Errata in the First Printing of Ghosal and van der Vaart (2017)

- p. 11, Lemma 2.2: the independence of β_1, β_2, \ldots is not necessary for the result and the proof can be simplified. Replace the first two lines of the lemma by: "If $\sum_{j=1}^{\infty} \|\psi_j\|_{\infty} \mathbf{E}|\beta_j| < \infty$, then the series (2.1) converges uniformly, in mean and almost surely." In the proof replace "pointwise convergence" in line 3 by "uniform convergence", and remove the sentence "That the series converges almost ... if and only if it converges in mean".
- p. 21, Lemma 2.8 (i): replace $||f g||_{2,G}$ by $||f g||_{r,G}$.
- p. 24, Exercise 2.4: replace $||f g||_{\infty}$ by $||f g||_{\infty}^2$ in the upper bound on $K + V_{2,0}$; add a factor *a* to the upper bound on $|\Psi(f)^a \Psi(g)^a|$ (if a = 2).
- p. 106, Algorithm 3: in the numerator on the right side, restrict the product to $j \neq i$: $s_j = s$ (as in the denominator).
- p. 116: replace the last sentence and the displays following it by: "In the second case it is convenient to index by a pair of integers (j_1, j_2) , and write the updating formulas as $q_{ij_1:ij_2} = q_{i,j_1}^{(1)}q_{i,j_2}^{(2)}$, where

$$q_{ij_{1}}^{(1)} \propto \begin{cases} \theta_{1j_{1}}^{-1} \mathbb{1}\{X_{i} > -\theta_{1j_{1}}\}, & j_{1} \neq 0, \\ M_{1} \int_{X_{i}^{-}}^{\infty} (\theta_{1} + \theta_{2i})^{-1} dG_{1}(\theta_{1}), & j_{1} = 0, \end{cases}$$
$$q_{ij_{2}}^{(2)} \propto \begin{cases} \theta_{2j_{2}}^{-1} \mathbb{1}\{X_{i} < \theta_{2j_{2}}\}, & j_{2} \neq 0, \\ M_{2} \int_{X_{i}^{+}}^{\infty} (\theta_{1i} + \theta_{2})^{-1} dG_{2}(\theta_{2}), & j_{2} = 0, \end{cases}$$

and

$$dG_{1b}(\theta_1 | X_i) \propto \int_{\theta_2 \in (X_i^+,\infty)} (\theta_2 + \theta_1)^{-1} dG_2(\theta_2) dG_1(\theta_1),$$

$$dG_{2b}(\theta_2 | X_i) \propto \int_{\theta_1 \in (X_i^-,\infty)} (\theta_2 + \theta_1)^{-1} dG_1(\theta_1) dG_2(\theta_2).$$

- p. 199, equation (8.8): restrict this to k = 2 and replace $\sqrt{2k!}$ by 1/2.
- p. 234, proof of Theorem 9.1: in the third paragraph, add the restriction $\theta^T 1 = 0$ to the definition of $\Theta(J, \epsilon)$; this set should be $\{\theta \in [-M, M]^J : \|\theta - \theta_0\|_2 \le \sqrt{J}\epsilon, \theta^T 1 = 0\}.$

- p. 234, last line: replace $n^{-a(2\alpha+1)}$ by $n^{-\alpha/(2\alpha+1)}$.
- p. 251: in the proof of Lemma 9.16, replace the power (v + 1 d)/2 by (v 1 d)/2 [Cf. page 106 of Muirhead's book].
- p. 252, first line of the first display: replace the domain I_1 of the first integral by I_d .
- p. 252: remove v in front of the trace inside the exponential term of the second display.
- p. 291, Theorem 10.21: in the last line add the conditioning $|X^{(n)}$ to Π_n , which should be the posterior distribution.
- p. 297, line 11: replace "(A2)" by "(A3)".
- p. 334, line after second display: in the case that r < 2, replace the posterior contraction rate $n^{-1/2}(\log n)^{1/r \vee (1/2+d/4)}$ by $e^{-c(4\log n)^{r/2}}$, where $c < \gamma$; restrict the subsequent discussion to the case r > 2.
- p. 363, second display: replace $\hat{\theta}_n$ by θ_0 .
- p. 365: replace the last paragraph of the proof of Theorem 12.2 by "Since $\sqrt{n}V_n \to 0$ in probability, and $f \mapsto Qf$ is a well defined element of $\mathfrak{L}_{\infty}(\mathcal{F})$ and \mathbb{B}_n converges to a limit in this space, the process $\sqrt{n}V_n(Q - \mathbb{B}_n)$ tends to zero in probability in $\mathfrak{L}_{\infty}(\mathcal{F})$. By Slutsky's lemma the sum $\sqrt{n}V_n(Q - \mathbb{B}_n) + \sqrt{n}(\mathbb{B}_n - \mathbb{P}_n)$ has the same limit as the second term."
- p. 366: in the second line of Theorem 12.5, remove *n* from $DP(\alpha + n\sum_{i=1}^{n} \delta_{X_i})$.
- p. 367: in Theorem 12.6 do the same.
- p. 370, formula (12.5): decrease the size of the second bracket "(" in the normal distribution.
- p. 394, Theorem 13.1: in third line replace "prior" by "process".
- p. 395, line 2: replace $< \cdot <$ by $< \cdots <$.
- p. 396, Theorem 13.2, item (ii): replace var by var.
- p. 459, Proposition 14.23: restrict the second formula for $B_{n,k}$ to $\sigma \neq 0$ (or interpret it "by continuity" at $\sigma = 0$). A preciser name for these numbers is generalized Stirling numbers of parameters $(-1, -\sigma)$.

- p. 535, in the line below the second display replace " $L_2(\mu)$ " by " $L_2(\nu)$ ".
- p. 540: in the line below the second display, replace "Lemma B.8 (iv)" by "Lemma B.8 (iii)".
- p. 552: in the third last line of the proof of Lemma E.5 replace " $|\eta_2^T B|$ " by " $|\eta_2^T B^*|$ ".
- p. 590, Lemma I.31, line 3: replace $w_i in\mathbb{B}$ by $w_i \in \mathbb{B}$.