FLIP

Floating Point Image Processing Library

Thislibrary assumes input in the form of afloating point ifsimage. Outputs will be floating point
images aswell. The library is designed to optimize computation speed, while providing the pro-
grammer with easy-to-usetools. If all theinputsare not float, the function returns-1. If the
input dimensionsare not compatible, thefunction returns-2. Note that no error messagesare
printed, so the user must check the value returned.

fladds.c

Add ascalar to an image

int fladds(imgl,img2,scalar)

IFSIMG img1,img2;

float scalar;
Input image isimgl, output image isimgz2, third argument is the scalar. Thisvalue is added to
each pixel of imgl, and the result stored in img2.

fladdv.c

Add two images
int fladdv(imgl,img2,img3)
IFSIMG img1,img2,img3;
Thefirst input image isimgl, the second input image is img2, the output isimg3. Corresponding
pixels of imgl and img2 are added and the result stored in img3.

flclip.c

Limit permitted brightnessin images
int flclip(imgl,img2,scalar)
IFSIMG img1,img2;
float scalar;
The first image, imgl is clipped so that its maximum value is scalar.

flcp.c

Copy an image
nt flcp(in_img,out_img)



IFSIMG in_img, out_img;
Theimage in_img will be copied to theimage out_img

fldivs.c

Divide by a scalar
int fldivs(imgl,img2,scalar)
IFSIMG img1,img2;
float scalar;
Each pixel of imgl will be divided by the scalar, and the result stored in the corresponding pixel if
img.

fldivv.c

Divide two images
int fldivv(imgl,img2,img3)

IFSIMG img1,img2,img3;
Each pixel of imgl isdivided by the corresponding pixel of img2, and the result stored in img3.
Note, no check for divide by zero is performed, so the special floating point value INFINITY can
occur.

Derivative operators

All the derivative operators listed below support 1-D (signals) 2-D (images) aned 3-D (volumes)
data sets. In al cases, x denotes the column and y the row.

fldx.c

Extimate partial deriviative in the x direction.
int fldx(imgl,img2)
IFSIMG imgl,img2;
Compute an approximation of thefirst deriviative with respect to x by the difference between pix-
elsin an image images. For each pixel,
outrow[j][i] = (inrow[j][i+1] - inrow([j][i-1])*.5

fldx_back.c

Backward difference



The forward and backward differences both estimate the first partial derivative with respect to X,
but do it with higher resolution (and higher noise sensitivity) than fldx. They are useful initerative
algorithms where you do one iteration using the forward difference, and the next using the back-
ward.
int fldx_back(imgl,img2)

IFSIMG img1,img2;
Compute the backward difference between pixelsin an image images. For each pixel,
outrow[j][i] = inrow[j][i+1] - inrow[j][i];
IS computed.

fldx_forw.c

Forward difference
int fldx_forw(imgl,img2)
IFSIMG img1,img2;
Compute the forward difference between pixelsin an image images. For each pixel,
outrow[j][i] = inrow([j][i] - inrow[j][i-1];

fldxx.c
Second partial derivative with respect to x.
int fldxx(imgl,img2)
IFSIMG imgl,img2;
Uses a 3x1 kernel.
fldxy.c

Second partial derivative with respect to x and y.
int fldxy(imgl,img2)

IFSIMG img1,img2;
Uses a 3x3 neighborhood.

fldxz.c

Second partia wrt x,z
int fldxz(imgl,img2)
IFSIMG imgl,img2;



fldy.c

First partial derivative with respect toy.
int fldy(imgl,img2)
IFSIMG img1,img2;

fldy back.c

Backward difference

The forward and backward differences both estimate the first partial derivative with respect toy,
but do it with higher resolution (and higher noise sensitivity) than fldy. They are useful in iterative
algorithms where you do one iteration using the forward difference, and the next using the back-
ward.

int fldy_back(imgl,img2)

IFSIMG imgl,img2;

Compute the backward difference between pixelsin an image images. For each pixel,
outrow([j][i] = (inrow[j+1][i] - inrow[j-1][i])*.5;

is computed.

fldy forw.c

Forward difference
int fldy_forw(imgl,img2)
IFSIMG img1,img2;
Compute the forward difference between pixelsin an image images. For each pixel,
outrow[j][i] = inrow([j][i] - inrow[j-1][i];

fldyy.c

Second partial derivative with respect to y.
int fldyy(imgl,img2)

IFSIMG img1,img2;
Uses a 3x1 kernel.



fldyz.c

Second partial derivative with respect toy and z.
int fldyz(imgl,img2)
IFSIMG img1,img2;
Uses a 3x3 kernel. Obviously, only meaningful for 3D data

fldz.c

First partial derivative with respect to z. Obviously, only meaningful for 3D data.
int fldz(imgl,img2)
IFSIMG img1,img2;

fldzz.c

Second partial derivative with respect to z. Only meaningful for 3D data.
int fldzz(imgl,img2)

IFSIMG img1,img2;
Uses a 3x1 kernel.

flexp.c

Exponentiate
int flexp(imgl,img2)
IFSIMG imgl,img2;
Each pixel of img2 isindependently exponentiated. Result stored in img2.

flgrow.c

flin.c

Compute logs of pixels independently
int flin(imgl,img2)
IFSIMG img1,img2;



Computes out[i] = log(in[i]);

flmults.c

Scalar multiply
int fimults(imgl,img2,scalar)
IFSIMG img1,img2;
float scalar;
Multiply each pixel of imgl by scalar and store the result in the corresponding pixel of img2.

fimultv.c

Vector multiply
int fimultv(imgl,img2,img3)
IFSIMG img1,img2,img3;
Each pixel of imgl is multiplied by the corresponding pixel of img2, the result stored in img3.

flneg.c

Negate image pixels
int fineg(imgl,img2)
IFSIMG imgl,img2;
Each pixel of imglis multiplied by -1 and the result stored in img2.

flnorm.c

int finorm(imgl,norm)

IFSIMG img1l;

float *norm,
Returns the 2-norm of the image imgl. The second argument isa POINTER to afloat, and the
norm (square root of sum of squares of pixels) will be returned.

flone border.c

int flone_border(imgl,img2)
IFSIMG img1,img2;



Sets the left-most and right-most columns of the image to one. Then set the top row and bottom
row to one. Result copied into img2.

flpad.c

Image pad
int flpad(imgl,img2)

IFSIMG img1,img2;
Input image imgl is padded by taking the leftmost pixel on each row and replacing it by the next-
to-leftmost. Same thing on right side, top, and bottom. If 3D, appropriate things are done to the
first and last frame.

flplanar.c

Image pad using linear interpolation.
int flplanar(imgl,img2)

IFSIMG imgl,img2;
The leftmost pixel on each line is replaced by what it would be if the first three pixels were lin-
early increasing in brightness -- the zeroth pixel isthe linear interpolation of the first and second.
Similar on right side, top, and bottom. Only implemented for 2D images.

flrec.c

Reciprocal of animage
int flrec(imgl,img2)
IFSIMG img1,img2;
Each pixel of theinput image, imgl, isdivided into one, and the result stored in the corresponding
pixel of img2. Thisfunction tests for divide by zero, reports an error, and exits early.

flshx.c

Shift
int flshx(imgl,dx,img2)
int dx;
IFSIMG imgl,img2;
input image imgl is shifted by dx pixelsin the x direction and the result stored in img2. Operation
isvalid for 3D images.



flshxy.c

Shift image

int flshxy(imgl,dx,dy,img2)
int dx,dy;
IFSIMG img1,img2;

Input image imgl is shifted dx pixelsin x and dy pixelsiny. Operation isvalid for 3D images.

flshy.c

Shift image
int flshy(imgl,dy,img2)
int dy;
IFSIMG img1,img2;
Shiftsimageiny direction. Operation isvalid for 3D images.

flsg.c
Square pixel values
int flsg(imgl,img2)
IFSIMG imgl,img2;
For every pixel, out[i] =in[i] * in[i] ;
flsgrt.c

Square root of pixels
int flsgrt(imgl,img2)

IFSIMG img1,img2;
Each pixel in the output image img2 is the square root of the corresponding pixel in the input
image imgl. Theinput image is tested for negative values. A negative value will the reported and
the subroutine will terminate early.

flsubs.c

Scalar subtract

int flsubs(imgl,img2,scalar)
IFSIMG img1,img2;
float scalar;



The scalar value scalar is subtracted from each pixel in the input image, imgl. Result is stored in
the corresponding pixel of the output image img2.

flsubv.c

Vector subtract
Each pixel in the second image, img2 is subtracted from the corresponding pixel inimgl, and the
result stored in img3. Valid for any number of dimensions.

flthresh.c

Threshold
int flthresh(imgl,img2,scalar,bkgnd)

IFSIMG img1,img2;

float scalar,bkgnd;
Each pixel of input image imgl is tested against scalar. If pixel > scalar, the pixel is unchanged,
otherwise, the corresponding pixel in the output image is set to the value bkgnd. Valid for any
number of dimensions.

flzero border.c

Set border pixelsto zero.

int flzero_border(imgl,img2)
IFSIMG img1,img2;

Valid for two dimensional images.



	fladds.c
	fladdv.c
	flclip.c
	flcp.c
	fldivs.c
	fldivv.c
	Derivative operators
	fldx.c
	fldx_back.c
	fldx_forw.c
	fldxx.c
	fldxy.c
	fldxz.c
	fldy.c
	fldy_back.c
	fldy_forw.c
	fldyy.c
	fldyz.c
	fldz.c
	fldzz.c
	flexp.c
	flgrow.c
	flln.c
	flmults.c
	flmultv.c
	flneg.c
	flnorm.c
	flone_border.c
	flpad.c
	flplanar.c
	flrec.c
	flshx.c
	flshxy.c
	flshy.c
	flsq.c
	flsqrt.c
	flsubs.c
	flsubv.c
	flthresh.c
	flzero_border.c

