0 ≪ vc. Thus, the density in the subsonic region falls off with distance
slightly more rapidly than in a hydrostatic atmosphere.

In particular, the density at the sonic point (r = rc) is

ρ(rc) = ρ0 exp

[

2

(

1−
rc
r0

)]

exp−
1

2

(

1−
v20
v2c

)

,

or, since v0 ≪ vc,

ρ(rc) ≈ ρ0 exp

(

3

2
−

2rc
r0

)

.

(c) Mass Loss Rate
The mass loss rate is

dM0

dt
= 4πr20ρ0v0,

which may be evaluated directly by substituting r0 = 1.2 R⊙, say, ρ0 = µ̃nmp

with µ̃ = 0.6, mp = 1.673 × 10−27 kg m−3 and a solar wind solution for v0
such as 0.2 km s−1 for T = 1 MK or 3 km s−1 for T = 2 MK. This mass loss
rate is expressed in kg s−1, but it may be converted into some number of M⊙

per year using the fact that M⊙ = 1.99 ×1030 kg and 1 year = 3.15×107 sec,
to give a mass loss rate of 3×10−15M⊙ yr−1 for T = 1 MK or 4×10−14M⊙

yr−1 for T = 2 MK.
The alternative is to use mass conservation to rewrite the mass loss as

dM0

dt
= 4πr2cρcvc,
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and then to use values for rc, ρc and vc from the solar wind solutions.

PROBLEM 13.4. Maximum Temperature for an Isothermal Wind.

Show that, if T > 5.8× 106 K, an isothermal wind does not exist.

SOLUTION
For an isothermal wind solution, the flow starts out subsonically at the coro-
nal base (r = r0 = 1.2R⊙, say) and accelerates through the critical point
(r = rc = GM⊙µ̃/(2R̃T )) to become supersonic.

However, if rc < r0, there is no longer a critical point above the coronal
base, and so any solution that starts subsonically will decelerate and remain
subsonic. This condition may be written

GM⊙µ̃

2R̃T
< 1.2R⊙,

or

T >
GM⊙µ̃

2.4R⊙R̃
.

By substituting G = 6.67×10−11, M⊙ = 1.99×1030, µ̃ = 0.6, R⊙ = 6.96×108

and R̃ = 8.3× 103 in MKS units, this becomes

T > 5.8× 106 K,

as required.

PROBLEM 13.5. Polytropic Solar Wind.
For a spherically symmetric polytropic solar wind:

(a) find the critical point location and deduce that

1
2
v2(r) +

c2sα(r)

α− 1
−

GM⊙

r
= constant;

(b) find the condition that p → 0 as r → ∞ for breeze solutions.

SOLUTION.
(a) (adapted from lecture notes of Clare Parnell)

Consider a spherically symmetric polytropic solar wind, whose velocity
[v = v(r)r̂], pressure [p(r)] and density [ρ(r)] satisfy

ρr2v = D,
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ρv
dv

dr
= −

dp

dr
−

ρGM⊙

r2
,

and
p

ρα
= K,

where D and K are constant.
Eliminating p and ρ from these equations gives

(

v −
c2sα(r)

v

)

dv

dr
=

2c2sα(r)

r
−

GM⊙

r2
, (2)

where
c2sα(r) =

αp

ρ

is the polytropic sound speed.
The location of the critical point (rc, vc) is given by vc = csα(rc) and

2c2sα(rc)rc = GM⊙,

where

c2sα(rc) =
αp

ρ
= αKρα−1 = αK

(

D

r2ccsα(rc)

)α−1

.

Thus, solving for csα(rc), we have

c2sα(rc) =

(

αKDα−1

r2α−2
c

)2/(α+1)

.

After substituting this into 2c2sα(rc)rc = GM⊙, the critical radius is, finally,

rc =

(

GM⊙

2(αK)2/(α+1)D(2α−2)/(α+1)

)(α+1)/(5−3α)

.

In order to solve the differential equation (2) for v(r), note that pressure
gradient term in the equation of motion can be written as

1

ρ

dp

dr
=

K

ρ

dρα

dr
= Kαρα−2dρ

dr
=

αK

α− 1

dρα−1

dr
,

and so the equation of motion can be written as

v
dv

dr
= −

αK

α− 1

dρα−1

dr
−

GM⊙

r2
.
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Since this is now separable, it can be integrated to give

1
2
v2(r) +

c2sα(r)

α− 1
−

GM⊙

r
= constant, (3)

as required.

(b) We have
c2s ∼ T (r) ∼ ρα−1.

Thus, for a breeze in which v ≪ cs and cs(r) → 0 as r → ∞, Eq.(3) implies

c2s ∼
1

r
or T ∼

1

r
.

Therefore

ρ ∼ c2/(α−1)
s ∼

1

r1/(α−1)
.

Thus, as r → ∞,

p ∼ ρT ∼
1

rα/(α−1)
→ 0,

provided α > 1.

PROBLEM 13.6. Condition for Existence of a Polytropic Solar
Wind.
Show that a polytropic solar wind with α = 1.1 will exist if T0 > 1.1 MK,
but that an adiabatic wind needs T0 > 4.6 MK.

SOLUTION For polytropic flow the Bernouilli equation is

1
2
v2(r) +

c2sα(r)

α− 1
−

GM⊙

r
= constant,

which may be evaluated at the coronal base (r0) (where v ≪ v∞) and at
infinity (where T → 0) to give

αR̃T0/µ̃

(α− 1)
−

GM⊙

r0
= 1

2
v2∞.

Thus, the corona will be able to expand (i.e., possess a positive v2∞)
provided it is hot enough that the thermal energy exceeds the gravitational
contribution, namely, if

αR̃T0/µ̃

(α − 1)
>

GM⊙

r0
,
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or

T0 >
α− 1

(α

µ̃GM⊙

R̃r0
.

For r0 = 1.2 R⊙ and α = 1.1, say, inserting the standard values for G =
6.67× 10−11, M⊙ = 1.99× 1030, µ̃ = 0.6, R⊙ = 6.96× 108 and R̃ = 8.3× 103

in MKS units gives T0 > 1.1 106 K, as required.
On the other hand, for α = 5/3, we find T0 > 4.6 106 K. Since the actual

coronal temperature is significantly less than this, we deduce that the solar
corona would not expand as the solar wind if it were adiabatic.

PROBLEM 13.7. Properties of a Polytropic Solar Wind.
Show that:

(a) if 1 < α < 5/3, the critical point is a saddle point;
and (b) if 1 < α < 3/2, there is a solar wind solution whose pressure force

always dominates gravity and that changes from subsonic to supersonic as it
passes through the critical point.

SOLUTION (adapted from lecture notes of Clare Parnell).
(a) The Critical Point.
First, normalise the above solution with respect to values at the critical

point (rc, csα) by writing

v̄(r̄) =
v(r)

csα(rc)
, r̄ =

r

rc
, c̄sα(r̄) =

csα(r)

csα(rc)
.

Then the equation for v(r) that was derived at the end of the last example
becomes

f(r̄, v̄) ≡ 1
2
v̄2(r̄) +

c̄2sα(r̄)

α− 1
−

2

r̄
= C, (4)

say, where

c2sα(r) =
αp

ρ
= αKρα−1 = αK

(

D

r2v

)α−1

and c2sα(rc) = αK

(

D

r2cvc

)α−1

,

so
c̄2sα(r̄) = (r̄2v̄)1−α. (5)

Clearly the solutions depend on the value of the polytropic constant α, and
the value of C for the solution through the critical point (r̄, v̄) = (1, 1) is
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given by

C =
1

α− 1
−

3

2
.

Now, a critical point occurs where the first derivatives of f(r̄, v̄) vanish,
namely, when

∂f

∂r̄
≡ −2r̄1−2αv̄1−α +

2

r̄2
= 0,

∂f

∂v̄
≡ v̄ − r̄2(1−α)v̄−α = 0,

namely, when (r̄, v̄) = (1, 1).
The second derivatives determine the nature of the critical point, as fol-

lows.

∂2f

∂r̄2
≡ −2(1− 2α)r̄−2αv̄1−α −

4

r̄3
= −6 + 4α at (r̄, v̄) = (1, 1),

∂2f

∂r̄∂v̄
≡ −2(1− α)r̄1−2αv̄−α = −2(1− α) at (r̄, v̄) = (1, 1),

∂2f

∂v̄2
≡ 1 + αr̄2(1−α)v̄−(1+α) = 1 + α at (r̄, v̄) = (1, 1).

Then the value of

F ≡
∂2f

∂r̄2
∂2f

∂v̄2
−

(

∂2f

∂r̄∂v̄

)2

= 2(3α− 5)

determines the type of critical point.
When 1 < α < 5/3, we find F < 0 and so we have a saddle point. But

when α > 5/3, F > 0 and ∂2f/∂r̄2 > 0, so that the critical point is a local
minimum.

(b) The Solar Wind Solution.
As well as passing through a saddle point, a solar wind velocity needs

to increase with distance and go from subsonic to supersonic as it passes
through the critical point. The Mach number M = v(r)/csα(r) may be
nondimensionalised to give

M̄(r̄, v̄) =
v̄

c̄sα
=

v̄

(r̄2v̄)(1−α)/2
= v̄(1+α)/2r̄α−1.

In the v̄-r̄ phase plane, the solutions therefore go from subsonic to supersonic
on the curve M̄(r̄, v̄) = 1, namely,

v̄ = r̄2(1−α)/(1+α), (6)
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which decreases with r̄ when α > 1.
We next need to determine whether, when 1 < α < 5/3, there is a solution

through the critical point that is initially subsonic when r̄ < 1 and then
becomes supersonic when r̄ > 1. The critical point for such a solution lies on
M̄(r̄, v̄) = 1 or Eq.(6). Since then dv̄/dr̄ = −2[(α − 1)(α + 1)]r̄−(3α−1)(α+1),
the gradient of this Mach 1 curve through the critical point (r̄, v̄) = (1, 1) is
−2(α− 1)(α + 1).

We now need to compare this with the gradients of the flow solutions
through the critical point, which may be calculated as follows. By differen-
tiating the Eq.(4) for f(r̄, v̄) with c̄sα(r̄) given by (5), we find

[v̄ − r̄2(1−α)v̄−α]
dv̄

dr̄
= 2v̄1−αr̄1−2α + 2r̄−2.

Since we are interested in the gradients of the curves through the critical
point (r̄, v̄) = (1, 1), we linearise about this point by putting r̄ = 1 + R and
v̄ = 1+ V and supposing the curves are locally of the form V = αR, so that
the above equation approximates to

α =
dV

dR
= 2

(3− 2α) + (1− α)α

2(α− 1) + (1 + α)α

This may in turn be solved for α to give

α± = −2
α − 1

α + 1
±

√
2

α+ 1

√
5− 3α.

When α > 5/3 the roots of α are complex since the saddle point no longer
exists. When α = 5/3 there is one root and the gradient is the same as that
of the Mach 1 curve, since M̄ ≡ 1 is now a solution with the flow remaining
sonic for all r.

When 1 < α < 5/3 there are two real roots. The first, namely,

α− = −2
α− 1

α + 1
−

√
2

α + 1

√
5− 3α

has a slope that is steeper than the Mach 1 curve and so it represents the
solution that goes from supersonic to subsonic. On the other hand, the
second,

α+ = −2
α− 1

α + 1
+

√
2

α + 1

√
5− 3α,
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has a slope that is shallower than the Mach 1 curve and so it represents the
solution that goes from supersonic to subsonic.

However, α+ may be positive or negative. The change from positive to
negative occurs when √

2
√
5− 3α = 2(α− 1)

or
−2α2 + α+ 3 = −(2α− 3)(α + 1) = 0.

Thus, when 3/2 < α < 5/3, then α+ < 0 and the solution is unphysical,
since it starts with supersonic speed near the Sun (just like the α− solution).

However, when 1 < α < 3/2, then α+ > 0 and we have physical solution
that starts with subsonic speed near the Sun and is continuously accelerated
as it moves from the Sun to cross the critical point and become supersonic.
When α = 3/2, the solution through the critical point has a constant wind
speed.

What is happening physically can be deduced by comparing terms in the
momentum equation. When 1 < α < 3/2, then dv/dr > 0 at all radii and

−
dp

dr
>

ρGM⊙

r2
,

so that the pressure falls off with r and the outwards pressure force always
dominates gravity. On the other hand, when α = 3/2, then dv/dr > 0,
the pressure force is proportional to r−2 and the pressure gradient balances
gravity. Finally, when 3/2 < α < 5/3, then dv/dr < 0 and

−
dp

dr
<

ρGM⊙

r2
,

so that the pressure falls off so slowly with r that gravity always dominates
the pressure force.

PROBLEM 13.8. Properties of a Rotating Wind with Angular
Speed Ω⊙.
Show that in the equatorial plane the addition of rotation:

(a) changes Eq.(13.5) to

(

vr −
v2c
vr

)

dvr
dr

=
2v2c
r3

(r2 − rc0r +
1
2
τ 2r20),
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where rc0 is the critical point radius in the absence of rotation and τ =
r0Ω⊙/vc;

(b) gives one critical point for rc0 > r0 when 0 < τ < τ1, two when
τ1 < τ < τ2 and none when τ > τ2, where τ1 =

√
2(rc0/r0 − 1)1/2 and

τ2 = rc0/(
√
2r0);

(c) and changes the solar wind density by a small amount to be estimated.

SOLUTION (adapted from book by Marcel Goossens “An Introduction
to Plasma Astrophysics and MHD”).

(a) Effect on Equation for vr
Consider a steady-state thermally-driven wind rotating with angular speed

Ω⊙ in spherical polar coordinates (r, θ, φ) by assuming azimuthal symmetry
(∂/∂φ = 0) and considering only the flow components (vr, vφ) in the equato-
rial plane.

The equation of axial momentum is

vr
dvφ
dr

+
vrvφ
r

= 0,

which may be integrated to give rvφ = L or

vφ =
L

r
=

r20Ω⊙

r
,

where L is a constant, namely, the angular momentum per unit mass.
The equation of radial momentum is

vr
dvr
dr

−
v2φ
r

=
GM⊙

r2
−

1

r

dp

dr
, (7)

where v2φ/r = L2/r3 = r40Ω
2
⊙/r

3. Integrating this gives in general Bernoulli’s
equation, namely,

v2r + v2φ
2

−
GM⊙

r
+

∫

dp

ρ
= E,

where E is constant.
For an isothermal plasma, p = v2cρ, where v

2
c = R̃T/µ̃ is the square of the

isothermal sound speed, and so Bernouilli’s equation becomes

v2r + v2φ
2

−
GM⊙

r
+ v2c loge

ρ(r)

ρ(r0)
= E. (8)
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Now, substitute into the radial equation of motion (7) for p(r) = v2cρ(r)
and for ρ(r) from the equation of mass conservation,

ρ vr r2 = constant

to give, as required,

(

vr −
v2c
vr

)

dvr
dr

=
2v2c
r3

(r2 − rc0r +
1
2
τ 2r20),

where rc0 = GM⊙/v
2
c is the critical point radius in the absence of rotation

and τ = r0Ω⊙/vc = vφ(r0)/vc measures the importance of rotation.

(b) Critical Points
The critical points of the above equation, where dvr/dr is undefined, occur

where the brackets on both sides vanish, namely, when vr = vc and r = rc
such that

f(rc) ≡ r2c − rc0rc +
1
2
τ 2r20 = 0. (9)

Let us assume that rc0 > r0 so that the critical point in the case of
no rotation lies above the coronal base, as in the solar case. For the Sun,
τ ≈ 0.01 and so rotation has a small effect on the wind solution. However,
for rapidly rotating objects, two critical values of τ arise, namely,

τ1 =
√
2

(

rc0
r0

− 1

)1/2

, τ2 =
rc0√
2r0

.

Note that f(rc) is a quadratic function of rc with either 0, 1 or 2 roots.
When τ = 0, we have either r = rc0, the previous non-rotating result or

r = 0, which is unphysical, so let us consider what happens as we increase
the value of the parameter τ . First of all, when τ ≪ 1, we may expand about
these two solutions to find one physical solution, namely, r ≈ rc0(1 − 1

2
τ 2),

and one unphysical solution, namely, r ≈ r20τ
2/(2rc0), which lies below the

coronal base r = r0.
The presence of exactly one physical solution to (9) persists for higher

values of τ in the range 0 < τ < τ1, where τ1 is the value of τ that makes
rc = r0, so that the second solution is at the coronal base. Putting rc = r0
in the equation (9), we find

r20 − rc0r0 +
1
2
τ 2r20 = 0,
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or

τ 2 = 2

(

rc0
r0

− 1

)

,

as required.
When τ > τ1, the second solution moves above r = r0 and so we have two

physical solutions. However, this situation does not continue indefinitely as
we increase τ . The minimum in the quadratic function f(rc) given by (9) is
located at rc =

1
2
rc0, and the value of f(rc) at this point is

f(1
2
rc0) = −

r2c0
4

+
τ 2r20
2

.

Thus, f(1
2
rc0) > 0 and so there are no solutions, when

τ > τ2 ≡
rc0√
2 r0

.

In other words, we have shown that there are two critical points when
τ1 < τ < τ2 and none when τ > τ2, as required.

Density
From Eq.(8) the density can be written in terms of the velocity as

ρ(r)

ρ(r0)
= exp

1

2v2c

[

2E − (v2r + v2φ) +
2rc0
r

]

,

where rc0 = GM⊙/v
2
c and, by putting r = r0, we have E = 1

2
(v2r0 + v2φ0) −

rc0/r0. Thus, the density can be rewritten,

ρ(r)

ρ(r0)
= exp

1

2v2c

[

v2r0 − v2r + v2φ0 − v2φ + 2rc0

(

1

r
−

1

r0

)]

.

After putting vφ = r20Ω⊙/r, vφ0 = r0Ω⊙ and τ = r0Ω⊙/vc, this becomes

ρ(r)

ρ(r0)
= exp

[

−
rc0
r0

(

1−
r0
r

)

]

× exp

[

−
v2r − v2r0
2v2c

]

× exp

[

τ 2

2

(

1−
r20
r2

)]

.

The first exponential represents a hydrostatic atmosphere, while the second
gives the effect of flow and the third shows the effect of rotation.

Since the final exponential is close to but in excess of unity (since τ ≪ 1
and r > r0) the effect of rotation is to increase slightly the density and
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so to make it decrease less rapidly with distance. Correspondingly, since
ρ vr r

2 = constant, the outflow speed decreases slightly and so increases less
rapidly with distance.

PROBLEM 13.9. Angular Momentum Loss
Show that the time-scale for angular momentum loss is of order the Sun’s
age.

SOLUTION. (adapted from book by Marcel Goossens “An Introduction
to Plasma Astrophysics and MHD”).

From PROBLEM 13.3, we have

dM⊙

dt
≈ 10−14M⊙/yr.

On the other hand, the rate of loss of angular momentum is

dJ⊙

dt
=

dM⊙

dt
r2AΩ⊙ ≈ 10−14M⊙r

2
AΩ⊙/yr

Now, assume that the Sun rotates as a solid body and that its moment
of inertia is the same as that of a uniform-density sphere of the same mass
and radius. Then

J⊙ = Ω⊙I⊙ = Ω⊙

2M⊙R
2
⊙

5

The time-scale for angular momentum loss follows (with rA = 12 R⊙) as

τJ =
J⊙

dJ⊙/dt
≈

0.4

144× 10−14
yr ≈ 1011yr

which is ten times the Sun’s age of 1010 yr.
This rough estimate is likely to underestimate the much faster rate of

angular momentum loss in the Sun’s youth, when its angular velocity and
magnetic field are likely to have been much larger.

PROBLEM 13.10. Isothermal Coronal Hole.
For an isothermal coronal hole with area function A(r) = arn, show how the
value of n affects the location of the critical point and find the behaviour of
the velocity and pressure at large distances for the solar wind solution.
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SOLUTION. For a nonradial area expansion A(r) = arn, the equation
of mass continuity becomes

rnρv = K,

say, where K is a constant. This equation determines the density ρ(r) in
terms of the velocity v(r).

The momentum equation with the usual inverse-square law for gravity is
unchanged as

ρv
dv

dr
= −

dp

dr
−

ρGM⊙

r2
,

and, since the plasma is isothermal, the equation of state is

p = v2cρ,

where v2c = RT is constant.
These equations may be combined to give the basic equation for v(r) with

a critical sonic point at (v, r) = (vc, rc), namely,
(

v −
v2c
v

)

dv

dr
=

nv2c
r2

(r − rc),

where rc = GM⊙/(nc
2
c). Thus, the critical radius (rc) is located closer to the

Sun if the open magnetic field expands more rapidly (i.e., the value of n is
larger).

The solution of this separable equation that passes through the critical
point is

1
2

(

v2

v2c
− 1

)

− loge

(

v

vc

)

= n loge

(

r

rc

)

+ n
(rc
r
− 1

)

.

When r is large, the first term on the left and the first on the right dominate
and so

v ∼
√

2nv2c loge
r

rc
.

The asymptotic behaviour of the density follows from the continuity equa-
tion as

ρ ∼
K

rn
√

[2nv2c loge(r/rc)]
.

Since the temperature is constant, this implies that p → 0 as r → ∞, as
expected for the solar wind.
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