
Image File System

Reference Manual

Version 5.1

September 4, 1991

i

Acknowledgements

Based on suggestions by Wesley Snyder of North Carolina State University and
Joe Erkes of General Electric's Corporate Research and Development Center, the
sta� of CommunicationUnlimited, Inc. designed and coded IFS version 1 during the
fall on 1986. Mark Lanzo designed and implemented most of versions 1-4, although
other members of the CUI sta� contributed heavily, including Katie Boone, Mark
Yarboro, Gary McCauley, Bennett Groshong, and Paul Hemler. Katie Boone is
responsible for version 5.

IFS is a trademark of Communication Unlimited, Inc. CUI has granted to North
Carolina State University a nonexclusive license for the use of IFS.

ii

Contents

1 IFS Reference Manual 1
1.0.1 New with Version 5 : 2

1.1 Using IFS : 2
1.1.1 Program Compilation and Linking : : : : : : : : : : : : : : : 2

1.2 Referencing IFS images : 3
1.2.1 Naming conventions in IFS : : : : : : : : : : : : : : : : : : : 5

1.3 Error handling in IFS : 5
1.3.1 Image validation in IFS : 10
1.3.2 Coordinate systems and array storage in IFS : : : : : : : : : 11

1.4 IFS FUNCTION LISTING : 13
1.4.1 ifsalc : 14
1.4.2 ifscigp : 15
1.4.3 ifscigp3d : 16
1.4.4 ifscipp : 17

1.4.5 ifscipp3d : 18
1.4.6 ifscfgp : 19
1.4.7 ifscfgp3d : 20
1.4.8 ifscfpp : 21
1.4.9 ifscfpp3d : 22
1.4.10 Ifsclose : 23
1.4.11 ifscreate : 24
1.4.12 ifsdimen : 27
1.4.13 ifsexwin : 28
1.4.14 ifsexwin3d : 29
1.4.15 ifsfgp : 30
1.4.16 ifsfgp3d : 31
1.4.17 ifsfpp : 33

1.4.18 ifsfree : 34
1.4.19 ifsGetFN : 36
1.4.20 ifsGetImg : 37

iii

iv CONTENTS

1.4.21 ifsigp : 38

1.4.22 ifsipp : 40

1.4.23 ifsmkh : 42

1.4.24 ifsopen : 43

1.4.25 ifspin : 44

1.4.26 ifspot : 45

1.4.27 ifsPrsFN : 47

1.4.28 ifsPutImg : 49

1.4.29 ifsRdHdr : 50

1.4.30 ifsRdImg : 51

1.4.31 ifssiz : 52

1.4.32 ifsslice : 53

1.4.33 ifsversion : 54

1.4.34 ifsWrImg : 55

1.5 IFS Error Codes : 55

1.6 IFS Data Types : 57

1.7 The structure of an IFS image : 57

1.7.1 The image header �elds : 59

1.7.2 The dimension sub-header �elds : : : : : : : : : : : : : : : : 61

2 Image Processing Subroutines 63

2.1 Subroutine descriptions : 63

2.1.1 ifsadd : 64

2.1.2 ifsc�t2d : 65

2.1.3 ifsc2imag : 66

2.1.4 ifsc2mag : 67

2.1.5 ifsc2phase : 68

2.1.6 ifsc2real : 69

2.1.7 ifsmult : 70

2.1.8 ifsrecip : 71

2.1.9 ifssub : 72

3 Image Synthesis Programs 73

3.1 qsyn-synthesize range images : 73

3.2 3dsyn-synthesize density images : 84

3.3 Matte - synthesize luminance images : : : : : : : : : : : : : : : : : : 90

3.4 Tomosim - simulate tomographic X-ray source : : : : : : : : : : : : : 92

4 Programs for processing images 95

CONTENTS v

5 Programs for displaying images 97
5.1 IMP - system for displaying, manipulating, and processing ifs images 97
5.2 Xdisp - driver for X-windows devices : : : : : : : : : : : : : : : : : : 97

vi CONTENTS

List of Figures

1.1 Example IFS program to threshold an image : : : : : : : : : : : : : 4
1.2 First portion of example, see Figure 1.3 for remainder : : : : : : : : 6
1.3 Example IFS program to threshold an image : : : : : : : : : : : : : 7
1.4 Example IFS program to threshold an image : : : : : : : : : : : : : 8
1.5 Example IFS program to extract a sub-image : : : : : : : : : : : : : 9

3.1 Coordinate systems used by QSYN : : : : : : : : : : : : : : : : : : : 75
3.2 Order of motions : 78
3.3 QSYN example, page 1 : 79
3.4 QSYN example, page 2 : 80
3.5 QSYN example, page 3 : 81
3.6 QSYN example, page 4 : 82
3.7 Sample QSYN input �le, page 5 : 83
3.8 Example 3Dsyn input �le : 89

i

ii LIST OF FIGURES

Chapter 1

IFS Reference Manual

IFS (Image File System) is a set of routines used to manipulate images, from within
C programs. An image just refers to any array of data. The term came into use be-
cause IFS was originally written to manipulate 2-dimensional pictures, such as ones
obtained from a standard camera. However, IFS is not restricted to 2-dimensional
images, and is capable of handling arrays of arbitrary dimensionality. In the cur-
rent release of IFS, most of the image manipulating routines are designed speci�cally
for 2-dimensional data. Later releases of IFS will have enhanced multidimensional
routines.

IFS is a simple system to use, and hides from the user the implementation de-
tails of basic data manipulation functions, such as allocating space for data arrays,
performing I/O, and manipulating images with di�erent data formats. IFS is in-
tended as a development tool for program writing, and is not designed to for high
execution speed. Use of the standard IFS image access functions (such as ifsigp) is
in fact quite slow in some operations. It is e�cient when the aim is to write and
test programs quickly and easily. IFS does provide, however, access to pointers and

data types which allow very e�cient software to be written while retaining the IFS
image structure.

This document gives some very brief instructions on the use of IFS, and provides
documentation for the individual IFS functions. Any questions not answered here
need to be directed to the author(s). Questions should be sent to:

Rosalyn Snyder

Communication Unlimited, Inc.

3603 Octavia St.

Raleigh, NC 27606

1

2 CHAPTER 1. IFS REFERENCE MANUAL

1.0.1 New with Version 5

� Support for X-windows. IFS images may now be displayed on any X-windows
device. The graphics support automatically determines the dynamic range of
the graphics device (many X-windows devices are binary, for example), and
either thresholds or dithers, at the user's command.

� CPU independent code. Various computers use di�erent conventions for stor-
age of bytes within a word, necessitating byte-swapping when one machine
reads a �le written on another. Furthermore, depending on the computer,
byte swapping may be required on 16 bit or 32 bit boundaries, or both. Fi-
nally, there are at least two di�erent conventions for
oating point data, DEC
and IEEE (which must still be corrected after byte swapping) IFS Version
5 automatically determines what type of machine it is running on and de-
termines what type of machine wrote the input �le. Should the input �le
be incompatible, the IFS �le read routine automatically performs all data
conversions.

1.1 Using IFS

1.1.1 Program Compilation and Linking

In order to use IFS, the user needs to link his programs to the IFS library at com-
pilation time. To specify these libraries, one would use the switches -lifs on the cc
or ld command. For example, a typical command to compile a program would look
like:

cc -g test.c -o test -lifs

To actually make use of the IFS functions, the user's program also needs to
#include a header �le or two to de�ne various structures used by the IFS routines.
All programs which use IFS should include the �les <stdio.h> and < ifs:h >. Most
IFS routines will return error codes through an external (global) variable called
ifserr; if the user plans to examine these error codes he should also include the
header �le < ifserr:h >. This �le de�nes a set of symbolic constants which one
may use rather than using actual values for codes. It is not wise to use actual
values in place of these constants when writing programs as the de�nitions for the
constants may change from one release of IFS to the next.

1.2. REFERENCING IFS IMAGES 3

1.2 Referencing IFS images

All IFS images include a header which contains various items of information about
the image, such as the number of points in the image, the number of dimensions
for the image, the data format, and so on. Also associated with the image is the
actual data for the image. The image header includes a pointer to the image data.
The user manipulates an image by calling some function in the IFS library; one of
the arguments to the function will be the address of the header for the image. The
functions will automatically �gure out where the data is and how to access it from
the information in the header. In addition to handling the work of accessing data
in images, the IFS routines automatically take care of allocating space in memory
to store data and headers. Everything is totally dynamic in operation; there are
no �xed-dimension arrays needed. This relieves the user of the di�culties involved
with accessing data in arrays (when using C), when the arrays are not of some �xed
size.

The header structure for an image is de�ned in the �le < ifs:h >, and is
known by the name IFSHDR. To manipulate an image, the user merely needs to
declare a pointer to an image header structure (as IFSHDR * your image; or IFSIMG
your image;). Then, the user simply calls some IFS function to create a new im-
age, and sets the pointer to the value returned from that function. Some typical
programs are given in the examples in Figures 1.1 through 1.5.

4 CHAPTER 1. IFS REFERENCE MANUAL

#include <stdio.h>

#include <ifs.h>

main()

{

IFSIMG img1, img2; /* Declare pointers to headers */

int len[3]; /* len is an array of dimensions, used by ifscreate */

int threshold; /* threshold is an int here */

int row,col; /* counters */

int v;

img1 = ifspin("infile.ifs"); /* read in file by this name */

len[0] = 2; /* image to be created is two dimensional */

len[1] = 128; /* image has 128 columns */

len[2] = 128; /* image has 128 rows */

img2 = ifscreate("u8bit",len,IFS_CR_ALL,0); /* image is unsigned 8 bit

*/

threshold = 55; /* set some value to threshold */

for(row = 0; row < 128; row++)

for(col = 0; col < 128; col++)

{

v = ifsigp(img1,row,col); /* read a pixel as an int */

if (v > threshold)

ifsipp(img2,row,col,255);

else

ifsipp(img2,row,col,0);

}

ifspot(img2, "img2.ifs"); /* write image 2 to disk */

}

Figure 1.1: Example IFS program to threshold an image using �xed values of di-
mensions and de�ned data type

1.3. ERROR HANDLING IN IFS 5

1.2.1 Naming conventions in IFS

All of the IFS functions have names which begin with the letters ifs, so users should
have no problems avoiding con
icts when naming their own functions. Also, all
external variables or #de�ne'd constants also begin with the letters \ifs" or \IFS".
Originally, all IFS routines had names which were limited to 6 characters in an
e�ort to improve compatibility between di�erent compilers. Unfortunately, with
three of the letters already being �xed (as \ifs"), this doesn't leave much left to
create meaningful function names with. Hence, many IFS functions have rather
cryptic names. Later versions of IFS have relaxed this restriction, so that newer
functions have longer and more descriptive names.

Starting with release 3.0 of IFS, all of the IFS functions also have version numbers
built into them. These `version numbers' are actually printable strings which are
globally accessible. These strings usually contain the function's name, a version
number, and the date of the last modi�cation to the function. Other items of
information may occasionally also be contained in the string. If an IFS function has
a name ifsXXXX, where XXXX is just some stem naming the function, then the
string which gives its version number will have the name ifsv XXXX. For instance,
if a user wanted to know what version of the function ifscreate was in his IFS library,
he could include the statements

extern char * ifsv_create;

printf("%s\n",ifsv_create);

somewhere within his program. Also, the function ifsversion can be used to print
out the version strings of all functions in the IFS library.

1.3 Error handling in IFS

IFS provides various levels of error checking. When an error occurs, an IFS function
usually returns some sort of error
ag. IFS also has two external (global) variables
which relate to error handling. The �rst one is known as ifserr, and is set to
error code(s) which the user may examine to help determine what went wrong.
The second one is IFSSLV (for \IFS Severity Level"), which a�ects the action IFS
takes upon detecting an error. Both of these variables are declared as "extern int"
variables in the header �le < ifs:h >, so it is not necessary for the user to declare
them.

The various error codes which may be returned are de�ned in the header �le
< ifserr:h >, which the user should make sure to include in his program if he
plans on using ifserr. These error codes are described in detail in Section 1.5.
Scrutinizing the �le < ifserr:h > may also prove useful. The error codes are

6 CHAPTER 1. IFS REFERENCE MANUAL

#include <stdio.h>

#include <ifs.h>

main()

{

IFSIMG img1, img2; /* Declare pointers to headers */

int *len; /* len is an array of dimensions, used by ifscreate */

int frame,row,col; /* counters */

float threshold,v; /* threshold is a float here */

img1 = ifspin("infile.ifs"); /* read in file by this name */

len = ifssiz(img1); /* get dimensions of input image */

/* ifssiz returns a pointer to an array of dimensions*/

img2 = ifscreate(img1->ifsdt,len,IFS_CR_ALL,0);

/* output image is to be */

/* same type as input */

threshold = 55; /* set some value to threshold */

/* check for one, two or three dimensions */

switch(len[0]){

case 1: /* 1d signal */

for(col = 0; col < len[1]; col++)

{

v = ifsfgp(img1,0,col); /* read a pixel as a float */

if (v > threshold)

ifsfpp(img2,0,col,255.0); /* write a float */

/* if img2 not float, will be converted*/

else

ifsfpp(img2,0,col,0.0);

}

break;

case 2: /* 2d picture */

for(row = 0; row < len[2]; row++)

for(col = 0; col < len[1]; col++)

{

v = ifsfgp(img1,row,col); /* read a pixel as a float */

if (v > threshold)

ifsfpp(img2,row,col,255.0);/* store a float */

else

ifsfpp(img2,row,col,0.0);

}

break;

Figure 1.2: First portion of example, see Figure 1.3 for remainder

1.3. ERROR HANDLING IN IFS 7

case 3: /* 3d volume */

for(frame = 0; frame < len[3];frame++)

for(row = 0; row < len[2]; row++)

for(col = 0; col < len[1]; col++)

{

v = ifsfgp3d(img1,frame,row,col); /* read a pixel as a float */

if (v > threshold)

ifsfpp3d(img2,frame,row,col,255.0);

else

ifsfpp3d(img2,frame,row,col,0.0);

}

break;

default: printf("Sorry I cant do 4 or more dimensions\n");

}

ifspot(img2, "img2.ifs"); /* write image 2 to disk */

}

Figure 1.3:
Example IFS program to threshold an image using number of di-
mensions, size of dimensions, and data type determined by the
input image

8 CHAPTER 1. IFS REFERENCE MANUAL

#include <stdio.h>

#include <ifs.h>

main()

{

IFSIMG img1, img2; /* Declare pointers to headers */

int len[3]; /* len is an array of dimensions, used by ifscreate */

int size; /* number of bytes in image */

int threshold; /* threshold is an int here */

register int count; /* number of pixels in image */

register unsigned char *ptri,*ptro;

img1 = ifspin(""); /* read in file; prompt user for name */

len[0] = 2; /* image to be created is two dimensional */

len[1] = ifsdimen(img1,0); /* get columns of input */

len[2] = ifsdimen(img1,1); /* get rows of input */

img2 = ifscreate("u8bit",len,IFS_CR_ALL,0); /* image is unsigned 8 bit */

threshold = 55; /* set some value to threshold */

ptri = (unsigned char *)img1->ifsptr; /* get address of input data */

ptro = (unsigned char *)img2->ifsptr; /* get address of output data */

size = len[1] * len[2]; /* compute number of pixels */

for(count = 0; count < size; count++)

{

if(*ptri++ > threshold)

*ptro = 255;

else

*ptro = 0;

ptro++;

}

ifspot(img2, ""); /* write image 2 to disk, prompt user for */

/* file name */

}

Figure 1.4:

Example IFS program to threshold an image
using two dimensions, size of dimensions determined by input �le,
and de�ned data type of unsigned char on both �les. Pointers are
used for speed.

1.3. ERROR HANDLING IN IFS 9

#include <stdio.h>

#include <ifs.h>

#include <ifserr.h> /* optional */

...

main()

{

IFSHDR * img1, * img2; /* Declare pointers to headers */

.

.

.

img1 = ifsmkh(128, 128, "char"); /* make a 128*128 2-d image */

/* Space for data & header

are automatically allocated */

.... manipulate image 1

img2 = ifs_exwin(img1,10,10,100,75); /* extract a sub-image */

/* of the original image (img1) and call it img2 */

ifspot(img1, "img1.ifs"); /* write image 1 to disk */

Figure 1.5: Example IFS program to extract a sub-image

10 CHAPTER 1. IFS REFERENCE MANUAL

indicated by individual bits in ifserr, so it is actually possible for several error

ags to be set simultaneously. Also, some error codes are actually combinations of
other codes. For instance, the codes IFSE NO OPEN and IFSE NOT IMAGE are two
possible errors which may occur when trying to read or write IFS images. If the
user checks for the condition IFSE IO ERR, he has automatically tested for both of
the errors IFSE NO OPEN and IFSE NOT IMAGE. The way to test for such error
codes is with the bitwise logical AND operator, rather than with a comparison. I.e.:

if (ifserr & IFSE_IO_ERR) ...

is preferable to:

if (ifserr == IFSE_IO_ERR) ...

because in this way, more than one bit may be tested, or just a single bit.
The second global variable, IFSSLV, allows the user to specify what action to

take when an error occurs. Currently, there are three possible courses of action to
take upon an error; these are chosen by setting IFSSLV to some \severity level" code.
The three severity levels are represented by the constants IFS QUIET, IFS WARN,
and IFS FATAL (which are de�ned in < ifs:h >). These a�ect the action taken
upon the occurrence of an error as follows:

IFS QUIET Do not print out any error messages to the user. The function just
returns an error code to the calling routine. The user must make sure to
watch out for this code, and act accordingly. If the error is not handled, the
program will probably crash.

IFS WARN If an error occurs, print out some message describing the error (to
stderr). The routine also returns the appropriate error code. This allows
the user to know what is going on, but still allows the program to trap errors.
IFS WARN is probably the recommended severity level for most applications,
and is the default value for IFSSLV.

IFS FATAL If an error occurs, print out an error message, and abort the program.
This is not an exceedingly user-friendly option, but is probably better than
the perennial Unix favorite \bus error: core dumped".

1.3.1 Image validation in IFS

Most IFS functions will double-check the header of an image before attempting to
perform some operation on the image. This is done to verify that the argument
the user passed to the function legitimately points to an IFS image, and does not
just represent some random value. The most likely source for such an error would
be insu�cient error checking in a user's program, when the severity level variable
IFSSLV was set to some value other than IFS FATAL. For instance, a section of code
such as

1.3. ERROR HANDLING IN IFS 11

img = ifsmkh(nrows, ncols, "ubyte");

ifsipp(img, 10, 20, 255);

(which attempts to create an image and set the pixel at location 10,20 to a value of
255) could be a potential source for an error, if ifsmkh had been incapable of creating
the image as requested. It would then have returned the value NULL, which would
be passed to the function ifsipp. If ifsipp did not check the header, it would blindly
attempt to use NULL as a pointer to an image header, which would probably crash
the user's program.

The problem with this error checking is that it takes time to perform. If an
image was 100 by 100 pixels in size, and the routine ifsipp was used to set the value
of each pixel in the image, then the header would end up being checked 10000 times!
For a program which accesses an image(s) heavily, this header checking overhead
takes a signi�cant amount of time. Timing analyses on sample programs have shown
that it is possible for 30% of the CPU time used by a program to be spent in the
header checking operation.

The user may disable the header checking operation in some IFS routines. This,
of course, places upon the programmer the responsibility to perform more extensive
error checking operations, if robust code is desired. If the user sets the external
integer variable IFSCHK to zero, then certain routines will cease to check image
headers. Header checking can be re-enabled by setting IFSCHK to any non-zero
value. Note that not all of the IFS routines are a�ected by IFSCHK. Generally,
only those routines which are called with high frequency, and for which the header
checking represents a signi�cant fraction of the execution time for that function, will
be a�ected by this variable. Incidentally, it is not necessary for the user's program
to declare IFSCHK. As with IFSSLV and ifserr, this is declared in the header �le
< ifs:h >.

1.3.2 Coordinate systems and array storage in IFS

IFS stores arrays in the same manner that C normally does. As with C, the indices
for arrays start with zero rather than one. For example, if you create an image with
30 rows and 20 columns, then valid row indices for that function range from 0 to
29, and column indices may go from 0 to 19.

One common source of confusion is the usage of the terms row and column to
denote array subscripts when working with 2-dimensional arrays. It is quite typical
for a user's program to view the coordinate system in terms of an x and a y axis.
The intent in IFS is that the column axis represents the horizontal axis, and the row
axis is the vertical. Hence the width of the image is equivalent to the number of
columns in the image, and height is the number of rows. It is common usage that
the x axis is the horizontal axis, hence a column coordinate is synonymous with
an x coordinate. If this is the coordinate system you normally use, beware of the

12 CHAPTER 1. IFS REFERENCE MANUAL

temptation to write code of the form:

int x, y;

...

for(x=0;x<width;x++)

for(y=0;y<height;y++)

ifsipp(img, x, y, value);

...

The correct code in this case should be:

int x, y;

...

for(x=0;x<width;x++)

for(y=0;y<height;y++)

ifsipp(img, y, x, value);

...

Unfortunately, people have a tendency to write coordinate pairs as (x ,y) or
(row,column), but these two are not synonymous if you interpret x , y , row, and
column in the manner described above.

A second problem occurs when displaying images on graphics output devices.
There is no set standard as to where the origin of the coordinate system is among
graphics displays. It is probably most common that the origin is in the upper left
corner of the display, and moving in the positive direction along the column axis
moves you to the right, and moving in the positive direction along the row axis
moves you downwards. Some devices place the origin in the lower left corner of
the screen, and moving in the positive row direction moves you towards the top of
the display. The positive column direction still usually is to the right. This also
corresponds to the way most people label axes when hand-drawing a graph. The
net a�ect here is that images displayed in this coordinate system will be upside-
down as compared to the �rst type of system. To further confound the issue, many
programs which plot on printers reverse the meaning of the x and y axes, so that
images plotted in this manner are rotated by 90 degrees in one direction or another.

The point of these warnings about display coordinate systems is that IFS knows
nothing about the nature of the user's display mechanism. There is no speci�c
\up", \down", \left", or \right". The user should not be too surprised if an image
appears
ipped or rotated from what was expected.

1.4. IFS FUNCTION LISTING 13

1.4 IFS FUNCTION LISTING

This section lists all of the functions in the IFS library, in alphabetical order. The
convention used to describe the syntax for the function is:

return_value = function_name(arg1, arg2,);

typeof return_value;

typeof arg1;

typeof arg2;

where \typeof" denotes a C variable type (such as \int", \
oat", \char *", or
\IFSHDR *", or other TYPEDEF's or STRUCT's). For instance, the sample de-
scription

p = ifsalc(numbytes);

char * p;

int numbytes;

indicates that the function ifsalc returns a pointer to a character, and that it takes
one argument, which is an integer.

14 CHAPTER 1. IFS REFERENCE MANUAL

1.4.1 ifsalc

ifsalc { allocate storage (memory)

cptr = ifsalc(NumBytes);

char * cptr;

int NumBytes;

Ifalc is an IFS function used to allocate storage in main memory { such as for
storing arrays and image headers. The storage will be initialized to all zeroes. It is
essentially just a call to the system function calloc; the only di�erence being that
ifsalc performs a small amount of error checking. If the system can not allocate the
requested amount of storage, then ifsalc will return the value NULL, and the exter-
nal variable ifserr will be set to the value IFSE NO MEM. If the external variable
IFSSLV is not set to the value IFS QUIET, then ifsalc will write an error message to
stderr if it can't allocate the requested space. If IFSSLV is set to IFS FATAL, then
ifsalc will also abort your program upon an error.

Ifscigp 15

1.4.2 ifscigp

ifscigp { get pixel value from a 2-d (possibly complex) image
Usage:

val = int ifscigp(ptri,row,col)]{}

IFSHDR *ptri; /*pointer to image header structure

int row,col,val; /*coordinates (in pixels) of pixel to examine.*/

Ifscigp returns (as an int) the value of the pixel at a speci�ed coordinate in
a 2-d image. If image is \complex" format, returns the imaginary portion of the
number.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the pixel value won't �t in an \int" (for example, a large number in a \
oat"
or \complex" image), then results are unde�ned. Maybe you get garbage,
maybe your program aborts on an over
ow type of error.

16 CHAPTER 1. IFS REFERENCE MANUAL

1.4.3 ifscigp3d

ifscigp3d { get pixel value from a 3-d image
Usage:

val = int ifscigp3d(ptri,frame,row,col);

IFSHDR *ptri; /* pointer to image header structure*/

int frame,row,col; /*coordinates (in pixels) of pixel

to examine.*/

Ifscigp3d returns (as an integer) the value of the pixel at a speci�ed coordinate
in a 3-d image. If image is \complex" format, returns the imaginary portion of the
number (assuming it can be converted to an int).

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the pixel value won't �t in an \int" (for example, a large number in a \
oat"
or \complex" image), then results are unde�ned. Maybe you get garbage,
maybe your program aborts on an over
ow type of error.

Ifscipp 17

1.4.4 ifscipp

ifscipp { set pixel value in a 2-d image
Usage:

status = ifscipp(ptri,x,y, val);

IFSHDR *ptri; /*pointer to image header structure*/

int x,y; /*coordinates (in pixels) of pixel to examine.*/

int val;

int status; /*return status*/

Returns:

IFS SUCCESS or IFS FAILURE

Ifscipp sets the value of the pixel at a speci�ed coordinate in a 2-d image, where
the input is a int. If image is \complex" format, stu�s the imaginary portion of the
number, and DOES NOT set the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the value stu�ed won't �t in the output image datatype, then results are
unde�ned. Maybe you get garbage, maybe your program aborts on an over
ow
type of error.

18 CHAPTER 1. IFS REFERENCE MANUAL

1.4.5 ifscipp3d

ifscipp3d { set pixel in a 3-d image
Usage:

status = ifscipp3d(ptri,frame,row,col,val);

IFSHDR *ptri;

int frame,row,col; /*coordinates (in pixels) of pixel

to examine.*/

int status; /*return status*/

Returns:

IFS SUCCESS or IFS FAILURE

Ifscipp3d sets the value of the pixel at a speci�ed coordinate in a 3-d image,
where the input is integer (byte, ubyte, etc). If image is \complex" format, stu�s
the imaginary portion of the number, and sets the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the value stu�ed won't �t in the output image datatype, then results are
unde�ned. Maybe you get garbage, maybe your program aborts on an over
ow
type of error.

Ifscfgp 19

1.4.6 ifscfgp

ifscfgp { get value of a pixel in a 2-d image.

\item [{\em Usage:}]{}

val = (double) ifscfgp(ptri,row,col);

IFSHDR *ptri;

int row,col; /*coordinates (in pixels) of pixel

to examine.*/

Ifscfgp returns (as a
oat) the value of the pixel at a speci�ed coordinate in
a 2-d image. If image is \complex" format, returns the imaginary portion of the
number.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the pixel value won't �t in a \double" results are unde�ned. Maybe you get
garbage, maybe your program aborts on an over
ow type of error. There
could be possible round o� errors.

20 CHAPTER 1. IFS REFERENCE MANUAL

1.4.7 ifscfgp3d

ifscfgp3d { get value of a pixel in a 3-d image
Usage:

val = (double) ifscfgp3d(ptri,frame,row,col);

IFSHDR *ptri;

int frame,row,col; /*coordinates (in pixels) of pixel

to examine.*/

ifscfgp3d returns (as a double) the value of the pixel at a speci�ed coordinate
in a 3-d image. If image is \complex" format, returns the imaginary portion of the
number.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the pixel value won't �t in a \double" results are unde�ned. Maybe you get
garbage, maybe your program aborts on an over
ow type of error. There
could be possible round o� errors.

Ifscfpp 21

1.4.8 ifscfpp

ifscfpp { set value of a pixel in a 2-d image.
Usage:

status = ifscfpp(ptri,x,y, val);

IFSHDR *ptri;

int x,y; /* coordinates (in pixels) of pixel to examine.*/

double val; /*the value to stuff.*/

int status;

Returns:

IFS SUCCESS or IFS FAILURE

Ifscfpp sets the value of the pixel at a speci�ed coordinate in a 2-d image, where
the input is a
oat. If image is \complex" format, stu�s the imaginary portion of
the number, and sets the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the value stu�ed won't �t in the output image datatype, then results are
unde�ned. Maybe you get garbage, maybe your program aborts on an over
ow
type of error.

22 CHAPTER 1. IFS REFERENCE MANUAL

1.4.9 ifscfpp3d

ifscfpp3d { sets the value of a pixel in a 3-d image (This is a completely new
version of ifsfpp which handles 3-d images.)

Usage:

status = ifscfpp3d(ptri,frame,row,col, val);

IFSHDR *ptri;

int frame,row,col /* coordinates (in pixels) of pixel

to examine.*/

double val; /*the value to stuff.*/

int status;

Returns:

IFS SUCCESS or IFS FAILURE

Ifscfpp3d sets the value of the pixel at a speci�ed coordinate in a 3-d image,
where the input is a
oat. If image is \complex" format, stu�s the imaginary portion
of the number, and sets the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the value stu�ed won't �t in the output image datatype, then results are
unde�ned. Maybe you get garbage, maybe your program aborts on an over
ow
type of error.

Ifsclose 23

1.4.10 Ifsclose

ifsclose { close an open �le

rc = ifsClose(File);

FILE * File;

int rc;

Ifsclose is identical to the standard I/O library function fclose, except that it
will avoid closing File if File corresponds to stdin, stdout, or stderr. If File is NULL,
ifsclose returns -1, else it just returns whatever value fclose would return.

Ifsclose is supplied as a complement to ifsOpen since the latter function may
return stdin or stdout in some circumstances, and the user typically does not want
to close these �les.

24 CHAPTER 1. IFS REFERENCE MANUAL

1.4.11 ifscreate

ifscreate { create an IFS image

img = ifscreate(type,len,flags,structsize);

IFSHDR * img;

char * type;

int len[];

int flags;

int structsize;

Ifscreate is used to create a new IFS image or image header. Space for the
header is automatically allocated, and a pointer to the header is returned. Various
�elds in the header structure will be set to default values. Space for the actual data
may also be allocated, depending on the value of the
ags variable. If space for the
data array is allocated, it will be �lled with zeros. If the image can not be created,
ifscreate returns the value NULL, and the external variable ifserr will be set to
some error code, as given in the #include �le < ifserr:h >. The image as created
will not have any \tail" structure associated with it.

The arguments to ifscreate are:

type The data format for individual pixels, such as \byte" or \Ddouble". The valid
data types are listed in a later section of this manual. If the data type is not
recognized by IFS, then ifscreate will return NULL, and ifserr will be set to
the code IFSE BAD DTYPE.

len An n+1-length integer array { the �rst element (len[0]) gives the number of
dimensions for the image, the remaining elements give the length for each
dimension of the image being created. This is in exactly the same format as
the arrays returned by the function ifssiz. The lengths are given in terms of

ascending rank for the image. Images are stored in standard C storage order:
the column or x index changes most rapidly when scanning through memory,
hence this dimension has rank 1. The row or y index has rank 2, the frame or
z index has rank 3, and so on. I.e., the second element of the array (len[1])
gives the number of columns of the image, len[2] is the number of rows, etc.

ags The various bits of this argument determine precisely what is and is not al-
located when generating the image. If
ags = IFS CR ALL or IFS CR DATA,
then storage space for the image is allocated, as well as storage for the im-
age header. In this case the �eld img!ifsptr points to the data storage. If

ags = IFS CR HDR then only space for the image header is allocated. The
�eld img!ifsptr will be set to NULL. The user must supply an array to store
the image in, and set img!ifsptr to point to this array. Note: version 4.0

Ifscreate 25

and 5.0 of ifscreate will ALWAYS allocate space for the image header; the

ag IFS CR HDR is not really examined, and is only intended for possible
future expansion. All that is really checked is the IFS CR DATA bit. The

ag IFS CR ALL is the combination of IFS CR DATA and IFS CR HDR and is
probably the best
ag to use if one wants data space allocated.

structsize This argument is only needed if type is \struct", in which case it gives
the size of a single data element (structure) in bytes. If type is not "struct"
this argument may be omitted or set to 0.

26 CHAPTER 1. IFS REFERENCE MANUAL

Example:

/* Create a 2-d image with 20 rows and 30 columns */

/* and a 1-d array of 10 structures. */

#include <ifs.h>

main()

{

IFSHDR * img, * strimg;

int lengths[3];

IFSHDR * ifscreate();

typedef struct { int red; int green; int blue; } RGB;

.

.

.

/* create 2D byte array */

lengths[0] = 2; /* Image will be 2D */

lengths[1] = 30; /* Number of columns (width; x-dimension) */

lengths[2] = 20; /* Number of rows (height; y-dimension) */

img = ifscreate("ubyte", lengths, IFS_CR_ALL);

if (img == NULL) { /* error processing code */ }

.

.

.

/* create 1D structure array */

lengths[0] = 1;

lengths[1] = 10;

strimg = ifscreate("struct",lengths,IFS_CR_ALL,sizeof(RGB));

.

.

.

}

Ifsdimen 27

1.4.12 ifsdimen

ifsdimen { get size of dimension or image data

len = ifsdimen(image, n);

int len;

IFSHDR * image;

int n;

Ifsdimen returns the length (number of elements) of the nth dimension of
image. It also may be used to get the total number of elements or bytes required
by the data section of an image. The argument n is the rank of the dimension
being queried, i.e., ifsdimen(img,0) is the number of columns, ifsdimen(img,1) is
the number of rows, and so on.

If n is speci�ed as -1, ifsdimen returns the total number of elements in the
image (the product of all the individual dimension lengths). If n is speci�ed as -2,
ifsdimen returns the total number of bytes occupied by the image data, i.e., the
total number of elements times the size in bytes for a single element.

If there is some error, ifsdimen returns zero and sets the external variable ifserr
appropriately. Possible error conditions are IFSE BAD HEADER or IFSE NULL HEADER
for invalid images, or IFSE WRONG NDIM if n is invalid (such as asking for the
number of frames for a 2D image).

28 CHAPTER 1. IFS REFERENCE MANUAL

1.4.13 ifsexwin

ifsexwin { Extract a window from an image

#include <ifs.h>

new = ifsexwin(old, r1,c1, r2, c2);

IFSHDR * new, * old;

int r1, c1, r2, c2;

Ifsexwin is used to create a new image which is a subimage of some old image.
The old image must be a two-dimensional image. The arguments r1,c1 and r2,c2

give the row and column positions of the corners of a box which de�nes the region to
be extracted. These corners must be on opposite ends of a diagonal for the window.
It does not matter which corners are chosen for each point, as long as as they are
on opposite ends of a box diagonal. The region extracted includes the area of the
bounding box itself, ie, is inclusive of the rows r1, r2 and columns c1, c2.

Ifsexwin returns a pointer to the newly created image, or NULL if some error
occurred. In the latter case, the external variable ifserr will be set to indicate the
nature of the error. Possibilities are:

IFSE BAD HDR If the pointer old does not point to a valid IFS image.

IFSE NO MEM If space couldn't be allocated for the new image.

IFSE WRONG NDIM If the original image is not two-dimensional.

IFSE BAD POS If either of the box coordinates is outside the image dimensions.

The dimensionality of windowed image is consistent. That is, a 1-d/2-d slice (
a 3-d image one voxel thick in one or more dimensions) returns with a header
consistent with the actual dimensionality.

Ifsexwin3d 29

1.4.14 ifsexwin3d

ifsexwin3d { Extract a window from an image
ifsexwin3d { extract window from 3-d image

Usage:

new img = ifsexwin3d(old img, f1, r1, c1, f2, r2, c2)

where f1,r1,c1 and f2,r2,c2 are the coordinates (frame,row,col) of one corner of
the box and the opposite (diagonal) corner. It doesn't matter which corners
are chosen.The box which is extracted includes the bordering surface (i.e,
coordinates are f1,r1,c1 to f2,r2,c2 INCLUSIVE).

Returns:

This function returns NULL if an error occurs, and returns an error code
thru the external variable 'ifserr'.

External variables:

ifserr, IFSSLV

Ifsexwin3d extracts a piece (window) out of a 3-d IFS image, to make a new
IFS image. The data type of the new image is identical to that of the old one. The
dimensionality of windowed image is consistent. That is, a 1-d/2-d slice (a 3-d
image one voxel thick in one or more dimensions) returns with a header consistent
with the actual dimensionality.

30 CHAPTER 1. IFS REFERENCE MANUAL

1.4.15 ifsfgp

ifsfgp { get pixel from a 2-D image

value = ifsfgp(img,row,col);

double value;

int row, col;

IFSHDR * img;

Ifsfgp is used to get the value of some pixel in a 2-dimensional image. The
value returned is of type double, regardless of what the data format of the image
is. Otherwise, ifsfgp is identical to the function ifsigp, in all respects. See the
documentation for ifsigp for more details.

Ifsfgp3d 31

1.4.16 ifsfgp3d

ifsfgp3d { gets the value of a pixel in a 3-d image (A generic multidimensional fgp
can be attempted thru variable parameter passing, but that would make the code
unportable.)

Usage:

val = ifsfgp3d(ptri,frame,row,col);

IFSHDR *ptri; /* pointer to image header structure*/

int frame,row,col;/* coordinates (in pixels)

of pixel to examine.*/

double val;

Ifsfgp3d returns (as a double) the value of the pixel at a speci�ed coordinate in
a 3-d image. If image is \complex" format, returns the real portion of the number.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the pixel value won't �t in a \double" then results are unde�ned. Maybe you
get garbage, maybe your program aborts on an over
ow type of error. Round
o� error can occur in conversions. e.g. int to double typecasting.

32 CHAPTER 1. IFS REFERENCE MANUAL

ifsfpp3d { set the value of a pixel in a 3-d image
Usage:

status = ifsfpp3d(ptri,frame,row,col, val);

IFSHDR *ptri /* pointer to image header structure*/

int frame,row,col; /*coordinates (in pixels) of pixel

to examine.*/

double val; /*the value to stuff*/

int status;

Returns:

IFS SUCCESS or IFS FAILURE

Ifsfpp3d sets the value of the pixel at a speci�ed coordinate in a 3-d image,
where the input is a
oat. If image is \complex" format, stu�s the real portion of
the number, and sets the imaginary part to zero.

Known bugs, special notes:

@ This routine does not check to see if the speci�ed coordinates actually are in
bounds.

@ If the value stu�ed won't �t in the output image datatype, then results are
unde�ned. Maybe you get garbage, maybe your program aborts on an over
ow
type of error.

Ifsfpp 33

1.4.17 ifsfpp

ifsfpp { put pixel value into a 2-D image

status = ifsfpp(img,row,col,value);

int status;

double value;

int row, col;

IFSHDR * img;

Ifsfpp is used to set the value of some pixel in a 2-dimensional image. The
argument value is automatically converted from a
oating point number (
oat or
double) into whatever data format the image is in. In all other respects, ifsfpp is
identical to the function ifsipp. See the documentation for ifsipp for more details.

34 CHAPTER 1. IFS REFERENCE MANUAL

1.4.18 ifsfree

ifsfree { delete (deallocate) an IFS image

img = ifsfree(img, flags);

IFSHDR * img;

int flags;

Ifsfree is used to get rid of an IFS image which is no longer in use. The space
for the header and/or data is deallocated, and returned to the operating system
for other use. Basically, ifsfree just consists of several calls to the system function
cfree.

The arguments to ifsfree are:

img A pointer to the image header structure.

ags A set of
ags which indicates exactly what is to be deallocated.

Possibilities for the
ags are:

IFS FR DATA If this
ag is set, then ifsfree will deallocate the space allocated for
the storage of the actual image data (if there is any), and the header �eld
img!ifsptr will be set to NULL to show that the header no longer has any
data associated with it. If there is no data associated with the header, then
this
ag has no e�ect. This will not cause any errors.

IFS FR HDR If this
ag is set, then ifsfree will deallocate the space allotted for
the image header. The data space is left intact. This is usually only going to
be used if the user supplied his own data area for the image (perhaps a static
array or somesuch).

IFS FR ALL If this
ag is speci�ed, then ifsfree will free up everything { image
header and data. IFS FR ALL is just the combination of IFS FR DATA and
IFS FR HDR. This is probably the normal
ag to set when calling ifsfree .

Ifsfree returns a pointer to the image header as it should be AFTER the desired
things have been deallocated. If only the IFS FR DATA
ag was speci�ed, then
ifsfree returns the original pointer value img, with the �eld img!ifsptr now set
to NULL to show that the data array has been deleted. If the header structure
was freed, then ifsfree returns NULL to indicate that the pointer is no longer valid.
Hence it is good practice to assign the return value from ifsfree back to the original
pointer value img. It is not an error to simply say ifsfree(img,IFS FR ALL) rather
than img = ifsfree(img,IFS FR ALL) to get rid of an image, but the latter usage is
preferable in that it will make it more obvious to any subsequent routines called

Ifsfree 35

(erroneously) with the argument img. Ifsfree will also return the value NULL if an
error occurred. In this case, the external variable ifserrwill be set to the appropriate
error code. Possible error conditions are:

IFSE NULL HDR This indicates that you passed the pointer NULL for the argument
img.

IFSE BAD HDR This indicates that the pointer img does not reference a valid IFS
image structure. Note that the error IFSE NULL HDR is actually a subclass of
the error IFSE BAD HDR, so if you test the value "(ifserr & IFSE BAD HDR)",
you will automatically also pick up errors of the type IFSE NULL HDR.

BUGS:
Trying to deallocate something which was not originally obtained using some

standard system memory-allocation function (e.g, calloc, or the IFS routines ifsalc
or ifscreate) will cause grave errors { usually a program crash. This is a problem of
the system allocate/deallocate routines and not ifsfree.

36 CHAPTER 1. IFS REFERENCE MANUAL

1.4.19 ifsGetFN

ifsGetFN { read in a �lename and expand it

FileName = ifsGetFN(Prompt, Input);

char * FileName;

char * Prompt;

FILE * Input;

IfsGetFN will read in a string from the �le Input (typically stdin), and expand
it using the function ifsPrsFN. It returns a pointer to the name it read, or NULL if
it failed. Space for the �lename is dynamically allocated and may be freed (using
cfree) when the user is through with it.

If Input is a terminal, and Prompt is not NULL, then Prompt will be printed
before the �lename is read in.

IfsGetFN normally delimits �lenames with any control character or whitespace
character and strips o� any leading whitespace characters supplied in the name. Any
character (including whitespace characters) may be put in a �lename by pre�xing
it with a backslash n. This applies to leading whitespace characters as well as
whitespace characters in the middle or end of the name.

IfsGetImg 37

1.4.20 ifsGetImg

ifsGetImg { open a �le and read an IFS image from it

img = ifsGetImg(FileName, Prompt, ReadTail);

IFSHDR * img;

char * FileName;

char * Prompt;

int ReadTail;

IfsGetImg reads an IFS image from some �le FileName. If ReadTail is false
(zero), then any tail information associated with the image will not be read in.
It returns a pointer to the new image header, or NULL if it failed, in which case
the external integer variables ifserr and column can be examined to determine the
nature of the error. Space for the header, data, and tail is allocated dynamically,
each may be freed (using cfree or ifsfree) when the user is through with it.

If FileName is NULL, then the input image is read from stdin. If FileName is a
null string (that is, FileName = ""), then a �lename will be read in from stdin using
the routine ifsGetFN. In this case, if Prompt isn't NULL and stdin corresponds to a
terminal, then the string Prompt will be printed on the terminal (actually, to stderr)
before reading a name. If stdin is not attached to a terminal, such as when input
is being piped in from another program, then the printing of the prompt string is
suppressed. If a �lename is read in from stdin, and it is \-" (a single dash), then
the image itself will be read from stdin. Filenames are expanded using ifsPrsFN,
so they may contain such things as environment variable names and \�login id"
constructs.

IfsGetImg works by opening the speci�ed �le and then calling ifsRdImg to do
the actual work of getting the image. It then closes the �le when it's done (unless it
read from stdin). Note that calling ifsGetImg with Filename = NULL is essentially
the same as calling ifsRdImg directly.

The complimentary routine to ifsGetImg is ifsPutImg.

38 CHAPTER 1. IFS REFERENCE MANUAL

1.4.21 ifsigp

ifsigp { get pixel from a 2-D image

value = ifsigp(img,row,col);

int value;

int row, col;

IFSHDR * img;

Ifsigp is used to get the value of some pixel in a 2-dimensional image. The value
returned is of type int, regardless of what the data format of the image is. Ifsigp
performs all necessary type conversions. If the value of the pixel in the image will
not �t into an int data type, then the value that is returned will be meaningless.
If the image data format is one of the complex forms, then ifsigp returns the real
part of the speci�ed data point. If some sort of error occurs, then ifsigp will return
zero, and the external variable ifserr will be set to indicate the nature of the error.

The arguments to ifsigp are:

img A pointer to the image header structure. This should refer to a 2-dimensional
image. If the image has 3 or more dimensions, then ifsigp will access the �rst
frame of the data (ie, all indices besides the �rst two will simply be treated
as zero).

row,col The coordinates of the point to be examined. Note that row, col may also
be regarded as a y, x pair. Beware that row corresponds to the y index, not
the x index.

The following error codes (de�ned in the #include �le < ifserr:h >) may be re-
turned by ifsigp :

IFSE BAD HEADER: The pointer img does not point to an actual IFS image.

IFSE BAD DTYPE: The image is of some data type that ifsigp does not recognize.
Usually this indicates that your header has been damaged, and the �eld img !
ifsdt is mangled, or the image data type is \struct". It could also occur if
someone added a new data type to that understood by IFS, and forgot to
modify ifsigp accordingly.

BUGS:

� Ifsigp does not verify that the image passed to it corresponds to a 2-dimensional
image.

� The indices row, col are not checked to verify that they lie inside the image
dimensions.

Ifsigp 39

� Ifsigp does not check to make sure that the data pointer img->ifsptr is not
NULL. Previous versions of IFS did not allow this data pointer to be NULL,
so it was not previously necessary to check for this.

� Results when numeric over
ow occur (as is possible when converting a
oating
point number into an integer) are unde�ned.

Any of the above bugs could cause an abrupt and unpleasant termination of your
program, generally with the infamous \bus error: core dumped" message under
UNIX systems. Of course, such a crash would be indicative of some prior error in
the user's program not having been caught.

40 CHAPTER 1. IFS REFERENCE MANUAL

1.4.22 ifsipp

ifsipp { put pixel value into a 2-D image

status = ifsipp(img,row,col,value);

int status;

int value;

int row, col;

IFSHDR * img;

Ifsipp is used to set the value of some pixel in a 2-dimensional image. The ar-
gument value is automatically converted from an integer into whatever data format
the image is in. If the image is of type complex, then ifsipp sets the real part of
the datum to value, and the imaginary portion to zero. Ifsipp returns the value
IFS SUCCESS if it succeeded, otherwise it returns the value IFS FAILURE and sets
the external variable ifserr to the appropriate error code.

The arguments to ifsipp are:

img A pointer to the image header structure. This should refer to a 2-dimensional
image. If the image has 3 or more dimensions, then ifsipp will access the �rst
frame of the data (ie, all indices besides the �rst two will simply be treated
as zero).

row,col The coordinates of the point to be examined. Note that row, col may also
be regarded as a y, x pair. Beware that row corresponds to the y index, not
the x index.

value The actual data value to be put into the image. Note that if the datum
represents some value that can not be represented in the data format of the
image itself (such as trying to place the value 500 into a ubyte image), a
meaningless value will end up being put into the image.

The following error codes (de�ned in the #include �le < ifserr:h >) may be set by
ifsipp (in the variable ifserr):

IFSE BAD HEADER: The pointer img does not point to an actual IFS image.

IFSE BAD DTYPE: The image is of some data type that ifsipp does not recognize.
Usually this indicates that your header has been damaged, and the �eld img !
ifsdt is mangled, or that the image data type is \struct". It could also occur
if someone added a new data type to that understood by IFS, and forgot to
modify ifsipp accordingly.

BUGS:

Ifsipp 41

� Ifsipp does not verify that the image passed to it corresponds to a 2-dimensional
image.

� The indices row, col are not checked to verify that they lie inside the image
dimensions.

� Ifsipp does not check to make sure that the data pointer img->ifsptr is not
NULL. Previous versions of IFS did not allow this data pointer to be NULL,
so it was not previously necessary to check for this.

Any of the above bugs could cause an abrupt and unpleasant termination of your
program, generally with the infamous \bus error: core dumped" message under
UNIX systems. These problems will not occur however, unless the user's program
contains some other sort of error.

42 CHAPTER 1. IFS REFERENCE MANUAL

1.4.23 ifsmkh

ifsmkh { Create a two-dimensional IFS image Usage:

#include $<ifs.h>$

imageptr = ifsmkh(nrows, ncols, dataformat);

IFSHDR * imageptr;

int nrows, ncols;

char * dataformat;}

THIS FUNCTION IS OBSOLETE STARTING WITH RELEASE 3.0 OF IFS
THE FUNCTION 'ifscreate' SHOULD BE USED INSTEAD

Ifsmkh is used to create a two-dimensional image. Space to store the image
and its header is automatically allocated, and the image is initialized to all zeros.
Various �elds in the image header are �lled in with default values. The dimensions
of the image that is created are given by the arguments nrows (number of rows) and
ncols (number of columns). The string dataformat sets what the format for each
pixel in the image will be. Valid data types are listed in one of the appendices to
this manual.

Ifsmkh returns a pointer to the header structure for the newly created image.
If an error occurs (usually meaning that an argument was invalid, or that it couldn't
allocate enough memory to make a new image), then the value NULL is returned.
In this event, the global variable ifserr will be set to indicate the nature of the error.
Possible values for ifserr are IFSE NO MEM and ISFE BAD DTYPE.

BUGS/NOTES: The data format string is case-sensitive.

Ifsopen 43

1.4.24 ifsopen

ifsopen { open a �le for reading or writing.

File = ifsOpen(FileName, Mode, Prompt, NumRetries);

FILE * File;

char * FileName;

char * Mode;

char * Prompt;

int NumRetries;

Ifsopen opens up a �le FileName for reading or writing, and returns a pointer
to the open �le descriptor (stream in Unix terminology). If the �le can not be
opened or some other error occurs, then ifsopen will return NULL. The argument
Mode is the same as the mode argument to the standard i/o library function fopen,
i.e. \r" or \w" for read or write access. If FileName is NULL, then ifsopen just
returns stdin or stdout as is appropriate for the speci�ed Mode.

If FileName is a null string (FileName = ""), then ifsopen will read the name
of the �le to be opened from stdin. If stdin is attached to a terminal, then the string
Prompt will be printed before getting the �lename (unless Prompt is NULL). File-
Name is read using the function ifsGetFN, and expanded using ifsPrsFN, so it may
contain the names of environment variables or constructs of the form \�login id"
to represent some user's home directory name. If the name read in is \-" (a single
dash), then ifsopen will return stdin or stdout, according to the argument Mode.

If a �lename is being read interactively (when FileName = "", stdin is connected
to a terminal, and Prompt is not NULL), then the user is allowed NumRetries

mistakes before ifsopen will give up and return NULL. For instance, if ifsopen
tries to open a non-existent �le for reading, it will print a message to the user and
ask for a new name. After several failures it will give up. This is to prevent such
things as runaway shell scripts from sitting in a perpetual error loop.

44 CHAPTER 1. IFS REFERENCE MANUAL

1.4.25 ifspin

ifspin { read in an image from disk

img = ifspin(filename);

IFSHDR * img;

char * filename;

Ifspin is used to read an IFS image from the speci�ed �le �lename. All necessary
storage space for the image and its data is automatically allocated. The \tail"
information for the �le is not read in. If the user wants the tail information read
in, he should use the newer function ifsGetImg. If �lename points to a null string,
then ifspin will prompt the user to specify some �lename. Any �lename (whether
or not read interactively) will be translated using the function ifsPrsFN, which will
substitute for environment variables and names of users' home directories speci�ed
in the C-shell shorthand form of \�user/�lenam". If �lename is NULL, then input
will be read from stdin. Also, if a user is prompted for a �lename, if he speci�es a
name of \-", the input will be read from stdin. The printing of a prompt string will
be suppressed if stdin is not attached to a terminal.

Ifspin returns a pointer to the new image, or NULL if some sort of error occurs.
In the latter case, the external variable ifserr will be set to indicate the nature of
the error. Possibilities are:

IFSE NO OPEN { if the speci�ed �le can't be opened (usually meaning that it
doesn't exist).

IFSE IO ERR { if some sort of I/O error occurred (usually meaning the �le does not
contain a valid IFS image). The standard system I/O library variable errno
may contain additional information about the nature of the error. Note that
IFSE NO OPEN is a subclass of the IFSE IO ERR error, so one can check for
both automatically by using a construct of the form \if (ifserr & IFSE IO ERR)
action to take();".

IFSE NO MEM { if it isn't possible to allocate storage to put the image into.

IFSE BAD NAME { if some error occurred when translating the �le name.

BUGS/NOTES:
Ifspin is an obsolete function. Under version 4 of IFS, this just remaps its

arguments and calls ifsGetImg.

Ifspot 45

1.4.26 ifspot

ifspot { write an image to disk

status = ifspot(img, filename);

int status;

IFSHDR * img;

char * filename;

Ifspot is used to write an IFS image to the speci�ed �le �lename. If �lename

points to a null string, then ifspot will prompt the user to specify some �lename,
and read a �lename from stdin. If �lename is NULL, then ifspot will write the
image to stdout. Also, if ifspot reads a �lename from stdin, and the �lename is
\-", then ifspot will write to stdout. If stdin is not connected to a terminal (e.g,
input is being piped in from another program), then the printing of a prompt will
be suppressed.

The �lename is translated using ifsPrsFN, so it may contain environment vari-
ables (beginning with a leading \$") and the names of users' home directories spec-
i�ed in the C-shell shorthand form of \�user/�lename".

Ifspot returns the value IFS SUCCESS if it succeeded, or IFS FAILURE if some
sort of error occurred. In the latter case, the external variable ifserr will be set to
indicate the nature of the error. Possibilities are:

IFSE BAD HEADER { if img doesn't point to a valid image.

IFSE NOT IMAGE { if there is no data associated with the header, i.e., the �eld
img!ifsptr is set to NULL.

IFSE NO OPEN { if the speci�ed �le can't be opened (usually meaning that the
name is invalid or that the user doesn't have write permission in the directory
in which he is trying to put the image).

IFSE IO ERR { if some sort of I/O error occurred. The standard system I/O library
variable errno may contain additional information about the nature of the
error. Note that IFSE NO OPEN is a subclass of the IFSE IO ERR error, so
one can check for both automatically by using a construct of the form \if
(ifserr & IFSE IO ERR) action to take();".

IFSE BAD NAME { if some error occurred while translating the name.

BUGS/NOTES:

� The function of ifspot has been superceded by the newer function ifsPutImg.
Starting with version 4 of IFS, ifspot is just a dummy routine which remaps
its arguments and calls ifsPutImg.

46 CHAPTER 1. IFS REFERENCE MANUAL

� Ifspot does not write out any \tail" information associated with the image.

IfsPrsFN 47

1.4.27 ifsPrsFN

ifsPrsFN { expand a �lename

NewName = ifsPrsFN(Name,rc);

char * NewName;

char * Name;

int * rc;

IfsPrsFN scans a string Name looking for references to environment variables
or abbreviations for a user's home directory of the form \�user" such as is provided
by the Unix C-shell. It returns a pointer to the expanded name, or NULL if it failed.
The space for the expanded name is allocated using calloc, so it may be cfree'ed
when the user is through with it. A status code is returned through the pointer rc.
This code will be 0 if it was successful, 1 if the expansion failed (such as by reference
to an unset environment variable), or 2 if the routine had an internal error (such as
a failure in a call to calloc).

Environment variables are speci�ed by pre�xing the name with a dollar sign \$".
The name of the environment variable may contain any alphanumeric character, and
is terminated by the �rst non-alphanumeric character found. The name may be
enclosed in braces to isolate it from other characters, such as when the user desires
the �rst character after the environment variable name to be an alphanumeric. Also,
if the name is enclosed in braces, almost any printable character can be part of the
variable name rather than just alphanumerics. Environment variable substitution
is done on a strict left to right basis.

A reference to some user's home directory may be speci�ed in the same manner
as that allowed by the Unix C-shell. If the �rst character in a �lename begins with
a tilde `�' character, then the word immediately following the tilde (where `word' is
terminated by the �rst character which is not alphanumeric or underscore) is taken
to be the name of some user's login id; the name of the user's home directory is
substituted for the \�login id" construct.

Examples

Assume the following environment variables and login id's:

$i "ifs"
$�le "output"
$J "�john"
� "/usr/users/myhome"
�john "/usr/users/alpha"

Then the following names expand as:

48 CHAPTER 1. IFS REFERENCE MANUAL

NAME EXPANSION

my�le$i my�leifs
my�le.$i my�le.ifs
�/my�le /usr/users/myhome/my�le
�john/$�le.$i /usr/users/alpha/output.ifs
$J/$�le.$i /usr/users/alpha/output.ifs
$ibase no expansion unless

environment variable \ibase" set
$ibase ifsbase (braces isolate \i" from \base")

IfsPutImg 49

1.4.28 ifsPutImg

ifsPutImg { open a �le and write an IFS image to it

rc = ifsPutImg(Image, FileName, Prompt, WriteTail);

int rc;

IFSHDR * Image;

char * FileName;

char * Prompt;

int WriteTail;

IfsPutImg writes an IFS image to some �le FileName. If WriteTail is false
(zero), then any tail information associated with the image will not be written to
the new �le. IfsPutImg returns IFS SUCCESS if all went well, or IFS FAILURE
if something went wrong, in which case the external integer variables ifserr and
column can be examined to determine the nature of the error.

If FileName is NULL, then the image is written to stdout. If FileName is a null
string (that is, FileName = ""), then a �lename will be read in from stdin using
the routine ifsGetFN. In this case, if Prompt isn't NULL and stdin corresponds to a
terminal, then the string Prompt will be printed on the terminal (actually, to stderr)
before reading a name. If stdin is not attached to a terminal, such as when input
is being piped in from another program, then the printing of the prompt string is
suppressed. If a �lename is read in from stdin, and it is \-" (a single dash), then
the image itself will be written to stdout. Filenames are expanded using ifsPrsFN,
so they may contain such things as environment variable names and \�login id"
constructs.

IfsPutImg works by opening the speci�ed �le and then calling ifsWrImg to do
the actual work of storing the image. It then closes the �le when it's done (unless it
wrote to stdout). Note that calling ifsPutImg with Filename = NULL is essentially
the same as calling ifsWrImg directly.

The complimentary routine to ifsPutImg is ifsGetImg.

50 CHAPTER 1. IFS REFERENCE MANUAL

1.4.29 ifsRdHdr

ifsRdHdr { read an IFS image header from an open �le

hdr = ifsRdHdr(file);

IFSHDR * hdr;

FILE * file;

IfsRdHdr reads an image header from a previously opened �le. It does not
read in any data or tail information for the �le. It returns a pointer to the new
image header, or NULL if it failed, in which case the external integer variables ifserr
and column can be examined to determine the nature of the error. Space for the
header is allocated dynamically, and may be freed (using cfree) when the user is
through with it.

After the header is read, the �le pointer is positioned so that the next character
read from the �le will the �rst byte of the data stored in the �le. Hence, ifsRdHdr
does scan past any padding at the end of the header.

There is no complimentary routine for writing headers to open �les in this version
of IFS. Writing a header to a �le without writing any data would not make sense.
Accordingly, there is a function ifsWrImg, but not an ifsWrHdr.

IfsRdImg 51

1.4.30 ifsRdImg

ifsRdImg { read an IFS image from an open �le

img = ifsRdImg(File, ReadTail);

IFSHDR * img;

FILE * File;

int ReadTail;

IfsRdImg reads an image from a previously opened �le. If ReadTail is false
(zero), then any tail information associated with the image will not be read in.
It returns a pointer to the new image header, or NULL if it failed, in which case
the external integer variables ifserr and column can be examined to determine the
nature of the error. Space for the header, data, and tail is allocated dynamically,
each may be freed (using cfree or ifsfree) when the user is through with it.

IfsRdImg will always read the entirety of an image �le (including tail informa-
tion and any padding after it), discarding the tail if it is not wanted, and the �le
read position will be set so that the next read request will start with the �rst byte
after the end of the image. If File corresponds to a disk �le, this just means the
read pointer will point to the end-of-�le (unless some garbage has been concate-
nated to to the of the image �le). If File does not correspond to a disk �le, such
as when piping is being used and File is stdin, this means the �le read pointer is
positioned so that subsequent read requests (including read, scanf, getchar, another
call to ifsRdImg, etc.) will properly read new data rather than reading padding
characters left over from the end of the �rst image �le.

The complementary routine to ifsRdImg is ifsWrImg.

52 CHAPTER 1. IFS REFERENCE MANUAL

1.4.31 ifssiz

ifssiz { Get size (lengths of all dimensions) of an IFS image

#include $<ifs.h>$

dlength = ifssiz(image);

int * dlength;

IFSHDR * image;

Ifssiz is used to determine the lengths of each dimension of an IFS image. It
returns a pointer to an integer array, the various elements of which indicate the
lengths of each dimension of the image, and also how many dimensions the array is
de�ned as. The array will have N+1 elements, where N is the number of dimensions
of the image. The �rst element of the array (element number zero) gives the number
of dimensions for the image. Subsequent elements of the array give the length of
each dimension, where the dimensions are in order of ascending rank; i.e., element
one gives the number of pixels per line (number of columns) for the image, element
two gives the number of lines (rows), element three is the number of frames, and so
forth.

The space for the array returned by ifssiz is automatically allocated using stan-
dard system calls (e.g., calloc), and as such may be released back to the system
with the appropriate calls (free, cfree) when the user is through with the array.

If there is some error in ifssiz , then the external variable ifserr will be set to
some error code as de�ned in the �le < ifserr:h > { most likely IFSE BAD HEADER
or IFSE NO MEM.

Example usage:

int nrows, ncols, ndims, * dimlength;

IFSHDR * image2d;

... make or read in image pointed to by image2d ...

dimlength = ifssiz(image2d);

ndims = dimlength[0];

if (ndims != 2) { /* Exit with nasty error messages ... */ }

ncols = dimlength[1];

nrows = dimlength[2];

cfree((char *) dimlength);

Ifsslice 53

1.4.32 ifsslice

ifsslice { take a complete slice of a two-d or three-d image

Usage:

new img = ifsslice(old img,string,value)

where string is a char pointer pointing to a string. The following are legitimate
strings

\frame", \f", \row", \r", \column", \col", \c".

Passing any one of these strings will inform the function that the slice should
be taken with that particular dimension (row,col or frame) held constant at the
integer parameter value. i.e, if the string is \frame" and the value = 10, then a
2-d slice of the 3-d image at frame=10 is returned. Similarly for row and col slices.
This is a generic slice program for 2-d and 3-d images. Using ifsslice on 1-d images
will return with a copy of the image pointer and a warning.Similarly,a text string
of \frame" on a 2-d image returns a copy of the image pointer and a warning.
Returns:

This function returns NULL if an error occurs, and returns an error code
thru the external variable 'ifserr'.

External variables:

ifserr, IFSSLV

Special routines used:

ifscfree, ifsdie, ifswarn, ifsexwin, ifsexwin3d, ifssiz

Ifsslice extracts a complete slice of a two-d or three-d image from the constituent
image. The datatype of the sliced new image is exactly that of the old image. Note
that the slice is complete in all dimensions except in one dimension.

54 CHAPTER 1. IFS REFERENCE MANUAL

1.4.33 ifsversion

ifsversion { display version numbers

ifsversion(file);

FILE * file;

Ifsversion will write the version numbers of all the IFS functions it knows
about to the speci�ed �le. Typically, �le will be stdout or stderr. For each function
ifsversion knows about, it will print the name of the function, its version number,
and the date it was last modi�ed. In rare cases there may be some additional
information printed.

IfsWrImg 55

1.4.34 ifsWrImg

ifsWrImg { write an IFS image to an open �le

rc = ifsWrImg(Image, File, WriteTail);

int rc;

IFSHDR * Image;

FILE * File;

int WriteTail;

IfsWrImg writes an IFS image to some opened �le File. If WriteTail is false
(zero), then any tail information associated with the image will not be written to
the new �le. IfsWrImg returns IFS SUCCESS if all went well, or IFS FAILURE
if something went wrong, in which case the external integer variables ifserr and
column can be examined to determine the nature of the error.

The complimentary routine to ifsWrImg is ifsRdImg.

1.5 IFS Error Codes

This section describes the various error
ags which may be set (in the global variable
ifserr) when an error occurs in an IFS routine. These are de�ned in the #include

�le < ifserr:h >. Each error is represented by a bit or set of bits in ifserr; hence
it is best to test for speci�c bits rather than using a standard comparison (\==").
Note that all of the IFS error codes have names which are of the form IFSE xxxxxx,
where xxxxxx is the actual name for the error.

IFSE ERROR This is a combination of all possible errors. It is de�ned to be -1,
i.e., all bits of the variable ifserr are set. Hence, all other error codes are
subclasses of this code. IFS routines do not generally return this code. It
generally indicates that either (a) an error was too complex for IFS to �gure

out, or (b) it was such a rare error that it was not considered important
enough to de�ne a separate code for the error.

IFSE BAD HEADER or IFSE BAD HDR The pointer you passed to a function does
not correspond to a valid header for an IFS image. Most IFS routines double-
check image headers before doing anything, and will exit with IFSE BAD HEADER
set if the header is not valid.

IFSE NULL HEADER or IFSE NULL HDR The value NULL was passed to some IFS
routine where you should have passed a pointer to an image header. The most
likely cause of this is calling a routine to get or put a pixel in an image, when
you haven't yet created (or read in) the image. This error is a subclass of the
error IFSE BAD HEADER.

56 CHAPTER 1. IFS REFERENCE MANUAL

IFSE NO OPEN A �le could not be opened for I/O activities. Usually this indicates
that the �le does not exist (on reads), or that the user does not have access
permission for the speci�ed �le or directory. IFSE NO OPEN is a subclass of
the error IFSE IO ERR.

IFSE NOT IMAGE An error occurred when attempting to read an image header
from a �le. This usually means the �le is too small to possibly be an IFS
image. An image header alone occupies at least 1 block, where a block is
normally de�ned to be 512 bytes. IFSE NOT IMAGE is a subclass of the error
IFSE IO ERR.

IFSE BAD NAME A �lename is considered invalid. This is normally set within
routines such as ifsPrsFN when a name expansion fails (such as by reference
to a �le \�fred/�le.ifs\ when user \fred\ doesn't exit). IFSE BAD NAME is a
subclass of the error IFSE IO ERR.

IFSE IO ERR Some sort of error occurred while performing I/O. The system global
variable errno may contain additional information about the error. Common
causes are (a) encountering an unexpected EOF, (b) inability to write output
due to a full disk or user's disk quotas exceeded, (c) inability to open a �le.

IFSE BAD DTYPE The datatype (short, int,
oat, etc.) is invalid or unrecognized
by a particular routine. Usually this will only occur if you pass an invalid
argument to an image creation routine (e.g., ifsmkh or ifscreate). It might
also occur on routines which read or write data in images if the image header
has been corrupted, or if the function is not capable of working on an image
of a particular data type (for instance, it would make little sense to pass a
complex format image to a histogram routine).

IFSE BAD POS Some coordinate (array index) is illegal for the speci�ed operation,
such as trying to access a pixel in column 30 of an image which is only 20
columns wide. Note that the routines which read or write single pixels cur-
rently do NOT check to see if coordinates are within bounds. This is a
aw
with IFS which will probably be �xed at a later time.

IFSE WRONG NDIM The routine called does not work with images of the dimen-
sionality of the image being used. An example would be trying to extract a
window (2D subimage) from a 1-dimensional array.

IFSE NOT SUPPORTED The speci�ed function is not currently allowed. Usually
this indicates a function which is not yet implemented, but which is intended
to be implemented. In rare cases it may indicate that a function is obsolete
(a separate error code may later be de�ned for this).

1.6. IFS DATA TYPES 57

1.6 IFS Data Types

This section describes the various data types that IFS version 5 understands. IFS has
a certain basic set of names it recognizes for data types, and which it actually puts
into image headers; in addition, it recognizes a number of synonyms for data types
which it automatically remaps into the real data type. Some of these synonyms
are machine dependent, for instance, a type of \int" may map to \16bit" on one
machine and \32bit" on another machine. The �nal authority on data types and
synonyms is the header �le \ifstypes.h" which contains a table relating synonyms
to the proper data type. Note that the data types ARE case sensitive. The possible
data types are:

8bit Signed byte. Synonyms are byte, char, i1, and I1.

u8bit Unsigned byte. Synonyms are ubyte, uchar, u1, and U1.

16bit Signed 16 bit integer. Synonyms are short, i2, and I2.

u16bit Unsigned 16 bit integer. Synonyms are ushort, u2, and U2.

32bit Signed 32 bit integer. Synonyms are int, long, i4, and I4.

u32bit Unsigned 32 bit integer. Synonyms are uint, ulong, u4, and U4.

32
t 32 bit
oating point number. Synonyms are
oat, real, real*4, r4, and R4.

64
t 64 bit
oating point number. Synonyms are double, real*8, r8, and R8.

32cmp Complex number consisting of two 32
t numbers (real and imaginary parts).
Synonyms are complex, complex*4, c4, and C4.

64cmp Complex number consisting of two 64
t numbers (real and imaginary parts).
Synonyms are complex*8, c8, and C8.

struct Arbitrary user de�ned structure. Although IFS will read and write such
images, it supplies no intrinsic routines to manipulate such images.

1.7 The structure of an IFS image

An IFS image, whether it is in a disk �le or in program memory, is stored as a set
of three distinct pieces. When written to disk, each piece will begin on a block
boundary, where the size of a block is given by the constant BLOCKSIZE, which is
de�ned the #include �le < ifs:h >. Hence, there may be garbage bytes between
one section and the next.

58 CHAPTER 1. IFS REFERENCE MANUAL

The �rst piece is a header for the image. This header contains all sorts of
information relevant to the processing of the image, along with information intended
solely for the user's bene�t. Sample items in the header include the number of
dimensions the image has, how long each dimension is, who the creator of the
image is, and so on.

The second entity in an image is the actual image data. The data is just stored
in one long linear array, in exactly the same way that any C program stores arrays.
The user can directly access this data if he/she so desires, although the usual way
to to get at the data is to use various IFS routines such as ifsigp and ifsipp.

The third part of the image is the tail. The tail is just a block of data at the
end of the �le which IFS places no particular interpretation upon. It is up to the
users' programs to manipulate and understand the contents of the tail. An sample
usage for the tail might be to store the text of a spoken message for which the data
block was the digitized message.

In most cases, it is not necessary for the user to directly alter any of the infor-
mation in the image header as the IFS routines themselves will �ll in the header
with all the information needed to process the image, and all of the user information
�elds will be set to default values which are �ne for most applications. However, at
times it is desirable to alter �elds in the header, which requires that the user know
what the �elds in the header are, and how they are used.

The header actually consists of several C structures. These structures are de-
�ned in the #include �le < ifs:h >. The header actually consists of two types of
structures. The �rst structure is the main image header structure, and contains
most of the relevant information about the image, such as the number of dimen-
sions, the format of the data, etc. This structure is the so called IFSHDR structure
which one refers to when one declares an image pointer variable in a program (e.g:
IFSHDR * img1, * img2;).

Along with the IFSHDR structure exists a variable number of dimension sub-

headers. There is one of these sub-headers for each dimension of the image, e.g.,
a 2-d image would have two sub-headers. The main piece of information in these
subheaders is how long each dimension is. This structure goes by the name IFSDIM.
The IFSDIM structures come directly after the the main header structure, both in
the in-core images and the disk images. Hence, given a pointer to the main header
structure, and the sizes of the headers, one can easily generate pointers to any of
the dimension headers. The macro ifsgetdim (de�ned in < ifs:h >) may be used
for this:

IFSDIM * dim;

IFSHDR * img;

dim = ifsgetdim(img,2);

will return a pointer to the third dimension sub-header (the �rst sub-header has
number of zero).

1.7. THE STRUCTURE OF AN IFS IMAGE 59

1.7.1 The image header �elds

char ifsmgc[4] This is the \magic number" �eld in the header. This �eld is used
by the various routines as a way of verifying the validity of the header passed
to them. If this �eld does not contain a special \magic number" (really, a
character string rather than a number), then the IFS routines will assume
that an invalid pointer was sent to them. The user should never alter this
�eld.

int ifsbb This is the number of bytes in a physical block, when images are stored
on disk. This value is set to the constant BLOCKSIZE, which is de�ned in
\ifs.h". For all systems to date, the blocksize is 512. When images are written
to disk �les, the header always starts at block 0, and the data always begins at
the start of the next block after the header, i.e, there may be a small amount
of wasted space between the end of the header and the start of the data, if
the header does not completely �ll the last block it occupies.

int ifssoh This is the block number of the �rst block of the header. This is always
set to zero, at least for the time being.

int ifssod This is the number of the block at which the data starts. The user can
position directly to the start of the data array by using fseek to position an
I/O pointer to the ifssod*ifsbb byte of the �le. Of course, this only works for
disk �les.

int ifssot This is the block number of the start of the tail for the �le. If this �eld
is negative, it indicates that there is no tail present; taking the absolute value
of it would give the block number at which the tail would be if it existed.

char * ifstail This is a pointer to the image tail, for an in-core image. If there is
no tail, this is set to NULL.

int ifstsz This gives the size of the tail in bytes. If there is no tail, this is just
zero.

char ifsfc[8] This is the �le class �eld. This is not used by UNIX installationss of
IFS, and is intended for systems running operating systems other than UNIX.

char ifsct[8] This is the �le class type �eld. This also is not used and is for
non-UNIX systems.

char ifsunm[32] This �eld is used to store the name of the owner of the �le, as
a null terminated character string. Note that since one byte must be reserved
for the terminating null, that the e�ective username length is 31 characters.
The user can put anything here he wants. When a user creates a new image,
this �eld is �lled in with his/her login id.

60 CHAPTER 1. IFS REFERENCE MANUAL

char ifscdt[32] This is a character string giving the time and date at which the
image was created. This is automatically �lled in when a user creates a new
image, but the user can change it if he so desires. As with the name �eld,
there can be up to 31 characters, plus the terminating null character.

char ifscpg[32] This is a character string giving the name of the program which
created the image. When a user �rst creates an image, this �eld is normally
�lled with the name of the subroutine which actually created the image (e.g.:
\ifsmkh").

char ifsver[8] This is a character string giving the version of the program which
created the image. E.g., \V 1.00" or \Ver 1A" or something in that vein.
Certain routines such as ifsmkh will stu� their version number in here.

char ifsrs1[40] This is just space reserved for future expansion.

char ifsdts[16] This is a character string giving the units of data for the pixels
in the image, e.g., for an intensity image, this �eld might contain \lumens".
One must make sure not to use names for units which exceed 15 characters.
The default for this �eld is just \pixels".

oat ifsdsc This �eld gives a scaling factor for the data in the image. This can
be used along with the data o�set (de�ned below) to convert values in the
image array to some other scale. This might be used for example, if an image
is taken and digitized using some measuring instrument, and later it is found
that the instrument was \o�center" (a data o�set) or su�ered from some sort
of compression (scaling) problem. The default for this �eld is 1.0.

oat ifsdof This �eld gives an o�set which should be applied to the data in an
image. I.e., the real value for a point in the image array should be calculated
as

real � value = stored� value � ifsdsc + ifsdof

Note that the routines which get values from the image array (such as ifsfgp)
do NOT apply the scaling factors. The default for this �eld is 0.0.

char ifsdt[16] This is a character string which tells what number format the pixels
in the image are stored in, such as u8bit or 32
t.

int dtype This is a numeric encoding of the ifsdt �eld which has been added to
the header structure with version four of IFS. This has been added to increase
the speed at which certain routines work.

1.7. THE STRUCTURE OF AN IFS IMAGE 61

int ifsbpd This is the number of bytes which are needed to store a single pixel
value, i.e., it's the \sizeof" whatever data type is used for the image. Of
course, this �eld can be deduced from the ifsdt �eld.

int ifsdims This gives the number of dimensions for the image. This refers to the
number of indices needed to get at values in the image array, i.e, the pixels
themselves don't count as a dimension. For instance, an image which has 10
rows and 20 columns is a 2-d image. Some other nomenclatures might refer to
this as a 3-d image, where the third axis is the pixel measurement axis (range,
brightness, or whatever).

char * ifsptr This is a pointer which gives the address of the of the �rst data
element in the data array, for in-memory images. When �les are written to
disk, the value NULL is written for this �eld. This is normally automatically
set to the correct value when an image is read in, although the user can alter
it to point to some other array.

int * ifsdln This is a pointer to an array which is used when calculating the address
of any arbitrary point of the image. This array has ifsdims elements. The
�rst element is just set to 1, the next element is the number of columns in the
image, the next element is the number of rows times the number of columns,
the fourth element is numcols * numrows * numframes, and so on. If the user
has an N dimensional image, and the N-length vector V gives the coordinate
of some point in the image (i.e., V = [col, row, frame, cube...]), then
the dot-product of V and ifsdln will give you an o�set which may be added
to the starting address of the image to �nd the desired element, assuming
the \starting address" is an appropriately declared pointer. If the \starting
address" is declared as a \char *" (such as with the header �eld ifsptr) then
the o�set must be scaled by the data size (ifsbpd). This may sound confusing,
but really just represents the usual way that a set of indices are converted to
absolute memory addresses for an array, whether by IFS or the C language
itself. Note: the array itself is not written to disk when an image is stored. It
is created when an image is read in (such as by ifsRdImg, ifspin, etc.) using
information in the dimension sub-headers.

char * userptr This �eld is not used at present.

char ifsrs3[4] More reserved space.

1.7.2 The dimension sub-header �elds

For each dimension of the image, there will be a structure of the following form
tacked on after the end of the main header structure. The user can obtain a pointer

62 CHAPTER 1. IFS REFERENCE MANUAL

to one of these structures using the ifsgetdim macro, or can calculate their positions
manually using the size of the main header and subheaders.

The dimension sub-header �elds are:

int ifslen The length (number of elements) of this dimension.

int ifsrnk The rank of this dimension. The rank of the dimension de�nes the
order in which the dimensions are actually stored in memory. The dimension
with the lowest rank is the dimension which changes most rapidly. Hence,
the dimension with rank 1 is equivalent to \columns", the rank 2 dimension
is \rows", the rank 3 dimension is \frames", and so on. Note that images
are stored in row-major order (as with all C arrays), which is contrary to
the way some languages store arrays { Fortran for instance stores in column-
major form. Also note that the �rst dimension subheader after the main
header is not necessarily the header for the lowest rank (columns) although
the IFS routines do by convention store the dimension subheaders in order of
ascending rank, this is not a requirement.

char ifsdir[8] The direction of this dimension. This is for images for which lines
are not always stored in a top to bottom, left to right form. For instance, some
camera systems scan from left to right on one line, then go from right to left
on the next line, and store the data in the same form. This would be known
as \forward-backward alter" storage. Other possibilities include \forward"
(normal), \backward", and \backward-forward alter". Currently, IFS does
NOT recognize this �eld, and treats all images as being stored in \forward"
format. This is only for possible future expansion. The string \fwd" is placed
in this �eld.

char ifsxun[8] This is a character string which gives the units for this dimension
e.g., \inches" or \mils". Make sure not to use names exceeding 7 characters.
The default for this �eld is \pixels".

oat ifsxsc The scaling factor to apply to this dimension, analogous to the scaling
factor which exists in the main header.

oat ifsxof The scaling o�set for this dimension.

char rs4[32] Reserved space.

Chapter 2

Image Processing

Subroutines

In this chapter, A number of subroutines are presented which are of general appli-
cability. Most have been written using pointers and sophisticated code in order to
optimize speed.

2.1 Subroutine descriptions

The following subroutines are available in the library /usr/local/lib/libiptools.a

63

64 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.1 ifsadd

ifsadd{ add two ifs images, point by point

out(i; j) = in1(i; j) + in2(i; j)

int ifsadd (in1,in2,out)

IFSHDR *in1,*in2,*out;

RETURNS 0 if successful,
-1 if all three arguments do not have same dimensions
-2 if data type unsupported (complex double)
-3 if one input has type complex and output is real
-4 if both inputs are real and output is complex

CAUTION if output is type char, values greater than 255 will be clipped to
lie between 0 and 255

NOTES if one image is real and the other complex, the output must be complex
and the real parts of the images will be added

Ifsc�t2d 65

2.1.2 ifsc�t2d

ifsc�t2d{ perform in-place 2D fast Fourier transform

len = cfft2d(img_ptr,type)

IFSHDR * imgptr;

int type;

Ifsc�t2dperforms an in-place 2-D fast Fourier transform on a complex ifs image.
The transform is performed in place on 8BYTE-PER-PIXEL (complex
oat) data
only! Note that �t's only work on images of dimension 2n � 2n.

The second argument is an indicator for forward or inverse �t. -1 for forward,
+1 for inverse

If there is some error, the subroutine exits to the user with an error message.
Possible errors are:

� Image dimensions are not a power of two

� Image data type is not complex
oat

66 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.3 ifsc2imag

ifsc2imag{ extract imaginary part of a complex ifs image, point by point

val = ifsc2imag (in1,out)

int val;

IMSHDR *in1,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be clipped to
lie between 0 and 255

Ifsc2mag 67

2.1.4 ifsc2mag

ifsc2mag{ return magnitude of a complex ifs image, point by point

val = ifsc2mag (in1,out)

int val;

IMSHDR *in1,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be truncated
to 255

68 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.5 ifsc2phase

ifsc2phase{ return phase of a complex ifs image, point by point

val = ifsc2phase (in1,out)

int val;

IMSHDR *in1,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be truncated
to 255

Ifsc2real 69

2.1.6 ifsc2real

ifsc2real{ return real part of a complex ifs image, point by point

val = ifsc2real (in1,out)

int val;

IMSHDR *in1,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be truncated
to 255

70 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.7 ifsmult

ifsmult{ multiply two ifs images, point by point

int ifsmult (in1,in2,out)

IFSHDR *in1,*in2,*out;

RETURNS 0 if successful,
-1 if all three arguments do not have same dimensions
-2 if data type unsupported (complex double)
-3 if one input has type complex and output is real
-4 if both inputs are real and output is complex

CAUTION if output is type char, values greater than 255 will be truncated to
255

NOTES if one image is real and the other complex, the output must be complex
and the real parts of the images will be added

Ifsrecip 71

2.1.8 ifsrecip

ifsrecip{ take reciprocal of an ifs image, point by point

int ifsrecip (in1,out)

IFSHDR *in1,*out;

RETURNS 0 if successful,
-1 if both arguments do not have same dimensions
-2 if data type unsupported (complex double)
-3 if one input has type complex and output is real
-4 if both inputs are real and output is complex

CAUTION if output is type char, values greater than 255 will be truncated to
255

NOTES if one image is real and the other complex, the output must be complex
and the real parts of the images will be added

72 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.9 ifssub

ifssub{ subtracts two ifs images, point by point. The second argument is subtracted
from �rst.

int ifssub (in1,in2,out)

IFSHDR *in1,*in2,*out;

RETURNS 0 if successful,
-1 if all three arguments do not have same dimensions
-2 if data type unsupported (complex double)
-3 if one input has type complex and output is real
-4 if both inputs are real and output is complex

CAUTION if output is type char, values greater than 255 will be truncated to
255

NOTES if one image is real and the other complex, the output must be complex
and the real parts of the images will be added

Chapter 3

Image Synthesis Programs

3.1 qsyn-synthesize range images

Qsyn generates synthetic altitude images of objects which are composed of quadric
surfaces or pieces of quadric surfaces.

Usage:

% qsyn format�le.q
Qsyn is a program which generates synthetic altitude images of objects which

are composed of quadric surfaces or pieces of quadric surfaces. The image data is
in an unsigned byte format, although a few minor changes could be made to Qsyn
to allow for some other output data type. Image manipulation is done using the
IFS image manipulation routines in use at Communication Unlimited.

Qsyn generates altitude images, i.e., two dimensional images which contain
three dimensional information, where the coordinates of a pixel (its row and column
index) correspond directly to the x and y values for the pixel, and the pixel value
itself (the datum) corresponds directly to the altitude or z value for the point. Hence,
a point in three-space at position [x,y,z] corresponds to some pixel in an image I:

[x; y; z] ! I[r; c] (3:1)

where I[r,c] is the value of the pixel at row r, column c of the image. R, c, and I[r,c]

are linearly related to y, x, and z, respectively. In Qsyn, the linear relationship is
simply taken to be r = y, c = x, and I[r; c] = z. Note that an altitude image is
not the same as a range image, which is also commonly used to represent three-
dimensional images. In a range image, the pixel value represents the distance from
some point in three space to a �xed reference position (i.e., the viewpoint), whereas
an altitude image is based on the distance to some reference plane, hence a range
image is actually a perspective projection of an altitude image.

73

74 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

Qsyn generates images composed of quadric surfaces. An image may contain
any number of surfaces; in addition, each surface may also have constraints placed
on it. These constraints are also quadric surfaces (quadric inequalities). A quadric
surface is a 3-dimensional surface which may be described by a general quadric
equation:

q(x; y; z) = Ax2 +By2 + Cz2 + Fyz + (3.2)

Gxz +Hxy + Px+Qy + Rz +K = 0:

This includes common shapes such as spheres, cones, and planes. Qsyn works by
generating a quadric surface which is bounded by a set of quadric constraints. For
example, an image of an open-ended can may be produced by synthesizing an image
of a cylinder which is constrained by two planes perpendicular to the cylinder. The
constraints would specify those points on the cylindrical surface which lie above the
lower plane and below the upper plane. As a matter of terminology, I will use the
term quadric section to refer to a quadric surface along with a set of constraints on
that surface.

In order to use Qsyn, you must understand the coordinate systems it uses to
orient surfaces and sections. Theoretically, you could place surfaces wherever you
wanted by specifying the appropriate coe�cients in the quadric equation 3.2. In
practice, this is a pain since the coe�cients are a function of the objects position
and orientation as well as its shape. E.g.,

x2 + y2 + z2 = r2 (3:3)

describes a sphere of radius r centered at the origin. The quadric coe�cients are
A = B = C = 1;K = �(r2). Moving this sphere so that its center is at location
(x; y; z) = (10; 5; 0) gives:

(x� 10)2 + (y � 5)2 + z2 = r2 (3:4)

which when put into the form of equation 3.2 looks like

x2 + y2 + z2 � 20x� 10y + (125� r2) = 0: (3:5)

Rotating an object a�ects the quadric coe�cients in a still more complicated way.
Qsyn allows you to specify a surface using any coordinate system you desire; you

may then translate or rotate the object to move it to a di�erent coordinate system.
Qsyn uses several di�erent coordinate systems to ease the task of creating images
which are composed of multiple surfaces. Figure 3.1 shows the various coordinate
systems used, and are described here in the text.

Each surface (including constraints) is de�ned in terms of its own local coordi-
nate system. Typically you would choose the coordinate system in which it was

3.1. QSYN-SYNTHESIZE RANGE IMAGES 75

Figure 3.1: Coordinate systems used by QSYN

76 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

easiest to describe the shape you want. Each quadric section has its own coordinate
system, known as a section or object coordinate system. The latter term is perhaps
misleading in that what you think of as an object may actually consist of more than
one section.

By specifying the relationship between the local coordinate system for each sur-
face in a section to the section's coordinate system, you specify how the various parts
of the section �t together. This essentially is used to relate the constraints to the
actual surface being synthesized, with the coordinate system of the surface itself (its
local system) typically being coincident with the section coordinate system. This is
not a requirement though; the surface and its constraints are all placed relative to
a common section system, rather than the constraints being placed relative to the
local system of the surface.

The next higher level coordinate system is the reference or base coordinate sys-
tem. This is the base coordinate system for the entire image to be synthesized. Its
relationship to the object coordinate systems is the same as that of the object to local
coordinate systems. By specifying the relative locations of each object coordinate
system in the base system, you de�ne how the various quadric sections �t together,
and de�ne what the overall image will look like.

The highest level coordinate system is the viewpoint coordinate system. This
corresponds to the coordinate system for the image array, and hence, the display
equipment. The x and y axes correspond to the horizontal and vertical axes of the
display, and the z axis would be the actual pixel value, i.e., the brightness or color
of the pixel indicates the altitude. The relation between the view coordinate system
and the base coordinate system speci�es the position which you are actually seeing
the image from. In many cases the two coordinate systems may be coincident, or one
merely a translation of the other. Note that the term viewpoint system is somewhat
misleading in that this is not a range image; this transform really de�nes a plane of
projection for the image (which is fully described at the level of the base system).
The projection plane itself is the xy plane of the viewpoint coordinate system. The
image array itself is just a �nite piece of this in�nite projection plane. Speci�cally,
the origin [x; y] = [0; 0] corresponds with the pixel at location [col; row] = [0; 0]
in the image array (which is in one corner of the image). Hence, if you de�ne
the objects in your image to lie around the origin (in the base coordinate system),
when you display the image you will probably �nd that all of the objects will lie in
one corner of the image, unless you have displaced the base system relative to the
viewpoint system. Put simply, the origin of the base system will be in one corner of
the image you synthesize unless you make sure to move it { and you may end up
not seeing parts of your objects since they will be clipped at the image borders.

In Qsyn, the relations between coordinate systems is expressed in terms of six
basic motions: translations along the three coordinate axes, and rotations about
the axes. Motions along the axes go by the names of movex, movey, and movez.
Rotations about the axes go by the names of rotx, roty, and rotz, or alternatively

3.1. QSYN-SYNTHESIZE RANGE IMAGES 77

as yaw, pitch, and roll, respectively. When specifying the relationship between two
coordinate systems, the motions are given in terms of the higher coordinate system,
i.e., the higher level system is the base system. For example, to specify that the
local coordinate system for a constraint has its origin at location (x; y; z) = (10; 5; 2)
in the section coordinate system, you would specify the motion as (movex 10, movey

5, movez 2). Note that you do not specify the motion as (movex -10, movey -5,

movez -2), as this would be specifying the origin of the higher system (the section
system) in terms of the lower (the local system). This is easy to see for motions
which are pure translations, but may provide a source of confusion when rotations
are involved.

The best way to regard the motions is as being object oriented. Although you are
specifying the relationship between two coordinate systems, the lower coordinate
system can be regarded as an object in the higher coordinate system (imagine that
the lower level system has a cube sitting at its origin, and you are moving the cube
around in the higher level system). Initially, the two coordinate systems start out
with coincident axes, i.e., the lower system is an object sitting at location (0,0,0)
in the higher system. If you specify a motion of movex 10, then all `objects' in the
higher level system are displaced 10 units down the x axis. If you specify a motion
of roll 20, then all objects swivel around the z axis of the higher system. This is
not the same as simply rotating the lower coordinate system's coordinate system by
20 degrees! If the lower system's origin coincides with the higher system's origin,
then the e�ects are the same; however, if the origin points do not coincide, then the
lower system's origin will be seen to swing on an arc around the higher system's
axis. Hence, the rotation will also cause a translation in two of the axes of the
higher system. Figures 3.2 illustrate this, and also show how the order of motions
is important.

Qsyn works by reading a �le which describes the image to be synthesized.
This �le contains the quadric coe�cients for each surface and constraint (in their
own local coordinate system), and movement commands which specify how the
coordinate systems are located. Qsyn reads this speci�cation �le and generates the
image; when it is done, it prompts for the name of a �le to write the image to. The
output �le is a 2-d IFS format image. The data type for the image will be unsigned
byte, with the value of a pixel indicating its height. The nearer a pixel is, the higher
its pixel value.

The format for the image speci�cation �le is relatively simple. presented below
is a sample speci�cation �le; the format is described below. It is a text �le composed
of several blocks. These blocks may contain other blocks within them.

At the beginning of the �le is a header block which speci�es the size (number
of rows and columns) of the image to be generated, the number of quadric sections
to synthesize, and a set of motions which will translate the reference coordinate
system to the viewpoint coordinate system.

The motions which specify the relationship between the two coordinate systems

78 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

Figure 3.2: Order of motions

3.1. QSYN-SYNTHESIZE RANGE IMAGES 79

###

#

This is a QSYN description file which will generate a simple altitude image

of a clipped lead sticking through a hole in the underside of a printed

circuit board. The lead will have a "clinch angle" (angle that lead is

bent away from pointing straight up) of 80 degrees, and a "lead angle"

(angle in the xy plane -- the plane representing the PC board) of 30

degrees.

#

The image is composed of 4 pieces (quadric sections):

#

1. A cylindrical piece which is the body of the lead.

2. A plane with a hole in it which represents the circuit board.

The cylinder in (1) goes through the hole.

3. A sphere at one end of the cylinder in (1) [same radius as the

cylinder] which terminates the lower end of the lead.

4. A second spherical section which caps the other end of the lead.

This second sphere has a larger radius than the sphere, so that

the higher end of the cylinder is clipped almost in a plane.

Note that if this cap wasn't here, you'd be able to see inside the

cylinder in (1)!

#

NOTE: This file is not directly suitable to be passed as input to QSYN.

QSYN does not understand comments in a file (comments going from

the '#' symbol to the end of the line). However, a little

cleverness under Unix systems will make it suitable:

#

sed 's/#.*$//' example.q | qsyn

#

The strange looking "sed" command will edit out the comments before

piping the file into qsyn.

Eventually, I will fix QSYN so that it will remove the comments

itself.

#

###

Figure 3.3: QSYN example, page 1

80 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

#------------------------- Header section -------------------------------------

128 128 # Dimensions of image

4 # Number of quadric sections in image

This is the `base' to `viewpoint' coordinate system transform block:

roll 030 # Rotate 30 degrees about the Z axis

This rotates EVERYTHING by 30 degrees, and is

what gives the lead a "lead angle" of 30 degrees.

Note that I'm really rotating the board too, but

since the board is an infinite xy-plane, you can't

tell it. Hence, a more technically accurate, but

slightly more cumbersome way to do this is to have

the "roll 30" in the `section' to `base' transforms

of each of the actual pieces making up the lead.

movex 64 # Now I'll do a translation in X and Y so that

movey 64 # the object is centered in the image rather

movez 75 # than in the lower left corner.

end # movez 75 is just 'cause I want board at Z = 75.

#

#---------------------- End of header section ---------------------------------

This is the first quadric section. It describes the plane which represents

the printed circuit board.

SECTION to BASE coordinate system transform block.

All of the surfaces in this sections (that is, including the constraint

surfaces) will be moved by this transform.

end # A Null block (i.e., the two systems here

are coincident).

Define quadric surface:

The quadric surface coefficients:

0 0 0

0 0 0

0 0 1 0 # The plane "Z = 0"

#

and the transform relating the LOCAL system to the SECTION system:

end # Null block. systems are coincident.

end of definition for the quadric surface.

Figure 3.4: QSYN example, page 2

3.1. QSYN-SYNTHESIZE RANGE IMAGES 81

#

Now: define the constraints on the above surface:

#

1 # this is the number of constraints.

#

1 1 1 # constraint quadric coefficients

0 0 0 # X*X + Y*Y + Z*Z = 100, ie, a sphere of

0 0 0 -100 # radius 10.

#

LOCAL to SECTION transform for this constraint:

end # Once again, no transform.

And lastly, a "<" or ">" symbol which indicates on which side of the

constraint surface the object must lie:

> # The ">" specifies that my constraint

equation actually is

X*X + Y*Y + Z*Z >= 100

Hence, only points on the plane Z = 0 which

are OUTSIDE this sphere are valid.

This puts a hole at the center of my plane.

This is the second quadric section. It's the cylinder which makes up the

body of the lead. I originally define the cylinder as lying on the Z axis

(which also makes it easy to specify constraints on it). Then I use the

SECTION to BASE transform to tip the cylinder (and its constraints) over

to give the appearance of a clinched lead.

The SECTION to BASE transform: lead is clinched 80 degrees. The "movez 6"

displaces the cylinder upwards 6 units, which is needed because otherwise

the lead will be embedded in the board plane, rather than lying just above it

pitch 080 movez 6 end

Define my cylinder: cylinder on Z axis with radius 6:

1 1 0

0 0 0

0 0 0

-36

end # No transform.

Figure 3.5: QSYN example, page 3

82 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

#

Now, specify my constraints. Remember that the cylinder is defined as

lying on the Z axis (even in the SECTION system, since the above transform

was null), so the constraints clip the cylinder at right angles to its

axis. Now, the SECTION to BASE transform applies to both the cylinder

and its constraints, so the net effect is to pitch the CLIPPED cylinder

by 80 degrees.

#

2 # there will be two constraints.

0 0 0 0 0 0 0 0 1 0 end > # Constraint 1: Z >= 0

0 0 0 0 0 0 0 0 1 -34 end < # Constraint 2: Z <= 34

#

So, now I have a cylindrical piece lying between Z = 0 and Z = 34.

Note that the cylinder is NOT capped at the ends.

Section 3. This is a sphere which will cap off the lower end of the lead.

movez 6 end # The "movez 6" is same as in section 2.

1 1 1

0 0 0 # Sphere of radius 6 (at the origin in the local

0 0 0 # system) ...

-36

end # ... and at the origin in the SECTION system ...

but centered at x,y,z = 0,0,6 in the BASE system.

0 # Zero constraints.

Figure 3.6: QSYN example, page 4

3.1. QSYN-SYNTHESIZE RANGE IMAGES 83

Lastly, section 4, the sphere capping off the upper end of the lead.

You need to pay careful attention to the movements for this piece to

observe how the spherical patch does indeed end up capping off the

cylinder described in section 2. Note that the movements given here

certainly do not describe the ONLY valid way to get the patch; any of

a variety of movements would do the trick.

pitch 080 movez 6 end

1 1 1 # sphere of radius 8.

0 0 0

0 0 0

-64

movez 28.7085 end # That goofy number you have to work out from

the geometry of the situation. The sphere

is placed so that it will sit right at the

end of the clipped cylinder. The sphere

will intersect the cylinder at a height of

Z = 34 (or Z = 40 after the "movez 6" is

applied).

1 # 1 constraint:

0 0 0 0 0 0 0 0 1 -34 end > # only want that part of the

sphere which will cap off

the cylinder; I don't want

to put a big ball at the

end of the cylinder.

And now, the name of the file to write the image to:

pcb_lead.ifs

Figure 3.7: Sample QSYN input �le, page 5

84 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

are actually an instance of a type of sub-block known as a coordinate transform

block, or just transform. These transforms occur in several places, and always have
the same format. There are six basic motions which may be speci�ed in a transform
block. There are also several complex motions which are simply composites of the
basic motions. All of the motions are speci�ed by some keyword describing the
motion to perform, followed by the parameters appropriate for that keyword. The
six basic motions are those mentioned earlier: movex, movey, movez, rotz (roll),

roty (pitch), and rotx (yaw). The movex, movey, and movez commands can also be
shortened to x, y, and z. Each motion takes a single argument which is the amount to
move or the angle to rotate (in degrees). To specify a complete transform block, you
merely specify an arbitrary number of basic motions (in arbitrary order), followed
by the keyword end. The basic motions are performed in the order speci�ed. A
sample transform block might look like:

movex 20 movey 10 pitch 30 end

This will shift an object 20 units along the x axis, 10 units in y, and swing the
object 30 degrees around the y axis.

The composite motions are just shortcuts for specifying certain common sets of
motions. The combination `movex 10 movey 20 movez 30' can be speci�ed more
rapidly as `movexyz 10 20 30' or just `xyz 10 20 30'. Similarly, `rpy 10 20 30' is
short for `roll 10 pitch 20 yaw 30'. All six basic motions can be expressed using
the commands `rpyt �z�y�x�x�y�z' and `trpy �z�y�x�x�y�z'. Rpyt does the
rotations �rst, then the translations; trpy performs the translations �rst. Note that
the syntax for trpy is inconsistent in that although the translations are performed
�rst, they are the last arguments speci�ed for the command.

After the header block there comes a set of section blocks, one block for each
quadric section to synthesize. Each block describes a surface to generate, and all
the constraints for the surface. The quadric section blocks are in turn composed
of smaller blocks. The �rst sub-block is a transform block which converts from the
section coordinate system to the base coordinate system. This is followed by a sur-
face block. A surface block contains a set of quadric coe�cients to describe a single
quadric surface, and also contains a transform block which translates the surface's
local coordinate system to the section coordinate system. After the surface block
comes the number of constraints, followed by a set of constraint blocks. A constraint
block is identical to a surface block except that it contains a
ag indicating which
way the constraint inequality goes (e.g., choose all points in the surface below some
plane).

3.2 3dsyn-synthesize density images

3dsyn generates synthetic three dimensional density images of objects which are

3.2. 3DSYN-SYNTHESIZE DENSITY IMAGES 85

composed of quadric surfaces or pieces of quadric surfaces.
Usage:

% 3dsyn format�le.q
3dsyn is a program which generates synthetic three dimensional density images

of objects which are composed of quadric surfaces or pieces of quadric surfaces.
The image data is in an unsigned byte format, although a few minor changes could
be made to 3dsyn to allow for some other output data type. Image manipula-
tion is done using the IFS image manipulation routines in use at Communication
Unlimited.

3dsyn generates density images, i.e., three dimensional images which contain
three dimensional information, where the coordinates of a voxel (its row and column
and frame index) correspond directly to the x, y, and z values for the voxel, and
the voxel value itself (the datum) corresponds directly to the density for the point.
Hence, a point in three-space at position [x,y,z] corresponds to some voxel in an
image I:

[x; y; z] � > I[f; r; c] (3:6)

where I[f,r,c] is the value of the voxel at frame f, row r, column c of the image. F, r,
c, and I[f,r,c] are linearly related to z, y, and x, respectively. In 3dsyn, the linear
relationship is simply taken to be f = z, r = y, and c = x, and I[f; r; c] = density.

3dsyn generates images composed of quadric surfaces. An image may contain
any number of surfaces; in addition, each surface may also have constraints placed
on it. These constraints are also quadric surfaces (quadric inequalities). A quadric
surface is a 3-dimensional surface which may be described by a general quadric
equation:

q(x; y; z) = Ax2 +By2 + Cz2 + Fyz + (3.7)

Gxz +Hxy + Px+Qy + Rz +K = 0:

This includes common shapes such as spheres, cones, and planes. 3dsyn works by
generating a quadric surface which is bounded by a set of quadric constraints. For
example, an image of an open-ended can may be produced by synthesizing an image
of a cylinder which is constrained by two planes perpendicular to the cylinder. The
constraints would specify those points on the cylindrical surface which lie above the
lower plane and below the upper plane. As a matter of terminology, I will use the
term quadric section to refer to a quadric surface along with a set of constraints on
that surface.

In order to use 3dsyn, you must understand the coordinate systems it uses to
orient surfaces and sections. Theoretically, you could place surfaces wherever you
wanted by specifying the appropriate coe�cients in the quadric equation 3.7. In
practice, this is a pain since the coe�cients are a function of the objects position
and orientation as well as its shape. E.g.,

x2 + y2 + z2 = r2 (3:8)

86 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

describes a sphere of radius r centered at the origin. The quadric coe�cients are
A = B = C = 1;K = �(r2). Moving this sphere so that its center is at location
(x; y; z) = (10; 5; 0) gives:

(x� 10)2 + (y � 5)2 + z2 = r2 (3:9)

which when put into the form of equation 3.7 looks like

x2 + y2 + z2 � 20x� 10y + (125� r2) = 0: (3:10)

Rotating an object a�ects the quadric coe�cients in a still more complicated way.
3dsyn allows you to specify a surface using any coordinate system you desire;

you may then translate or rotate the object to move it to a di�erent coordinate
system. 3dsyn uses several di�erent coordinate systems to ease the task of creat-
ing images which are composed of multiple surfaces. Figure 3.1 show the various
coordinate systems used, and are described here in the text.

Each surface (including constraints) is de�ned in terms of its own local coordi-
nate system. Typically you would choose the coordinate system in which it was
easiest to describe the shape you want. Each quadric section has its own coordinate
system, known as a section or object coordinate system. The latter term is perhaps
misleading in that what you think of as an object may actually consist of more than
one section.

By specifying the relationship between the local coordinate system for each sur-
face in a section to the section's coordinate system, you specify how the various parts
of the section �t together. This essentially is used to relate the constraints to the
actual surface being synthesized, with the coordinate system of the surface itself (its
local system) typically being coincident with the section coordinate system. This is
not a requirement though; the surface and its constraints are all placed relative to
a common section system, rather than the constraints being placed relative to the
local system of the surface.

The next higher level coordinate system is the reference or base coordinate sys-
tem. This is the base coordinate system for the entire image to be synthesized. Its
relationship to the object coordinate systems is the same as that of the object to local
coordinate systems. By specifying the relative locations of each object coordinate
system in the base system, you de�ne how the various quadric sections �t together,
and de�ne what the overall image will look like.

The highest level coordinate system is the viewpoint coordinate system. This
corresponds to the coordinate system for the image array, and hence, the display
equipment. The relation between the view coordinate system and the base coordi-
nate system speci�es the position which you are actually seeing the image from. In
many cases the two coordinate systems may be coincident, or one merely a transla-
tion of the other. Note that the term viewpoint system is somewhat misleading in
that this is not a range image; this transform really de�nes a plane of projection for

3.2. 3DSYN-SYNTHESIZE DENSITY IMAGES 87

the image (which is fully described at the level of the base system). The projection
plane itself is the xy plane of the viewpoint coordinate system. The image array
itself is just a �nite piece of this in�nite projection plane. Speci�cally, the origin
[x; y; z] = [0; 0; 0] corresponds with the voxel at location [frame; col; row] = [0; 0; 0]
in the image array (which is in one corner of the image). Hence, if you de�ne the
objects in your image to lie around the origin (in the base coordinate system), when
you display the image you will probably �nd that all of the objects will lie in one
corner of the image, unless you have displaced the base system relative to the view-
point system. Put simply, the origin of the base system will be in one corner of the
image you synthesize unless you make sure to move it { and you may end up not
seeing parts of your objects since they will be clipped at the image borders.

In 3dsyn, the relations between coordinate systems is expressed in terms of six
basic motions: translations along the three coordinate axes, and rotations about
the axes. Motions along the axes go by the names of movex, movey, and movez.
Rotations about the axes go by the names of rotx, roty, and rotz, or alternatively
as yaw, pitch, and roll, respectively. When specifying the relationship between two
coordinate systems, the motions are given in terms of the higher coordinate system,
i.e., the higher level system is the base system. For example, to specify that the
local coordinate system for a constraint has its origin at location (x; y; z) = (10; 5; 2)
in the section coordinate system, you would specify the motion as (movex 10, movey

5, movez 2). Note that you do not specify the motion as (movex -10, movey -5,

movez -2), as this would be specifying the origin of the higher system (the section
system) in terms of the lower (the local system). This is easy to see for motions
which are pure translations, but may provide a source of confusion when rotations
are involved.

The best way to regard the motions is as being object oriented. Although you are
specifying the relationship between two coordinate systems, the lower coordinate
system can be regarded as an object in the higher coordinate system (imagine that
the lower level system has a cube sitting at its origin, and you are moving the cube
around in the higher level system). Initially, the two coordinate systems start out
with coincident axes, i.e., the lower system is an object sitting at location (0,0,0)
in the higher system. If you specify a motion of movex 10, then all `objects' in the
higher level system are displaced 10 units down the x axis. If you specify a motion
of roll 20, then all objects swivel around the z axis of the higher system. This is
not the same as simply rotating the lower coordinate system's coordinate system by
20 degrees! If the lower system's origin coincides with the higher system's origin,
then the e�ects are the same; however, if the origin points do not coincide, then the
lower system's origin will be seen to swing on an arc around the higher system's
axis. Hence, the rotation will also cause a translation in two of the axes of the
higher system. Figures 3.2 illustrate this, and also show how the order of motions
is important.

3dsyn works by reading a �le which describes the image to be synthesized. This

88 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

�le contains the quadric coe�cients for each surface and constraint (in their own
local coordinate system), the density of the material contained within that surface,
and movement commands which specify how the coordinate systems are located.
3dsyn reads this speci�cation �le and generates the image; when it is done, it
prompts for the name of a �le to write the image to. The output �le is a 3-d IFS
format image. The data type for the image will be unsigned byte, with the value of
a voxel indicating its density.

The format for the image speci�cation �le is relatively simple. Figure 3.8 shows a
sample speci�cation �le; the format (described below), is identical to the description
for QSYN except for the inclusion of density value on each line describing a quadric.

It is a text �le composed of several blocks. These blocks may contain other
blocks within them. At the beginning of the �le is a header block which speci�es
the size (number of frames, rows and columns) of the image to be generated, the
number of quadric sections to synthesize, and a set of motions which will translate
the reference coordinate system to the viewpoint coordinate system.

The motions which specify the relationship between the two coordinate systems
are actually an instance of a type of sub-block known as a coordinate transform

block, or just transform. These transforms occur in several places, and always have
the same format. There are six basic motions which may be speci�ed in a transform
block. There are also several complex motions which are simply composites of the
basic motions. All of the motions are speci�ed by some keyword describing the
motion to perform, followed by the parameters appropriate for that keyword. The
six basic motions are those mentioned earlier: movex, movey, movez, rotz (roll),

roty (pitch), and rotx (yaw). The movex, movey, and movez commands can also be
shortened to x, y, and z. Each motion takes a single argument which is the amount to
move or the angle to rotate (in degrees). To specify a complete transform block, you
merely specify an arbitrary number of basic motions (in arbitrary order), followed
by the keyword end. The basic motions are performed in the order speci�ed. A
sample transform block might look like:

movex 20 movey 10 pitch 30 end

This will shift an object 20 units along the x axis, 10 units in y, and swing the
object 30 degrees around the y axis.

The composite motions are just shortcuts for specifying certain common sets of
motions. The combination `movex 10 movey 20 movez 30' can be speci�ed more
rapidly as `movexyz 10 20 30' or just `xyz 10 20 30'. Similarly, `rpy 10 20 30' is
short for `roll 10 pitch 20 yaw 30'. All six basic motions can be expressed using
the commands `rpyt �z�y�x�x�y�z' and `trpy �z�y�x�x�y�z'. Rpyt does the
rotations �rst, then the translations; trpy performs the translations �rst. Note that
the syntax for trpy is inconsistent in that although the translations are performed
�rst, they are the last arguments speci�ed for the command.

3.2. 3DSYN-SYNTHESIZE DENSITY IMAGES 89

32 32 32

7

rpyt 0.0 0.0 0.0 15.0 15.0 15.0 end

end

0.7164 0.4030 0.4030 0 0 0 0 0 0 -87.3151 255.0 0.0

end 0

rpyt 0.0 0.0 0.0 0.0 -0.2944 -0.2944 end

0.5835 0.3352 0.3352 0 0 0 0 0 0 -65.5430 -255.0 0.0

end 0

rpyt -18.0 0.0 0.0 3.52 0.0 0.0 end

0.00923521 0.00116281 0.00116281 0 0 0 0 0 0 -0.028607 31.0 0.0

end 0

rpyt 18.0 0.0 0.0 -3.52 0.0 0.0 end

0.02825761 0.00430336 0.00430336 0 0 0 0 0 0 -0.1851891 31.0 0.0

end 0

rpyt 0.0 0.0 0.0 0.0 5.6 0.0 end

0.00390625 0.00275625 0.00275625 0 0 0 0 0 0 -0.04410 23.0 0.0

end 0

rpyt 0.0 0.0 0.0 0.0 1.6 0.0 end

1.0 1.0 1.0 0 0 0 0 0 0 -0.541696 47.0 0.0

end 0

rpyt 0.0 0.0 0.0 0.0 -1.6 0.0 end

1.0 1.0 1.0 0 0 0 0 0 0 -0.541696 47.0 0.0

end 0

Figure 3.8: Example 3Dsyn input �le (A synthetic head)

90 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

After the header block there comes a set of section blocks, one block for each
quadric section to synthesize. Each block describes a surface to generate, and all
the constraints for the surface. The quadric section blocks are in turn composed
of smaller blocks. The �rst sub-block is a transform block which converts from
the section coordinate system to the base coordinate system. This is followed by
a surface block. A surface block contains a set of quadric coe�cients to describe
a single quadric surface, the interior and exterior densities of the object, and also
contains a transform block which translates the surface's local coordinate system
to the section coordinate system. After the surface block comes the number of
constraints, followed by a set of constraint blocks. A constraint block is identical
to a surface block except that it contains a
ag indicating which way the constraint
inequality goes (e.g., choose all points in the surface below some plane).

3.3 Matte - synthesize luminance images

Name: ifsmatte.c

Action: Produces a matte luminance image given a range image and one or more
light sources of any brightnesses.

ifsmatte converts a 2d range image into a matte luminance image.

USAGE:

ifsmatte [
ags] [L�le [R�le [M�le]]]

All of these command line arguments are optional. Read on for a description of the

ags and �lenames. If the �lenames are present, they must be in the order shown
above. Some examples of good and bad usage follow...

ifsmatte (good: input will be interactive)

ifsmatte -h (good: displays this helpscreen)

ifsmatte L�le R�le M�le (good: This is the most common usage. Light sources
scanned from L�le, range image scanned from R�le and matte image written
to M�le.)

ifsmatte R�le L�le M�le (Error! Files out of order!)

FLAGS: command line
ags are...

-h short help-screen

-H long help-screen

-d debug output

3.3. MATTE - SYNTHESIZE LUMINANCE IMAGES 91

-n turn off 0-255 scaling

-f float output; default is ubyte

-b process background pixels also

-v echoes version, history, date, etc

LIGHTS: This program generates a matte image illuminated by a set of light sources
that you de�ne. You can either store the light sources in a �le and then enter the
�le on the command line (like L�le in the examples in the 'usage' section, above),
or you can enter the lights in response to prompts (by leaving the the �lenames o�
of the command line).

(Example) Here is what a light source �le would look like for 2 lights sources,
centered above a 300x300 image, with a bright light (500) to the left (column
zero) and a dim light (100)to the right (column 300).

2 /* number of lights */

150 0 1000 /* coordinates of light 1 */

500 /* brightness of light 1 */

150 300 1000 /* coordinates of light 2 */

100 /* brightness of light 2 */

Notes

1. Comments (like in the example) aren't allowed.

2. Careful with the z coordinate. Large positive z values place the light source
in front of the object (good). Negative z, or even small positive z, may
place the light BEHIND the object (bad), which may generate a null
image.

3. When you sit directly in front of the parallax looking at a 300x300 img
your face is approximately at coord- inates 150 150 1000. Use this as a
reference when positioning light sources.

4. 50 lights max.

Files: if given on command line, must be in order shown below...

Lfile - Input; holds light data; see above description.

Rfile - Input; ifs range image, 2d, assumed float

Mfile - Output; ifs matte image, 2d, ubyte unless -f is used

Algorithm:

92 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

if (filenames on command line)

read lights from Lfile

else

interactive input;

call ifsderiv to compute gradients of range image

for every pixel

Compute normal to thispix;

Compute vector from thispix to each light;

Take dot product of normal and light vectors;

Compute cosine of angle between normal and lights;

Light thispix by summing the following...

\begin{displaymath}

pixbrite = \sum_{i = 1}^{num} (light_i \cos \theta_1)

\end{displaymath}

FLAGS:command line
ags are...

-h short help-screen

-H long help-screen

-d debug output

-n turn off 0-255 scaling

-f float output; default is ubyte

-b process background pixels also

-v echoes version, history, date, etc

USAGE:Some examples...

matte \{Good. Interactive input\}\\

matte [flags] \{Good. Will prompt for files\}\\

matte Lfile Rfile Mfile \{Good. Files in order\}\\

matte Mfile Rfile Lfile \{Error! Files out of order\}

3.4 Tomosim - simulate tomographic X-ray source

This program to simulates a 3-D beam tomographic sensor Either cone-beam or
parallel-beam sensors may be simulated An ifs 3D image is used as input (as pro-
duced, for example, by 3dsyn) The program produces a set of ifs 2D images, where
each of the output images corresponds to one projection

USAGE:

tomosim inputimage numofpoints radius detector_rows detector_cols<-o> <-d n>

IFSIMG inputimage; /*three dimensional*/

3.4. TOMOSIM - SIMULATE TOMOGRAPHIC X-RAY SOURCE 93

int numofpoints; /*The number of points around a 360 degree circle,

*/

/* centered at the */

/* center of the volume specified by the input image*/

int radius; /*The distance (in voxels) from the center of the */

/* volume to the detector. Will be treated as */

/* identical as the destance from the */

/* center of the volume to the center of the detector array*/

int detector_rows; /* number of rows on the detector*/

int detector_cols; /* number of columns on the detector*/

The names of the output �les are read from stdin as they are needed. Since the
program may take quite a while to run, manually typing these names is tedious.
The recommended way to run the program is to �rst create a �le containing the
names of all the output image �les, and then to run tomosim redirecting stdin to
this �le.

Switches

-o The -o switch, if used, will use parallel-beam (orthographic) rather then conebeam
projection

-d The -d switch, if used, means that the next argument will be the debug control
value (really only of interest to the programmer)

Application: For cone beam, just specify the number of points. The sensor
rotates in x-y plane, about an origin at the center of the 3D volume provided. For
fan beam, simply specify a detector with only one row. The -o switch provides
parallel beam simulation in either single row or multiple row cases.

94 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

Chapter 4

Programs for processing

images

The following is a list of programs which exist in the ifs bin directory. (Depending
of local installations, this is usually /usr/local/bin/ifs)

These programs are for the most part, simply \mains" wrapped around some of
the standard subroutines documented in earlier chapters. These programs are only
documented brie
y here, since the operation is generally obvious.

Generally, on-line help for any program can be obtained by simply starting that
program up, but providing it an incorrect number of arguments.

add { add two ifs images, point by point Author: Wes Snyder

addhdr { adds an IFS header to a raw data �le. \rmvhdr" is the reverse function.
Perpetrator: Mark Lanzo

atoi { Converts an ascii �le to ifs. Input �le is to be in the format produced by
itoa using the -v switch. The -v switch on itoa adds two lines at the beginning
of the �le which speci�es the size and data type. Author: Wes Snyder

c2imag { take imaginary part of an ifs image, point by point Author: Wes Snyder

c2mag { take magnitude of an ifs image, point by point Author: Wes Snyder

c2phase { take phase of an ifs image, point by point Author: Wes Snyder

c2real { take real part of an ifs image, point by point Author: Wes Snyder

compmag { produces an ifs �le (type
oat) equal to the log of the square of the
magnitude of a complex image Victim: Wes Snyder

95

96 CHAPTER 4. PROGRAMS FOR PROCESSING IMAGES

ipde to ifs { converts ipde format images to ifs Author: Gary McCauley

itoa { prints an IFS 2D image in ascii format. Author: Mark Lanzo

mkdoc { makes a LaTeX compatible version of this index on standard out. Au-
thor: Wes Snyder

mult { multiply two ifs images, point by point Author: Wes Snyder

pro�le { Take a cross section of an IFS 2D image. Output is in standard plot
�lter format (to stdout). Author: Mark Lanzo

prthdr { Print the header structure for an IFS image (in human readable format).
Author: Mark Lanzo

rmvhdr { Remove the header from an IFS image to yield a raw data �le. Author:
Mark Lanzo

subsample { subsamples an arbitrary ifs image to be of a speci�ed size: Author:
Wes Snyder

recip { take reciprocal of an ifs image, point by point Author: Wes Snyder

sub { subtract two ifs images, point by point Author: Wes Snyder

vidscale { video scale an ifs image

window This program extracts a window from an ifs image. The resultant output
image is of the same data type as the input. Call: window input output xleft
ylower xright yupper

input and output are two dimensional ifs image �les. output will be created
by this program.

xleft is the index of the left-most column of the input image which should be
in the window.

ylower is the index of the lowest-index row of the desired window.

xright and yupper are the other extremes. NOTE: yupper must be greater
than ylower. Thus, upper and lower correspond to indices, not to a top-bottom
relation on a display screen. Author: Wes Snyder

Chapter 5

Programs for displaying

images

Any X-11 device can be used to display ifs images.

5.1 IMP - system for displaying, manipulating,

and processing ifs images

IMP is a new package which supports many of the features of X11 release 4. It in-
cludes a number of processing functions as well as display. Complete documentation
on IMP is available as a separate publication.

5.2 Xdisp - driver for X-windows devices

Xdisp is a general-purpose display driver which will display IFS images on any
display which supports Xwindows, version 11. If the device is only binary, the user
may select to view either a thresholded version of the image (with user-de�ned
threshold), or a dithered version.

Usage:

xdisp [-f filename] [-z zoomxy] [-l threshold] [-s] [-h]

Options:

-f flag: File name that contains ifs image.

97

98 CHAPTER 5. PROGRAMS FOR DISPLAYING IMAGES

If not specified, program prompts for name.

-z flag: Specifies integer zoom. Default is 1.

-l flag: Specifies threshold for bitmap displays. All pixels

below threshold are displayed black. Default is 0.

-s flag: Specifies shading on bitmap display. Uses 2x2 random

dither which gives 5 shades of gray.

-h flag: Prints this help statement.

Note: Other X options like -display,-geometry etc. can be used. The opened
window can be dynamically resized, as allowed by the window manager. Clicking
the image after resizing will either

1. center the image within the window, if the resized window is bigger than the
image, but not bigger than 1.5 times the size of the image, in which case the
image is automatically zoomed in that dimension

OR

2. shrink the image to a smaller size if the resized window is smaller than 67

The horizontal and vertical scrollbars are used to scroll the image within the
window, if it is smaller than the image.

In this version of xdisp, only displays with depth � 8 planes are supported.
Furthermore, it is optimized for single bit and 8 bit plane displays.

