
Appendix B X-ray waves in media:
further details

This appendix from www.cambridge.org/Jacobsen is an online extension of the book
X-ray Microscopy. In it, we provide additional details on the refractive index for both
visible light and for X rays, thus supplementing the discussion of Section 3.3.1 in the
book.

One of the great triumphs of classical physics was the unification by Scottish physi-
cist James Clerk Maxwell of several electromagnetic phenomena. However, the com-
pact notation we have today for four equations isn’t due to Maxwell, who had a set
of 20 equations; our modern form of Maxwell’s equations is actually the result of the
self-taught Oliver Heaviside, who reformulated Maxwell’s work using vector calculus
[Hunt 1991a]. What might be called the Maxwell–Heaviside equations combine Fara-
day’s law for how changing magnetic fields can induce voltages, Ampére’s law for how
currents and changing electric fields can produce magnetic fields, and Gauss’ law for
how electric charges produce electric fields (Gauss’ law would also predict how mag-
netic monopoles, if they existed, would be expected to produce magnetic fields) into the
following:

Faraday: ~∇ × ~E = −
∂~B
∂t

(B.1)

Ampère: ~∇ × ~B = µm( ~J + ε
∂ ~E
∂t

) (B.2)

Gauss (electric): ~∇ · ~E =
ρ

ε
(B.3)

Gauss (magnetic): ~∇ · ~B = 0, (B.4)

where ~∇× is the curl and ~∇· the divergence, ε is the electric permittivity, and µm is the
magnetic permeability. In most cases of interest to us, the current density ~J is equal to
an applied electric field ~E multiplied by the conductivity σ; this relationship is called
Ohm’s law, and you probably know it as I = (1/R)V . When Ohm’s law applies, we can
write Ampère’s law as

~∇ × ~B = σµm ~E + µmε
∂ ~E
∂t
, (B.5)

though the electrical current term is not needed when considering dielectric media.
When an electric field is applied to a nonconducting material, some of the energy

of the field can go into displacing electron orbitals slightly with respect to their nuclei,
as was shown in Fig. 3.14. This leads to an average dipole moment per atom, or bulk
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polarization ~P of the material. For typical electric fields in most materials, this is related
to the applied electric field E in a linear fashion, giving

~P = ε0χe ~E, (B.6)

involving the following parameters:

permittivity of free space ≡ ε0 = 8.85 × 10−12 C2/N ·m2 (B.7)

electric susceptibility ≡ χe (B.8)

permittivity ≡ ε = ε0(1 + χe) (B.9)

dielectric constant ≡ K = ε/ε0 = (1 + χe). (B.10)

Dielectric constants are tabulated in a variety of places (see for example [Weast 1975]);
gases tend to have values of χe∼10−3 while solids and liquids tend to have χe∼1–8,
though some materials have even larger values. At larger electric fields, the relation-
ship between polarizability P and applied electric field E can become nonlinear, and
eventually electric breakdown can occur.

When a magnetic field is applied to a material, it may affect the alignment of the
magnetic dipole moments of individual nuclei. For non-ferromagnetic materials, the
relationships between the magnetism M, the applied magnetic field B, and the auxiliary
field H are:

~M = χm ~H (B.11)
~B = µ0( ~H + ~M) = µ0(1 + χm) ~H, (B.12)

involving the following parameters:

magnetic susceptibility ≡ χm (B.13)

permeability ≡ µm = µ0(1 + χm) (B.14)

permeability of free space ≡ µ0 = 4π × 10−7 N · C2/s2. (B.15)

Note that χm < 0 for diamagnetic materials (values of χm ≈ −10−5 are common), and
χm > 0 for paramagnetic materials (values of 10−5 are common except for lanthanides,
which have values more like 10−2).

With these properties for nonconducting, electrostatically neutral, linear media in
hand, the Maxwell–Heaviside equations can be manipulated [Griffiths 1989] to give
wave equations for electric and magnetic fields:

∇2 ~E = µmε
∂2 ~E
∂t2 (B.16)

∇2~B = µmε
∂2~B
∂t2 (B.17)

This gives rise to a plane wave equation (Eq. 3.31) of

~E = Re
[
~E0e−i(~k·~z−ωt)

]
(B.18)
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for the electric field, with a similar expression for the magnetic field. If we insert this
plane wave expression into the electric field wave equation (Eq. B.16), we find

k2 = µmεω
2. (B.19)

for the relationship between the wave number k and the angular frequency ω.
We can now treat the propagation of electromagnetic waves in the material in a way

similar to what we outlined for the driven, damped harmonic oscillator model described
in Section 3.3 (see e.g., [Griffiths 1989, Sec. 9.4.3]). The sum of forces on an oscillation
mode lead to an equation of motion for the oscillator [Griffiths 1989, c.f. Eq. 9.155] of

me ẍ = Ftot = Fbinding + Fdamping + Fdriving
= −meω

2
0x − meγẋ + q E0eiωt, (B.20)

which we see takes on the form shown in Eq. 3.47. In a steady state, the mode oscillates
at the driving frequency, or

x(t) = x̃eiωt, (B.21)

where x̃ can be a complex number to allow for phase shifts. Inserting the expression of
x(t) from Eq. B.21 into Eq. B.20, we obtain

−meω
2 x̃eiωt = −meω

2
0 x̃eiωt − imeγωx̃eiωt + qE0eiωt

x̃me

[
(ω2

0 − ω
2) + iγω

]
= qE0

or x̃ =
q/me

(ω2
0 − ω

2) + iγω
E0. (B.22)

This displacement of the electron from its normal position relative to the positively
charged nucleus leads to the atom having a small dipole moment (Fig. 3.14) of

p̃(t) = q x(t) = qx̃eiωt =
q2/me

(ω2
0 − ω

2) + iγω
E0eiωt. (B.23)

We can then go from a single oscillation mode’s induced dipole moment to consider
the volume polarization P. We will assume that an atom has a number of oscillation
modes indexed by j, each with their own weighting g j, resonance frequency ω j, and
damping coefficient γ j. The complex volume polarization P̃ of the material is then given
by [Griffiths 1989, Eq. 9.159]

P̃ =
nae2

me

∑
j

g j

(ω2
j − ω

2) + iγω

 E0eiωt. (B.24)

From this, we obtain a complex value for the electric susceptibility χ̃e = P̃/(ε0E0) of

χ̃e =
nae2

meε0

∑
j

g j

(ω2
j − ω

2) + iγ jω
, (B.25)

where again ω is the driving frequency and ω j represents the various oscillation mode
resonance frequencies.

Let us return to our solution for the wave equation for plane electric waves. We found
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in Eq. B.19 that the wave vector k could be expressed as k =
√
µmε ω. We now define

the index of refraction n as the ratio of the wave vector in our medium relative to the
wave vector in free space, or

n ≡
k
k0

=

√
µmε ω
√
µ0ε0 ω

=
√

(1 + χm)(1 + χe), (B.26)

where we have used ε = ε0(1 + χe) from Eq. B.9, and µm = µ0(1 + χm) from Eq. B.14.
Since we saw in the discussion below Eq. B.14 that χm tends to be . 10−4 for many
materials, and in Section B.3 we saw that the magnetic fields associated with electro-
magnetic waves are weak, we’ll drop the χm term. Even though we also saw that static
electric field values of χe can be in the range 1–8 for many solids, for electromagnetic
waves there is a weaker response so we’ll assume that we can make the approximation
(1 +χe)−1/2 ' 1−χe/2. We can then go from Eqs. B.25 and B.26 to find [Griffiths 1989,
Eq. 9.170]

n = 1 +
nae2

2meε0

∑
j

g j

(ω2
j − ω

2) + iγ jω

= 1 −
nae2

2meε0

∑
j

g j

(ω2
j − ω

2)2 + γ2
jω

2

[
(ω2 − ω2

j ) + iγ jω
]
, (B.27)

where in the second line (Eq. B.27, which is the same as Eq. 3.60) we have multiplied
top and bottom by (ω2

j −ω
2)− iγ jω. From this, we can separate the refractive index into

real and imaginary parts:

Re[n] = 1 −
nae2

2meε0

∑
j

(ω2 − ω2
j ) g j

(ω2
j − ω

2)2 + γ2
jω

2
(B.28)

Im[n] = −
nae2

2meε0

∑
j

γ jω g j

(ω2
j − ω

2)2 + γ2
jω

2
. (B.29)

The real and imaginary parts impart separate effects on a wavefield ψ:

ψ(~x, t) = ψ0 exp
[
−i(n~k0 · ~x − ωt)

]
= ψ0 exp

[
−i(~k0 · ~x − ωt)

]
·

exp
[
−i Re[n − 1] ~k0 · ~x

]
exp

[
Im[n] ~k0 · ~x

]
. (B.30)

That is, the real part of the refractive index Re[n − 1] describes the phase change of
a wave propagating through the medium relative to vacuum, while the imaginary part
Im[n] describes attenuation or amplification of the wave.

B.1 The low-frequency limit: the visible-light refractive index

In Section 3.3.2 we described a rather important property of the optical response of
materials: plasmon excitations set the great dividing line between the low- and high-
frequency forms of the general refractive index expressions of Eq. B.28 and B.29. Let
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us then consider the term (ω2
j−ω

2) in the limit that the driving frequencyω is well below
the frequency of the preponderance of oscillation modes in the material, or ω � ω j. In
this case, the driving-frequency-dependent damping forces of meγẋ (Eq. B.20) are small
because ω2 is small, so we can write

1
(ω2

j − ω
2)

=
1
ω2

j

1 − ω2

ω2
j

−1

'
1
ω2

j

1 +
ω2

ω2
j

 . (B.31)

We can then write the expression from Eq. B.28 of Re[n] as [Griffiths 1989, Eq. 9.173]

Re[n] ' 1 +

 nae2

2meε0

∑
j

g j

ω2
j

 + ω2

 nae2

2meε0

∑
j

g j

ω4
j

 , (B.32)

which is Eq. 3.61, and which (as noted in Eq. 3.62) can be written as n = 1+A(1+B/λ2)
or alternatively as n = 1 + A + Cω2. This leads to a phase velocity of

vp ≡
ω

k
=

c
n

=
c

1 + A + Cω2 , (B.33)

which, for positive A and C, clearly leads to a phase velocity that is below c (see also
the Cauchy form in Eq. 3.62). The group velocity is defined as

vg ≡
dω
dk
. (B.34)

From Eq. 3.56 we haveω/k = n/c, which we can rearrange asωc = nk and differentiate:

d[ω n(ω)] = d[ck]

dω · n(ω) + ω · d[n(ω)] = c dk

dω · n(ω) + dω · ω ·
d[n(ω)]

dω
= c dk

dω
[
n(ω) + ω

dn(ω)
dω

]
= c dk

dω
dk

=
c

n(ω) + ω dn(ω)
dω

. (B.35)

This lets us calculate the group velocity vg using

vg ≡
dω
dk

=
c

n(ω) + ω dn(ω)
dω

. (B.36)

We can then use d[1 + A + Cω2] = 2Cω for dn(ω)/dω to find the group velocity for
visible light to be

vg ≡
dω
dk

=
c

n(ω) + ω dn(ω)
dω

=
c

(1 + A + Cω2) + ω(2Cω)
, (B.37)

which again is less than c. Thus we conclude that both the phase and group velocities
for visible light in refractive media are below the speed of light c in vacuum.
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B.2 The high-frequency limit: the x-ray refractive index

We have seen above that the refractive index expression we have derived yields the
expected results for visible light in the low-frequency limit. However, we wish to cross
the great plasmon frequency divide and reach the promised land of the high-frequency
limit, which is flowing with milk, honey, and X rays!

We therefore return to the refractive index expression of Eq. B.27, and consider its
form with low damping γ j → 0 and at high driving frequencies ω well beyond most
resonant frequencies ω j, or ω2

j � ω2 (since most ω j frequencies are near the plasmon
frequency, or at ∼30 eV photon energies). We can then reduce Eq. B.27 as follows:

n = 1 −
nae2

2meε0

∑
j

g j

(ω2 − ω2
j )

2 + γ2
jω

2

[
(ω2 − ω2

j ) + iγ jω
]

' 1 −
nae2

2meε0

1
ω2

∑
j

g j (1 + iγ j/ω), (B.38)

Now ω = 2πc/λ, and the classical radius of the electron in SI units is

re ≡
1

4πε0

e2

mec2 = 2.818 × 10−15 m. (B.39)

We also can define

α ≡
re

2π
na (B.40)

so Eq. B.38 can be written as

n ' 1 − αλ2( f1 + i f2), (B.41)

which is Eq. 3.65. In arriving at this, we have used

f1 + i f2 =
∑

j

g j (1 + i
γ j

2πc
λ). (B.42)

We therefore see that Eq. B.41 reproduces Eq. 3.65. Now the sum of all oscillation
modes should tend toward the number of electrons, or

∑
j g j → Z, and we also see from

Eq. B.42 that the imaginary part f2 should decline relative to the real part at least as
steeply as the inverse of x-ray energy. We thus have a good basis for expecting

f1 → Z, (B.43)

and f2 declining at higher energies relative to f1, which is the behavior seen in Fig. 3.16
(leading to the linear absorption coefficient scaling with energy of Eq. 3.77).

The phase velocity of X rays in media is found using Eq. 3.56 of vp = c/n to be

vp =
c

1 − δ
= c(1 − δ)1 ' c(1 + δ), (B.44)

where we have used the binomial expansion; this gives Eq. 3.72. The group velocity vg

expression of Eq. B.36 can be calculated using f̃ = ( f1 + i f2) and

dn
dω

=
d[1 − α′ f̃ω−2]

dω
= +2α′ f̃ω−3, (B.45)



B.3 Electric and magnetic field strength 7

to arrive at

vg =
c

n(ω) + ω
dn(ω)

dω

=
c

(1 − α′ f̃ω−2) + ω(+2α′ f̃ω−3)

=
c

1 + α′ f̃ω−2

' c(1 − α′ f̃ω−2)

or vg = ' c(1 − δ), (B.46)

where in the last step we use Eq. 3.69 and the fact that f2 � f1 at higher x-ray energies.
This is how we arrive at the result shown in Eq. 3.73. We therefore see (to our relief!)
that the group velocity for X rays traveling in media is less than the speed of light,
even though the phase velocity is greater than c. One must imagine that Einstein must
have realized this even though he didn’t comment on it [Einstein 1918], as noted above
Eq. 3.73.

B.3 Electric and magnetic field strength

Since electromagnetic wave propagation depends on electric and magnetic material
properties, how big are the electric and magnetic fields? Let’s consider the mean electric
〈E〉 and magnetic 〈B〉 field values produced by a monochromatic beam with an irradi-
ance of IE = 6×107 W/m2 (this corresponds to a 5 mW visible-light laser beam focused
to a 10 µm spot, or a flux of Φ = 1010 photons/s of 300 eV soft X rays focused into a
100 nm spot). The resulting mean field values are given by the Poynting vector as

〈E〉 =
(µm
ε

)1/4 √IE = 1.5 × 105 volts/m (B.47)

〈B〉 =
(
µ3

mε
)1/4 √IE = 5.0 × 10−4 tesla. (B.48)

Thus, we see that the electric field is rather high (air sparks under a static field of about
8 × 105 V/m), while the magnetic field is rather small (only 50 times greater than that
of the Earth), which leads us to predict that the dielectric constants of materials will
dominate their optical properties. (Only in the case of magnetic circular dichroism do
magnetic effects become significant in x-ray interactions; this was discussed in Section
9.1.4.) While 〈E〉 will usually have more of an effect than 〈B〉 in electromagnetic wave
propagation, the 〈E〉 field is still relatively gentle. Consider the electric field within an
atom, where we have electrons bound by energies of ∼10 eV and atoms of size ∼0.1 nm;
this gives 〈E〉 ' 1011 V/m. At the lower intensities of interest to us, the fact that the
electric field is relatively weak means that most materials respond linearly (rather than
nonlinearly) to electromagnetic waves, thus justifying our assumption of linearity in
~P = ε0χe ~E.




