1

INTEROPT: Philosophy

INTEROPT is a computer program specifically designed to solve difficult op-
timization problems. It establishes a convenient, easy-to-understand, dia-
logue with the user, in which the user is prompted with natural language
guestions, and asked to describe his/her optimization problem. INTEROPT
then writes a computer program based on this dialogue, and runs that pro-
gram to solve the specified problem.

INTEROPT has several capabilities that are unique in optimization theory:

Ability to find global minima

Often, an optimization problem suffers from local minima. That is, we
are interested, not in a minimum of a function, but in the best mini-
mum of that function. INTEROPT is usually able to find such minima.

Ability to deal with continuous variables

Probably the best-known technique for solving optimization problems
with local minima is Simulated Annealing; and INTEROPT is based on
a derivation of this theory. However, Simulated Annealing, as previ-
ously described in the literature, works best on problems in combinato-
rial optimization; that is, problems in which the variables take on only
a few (usually 2) possible values.

Although completely general-purpose and easy to use, INTEROPT does suf-
fer from some limitations:

Limited number of variables
Currently, INTEROPT has only been successful in solving optimization
problems with less than 30 variables

Inability to deal with constraints

So far, we have been unable to formulate INTEROPT to handle con-
strained optimization problems, with the following exception: Since the
user may specify the range of possible values of each variable (and thus
define the search space), it is often possible to formulate constraints as
conditions on this search space.

INTEROPT: Philosophy 1-1



* INTEROPT places heavy demands on computer resources.
Don't even try to run INTEROPT without at least 4 Mbytes of user-
memory. Furthermore, because of the statistical search methods used,
the faster the computer, the better. We have had good success with
DECstations and SUN-4 computers.

INTEROPT was written with the following philosophy: to develop an optimi-
zation program which can solve hard optimization problems as effectively
and as fast as possible, while requiring as little software development as
possible on the part of the user. Following this philosophy, INTEROPT talks
to the user, asking questions like

How many variables are there in this problem?

and the user replies with simple responses. A sample dialogue is given be-
low.

INTEROPT: Philosophy 1-2



1
Using INTEROPT

Most of the use of INTEROPT is self-explanatory, and the interactive help
feature is generally sufficient. However, in this section, we provide an
overview of the operation of interopt, and discuss some terminology which
might otherwise be confusing.

Modes of Operation

INTEROPT operates in basically two modes, function minimization and data
fitting. Actually, data fitting is simply a user-friendly front-end to the
function minimization capability, where the function to be minimized is
the means-squared error between the data provided and the specified func-
tion.

Function minimization

In this mode, the uses is asked to specify a function, and the range over
which to search. The global minimum of the function, within the range,
will be found. For example, suppose we are to find the minimum of

y =sin(x) / x
for m<x < 3m

Then, we simply specify the function when asked to, and specify the
bounds of the parameter x, and INTEROPT will find the value of x which
minimizesy.

Data fitting

When fitting data, we are to find the values of certain parameters which
minimimize the mean-squared-error between the data and the function.
Before we continue with this discussion, we need to carefully define a cou-
ple of terms:

TERMINOLOGY:

The terms variable and parameter are used in different ways in INTER-
OPT, and may be confused. When minimizing a function, as in the example

Using INTEROPT 1-1



Using vectors

above, we are solving for the value of the variable x which minimizesy.
However, consider a problem in function fitting (again in one dimension,
just to make the explanation clearer). Suppose we are to find the values of
p, o, and p which minimize the fit of

y=pexp (- (X -u))

to some X, y pairs of data which the user has stored in a file. In this con-
text, x is our variable, and p, 4, and o are the parameters of the fit. Unlike

the function minimization case, in the data fitting case, INTEROPT is solv-
ing for the parameters, and is given values for the variables.

The variables or the parameters, in both the cases of function minimiza-
tion and data fitting, may be vectors. In addition, the outputs may be vec-
tors in the case of data fitting. This is discussed more in the next section.

Format of data files

In the MSE fitting case, the data to be fit must be specified in an ascii data
file. The outputs are specified first. In the data fitting example given above,
the first two lines of the data file might be

1.0 0.2
0.8 0.3

for a Gaussian with mean p =0.2. In a fitting problem with vector-valued
outputs, for example

y,=py exp (2 '“))

y 5= pyexp (2 '”))

the first two lines of the data file might be

1.01.00.2
0.90.80.3
In this example, the data correspondence is

Y1¥oX

Specifying a function

A function is specified in the syntax of the C programming language.

Function minimization

When asked to type in the function to be minimized, the user should type
an equation of the form.
y =f(x). For example:

Using INTEROPT 1-2



y=a*atb*exp(3*x*Xx)
Data fitting

When asked to type in the function to be fit, the user should type the equa-
tion(s) in the same form, likewise using the syntax of C, but in this case,
the user must specify which of the possible outputs is computed. For exam-
ple,

y[0] =a*a+bl*exp (9*x*x);\

y[1l] =a*a+b2*exp (3*X*X)

The use of the array structure for y is required here, since INTEROPT can
find the set of parameters which simultaneously fit several outputs. Note
that no semicolon is required after the last line.

Continuation lines

When specifying a function to INTEROPT, lines may be continued by termi-
nating the line with a \ (backslash). NOTE: Some shells (csh in par-
ticular) treat backslash as a special symbol. In such a case, the back-
slash must be escaped (type two backslashes)

Complex expressions

The expressions entered as functions are arbitrarily complex C expres-
sions, and may contain IF statements and local variables. In this case, en-
close the entire expression in curly brackets. For example

{\

double xtemp;\

xtemp =x-z,)\

iIf (xtemp < 0.0) y[0] = 3.14159;\
else y[0] = In(xtemp);\

}

Note that no semicolon is required after the last line.

Peculiar Conditions

X cannot deal with singularities. In the case of positive singularities, (for
example, y = sin(x) / x ), X CAN fail with the famous "Floating point excep-
tion" error message. It is necessary for the user to be sure that no such sin-
gularities exist within the range of possible values. The example of sin(x)/x
is particularly bad, since the singluarity actually occurs at the minimum.

Negative singularities cause a different problem: X tries very hard to find
the minimum of the function. A negative singularity is therefore extremely
attractive, and X will end up in the singularity every time.

The other condition which can cause problems is the case of transcendental
functions such as exp or In, in which the arguments can only take on par-
ticular ranges of values. That is, exponents with arguments larger than 50
or smaller than -50 are not permitted, nor can one have logarithms with
negative arguments. These two special cases (In and exp) are explicitly
trapped and handeled by X. The expression entered by the user is scanned
before compilation and converted into another function call which will not

Using INTEROPT 1-3



allow illegal argument values. If such arguments are passed to the func-
tion, an error message is given, a "reasonable” value is returned, and the
program continues to run. NOTE: Deep within the guts of X, the exp func-
tion is called, even though it may not be called explicitly by the user.
Therefore, the user will occassionally see the argument out of range to exp
function error message occur. Just ignore such warnings.

Using INTEROPT 1-4



linstalling INTEROPT

In this section, we provide some description of the files and directory struc-
tures used by Interopt,

Installing INTEROPT on Unix systems

INTEROPT is set up to run very effectively on UNIX and UNIX look-alike
systems. As discussed earlier, speed of operation was a primary considera-
tion, and therefore, the most effective means of software generation was
used. INTEROPT actually write programs, and then, via operating system
calls, compiles and executes those programs. To install INTEROPT on a
UNIX system, simply copy the existing files in the directory structure speci-
fied, using FTP, rcp, or whatever other file transfer program you wish, or
reading from the distribution TAR tape.

Disk space required

Disk space requirements for INTEROPT are minimal. A fully configured
system generally requires around 500Kbytes.

Directories

Within the home directory for INTEROPT (which we refer to henceforth
as HOME/), several subdirectories are required.

* src: This directory contains the source of the INTEROPT main pro-
gram and subroutines. If you are on a machine with a system-level in-
stallation, you may use symbolic links for all of these EXCEPT opt.c.
This file is modified, and must actually exist in your directory

* obj: This is a temporary directory used to hold object files during com-
piles. It may be empty when you first receive INTEROPT.

* include: This directory contains include (.h) files used by INTEROPT.
It may be a symbolic link.

e demos: This directory may not exist in your installation. It contains ex-
amples of data fitting and function minimization. It is not required.

* interopt.workdir: This directory is generated automatically by IN-
TEROPT and used to hold temporary results. It may or may not exist
when you receive your distribution. If it does not exist, INTEROPT will
automatically make it. Afterward, under certain conditions, INTER-

Installing INTEROPT 1-1



OPT will try to make this directory even though it already exists. If
that happens, you will see the message:

interopt.workdir: directory exists
Just ignore this message.

After copying the INTEROPT directories, build INTEROPT by changing
directories to HOME/ and typing

make interopt.

If you wish INTEROPT to plot its output (in the case of fitting data to
curves) and your computer supports X11, type

make Xinteropt.

Source files

INTEROPT uses a number of files, some automatically generated, and
some modified at run time. In the following, only the files which the user
may have questions about are documented.

src/interopt.c

This file is the source for INTEROPT. It is a rather complex sequence of 1/0
functions which result in the generation of a number of temporary files. Do
NOT hack around with this program!

src/opt.c

This file is modified by INTEROPT, and, when compiled and linked, be-
comes the program which actually performs the minimization.

Executable files

Two programs are of primary interest to the user: INTEROPT itself, and
OPT. INTEROPT is run by the user, and generates OPT automatically as
a result of an interactive dialogue with the user. Another program, THE-
ORY, is likewise automatically generated by INTEROPT, and used if re-
sults are to be plotted on an Xwindows graphics device.

Results files

After optimizations have been run, answers may be found in two places:
parameters.h

Answers.dat

Installing INTEROPT 1-2



Answers.dat is the more useful of these output files. Furthermore, it will
contain accumulated results in the case of fitting several sets of data to the
same function. parameters.h contains only the last result. Parameters
are identified in Answers.dat by the logical name given by the user. An-
swers.dat is re-initialized at the beginning of each INTEROPT run.

Log files

INTEROPT logs all commands which are typed to it into interopt.log. This
file may be renamed, edited if needed, and used for input (by redirecting
standard in) on later runs. Using this file is the preferred means of opera-
tion, since interactive dialogues take so long.

Command files

compare.com is a command file used when Xinteropt is run. This script
will generate plots of theoretical vs actual data, using the theoretical pa-
rameters derived by the fit. Since graphics operations are very site-
specific, thi

Installing INTEROPT on non-unix machines

INTEROPT is designed to make optimal use of computer performance by
writing, compiling, and running other programs as sub-processes of INTER-
OPT itself. For that reason, its structure is highly operating-system de-
pendent. To modify INTEROPT for other operating systems, you must have
a unix specialist available.

Most of the operating-system dependent software is located in the file
nonstandard.c, and modifying this subroutine to comply with the nature
of your operating system will be most of the work, however, there may be
other dependencies elsewhere within INTEROPT. (Suggestion, buy a UNIX-
based machine. It's cheaper than hiring a software guru).

Installing INTEROPT 1-3



Installing INTEROPT 1-4



2 Running Interopt

Running Interopt from another directory

Once INTEROPT is installed in the system-wide INTEROPT directory,
you will need to make a special directory in which to run it, and you will
need some of the files from the system directory. The easiest way to do
this is to create a directory in your area and call it INT. Then, within this
directory, establish symbolic links to the system INTEROPT directory. For
example, suppose the system INTEROPT directory is /usr/local/interopt.
From your home directory, type

mkdir myinteropt

cd myinteropt

In -s /usr/local/interopt/src src

In -s /usr/local/interopt/include include

In -s Zusr/local/interopt/libinteropt.a libinteropt.a
mkdir demos

alias interopt /usr/local/interopt/interopt

In this structure, you would put your data files in your demos directory,
and would run INTEROPT by typint

interopt

or , if you are redirecting standard input,
interopt < demos/commandfile

Of course, you don’t have to use a demos subdirectory, you can put your
data files anywhere you wish.

Running Interopt 2-1



INTEROPT control parameters

INTEROPT has only 3 control parameters. They are specified on the com-
mand line as follows:

« -dds
ds is an optional "rate" term specified on the command line. The
smaller this number is, the slower INTEROPT will run. However, slower
runs will generally result in more accurate answers. This parameter,
called ds, specifies the amount of variance of the energy which is re-
moved per iteration. This parameter is exactly analogous to the en-
tropy in a physical process. Slower is equal to more careful. The default
value for ds is .01.
Example:
interopt -d .001

or, if redirecting standard input

interopt -d .001 < commandfil

* -s datasets
In the application of INTEROPT to data fitting, it is often useful to be
able to have a numver of data sets in the same input file. The number
of elements in a single data set is one of the questions answered in the
interactive dialogue. However, if the file contains many such data sets,
this command-line argument may be used to specify that fact. In the
case of multiple data sets, the sets are not separated at all in the input
file. The second N elements simply follows the first N.

* -h
Help. If this switch is specified, a help message will be given, and the
program initiated.

Running Interopt 2-2



