
CHAPTER 8

EXERCISES FOR LINEAR REGRESSION:
LEAST SQUARES ESTIMATION

In this homework assignment you will write an R function that estimates the regression
parameter β in the model

y = Xβ + ε, (8.1)

where y is an N -dimensional vector of predictands, and X is an N × M dimensional
matrix of predictors. The core of this function is to compute an estimate of β based on
solution of the normal equations

β̂ =
(
XTX

)−1
XTy. (8.2)

In practice, most packages use the SVD or QR algorithm to estimate β. You will not
be asked to use these algorithms because we are interested in focusing on statistics, not
numerics. Having said that, you should be aware that you are solving the least squares
problem inefficiently and perhaps inaccurately.

To calculate (8.2), we need to calculate XTX and XTy. In R, the transpose operation
is t(), and matrix multiplication is %*%. Thus, these terms are obtained by the commands

1 xtx = t(x) %*% x
2 xty = t(x) %*% y

The inverse of a general matrix can be calculated using the solve command. However,
the matrix we want to invert is symmetric, and it is faster and more accurate to invert
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a symmetric matrix using the Cholesky decomposition. R can invert a matrix using the
Cholesky decomposition as follows:

1 xtx.inv = chol2inv(chol(xtx))

Verify that xtx %*% xtx.inv equals the identity matrix (to within roundoff error).

In addition to estimating the parameters β, you also should estimate the sum square
error SSE and coefficient of determination R2. The sum square error is

SSE =
(
y −Xβ̂

)T (
y −Xβ̂

)
. (8.3)

In the notes, R2 was estimated from centered variables. It is not necessary to center the
variables as long as you include the intercept as a predictor. Therefore, your R function
should automatically insert the intercept as a predictor. That is, you will give the function
all the predictors except the intercept, and the function will insert the intercept among the
predictors. You can generate a vector of 1s using the command rep, and then join this
vector with the predictor matrix using the command cbind.

In general, R2 can be calculated as

R2 = 1− SSE
SST

, (8.4)

where
SST =

∑
n

(yn − µ̂)
2
. (8.5)

Exercise 8.1. Write an R function that sets up the normal equations for solving (8.1),
solves the normal equations to obtain the least squares estimates, and computes R2. The
function call based on the normal equations should be regress.normal(y,x), where
y and x are the appropriate vector and matrix of the regression model (8.1). The preamble
of this function should be the following:

1 regress.normal = function(y,x,include.intercept=TRUE) {
2 ########################################################################
3 ## DETERMINES THE LEAST SQUARES ESTIMATE OF B IN THE EQUATION Y = XB + E
4 ## BASED ON THE NORMAL EQUATIONS
5 ## INPUT:
6 ## Y[NTOT]: N-DIMENSIONAL VECTOR OF PREDICTANDS
7 ## X[NTOT,MTOT]: N X M DIMENSIONAL MATRIX OF PREDICTORS
8 ## INCLUDE.INTERCEPT: INCLUDE THE INTERCEPT? (DEFAULT=TRUE)
9 ## OUTPUT:

10 ## BHAT: M-DIMENSIONAL VECTOR OF ESTIMATES OF B
11 ## R2: R-SQUARED
12 ## SSE: SUM SQUARE ERROR OF THE LEAST SQUARES PREDICTION
13 ## DOF: DEGREES OF FREEDOM OF THE SSE.
14 ## RES.SE: STANDARD ERROR OF THE RESIDUALS
15 ##########################################################################
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Exercise 8.2. Apply your function to the following random numbers:

1 > set.seed(1)
2 > ntot = 20
3 > y = rnorm(ntot); pred1 = rnorm(ntot); pred2 = rnorm(ntot)
4 > x = cbind(pred1,pred2)

After running your function, print out β̂, R2, SSE, and dof produced by your function.

You should check your function by comparing with the R function lm(). To do this,
apply the lm function as follows:

1 > xy.lm = lm(y˜x)
2 > summary(xy.lm)
3

4 Call:
5 lm(formula = y ˜ x)
6

7 Residuals:
8 Min 1Q Median 3Q Max
9 -2.0455 -0.6782 0.2175 0.5049 1.4532

10

11 Coefficients:
12 Estimate Std. Error t value Pr(>|t|)
13 (Intercept) 0.1494 0.2072 0.721 0.481
14 xpred1 -0.1516 0.2504 -0.605 0.553
15 xpred2 0.2894 0.2695 1.074 0.298
16

17 Residual standard error: 0.9119 on 17 degrees of freedom
18 Multiple R-squared: 0.1078, Adjusted R-squared: 0.002868
19 F-statistic: 1.027 on 2 and 17 DF, p-value: 0.3791

In line 1, the function lm is called using the formula notation. Then, in line 2, the sum-
mary function is used to extract basic information about the linear model. For the purpose
of the present homework, we are interested in only three parts of this summary: the co-
efficients, R2, and residual standard error. The value of the coefficients are listed under
Coefficients: Estimate, and are 0.1494, -0.1516, and 0.2894, corresponding to
the three predictors: intercept, pred1, and pred2. These should match the values com-
puted from regress.normal above. The R2 is in the second to last line: 0.1078, and
should agree with that calculated from regress.normal. Finally, the residual standard
error derived from regress.normal should agree with the result from lm (line 17).

Exercise 8.3. Apply your regression function to estimate the growth rate of atmospheric
CO2 concentration over the past half-century or so. State the growth rate in units of ppm/yr.
The CO2 concentration data can be downloaded as co2 mm mlo.txt from the class
website (which in turn was downloaded from http://www.esrl.noaa.gov/gmd/ccgg/trends/).
This data set can be read into R as follows:
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1 iyst = 1960
2 iynd = 2017
3

4 #######################################
5 ######## GET CO2 DATA
6 #######################################
7 fdata = ’/Users/delsole/data/indices/co2_mm_mlo.txt’
8 nskip = 72
9 col.names = c(’year’,’month’,’date’,’average’,’interp’,’trend’,’#days’)

10 co2.table = read.table(fdata,skip=nskip,col.names=col.names,na.strings=-99.99)
11

12 year.get = co2.table[,’year’] >= iyst & co2.table[,’year’] <= iynd
13 year.say = co2.table[year.get,’date’]
14 month = co2.table[year.get,’month’]
15 co2 = co2.table[year.get,’average’]
16 plot(year.say,co2,type="l",col="black",xlab=’year’,ylab=’Parts Per Million’)

You should change fdata to correspond to the data file on your computer. The resulting
plot should reproduce the figure in the notes.

Unfortunately, there exists missing data. Therefore, inside your R function, you will
have to strip out this missing data before applying the least squares method. I recommend
including the following inside your R function:

1 ntot = length(y)
2 if ( length(x) %% ntot != 0) stop(’x not dimensioned correctly’)
3 mtot = length(x)/ntot
4 if ( ntot <= mtot ) stop(’regression problem is not over-determined’)
5

6 ### STRIP MISSING DATA
7 dim(x) = c(ntot,mtot)
8 is.missing = is.na(y) | is.na(rowSums(x))
9 x.good = x[!is.missing,]

10 y.good = y[!is.missing ]
11 nsamp = sum(!is.missing)

Note that the correct sample size after missing data has been stripped is nsamp. This is
important when you augment the predictor matrix X by a column of ones.

After running your function, print out β̂,R2, SSE, and dof produced by your function.
You can check your calculations against the built-in R function lm (you will need to use
the na.action=na.omit option to deal with missing data).

Exercise 8.4. Compute the residuals of the regression equation. Make a plot of them, and
state the first 50 values as a vector (e.g., as.numeric(residuals[1:50]).

Exercise 8.5. Use your regression function to estimate the annual cycle of the CO2 con-
centration. The annual cycle should be defined as the first two Fourier harmonics of the
annual cycle (i.e., sin/cos function with periods of 12 months and 6 months). The predictor
matrix for just these harmonics can be constructed in R as follows:
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1 year = iyst + (1:ntot - 0.5)/12
2 year.shift = year - 1960
3 t = seq(year.shift)/12
4 nharm = 2
5 x = NULL
6 for ( n in 1:nharm) x = cbind(x,cos(2*pi*t*n),sin(2*pi*t*n))
7 colnames(x) = c(paste(rep(c(’cos’,’sin’),nharm),
8 rep(1:nharm,each=2),sep=""))

State the five coefficients of this fit (i.e, the intercept, the 2 coefficients for the sin
function, 2 coefficients for the cosine function). Print out the resulting coefficients, R2,
dof , and SSE.

Exercise 8.6. Plot the residuals after the annual cycle has been removed. Superimpose a
plot of the actual CO2 data for comparison. To do this, you will need to add a constant
term to the residuals to make them fit on the same figure; state what constant should you
use and why.




