Image File System

Reference Manual
Version 5.1

September 4, 1991

Acknowledgements

Based on suggestions by Wesley Snyder of North Carolina State University and
Joe FErkes of General Electric’s Corporate Research and Development Center, the
staff of Communication Unlimited, Inc. designed and coded IFS version 1 during the
fall on 1986. Mark Lanzo designed and implemented most of versions 1-4, although
other members of the CUI staff contributed heavily, including Katie Boone, Mark
Yarboro, Gary McCauley, Bennett Groshong, and Paul Hemler. Katie Boone is
responsible for version 5.

IFS is a trademark of Communication Unlimited, Inc. CUI has granted to North
Carolina State University a nonexclusive license for the use of TFS.

i

Contents

1 TIFS Reference Manual 1
1.0.1 New with Version b 2

1.1 UsingIFS 2
1.1.1 Program Compilation and Linking 2

1.2 Referencing IFS images 3
1.2.1 Naming conventions in IFS 5

1.3 Error handlingin IFS 000 5
1.3.1 Image validationin IFS 10
1.3.2 Coordinate systems and array storage in IFS 11

1.4 TFS FUNCTION LISTING 13
141 afsale 0oL 14
1.4.2 ifscigp . . . oL 15
1.4.3 ifscigp3do 16
1.4.4 afscipp 17
1.4.5 afscippdd . . . oL 18
1.4.6 ifscfgp . . . o Lo 19
1.4.7 ifsefgpdd . . 0o 20
1.4.8 afsefpp o 21
1.4.9 afsefppdd 22
1.4.10 Ifsclose 23
1.4.11 ifsereate 24
1.4.12 ifsdimeno 27
1.4.13 ifsexwino 28
1.4.14 ifsexwinddo 29
1415 afsfgp o0 30
1.4.16 afsfgp3d 31
1417 afsfpp . . o o o 33
1.4.18 ifsfree oo 34
1.4.19 ifsGetFN00 36
1.4.20 ifsGetlmgo 37

11

v

1421 ifsigpo
1422 ifsippo
1.4.23 ifsmkh
1.4.24 ifsopen L
1.4.25 afspin . . .00
1.4.26 ifspot
1.4.27 ifsPrsFN . 0 0 0000
1.4.28 ifsPutlmg oo
1.4.29 ifsRdHdr
1.4.30 ifsRdlmg
1.4.31 afssizo
1.4.32 ifsslice
1.4.33 ifsversion
1.4.34 ifsWrlmgo
1.5 TIFS Error Codes
1.6 IFS Data Types.
1.7 The structure of an IFS image
1.7.1 The image header fields
1.7.2 The dimension sub-header fields

2 TImage Processing Subroutines

2.1 Subroutine descriptions L.
211 ifsadd
2.1.2 afsefft2d oo
2.1.3 ifscZimago o
214 ifsc2mag
2.1.5 ifsc2phase
2.1.6 ifsc2real
217 ifsmulto
2.1.8 dfsrecip.o
2.1.9 ifssub ..o Lo

3 Image Synthesis Programs

3.1 qgsyn-synthesize range images
3.2 3dsyn-synthesize density images
3.3 Matte - synthesize luminance images

3.4 Tomosim - simulate tomographic X-ray source

4 Programs for processing images

CONTENTS

CONTENTS v

5 Programs for displaying images 97
5.1 IMP - system for displaying, manipulating, and processing ifs images 97
5.2 Xdisp - driver for X-windows devices 97

vi

CONTENTS

List of Figures

1.1
1.2
1.3
1.4
1.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Example IFS program to threshold an image 4
First portion of example, see Figure 1.3 for remainder 6
Example IFS program to threshold an image 7
Example IFS program to threshold an image 8
Example IFS program to extract a sub-image 9

Coordinate systems used by QSYN 75
Order of motions 78
QSYN example,page 1. 79
QSYN example, page 2.o 80
QSYN example, page 3. 81
QSYN example, page 4.o 82
Sample QSYN input file, page b 83
Example 3Dsyn input file 89

i

LIST OF FIGURES

Chapter 1

IFS Reference Manual

IFS (Image File System) is a set of routines used to manipulate images, from within
C programs. An image just refers to any array of data. The term came into use be-
cause |IFS was originally written to manipulate 2-dimensional pictures, such as ones
obtained from a standard camera. However, IFS is not restricted to 2-dimensional
images, and is capable of handling arrays of arbitrary dimensionality. In the cur-
rent release of IFS, most of the image manipulating routines are designed specifically
for 2-dimensional data. Later releases of IFS will have enhanced multidimensional
routines.

IFS is a simple system to use, and hides from the user the implementation de-
tails of basic data manipulation functions, such as allocating space for data arrays,
performing I/0O, and manipulating images with different data formats. IFS is in-
tended as a development tool for program writing, and is not designed to for high
execution speed. Use of the standard IFS image access functions (such as ifsigp) is
in fact quite slow in some operations. It is efficient when the aim is to write and
test programs quickly and easily. IFS does provide, however, access to pointers and
data types which allow very efficient software to be written while retaining the IFS
image structure.

This document gives some very brief instructions on the use of IFS, and provides
documentation for the individual IFS functions. Any questions not answered here
need to be directed to the author(s). Questions should be sent to:

Rosalyn Snyder

Communication Unlimited, Inc.
3603 Octavia St.

Raleigh, NC 27606

2 CHAPTER 1. IFS REFERENCE MANUAL

1.0.1 New with Version 5

e Support for X-windows. IFS images may now be displayed on any X-windows
device. The graphics support automatically determines the dynamic range of
the graphics device (many X-windows devices are binary, for example), and
either thresholds or dithers, at the user’s command.

e CPU independent code. Various computers use different conventions for stor-
age of bytes within a word, necessitating byte-swapping when one machine
reads a file written on another. Furthermore, depending on the computer,
byte swapping may be required on 16 bit or 32 bit boundaries, or both. Fi-
nally, there are at least two different conventions for floating point data, DEC
and IEEE (which must still be corrected after byte swapping) IFS Version
5 automatically determines what type of machine it is running on and de-
termines what type of machine wrote the input file. Should the input file
be incompatible, the IFS file read routine automatically performs all data
CONVETsions.

1.1 Using IFS

1.1.1 Program Compilation and Linking

In order to use IFS, the user needs to link his programs to the IFS library at com-
pilation time. To specify these libraries, one would use the switches -lifs on the cc
or ld command. For example, a typical command to compile a program would look

like:

cc —g test.c -o test -lifs

To actually make use of the IFS functions, the user’s program also needs to
#include a header file or two to define various structures used by the IFS routines.
All programs which use IFS should include the files jstdio.h; and < ifs.h >. Most
IFS routines will return error codes through an external (global) variable called
ifserr; if the user plans to examine these error codes he should also include the
header file < ifserr.h >. This file defines a set of symbolic constants which one
may use rather than using actual values for codes. It is not wise to use actual
values in place of these constants when writing programs as the definitions for the
constants may change from one release of IFS to the next.

1.2. REFERENCING IFS IMAGES 3

1.2 Referencing IFS images

All IFS images include a header which contains various items of information about
the image, such as the number of points in the image, the number of dimensions
for the image, the data format, and so on. Also associated with the image is the
actual data for the image. The image header includes a pointer to the image data.
The user manipulates an image by calling some function in the IFS library; one of
the arguments to the function will be the address of the header for the image. The
functions will automatically figure out where the data is and how to access 1t from
the information in the header. In addition to handling the work of accessing data
in images, the IFS routines automatically take care of allocating space in memory
to store data and headers. Everything is totally dynamic in operation; there are
no fixed-dimension arrays needed. This relieves the user of the difficulties involved
with accessing data in arrays (when using C), when the arrays are not of some fixed
size.

The header structure for an image is defined in the file < ifs.h >, and is
known by the name IFSHDR. To manipulate an image, the user merely needs to
declare a pointer to an image header structure (as IFSHDR * your_image; or IFSIMG
your_image;). Then, the user simply calls some IFS function to create a new im-
age, and sets the pointer to the value returned from that function. Some typical
programs are given in the examples in Figures 1.1 through 1.5.

4 CHAPTER 1. IFS REFERENCE MANUAL

#include <stdio.h>
#include <ifs.h>

main()

{

IFSIMG imgl, img2; /* Declare pointers to headers */

int len[3]; /* len is an array of dimensions, used by ifscreate */
int threshold; /* threshold is an int here */

int row,col; /* counters */

int v;

imgl = ifspin("infile.ifs"); /* read in file by this name */
len[0] = 2; /* image to be created is two dimensional */
len[1] = 128; /* image has 128 columns */

len[2] = 128; /* image has 128 rows */

img2 = ifscreate("u8bit",len,IFS_CR_ALL,0); /* image is unsigned 8 bit
*/
threshold = 55; /* set some value to threshold */
for(row = 0; row < 128; row++)
for(col = 0; col < 128; col++)
{
v = ifsigp(imgl,row,col); /* read a pixel as an int */
if (v > threshold)
ifsipp(img2,row,col,255);

else
ifsipp(img2,row,col,0);
}
ifspot(img2, "img2.ifs"); /* write image 2 to disk */

}

Figure 1.1: Example IFS program to threshold an image using fixed values of di-
mensions and defined data type

1.3. ERROR HANDLING IN IFS 5

1.2.1 Naming conventions in IFS

All of the IFS functions have names which begin with the letters ifs, so users should
have no problems avoiding conflicts when naming their own functions. Also, all
external variables or #define’d constants also begin with the letters “ifs” or “IFS”.
Originally, all IFS routines had names which were limited to 6 characters in an
effort to improve compatibility between different compilers. Unfortunately, with
three of the letters already being fixed (as “ifs”), this doesn’t leave much left to
create meaningful function names with. Hence, many IFS functions have rather
cryptic names. Later versions of IFS have relaxed this restriction, so that newer
functions have longer and more descriptive names.

Starting with release 3.0 of IFS, all of the IFS functions also have version numbers
built into them. These ‘version numbers’ are actually printable strings which are
globally accessible. These strings usually contain the function’s name, a version
number, and the date of the last modification to the function. Other items of
information may occasionally also be contained in the string. If an IFS function has
a name 2fs X XXX, where XXXX is just some stem naming the function, then the
string which gives its version number will have the name ifsv_ XXXX. For instance,
if a user wanted to know what version of the function ifscreate was in his IFS library,
he could include the statements

extern char * ifsv_create;

printf("%s\n",ifsv_create);

somewhere within his program. Also, the function ifsversion can be used to print
out the version strings of all functions in the IFS library.

1.3 Error handling in IFS

IFS provides various levels of error checking. When an error occurs, an IFS function
usually returns some sort of error flag. IFS also has two external (global) variables
which relate to error handling. The first one i1s known as ifserr, and is set to
error code(s) which the user may examine to help determine what went wrong.
The second one is IFSSLV (for “IFS Severity Level”), which affects the action IFS
takes upon detecting an error. Both of these variables are declared as "extern int”
variables in the header file < ¢fs.h >, so it is not necessary for the user to declare
them.

The various error codes which may be returned are defined in the header file
< ifserr.h >, which the user should make sure to include in his program if he
plans on using ifserr. These error codes are described in detail in Section 1.5.
Scrutinizing the file < ifserr.h > may also prove useful. The error codes are

6 CHAPTER 1. IFS REFERENCE MANUAL

#include <stdio.h>
#include <ifs.h>

main()

{

IFSIMG imgl, img2; /* Declare pointers to headers */

int *len; /* len is an array of dimensions, used by ifscreate */
int frame,row,col; /* counters */

float threshold,v; /#* threshold is a float here */

imgl = ifspin("infile.ifs"); /* read in file by this name */
len = ifssiz(imgl); /* get dimensions of input image */

/* ifssiz returns a pointer to an array of dimensions*/

img2 = ifscreate(imgl->ifsdt,len,IFS_CR_ALL,0);
/* output image is to be */
/* same type as input */
threshold = 55; /* set some value to threshold */

/* check for one, two or three dimensions */
switch(len[0]){
case 1: /* 1d signal */
for(col = 0; col < len[1]; col++)
{
v = ifsfgp(imgl,0,col); /* read a pixel as a float */
if (v > threshold)
ifsfpp(img2,0,c0l,2565.0); /* write a float */
/* if img2 not float, will be converted*/
else
ifsfpp(img2,0,c0l,0.0);
¥

break;

case 2: /% 2d picture */
for(row = 0; row < len[2]; row++)
for(col = 0; col < len[1]; col++)
{
v = ifsfgp(imgl,row,col); /* read a pixel as a float */
if (v > threshold)
ifsfpp(img2,row,col,255.0);/* store a float */
else
ifsfpp(img2,row,c0l,0.0);

break;

Figure 1.2: First portion of example, see Figure 1.3 for remainder

1.3. ERROR HANDLING IN IFS

case 3: /* 3d volume */
for(frame = 0; frame < len[3];frame++)
for(row = 0; row < len[2]; row++)
for(col = 0; col < len[1]; col++)
{
v = ifsfgp3d(imgl,frame,row,col); /* read a pixel as a float */
if (v > threshold)
ifsfpp3d(img2,frame,row,col,255.0);
else
ifsfpp3d(img2,frame,row,co0l,0.0);

}
break;
default: printf("Sorry I cant do 4 or more dimensions\n");
}
ifspot(img2, "img2.ifs"); /* write image 2 to disk */
}

Example TFS program to threshold an image using number of di-
Figure 1.3: mensions, size of dimensions, and data type determined by the
input image

8 CHAPTER 1. IFS REFERENCE MANUAL

#include <stdio.h>

#include <ifs.h>

main()

{

IFSIMG imgl, img2; /* Declare pointers to headers */

int len[3]; /* len is an array of dimensions, used by ifscreate */

int size; /* number of bytes in image */

int threshold; /* threshold is an int here */

register int count; /#* number of pixels in image */

register unsigned char *ptri,*ptro;

imgl = ifspin(""); /* read in file; prompt user for name */

len[0] = 2; /* image to be created is two dimensional */

len[1] = ifsdimen(imgl,0); /* get columns of input */

len[2] = ifsdimen(imgl,1); /* get rows of input */

img2 = ifscreate("u8bit",len,IFS_CR_ALL,0); /* image is unsigned 8 bit */
threshold = 55; /* set some value to threshold */

ptri = (unsigned char *)imgl->ifsptr; /* get address of input data */
ptro = (unsigned char *)img2->ifsptr; /* get address of output data */
size = len[1] * len[2]; /* compute number of pixels */

for(count = 0; count < size; count++)

{
if (*ptri++ > threshold)
*¥ptro = 255;
else
*ptro = 0;
ptrot++;
}
ifspot(img2, ""); /* write image 2 to disk, prompt user for */
/* file name */
}
Example IFS program to threshold an image
Figure 1.4: using two dimensions, size of dimensions determined by input file,

and defined data type of unsigned char on both files. Pointers are
used for speed.

1.3. ERROR HANDLING IN IFS

#include <stdio.h>
#include <ifs.h>
#include <ifserr.h> /* optional */

main()
{
IFSHDR * imgl, * img2; /* Declare pointers to headers */

imgl = ifsmkh(128, 128, "char"); /* make a 128%128 2-d image
/* Space for data & header
are automatically allocated */

. manipulate image 1

img2 = ifs_exwin(img1,10,10,100,75); /* extract a sub-image
/* of the original image (imgl) and call it img2 */

ifspot(imgl, "imgl.ifs"); /* write image 1 to disk */

Figure 1.5: Example IFS program to extract a sub-image

*/

*/

10 CHAPTER 1. IFS REFERENCE MANUAL

indicated by individual bits in ifserr, so it is actually possible for several error
flags to be set simultaneously. Also, some error codes are actually combinations of
other codes. For instance, the codes IFSE_ZNO_OPEN and IFSE_NOT_IMAGE are two
possible errors which may occur when trying to read or write IFS images. If the
user checks for the condition IFSE_IO_ERR, he has automatically tested for both of
the errors IFSE_ZNO_OPEN and IFSE_NOT_IMAGE. The way to test for such error

codes is with the bitwise logical AND operator, rather than with a comparison. l.e.:
if (ifserr & IFSE_IO_ERR)

is preferable to:

if (ifserr == IFSE_IO_ERR)

because in this way, more than one bit may be tested, or just a single bit.

The second global variable, IFSSLV, allows the user to specify what action to
take when an error occurs. Currently, there are three possible courses of action to
take upon an error; these are chosen by setting IFSSLV to some “severity level” code.
The three severity levels are represented by the constants IFS_QUIET, IFS_ZWARN,
and IFS_FATAL (which are defined in < ifs.h >). These affect the action taken

upon the occurrence of an error as follows:

IFS_QUIET Do not print out any error messages to the user. The function just
returns an error code to the calling routine. The user must make sure to
watch out for this code, and act accordingly. If the error is not handled, the
program will probably crash.

IFS.WARN If an error occurs, print out some message describing the error (to
stderr). The routine also returns the appropriate error code. This allows
the user to know what is going on, but still allows the program to trap errors.
IFS_WARN is probably the recommended severity level for most applications,
and is the default value for IFSSLV.

IFS_FATAL If an error occurs, print out an error message, and abort the program.
This is not an exceedingly user-friendly option, but is probably better than
the perennial Unix favorite “bus error: core dumped”.

1.3.1 TImage validation in IFS

Most IFS functions will double-check the header of an image before attempting to
perform some operation on the image. This is done to verify that the argument
the user passed to the function legitimately points to an IFS image, and does not
just represent some random value. The most likely source for such an error would
be insufficient error checking in a user’s program, when the severity level variable
IFSSLV was set to some value other than IFS_FATAL. For instance, a section of code
such as

1.3. ERROR HANDLING IN IFS 11

img = ifsmkh(nrows, ncols, "ubyte");
ifsipp(img, 10, 20, 255);

(which attempts to create an image and set the pixel at location 10,20 to a value of
255) could be a potential source for an error, if ifsmkh had been incapable of creating
the image as requested. It would then have returned the value NULL, which would
be passed to the function ifsipp. If ifsipp did not check the header, it would blindly
attempt to use NULL as a pointer to an image header, which would probably crash
the user’s program.

The problem with this error checking is that it takes time to perform. If an
image was 100 by 100 pixels in size, and the routine ¢fsipp was used to set the value
of each pixel in the image, then the header would end up being checked 10000 times!
For a program which accesses an image(s) heavily, this header checking overhead
takes a significant amount of time. Timing analyses on sample programs have shown
that it is possible for 30% of the CPU time used by a program to be spent in the
header checking operation.

The user may disable the header checking operation in some IFS routines. This,
of course, places upon the programmer the responsibility to perform more extensive
error checking operations, if robust code is desired. If the user sets the external
integer variable IFSCHK to zero, then certain routines will cease to check image
headers. Header checking can be re-enabled by setting IFSCHK to any non-zero
value. Note that not all of the IFS routines are affected by IFSCHK. Generally,
only those routines which are called with high frequency, and for which the header
checking represents a significant fraction of the execution time for that function, will
be affected by this variable. Incidentally, it is not necessary for the user’s program
to declare IFSCHK. As with IFSSLV and ifserr, this is declared in the header file
<ifs.h>.

1.3.2 Coordinate systems and array storage in IFS

IFS stores arrays in the same manner that C normally does. As with C, the indices
for arrays start with zero rather than one. For example, if you create an image with
30 rows and 20 columns, then valid row indices for that function range from 0 to
29, and column indices may go from 0 to 19.

One common source of confusion is the usage of the terms row and column to
denote array subscripts when working with 2-dimensional arrays. It is quite typical
for a user’s program to view the coordinate system in terms of an z and a y axis.
The intent in IFS is that the column axis represents the horizontal axis, and the row
axis 1s the vertical. Hence the width of the image is equivalent to the number of
columns in the image, and height is the number of rows. It is common usage that
the z axis 1s the horizontal axis, hence a column coordinate is synonymous with
an z coordinate. If this is the coordinate system you normally use, beware of the

12 CHAPTER 1. IFS REFERENCE MANUAL

temptation to write code of the form:

int x, y;

for(x=0;x<width;x++)
for(y=0;y<height;y++)
ifsipp(img, x, y, value);

The correct code in this case should be:

int x, y;

for(x=0;x<width;x++)
for(y=0;y<height;y++)
ifsipp(img, y, x, value);

Unfortunately, people have a tendency to write coordinate pairs as (z ,y) or
(row,column), but these two are not synonymous if you interpret z , y , row, and
column in the manner described above.

A second problem occurs when displaying images on graphics output devices.
There 1s no set standard as to where the origin of the coordinate system is among
graphics displays. It is probably most common that the origin is in the upper left
corner of the display, and moving in the positive direction along the column axis
moves you to the right, and moving in the positive direction along the row axis
moves you downwards. Some devices place the origin in the lower left corner of
the screen, and moving in the positive row direction moves you towards the top of
the display. The positive column direction still usually is to the right. This also
corresponds to the way most people label axes when hand-drawing a graph. The
net affect here is that images displayed in this coordinate system will be upside-
down as compared to the first type of system. To further confound the issue, many
programs which plot on printers reverse the meaning of the z and y axes, so that
images plotted in this manner are rotated by 90 degrees in one direction or another.

The point of these warnings about display coordinate systems is that IFS knows
nothing about the nature of the user’s display mechanism. There 1s no specific
“up”, “down”, “left”, or “right”. The user should not be too surprised if an image
appears flipped or rotated from what was expected.

1.4. IFS FUNCTION LISTING 13

1.4 IFS FUNCTION LISTING

This section lists all of the functions in the IFS library, in alphabetical order. The
convention used to describe the syntax for the function 1s:

return_value = function_name(argi, arg2, R I
typeof return_value;

typeof argil;

typeof arg2;

where “typeof” denotes a C variable type (such as “int”, “float”, “char *”, or

“IFSHDR *7, or other TYPEDEF’s or STRUCT"s). For instance, the sample de-
scription

p = ifsalc(numbytes);

char * p;
int numbytes;

indicates that the function ifsalc returns a pointer to a character, and that it takes
one argument, which is an integer.

14 CHAPTER 1. IFS REFERENCE MANUAL

1.4.1 1ifsalc

ifsalc — allocate storage (memory)

cptr = ifsalc(NumBytes);
char * cptr;
int NumBytes;

Ifalc is an IFS function used to allocate storage in main memory — such as for
storing arrays and image headers. The storage will be initialized to all zeroes. It is
essentially just a call to the system function calloc; the only difference being that
ifsale performs a small amount of error checking. If the system can not allocate the
requested amount of storage, then ifsalc will return the value NULL, and the exter-
nal variable ifserr will be set to the value IFSE_ZNO_MEM. If the external variable
IFSSLV is not set to the value IFS_QUIET, then ifsalc will write an error message to
stderr if it can’t allocate the requested space. If IFSSLV is set to IFS_FATAL, then
ifsale will also abort your program upon an error.

Ifscigp 15

1.4.2 ifscigp

ifscigp — get pixel value from a 2-d (possibly complex) image
Usage:

val = int ifscigp(ptri,row,col)]{}

IFSHDR *ptri; /*pointer to image header structure
int row,col,val; /*coordinates (in pixels) of pixel to examine.*/

Ifscigp returns (as an int) the value of the pixel at a specified coordinate in
a 2-d image. If image is “complex” format, returns the imaginary portion of the
number.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ Tf the pixel value won’t fit in an “int” (for example, a large number in a “float”
or “complex” image), then results are undefined. Maybe you get garbage,
maybe your program aborts on an overflow type of error.

16 CHAPTER 1. IFS REFERENCE MANUAL

1.4.3 ifscigp3d

ifscigp3d — get pixel value from a 3-d image
Usage:

val = int ifscigp3d(ptri,frame,row,col);
IFSHDR *ptri; /* pointer to image header structurex/

int frame,row,col; /*coordinates (in pixels) of pixel
to examine.*/

Ifscigp3d returns (as an integer) the value of the pixel at a specified coordinate
in a 3-d image. If image is “complex” format, returns the imaginary portion of the
number (assuming it can be converted to an int).

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ Tf the pixel value won’t fit in an “int” (for example, a large number in a “float”
or “complex” image), then results are undefined. Maybe you get garbage,
maybe your program aborts on an overflow type of error.

Ifscipp 17

1.4.4 ifscipp

ifscipp — set pixel value in a 2-d image
Usage:

status = ifscipp(ptri,x,y, val);
IFSHDR *ptri; /*pointer to image header structurex/

int x,y; /*coordinates (in pixels) of pixel to examine.*/
int val;
int status; /*return status*/

Returns:
IFS_SUCCESS or IFS_FAILURE

Ifscipp sets the value of the pixel at a specified coordinate in a 2-d image, where
the input is a int. If image is “complex” format, stuffs the imaginary portion of the
number, and DOES NOT set the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the value stuffed won’t fit in the output image datatype, then results are
undefined. Maybe you get garbage, maybe your program aborts on an overflow
type of error.

18 CHAPTER 1. IFS REFERENCE MANUAL

1.4.5 ifscipp3d

ifscipp3d — set pixel in a 3-d image
Usage:

status = ifscipp3d(ptri,frame,row,col,val);
IFSHDR *ptri;

int frame,row,col; /*coordinates (in pixels) of pixel
to examine.*/
int status; /*return status*/

Returns:
IFS_SUCCESS or IFS_FAILURE

Ifscipp3d sets the value of the pixel at a specified coordinate in a 3-d image,
where the input is integer (byte, ubyte, etc). If image is “complex” format, stuffs
the imaginary portion of the number, and sets the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the value stuffed won’t fit in the output image datatype, then results are
undefined. Maybe you get garbage, maybe your program aborts on an overflow
type of error.

Ifsctgp 19

1.4.6 ifscfgp

ifscfgp — get value of a pixel in a 2-d image.
\item [{\em Usage:}]1{}

val = (double) ifscfgp(ptri,row,col);
IFSHDR *ptri;

int row,col; /*coordinates (in pixels) of pixel
to examine.*/

Ifscfgp returns (as a float) the value of the pixel at a specified coordinate in
a 2-d image. If image is “complex” format, returns the imaginary portion of the
number.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the pixel value won’t fit in a “double” results are undefined. Maybe you get
garbage, maybe your program aborts on an overflow type of error. There
could be possible round off errors.

20 CHAPTER 1. IFS REFERENCE MANUAL

1.4.7 ifscfgp3d

ifscfgp3d — get value of a pixel in a 3-d image
Usage:

val = (double) ifscfgp3d(ptri,frame,row,col);
IFSHDR *ptri;
int frame,row,col; /*coordinates (in pixels) of pixel
to examine.*/

ifscfgp3d returns (as a double) the value of the pixel at a specified coordinate
in a 3-d image. If image is “complex” format, returns the imaginary portion of the
number.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the pixel value won’t fit in a “double” results are undefined. Maybe you get
garbage, maybe your program aborts on an overflow type of error. There
could be possible round off errors.

Ifscfpp 21

1.4.8 ifscfpp

ifscfpp — set value of a pixel in a 2-d image.
Usage:

status = ifscfpp(ptri,x,y, val);
IFSHDR *ptri;
int x,y; /* coordinates (in pixels) of pixel to examine.*/

double val; /*the value to stuff.*x/
int status;

Returns:
IFS_SUCCESS or IFS_FAILURE

Ifscfpp sets the value of the pixel at a specified coordinate in a 2-d image, where
the input is a float. If image is “complex” format, stuffs the imaginary portion of
the number, and sets the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the value stuffed won’t fit in the output image datatype, then results are
undefined. Maybe you get garbage, maybe your program aborts on an overflow
type of error.

22 CHAPTER 1. IFS REFERENCE MANUAL

1.4.9 ifscfpp3d

ifscfpp3d — sets the value of a pixel in a 3-d image (This is a completely new
version of ifsfpp which handles 3-d images.)
Usage:

status = ifscfpp3d(ptri,frame,row,col, val);
IFSHDR *ptri;

int frame,row,col /* coordinates (in pixels) of pixel
to examine.*/

double val; /*the value to stuff.*x/
int status;

Returns:
IFS_SUCCESS or IFS_FAILURE

Ifsctfpp3d sets the value of the pixel at a specified coordinate in a 3-d image,
where the input is a float. If imageis “complex” format, stuffs the imaginary portion
of the number, and sets the real part to zero.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the value stuffed won’t fit in the output image datatype, then results are
undefined. Maybe you get garbage, maybe your program aborts on an overflow
type of error.

Ifsclose 23

1.4.10 Ifsclose
ifsclose — close an open file

rc = ifsClose(File);
FILE * File;
int rc;

Ifsclose is identical to the standard I/O library function fclose, except that it
will avoid closing File if File corresponds to stdin, stdout, or stderr. If Fileis NULL,
ifsclose returns -1, else it just returns whatever value fclose would return.

Ifsclose is supplied as a complement to ifsOpen since the latter function may
return stdin or stdout in some circumstances, and the user typically does not want
to close these files.

24 CHAPTER 1. IFS REFERENCE MANUAL

1.4.11 1ifscreate

ifscreate — create an IFS image

img = ifscreate(type,len,flags,structsize);
IFSHDR * img;
char * type;
int len[];
int flags;
int structsize;

Ifscreate is used to create a new IFS image or image header. Space for the
header is automatically allocated, and a pointer to the header is returned. Various
fields in the header structure will be set to default values. Space for the actual data
may also be allocated, depending on the value of the flags variable. If space for the
data array is allocated, it will be filled with zeros. If the image can not be created,
ifscreate returns the value NULL, and the external variable ifserr will be set to
some error code, as given in the #Finclude file < ifserr.h >. The image as created
will not have any “tail” structure associated with it.

The arguments to ifscreate are:

type The data format for individual pixels, such as “byte” or “Ddouble”. The valid
data types are listed in a later section of this manual. If the data type is not
recognized by IFS, then ifscreate will return NULL, and ifserr will be set to
the code IFSE_.BAD_DTYPE.

len An n+1-length integer array — the first element (lenf0]) gives the number of
dimensions for the image, the remaining elements give the length for each
dimension of the image being created. This is in exactly the same format as
the arrays returned by the function ifssiz. The lengths are given in terms of
ascending rank for the image. Images are stored in standard C'storage order:
the column or z index changes most rapidly when scanning through memory,
hence this dimension has rank 1. The row or y index has rank 2, the frame or
z index has rank 3, and so on. I.e., the second element of the array (len/1))
gives the number of columns of the image, len[2] is the number of rows, etc.

flags The various bits of this argument determine precisely what is and is not al-
located when generating the image. If flags = IFS_CR_ALL or IFS_CR_DATA,
then storage space for the image is allocated, as well as storage for the im-
age header. In this case the field img—ifsptr points to the data storage. If
flags = IFS_CR_HDR then only space for the image header is allocated. The
field img—ifsptr will be set to NULL. The user must supply an array to store
the image in, and set img—ifsptr to point to this array. Note: version 4.0

Ifscreate 25

and 5.0 of ifscreate will ALWAYS allocate space for the image header; the
flag IFS_CR_HDR is not really examined, and is only intended for possible
future expansion. All that is really checked is the IFS_CR_DATA bit. The
flag IFS_CR_ALL is the combination of IFS_CR_DATA and IFS_.CR_HDR and is
probably the best flag to use if one wants data space allocated.

structsize This argument 1s only needed if type is “struct”, in which case it gives
the size of a single data element (structure) in bytes. If {ype is not ”struct”
this argument may be omitted or set to 0.

26 CHAPTER 1. IFS REFERENCE MANUAL

Erample:

/* Create a 2-d image with 20 rows and 30 columns */
/* and a 1-d array of 10 structures. */

#include <ifs.h>

main()

{

IFSHDR * img, * strimg;

int lengths[3];

IFSHDR * ifscreate();

typedef struct { int red; int green; int blue; } RGB;

/* create 2D byte array */

lengths[0] = 2; /* Image will be 2D */
lengths[1] = 30; /* Number of columns (width; x-dimension) */
lengths[2] = 20; /* Number of rows (height; y-dimension) */

img = ifscreate("ubyte", lengths, IFS_CR_ALL);
if (img == NULL) { /* error processing code */ }

/* create 1D structure array */

lengths[0] = 1;

lengths[1] = 10;

strimg = ifscreate("struct",lengths,IFS_CR_ALL,sizeof (RGB));

Ifsdimen 27

1.4.12 1ifsdimen

ifsdimen — get size of dimension or image data

len = ifsdimen(image, n);
int len;

IFSHDR * image;

int n;

Ifsdimen returns the length (number of elements) of the nth dimension of
tmage. It also may be used to get the total number of elements or bytes required
by the data section of an image. The argument n is the rank of the dimension
being queried, i.e., ifsdimen(img,0) is the number of columns, ifsdimen(img, 1) is
the number of rows, and so on.

If n is specified as -1, ifsdimen returns the total number of elements in the
image (the product of all the individual dimension lengths). If n is specified as -2,
ifsdimen returns the total number of bytes occupied by the image data, i.e., the
total number of elements times the size in bytes for a single element.

If there is some error, ifsdimen returns zero and sets the external variable ifserr
appropriately. Possible error conditions are IFSE_BAD_HEADER or IFSE_ZNULL_HEADER
for invalid images, or IFSE.WRONG_NDIM if n is invalid (such as asking for the

number of frames for a 2D image).

28 CHAPTER 1. IFS REFERENCE MANUAL

1.4.13 ifsexwin

ifsexwin — Extract a window from an image

#include <ifs.h>
new = ifsexwin(old, ri1,cl, r2, c2);

IFSHDR * new, * old;
int r1, ci1, r2, c2;

Ifsexwin is used to create a new image which is a subimage of some old image.
The old image must be a two-dimensional image. The arguments ri,¢! and r2,c2
give the row and column positions of the corners of a box which defines the region to
be extracted. These corners must be on opposite ends of a diagonal for the window.
It does not matter which corners are chosen for each point, as long as as they are
on opposite ends of a box diagonal. The region extracted includes the area of the
bounding box itself, ie, is inclusive of the rows ri, r2 and columns cI, c2.

Ifsexwin returns a pointer to the newly created image, or NULL if some error
occurred. In the latter case, the external variable ifserr will be set to indicate the
nature of the error. Possibilities are:

IFSE_BAD_HDR If the pointer old does not point to a valid IFS image.
IFSE_ZNO_MEM If space couldn’t be allocated for the new image.
IFSEZ.WRONG_NDIM If the original image is not two-dimensional.

IFSE_.BAD_POS If either of the box coordinates is outside the image dimensions.

The dimensionality of windowed image is consistent. That is, a 1-d/2-d slice (
a 3-d image one voxel thick in one or more dimensions) returns with a header
consistent with the actual dimensionality.

Ifsexwin3d 29

1.4.14 ifsexwin3d

ifsexwin3d — Extract a window from an image
ifsexwin3d — extract window from 3-d image

Usage:
new_img = ifsexwin3d(oldimg, f1, r1, cl, £2, r2, ¢2)

where fl,rl,cl and f2,r2,c2 are the coordinates (frame,row,col) of one corner of
the box and the opposite (diagonal) corner. Tt doesn’t matter which corners
are chosen.The box which is extracted includes the bordering surface (i.e,
coordinates are f1,rl,cl to f2,r2,¢2 INCLUSIVE).

Returns:

This function returns NULL if an error occurs, and returns an error code
thru the external variable ’ifserr’.

External variables:
ifserr, IFSSLV

Ifsexwin3d extracts a piece (window) out of a 3-d IFS image, to make a new
IFS image. The data type of the new image is identical to that of the old one. The
dimensionality of windowed image is consistent. That is, a 1-d/2-d slice (a 3-d
image one voxel thick in one or more dimensions) returns with a header consistent
with the actual dimensionality.

30 CHAPTER 1. IFS REFERENCE MANUAL

1.4.15 ifsfgp
ifsfgp — get pixel from a 2-D image

value = ifsfgp(img,row,col);

double value;
int row, col;
IFSHDR * img;

Ifsfgp is used to get the value of some pixel in a 2-dimensional image. The
value returned is of type double, regardless of what the data format of the image
is. Otherwise, ifsfgp is identical to the function ifsigp, in all respects. See the
documentation for ifsigp for more details.

Ifstgp3d 31

1.4.16 ifsfgp3d

ifsfgp3d — gets the value of a pixel in a 3-d image (A generic multidimensional fgp
can be attempted thru variable parameter passing, but that would make the code
unportable.)

Usage:

val = ifsfgp3d(ptri,frame,row,col);
IFSHDR *ptri; /# pointer to image header structurex/
int frame,row,col;/* coordinates (in pixels)

of pixel to examine.*/
double val;

Ifsfgp3d returns (as a double) the value of the pixel at a specified coordinate in
a 3-d image. If image 1s “complex” format, returns the real portion of the number.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the pixel value won’t fit in a “double” then results are undefined. Maybe you
get garbage, maybe your program aborts on an overflow type of error. Round
off error can occur in conversions. e.g. int to double typecasting.

32 CHAPTER 1. IFS REFERENCE MANUAL

ifsfpp3d — set the value of a pixel in a 3-d image
Usage:

status = ifsfpp3d(ptri,frame,row,col, val);
IFSHDR *ptri /# pointer to image header structurex/

int frame,row,col; /*coordinates (in pixels) of pixel
to examine.*/

double val; /*the value to stuffx*/
int status;

Returns:
IFS_SUCCESS or IFS_FAILURE

Ifsfpp3d sets the value of the pixel at a specified coordinate in a 3-d image,
where the input 1s a float. If image is “complex” format, stuffs the real portion of
the number, and sets the imaginary part to zero.

Known bugs, special notes:

@ This routine does not check to see if the specified coordinates actually are in
bounds.

@ If the value stuffed won’t fit in the output image datatype, then results are
undefined. Maybe you get garbage, maybe your program aborts on an overflow
type of error.

Ifsfpp 33

1.4.17 ifsfpp
ifsfpp — put pixel value into a 2-D image

status = ifsfpp(img,row,col,value);

int status;

double value;
int row, col;
IFSHDR * img;

Ifsfpp is used to set the value of some pixel in a 2-dimensional image. The
argument value is automatically converted from a floating point number (float or
double) into whatever data format the image is in. In all other respects, ifstpp is
identical to the function ifsipp. See the documentation for ifsipp for more details.

34 CHAPTER 1. IFS REFERENCE MANUAL

1.4.18 ifsfree

ifsfree — delete (deallocate) an IFS image

img = ifsfree(img, flags);

IFSHDR * img;
int flags;

Ifsfree is used to get rid of an IFS image which is no longer in use. The space
for the header and/or data is deallocated, and returned to the operating system
for other use. Basically, ifsfree just consists of several calls to the system function
cfree.

The arguments to ifsfree are:

tmg A pointer to the image header structure.
flags A set of flags which indicates exactly what is to be deallocated.
Possibilities for the flags are:

IFS_FR_DATA If this flag is set, then ifsfree will deallocate the space allocated for
the storage of the actual image data (if there is any), and the header field
img—ifsptr will be set to NULL to show that the header no longer has any
data associated with it. If there is no data associated with the header, then
this flag has no effect. This will not cause any errors.

IFS_.FR_HDR If this flag is set, then ifsfree will deallocate the space allotted for
the image header. The data space is left intact. This is usually only going to
be used if the user supplied his own data area for the image (perhaps a static
array or somesuch).

IFS_FR_ALL If this flag is specified, then ifsfree will free up everything — image
header and data. IFS_FR_ALL is just the combination of IFS_FR_DATA and
IFS_.FR_HDR. This is probably the normal flag to set when calling ifsfree .

Ifsfree returns a pointer to the image header as it should be AFTER the desired
things have been deallocated. If only the IFS_FR_DATA flag was specified, then
ifsfree returns the original pointer value tmg, with the field img—ifsptr now set
to NULL to show that the data array has been deleted. If the header structure
was freed, then ifsfree returns NULL to indicate that the pointer is no longer valid.
Hence it is good practice to assign the return value from ifsfree back to the original
pointer value img. Tt is not an error to simply say ifsfree(img,IFS_FR_ALL) rather
than img = ifsfree(img,IFS_FR_ALL) to get rid of an image, but the latter usage is
preferable in that it will make it more obvious to any subsequent routines called

Ifsfree 35

(erroneously) with the argument img. Ifsfree will also return the value NULL if an
error occurred. In this case, the external variable ifserr will be set to the appropriate
error code. Possible error conditions are:

IFSE_ZNULL_HDR This indicates that you passed the pointer NULL for the argument
myg.

IFSE.BAD_HDR This indicates that the pointer img does not reference a valid IFS
image structure. Note that the error IFSE_ZNULL_HDR is actually a subclass of
the error IFSE_.BAD_HDR, so if you test the value " (ifserr & IFSE_BAD_HDR)",
you will automatically also pick up errors of the type IFSE_ZNULL_HDR.

BUGS:

Trying to deallocate something which was not originally obtained using some
standard system memory-allocation function (e.g, calloc, or the IFS routines ifsalc
or ifscreate) will cause grave errors — usually a program crash. This is a problem of
the system allocate/deallocate routines and not ifsfree.

36 CHAPTER 1. IFS REFERENCE MANUAL

1.4.19 ifsGetFN
ifsGetFN — read in a filename and expand it

FileName = ifsGetFN(Prompt, Input);

char * Filelame;
char * Prompt;
FILE * Input;

IfsGetFN will read in a string from the file Input (typically stdin), and expand
it using the function ifsPrsFN. It returns a pointer to the name it read, or NULL if
it failed. Space for the filename is dynamically allocated and may be freed (using
cfree) when the user is through with it.

If Input 1s a terminal, and Prompt is not NULL, then Prompt will be printed
before the filename is read in.

IfsGetFN normally delimits filenames with any control character or whitespace
character and strips off any leading whitespace characters supplied in the name. Any
character (including whitespace characters) may be put in a filename by prefixing
it with a backslash \. This applies to leading whitespace characters as well as
whitespace characters in the middle or end of the name.

IfsGetlmg 37

1.4.20 ifsGetImg

ifsGetImg — open a file and read an IFS image from it

img = ifsGetImg(FileName, Prompt, ReadTail);

IFSHDR * img;
char * Filelame;
char * Prompt;
int ReadTail;

IfsGetImg reads an IFS image from some file FileName. If ReadTail is false
(zero), then any tail information associated with the image will not be read in.
It returns a pointer to the new image header, or NULL if it failed, in which case
the external integer variables ifserr and column can be examined to determine the
nature of the error. Space for the header, data, and tail is allocated dynamically,
each may be freed (using cfree or ifsfree) when the user is through with it.

If FileName is NULL, then the input image 1s read from stdin. If FileName is a
null string (that is, FileName = ””), then a filename will be read in from stdin using
the routine ifsGetFN. In this case, if Promptisn’t NULL and stdin corresponds to a
terminal, then the string Prompt will be printed on the terminal (actually, to stderr)
before reading a name. If stdin is not attached to a terminal, such as when input
is being piped in from another program, then the printing of the prompt string is
suppressed. If a filename is read in from stdin, and it is “-” (a single dash), then
the image itself will be read from stdin. Filenames are expanded using ifsPrsFN,
so they may contain such things as environment variable names and “~login_id”
constructs.

IfsGetImg works by opening the specified file and then calling ifsRdImg to do
the actual work of getting the image. It then closes the file when it’s done (unless it
read from stdin). Note that calling ifsGetImg with Filename = NULL is essentially
the same as calling ifsRdImg directly.

The complimentary routine to ifsGetImg is ifsPutImg.

38 CHAPTER 1. IFS REFERENCE MANUAL

1.4.21 ifsigp
ifsigp — get pixel from a 2-D image

value = ifsigp(img,row,col);
int value;
int row, col;
IFSHDR * img;

Ifsigp is used to get the value of some pixel in a 2-dimensional image. The value
returned is of type int, regardless of what the data format of the image is. Ifsigp
performs all necessary type conversions. If the value of the pixel in the image will
not fit into an «nt data type, then the value that is returned will be meaningless.
If the image data format is one of the complex forms, then ifsigp returns the real
part of the specified data point. If some sort of error occurs, then ifsigp will return
zero, and the external variable ifserr will be set to indicate the nature of the error.

The arguments to ifsigp are:

tmg A pointer to the image header structure. This should refer to a 2-dimensional
image. If the image has 3 or more dimensions, then ifsigp will access the first
frame of the data (ie, all indices besides the first two will simply be treated
as z7ero).

row,col The coordinates of the point to be examined. Note that row, col may also
be regarded as a y, z pair. Beware that row corresponds to the y index, not
the z index.

The following error codes (defined in the #include file < ifserr.h >) may be re-
turned by ifsigp :

IFSE.BAD_HEADER: The pointer img does not point to an actual IFS image.

IFSE.BAD_DTYPE: The image is of some data type that ifsigp does not recognize.
Usually this indicates that your header has been damaged, and the field img —
tfsdt 1s mangled, or the image data type is “struct”. It could also occur if
someone added a new data type to that understood by IFS, and forgot to
modify ifsigp accordingly.

BUGS:

o Ifsigp does not verify that the image passed to it corresponds to a 2-dimensional
image.

e The indices row, col are not checked to verify that they lie inside the image
dimensions.

Ifsigp 39

o Ifsigp does not check to make sure that the data pointer tmg-;ifsptr is not
NULL. Previous versions of IFS did not allow this data pointer to be NULL,
so 1t was not previously necessary to check for this.

e Results when numeric overflow occur (as is possible when converting a floating
point number into an integer) are undefined.

Any of the above bugs could cause an abrupt and unpleasant termination of your
program, generally with the infamous “bus error: core dumped” message under
UNIX systems. Of course, such a crash would be indicative of some prior error in
the user’s program not having been caught.

40 CHAPTER 1. IFS REFERENCE MANUAL

1.4.22 ifsipp
ifsipp — put pixel value into a 2-D image

status = ifsipp(img,row,col,value);

int status;
int value;
int row, col;
IFSHDR * img;

Ifsipp is used to set the value of some pixel in a 2-dimensional image. The ar-
gument value is automatically converted from an integer into whatever data format
the image is in. If the image is of type complex, then ifsipp sets the real part of
the datum to wvelue, and the imaginary portion to zero. Ifsipp returns the value
IFS_SUCCESS if it succeeded, otherwise it returns the value IFS_FAILURE and sets
the external variable ifserr to the appropriate error code.

The arguments to ifsipp are:

tmg A pointer to the image header structure. This should refer to a 2-dimensional
image. If the image has 3 or more dimensions, then ifsipp will access the first
frame of the data (ie, all indices besides the first two will simply be treated
as z7ero).

row,col The coordinates of the point to be examined. Note that row, col may also
be regarded as a y, z pair. Beware that row corresponds to the y index, not
the z index.

value The actual data value to be put into the image. Note that if the datum
represents some value that can not be represented in the data format of the
image itself (such as trying to place the value 500 into a wbyte image), a
meaningless value will end up being put into the image.

The following error codes (defined in the #include file < ifserr.h >) may be set by
ifsipp (in the variable ifserr):

IFSE.BAD_HEADER: The pointer img does not point to an actual IFS image.

IFSE.BAD_DTYPE: The image is of some data type that ifsipp does not recognize.
Usually this indicates that your header has been damaged, and the field img —
tfsdt is mangled, or that the image data type is “struct”. It could also occur
if someone added a new data type to that understood by IFS, and forgot to
modify ifsipp accordingly.

BUGS:

Ifsipp 41

o Ifsipp does not verify that the image passed to it corresponds to a 2-dimensional
image.

e The indices row, col are not checked to verify that they lie inside the image
dimensions.

o Ifsipp does not check to make sure that the data pointer tmg-;ifsptr is not
NULL. Previous versions of IFS did not allow this data pointer to be NULL,
so 1t was not previously necessary to check for this.

Any of the above bugs could cause an abrupt and unpleasant termination of your
program, generally with the infamous “bus error: core dumped” message under
UNIX systems. These problems will not occur however, unless the user’s program
contains some other sort of error.

42 CHAPTER 1. IFS REFERENCE MANUAL

1.4.23 ifsmkh

ifsmkh — Create a two-dimensional IFS image Usage:

#include $<ifs.h>$
imageptr = ifsmkh(nrows, ncols, dataformat);

IFSHDR * imageptr;
int nrows, ncols;
char * dataformat;}

THIS FUNCTION IS OBSOLETE STARTING WITH RELEASE 3.0 OF IFS
THE FUNCTION ’ifscreate’ SHOULD BE USED INSTEAD

Ifsmkh is used to create a two-dimensional image. Space to store the image
and its header is automatically allocated, and the image is initialized to all zeros.
Various fields in the image header are filled in with default values. The dimensions
of the image that is created are given by the arguments nrows (number of rows) and
ncols (number of columns). The string dataformat sets what the format for each
pixel in the image will be. Valid data types are listed in one of the appendices to
this manual.

Ifsmkh returns a pointer to the header structure for the newly created image.
If an error occurs (usually meaning that an argument was invalid, or that it couldn’t
allocate enough memory to make a new image), then the value NULL is returned.
In this event, the global variable ifserr will be set to indicate the nature of the error.
Possible values for ifserr are IFSE_ZNO_MEM and ISFE_.BAD_DTYPE.

BUGS/NOTES: The data format string is case-sensitive.

Ifsopen 43

1.4.24 ifsopen

ifsopen — open a file for reading or writing.

File = ifsOpen(FileName, Mode, Prompt, NumRetries);

FILE * File;
char * Filelame;
char * Mode;

char * Prompt;
int NumRetries;

Ifsopen opens up a file FileName for reading or writing, and returns a pointer
to the open file descriptor (stream in Unix terminology). If the file can not be
opened or some other error occurs, then ifsopen will return NULL. The argument
Mode is the same as the mode argument to the standard i/o library function fopen,
ie. “r7 or “w” for read or write access. If FileName is NULL, then ifsopen just
returns stdin or stdout as is appropriate for the specified Mode.

If FileName is a null string (FileName = 7”), then ifsopen will read the name
of the file to be opened from stdin. If stdin is attached to a terminal, then the string
Prompt will be printed before getting the filename (unless Prompt is NULL). File-
Name is read using the function ifsGetF'N, and expanded using ifsPrsFN, so it may
contain the names of environment variables or constructs of the form “~login_id”
to represent some user’s home directory name. If the name read in is “-” (a single
dash), then ifsopen will return stdin or stdout, according to the argument Mode.

If a filename is being read interactively (when FileName = ””, stdinis connected
to a terminal, and Prompt is not NULL), then the user is allowed NumRetries
mistakes before ifsopen will give up and return NULL. For instance, if ifsopen
tries to open a non-existent file for reading, it will print a message to the user and
ask for a new name. After several failures it will give up. This is to prevent such
things as runaway shell scripts from sitting in a perpetual error loop.

44 CHAPTER 1. IFS REFERENCE MANUAL

1.4.25 ifspin
ifspin — read in an image from disk

img = ifspin(filename);

IFSHDR * img;
char * filename;

Ifspin is used to read an IFS image from the specified file filename. All necessary
storage space for the image and its data is automatically allocated. The “tail”
information for the file is not read in. If the user wants the tail information read
in, he should use the newer function ifsGetlImg. If filename points to a null string,
then ifspin will prompt the user to specify some filename. Any filename (whether
or not read interactively) will be translated using the function ifsPrsFN, which will
substitute for environment variables and names of users” home directories specified
in the C-shell shorthand form of “~user/filenam”. If filename is NULL, then input
will be read from stdin. Also, if a user is prompted for a filename, if he specifies a
name of “-”, the input will be read from stdin. The printing of a prompt string will
be suppressed if stdin is not attached to a terminal.

Ifspin returns a pointer to the new image, or NULL if some sort of error occurs.
In the latter case, the external variable ifserr will be set to indicate the nature of
the error. Possibilities are:

IFSE_INO_OPEN - if the specified file can’t be opened (usually meaning that it
doesn’t exist).

IFSE_IO_ERR - if some sort of I/O error occurred (usually meaning the file does not
contain a valid IFS image). The standard system I/O library variable errno
may contain additional information about the nature of the error. Note that
IFSE_NO_OPEN is a subclass of the IFSE_LIO_ERR error, so one can check for
both automatically by using a construct of the form "if (ifserr & IFSE_IO_ERR)
action_to_take();".

IFSE.ZNO_MEM — if it isn’t possible to allocate storage to put the image into.

IFSE.BAD_NAME - if some error occurred when translating the file name.

BUGS/NOTES:
Ifspin is an obsolete function. Under version 4 of IFS, this just remaps its
arguments and calls ifsGetlmyg.

Ifspot 45

1.4.26 ifspot
ifspot — write an image to disk

status = ifspot(img, filename);

int status;
IFSHDR * img;
char * filename;

Ifspot is used to write an IFS image to the specified file filename. If filename
points to a null string, then ifspot will prompt the user to specify some filename,
and read a filename from stdin. If filename is NULL, then ifspot will write the
image to stdout. Also, if ifspot reads a filename from stdin, and the filename is
“7 then ifspot will write to stdout. If stdin is not connected to a terminal (e.g,
input is being piped in from another program), then the printing of a prompt will
be suppressed.

The filename is translated using ifsPrsF'N, so it may contain environment vari-
ables (beginning with a leading “$”) and the names of users’ home directories spec-
ified in the C-shell shorthand form of “~user/filename”.

Ifspot returns the value IFS_.SUCCESS if it succeeded, or IFS_FAILURE if some
sort of error occurred. In the latter case, the external variable ifserr will be set to
indicate the nature of the error. Possibilities are:

IFSE.BAD_HEADER — if tmg doesn’t point to a valid image.

IFSE_ZNOT_IMAGE - if there is no data associated with the header, i.e., the field
tmg—ifspiris set to NULL.

IFSE_NO_OPEN - if the specified file can’t be opened (usually meaning that the
name is invalid or that the user doesn’t have write permission in the directory
in which he is trying to put the image).

IFSE_IO_ERR - if some sort of I/O error occurred. The standard system I/0O library
variable errno may contain additional information about the nature of the
error. Note that IFSE_LNO_OPEN is a subclass of the IFSE_LIO_ERR error, so

one can check for both automatically by using a construct of the form “if

(ifserr & IFSE_IO_ERR) action_to_take();".
IFSE.BAD_NAME - if some error occurred while translating the name.
BUGS/NOTES:

e The function of ifspot has been superceded by the newer function ifsPutImyg.
Starting with version 4 of IFS, ifspot is just a dummy routine which remaps
its arguments and calls ifsPutlmyg.

46

CHAPTER 1. IFS REFERENCE MANUAL

e Ifspot does not write out any “tail” information associated with the image.

IfsPrsFN 47

1.4.27 ifsPrsFN

ifsPrsFIN — expand a filename

NewlName = ifsPrsFN(Name,rc);

char * NewName;
char * Name;
int * rc;

IfsPrsFNN scans a string Name looking for references to environment variables
or abbreviations for a user’s home directory of the form “~user” such as is provided
by the Unix C-shell. It returns a pointer to the expanded name, or NULL if it failed.
The space for the expanded name is allocated using calloc, so it may be cfree’ed
when the user is through with it. A status code is returned through the pointer rc.
This code will be 0 if it was successful, 1 if the expansion failed (such as by reference
to an unset environment variable), or 2 if the routine had an internal error (such as
a failure in a call to calloc).

Environment variables are specified by prefixing the name with a dollar sign “$”.
The name of the environment variable may contain any alphanumeric character, and
is terminated by the first non-alphanumeric character found. The name may be
enclosed in braces to isolate 1t from other characters, such as when the user desires
the first character after the environment variable name to be an alphanumeric. Also,
if the name is enclosed in braces, almost any printable character can be part of the
variable name rather than just alphanumerics. Environment variable substitution
is done on a strict left to right basis.

A reference to some user’s home directory may be specified in the same manner
as that allowed by the Unix C-shell. If the first character in a filename begins with
a tilde ‘~’ character, then the word immediately following the tilde (where ‘word’ is
terminated by the first character which is not alphanumeric or underscore) is taken
to be the name of some user’s login id; the name of the user’s home directory is
substituted for the “~login_id” construct.

Examples

Assume the following environment variables and login id’s:

$i ”ifg”
$file ?output”
$J ” ~john”
~ ” [usr /users/myhome”
~john ” [usr /users/alpha”

Then the following names expand as:

48

CHAPTER 1. IFS REFERENCE MANUAL

NAME EXPANSION
myfile$i myfileifs
myfile.$i myfile.ifs
~ /myfile /ust /users/myhome/myfile
~john/$file.$i /usr/users/alpha/output.ifs
$J/%file.$i /usr/users/alpha/output.ifs
$ibase no expansion unless

environment variable “ibase” set
$ibase ifsbase (braces isolate “i” from “base”)

IfsPutlmg 49

1.4.28 ifsPutlmg

ifsPutlmg — open a file and write an IFS image to it

rc = ifsPutImg(Image, FileName, Prompt, WriteTail);

int rc;

TFSHDR * Image;
char * Filelame;
char * Prompt;
int WriteTail;

IfsPutlmmg writes an IFS image to some file FileName. If WriteTail is false
(zero), then any tail information associated with the image will not be written to
the new file. IfsPutImg returns IFS_.SUCCESS if all went well, or IFS_FAILURE
if something went wrong, in which case the external integer variables ifserr and
column can be examined to determine the nature of the error.

If FileName is NULL, then the image is written to stdout. If FileName is a null
string (that is, FileName = ””), then a filename will be read in from stdin using
the routine ifsGetFN. In this case, if Promptisn’t NULL and stdin corresponds to a
terminal, then the string Prompt will be printed on the terminal (actually, to stderr)
before reading a name. If stdin is not attached to a terminal, such as when input
is being piped in from another program, then the printing of the prompt string is
suppressed. If a filename is read in from stdin, and it is “-” (a single dash), then
the image itself will be written to stdout. Filenames are expanded using ifsPrsFN,
so they may contain such things as environment variable names and “~login_id”
constructs.

IfsPutImg works by opening the specified file and then calling ifs WrImg to do
the actual work of storing the image. Tt then closes the file when it’s done (unless it
wrote to stdout). Note that calling ifsPutImg with Filename = NULL is essentially
the same as calling ifs Wrlmg directly.

The complimentary routine to ifsPutImg is ¢fsGetlmg.

50 CHAPTER 1. IFS REFERENCE MANUAL

1.4.29 ifsRdHdr
ifsRAHdr — read an IFS image header from an open file

hdr = ifsRdHdr(file);

IFSHDR * hdr;
FILE * file;

IfsRdHdr reads an image header from a previously opened file. It does not
read in any data or tail information for the file. It returns a pointer to the new
image header, or NULL if it failed, in which case the external integer variables ifserr
and column can be examined to determine the nature of the error. Space for the
header is allocated dynamically, and may be freed (using cfree) when the user is
through with it.

After the header is read, the file pointer is positioned so that the next character
read from the file will the first byte of the data stored in the file. Hence, ifsRdHdr
does scan past any padding at the end of the header.

There is no complimentary routine for writing headers to open files in this version
of IFS. Writing a header to a file without writing any data would not make sense.
Accordingly, there is a function ifsWrlmg, but not an ifsWrHdr.

IfsRdImg 51

1.4.30 ifsRdImg
ifsRdImg — read an IFS image from an open file

img = ifsRdImg(File, ReadTail);

IFSHDR * img;
FILE * File;
int ReadTail;

IfsRdImg reads an image from a previously opened file. If ReadTail is false
(zero), then any tail information associated with the image will not be read in.
It returns a pointer to the new image header, or NULL if it failed, in which case
the external integer variables ifserr and column can be examined to determine the
nature of the error. Space for the header, data, and tail is allocated dynamically,
each may be freed (using cfree or ifsfree) when the user is through with it.

IfsRdImg will always read the entirety of an image file (including tail informa-
tion and any padding after it), discarding the tail if it is not wanted, and the file
read position will be set so that the next read request will start with the first byte
after the end of the image. If File corresponds to a disk file, this just means the
read pointer will point to the end-of-file (unless some garbage has been concate-
nated to to the of the image file). If File does not correspond to a disk file, such
as when piping is being used and File is stdin, this means the file read pointer is
positioned so that subsequent read requests (including read, scanf, getchar, another
call to ifsRdImg, etc.) will properly read new data rather than reading padding
characters left over from the end of the first image file.

The complementary routine to ifsRdImg is ifs Wrlmyg.

52 CHAPTER 1. IFS REFERENCE MANUAL

1.4.31 ifssiz

ifssiz — Get size (lengths of all dimensions) of an IFS image

#include $<ifs.h>$

dlength = ifssiz(image);
int * dlength;
IFSHDR * image;

Ifssiz is used to determine the lengths of each dimension of an IFS image. It
returns a pointer to an integer array, the various elements of which indicate the
lengths of each dimension of the image, and also how many dimensions the array is
defined as. The array will have N+1 elements, where N is the number of dimensions
of the image. The first element of the array (element number zero) gives the number
of dimensions for the image. Subsequent elements of the array give the length of
each dimension, where the dimensions are in order of ascending rank; i.e., element
one gives the number of pixels per line (number of columns) for the image, element
two gives the number of lines (rows), element three is the number of frames, and so
forth.

The space for the array returned by ifssiz is automatically allocated using stan-
dard system calls (e.g., calloc), and as such may be released back to the system
with the appropriate calls (free, cfree) when the user is through with the array.

If there is some error in ifssiz , then the external variable ifserr will be set to
some error code as defined in the file < ifserr.h > —most likely IFSE_.BAD_HEADER
or IFSE.ZNO_MEM.

Erample usage:

int nrows, ncols, ndims, * dimlength;
IFSHDR * image2d;

. make or read in image pointed to by image2d ...

dimlength = ifssiz(image2d);

ndims = dimlength[0];

if (ndims '= 2) { /* Exit with nasty error messages ... */ }
ncols = dimlength[1];

nrows = dimlength[2];

cfree((char *) dimlength);

Ifsslice 53

1.4.32 ifsslice

ifsslice — take a complete slice of a two-d or three-d image
Usage:
new_img = ifsslice(old img,string,value)

where string is a char pointer pointing to a string. The following are legitimate
strings

((frame77 , ((f?? , “I’OW” , “I’” , ((Column” , ((COIW , ((C

”

Passing any one of these strings will inform the function that the slice should
be taken with that particular dimension (row,col or frame) held constant at the
integer parameter value. i.e, if the string is “frame” and the value = 10, then a
2-d slice of the 3-d image at frame=10 is returned. Similarly for row and col slices.
This is a generic slice program for 2-d and 3-d images. Using ifsslice on 1-d images
will return with a copy of the image pointer and a warning.Similarly,a text string
of “frame” on a 2-d image returns a copy of the image pointer and a warning.
Returns:

This function returns NULL if an error occurs, and returns an error code
thru the external variable ’ifserr’.

External variables:
ifserr, IFSSLV
Special routines used:
ifscfree, ifsdie, ifswarn, ifsexwin, ifsexwin3d, ifssiz

Ifsslice extracts a complete slice of a two-d or three-d image from the constituent
image. The datatype of the sliced new image is exactly that of the old image. Note
that the slice is complete in all dimensions except in one dimension.

54 CHAPTER 1. IFS REFERENCE MANUAL

1.4.33 ifsversion

ifsversion — display version numbers

ifsversion(file);
FILE * file;

Ifsversion will write the version numbers of all the IFS functions it knows
about to the specified file. Typically, file will be stdout or stderr. For each function
ifsversion knows about, it will print the name of the function, its version number,
and the date it was last modified. In rare cases there may be some additional
information printed.

IfsWrlmg 95

1.4.34 ifsWrlmg

ifsWrImg — write an IFS image to an open file

rc = ifsWrImg(Image, File, WriteTail);
int rc;
TFSHDR * Image;
FILE * File;
int WriteTail;

IfsWrImg writes an IFS image to some opened file File. If WriteTail is false
(zero), then any tail information associated with the image will not be written to
the new file. IfsWrlmg returns IFS_SUCCESS if all went well, or IFS_FAILURE
if something went wrong, in which case the external integer variables ifserr and
column can be examined to determine the nature of the error.

The complimentary routine to ifsWrlmg is ifsRdImy.

1.5 IFS Error Codes

This section describes the various error flags which may be set (in the global variable
ifserr) when an error occurs in an IFS routine. These are defined in the #include
file < ifserr.h >. Each error is represented by a bit or set of bits in ifserr; hence
it is best to test for specific bits rather than using a standard comparison (“==").
Note that all of the IFS error codes have names which are of the form IFSE xxxxxx,
where xxxxxx 1s the actual name for the error.

IFSE_LERROR This is a combination of all possible errors. It is defined to be -1,
1.e., all bits of the variable ifserr are set. Hence, all other error codes are
subclasses of this code. IFS routines do not generally return this code. It
generally indicates that either (a) an error was too complex for IFS to figure
out, or (b) it was such a rare error that it was not considered important
enough to define a separate code for the error.

IFSE.BAD_HEADER or IFSE_.BAD_HDR The pointer you passed to a function does
not correspond to a valid header for an IFS image. Most IFS routines double-
check image headers before doing anything, and will exit with IFSE_.BAD_HEADER

set 1f the header is not valid.

IFSE.ZNULL_HEADER or IFSE_NULL_.HDR The value NULL was passed to some IFS
routine where you should have passed a pointer to an image header. The most
likely cause of this is calling a routine to get or put a pixel in an 1mage, when
you haven’t yet created (or read in) the image. This error is a subclass of the

error IFSE_BAD_HEADER.

56 CHAPTER 1. IFS REFERENCE MANUAL

IFSE_NO_OPEN A file could not be opened for I/O activities. Usually this indicates
that the file does not exist (on reads), or that the user does not have access
permission for the specified file or directory. IFSE_ZNO_OPEN is a subclass of
the error IFSE_IO_ERR.

IFSE.ZNOT_IMAGE An error occurred when attempting to read an image header
from a file. This usually means the file is too small to possibly be an IFS
image. An image header alone occupies at least 1 block, where a block is
normally defined to be 512 bytes. IFSE_NOT_IMAGE is a subclass of the error
IFSE_IO_ERR.

IFSE.BAD_NAME A filename is considered invalid. This is normally set within
routines such as ifsPrsF'N when a name expansion fails (such as by reference
to a file “~fred/file.ifs“ when user “fred“ doesn’t exit). IFSE.BAD_NAME is a
subclass of the error IFSE_IO_ERR.

IFSE_IO_ERR Some sort of error occurred while performing I/O. The system global
variable errno may contain additional information about the error. Common
causes are (a) encountering an unexpected EOF, (b) inability to write output
due to a full disk or user’s disk quotas exceeded, (¢) inability to open a file.

IFSE_.BAD_DTYPE The datatype (short, int, float, etc.) is invalid or unrecognized
by a particular routine. Usually this will only occur if you pass an invalid
argument to an image creation routine (e.g., ifsmkh or ifscreate). Tt might
also occur on routines which read or write data in images if the image header
has been corrupted, or if the function i1s not capable of working on an image
of a particular data type (for instance, it would make little sense to pass a
complexr format image to a histogram routine).

IFSE_.BAD_POS Some coordinate (array index) is illegal for the specified operation,
such as trying to access a pixel in column 30 of an image which is only 20
columns wide. Note that the routines which read or write single pixels cur-
rently do NOT check to see if coordinates are within bounds. This is a flaw
with IFS which will probably be fixed at a later time.

IFSEZWRONG_NDIM The routine called does not work with images of the dimen-
sionality of the image being used. An example would be trying to extract a
window (2D subimage) from a 1-dimensional array.

IFSE.ZNOT_SUPPORTED The specified function is not currently allowed. Usually
this indicates a function which is not yet implemented, but which is intended
to be implemented. In rare cases it may indicate that a function is obsolete
(a separate error code may later be defined for this).

1.6. IFS DATA TYPES 57

1.6 IFS Data Types

This section describes the various data types that IFS version 5 understands. IFS has
a certain basic set of names it recognizes for data types, and which it actually puts
into image headers; in addition, it recognizes a number of synonyms for data types
which it automatically remaps into the real data type. Some of these synonyms
are machine dependent, for instance, a type of “int” may map to “16bit” on one
machine and “32bit” on another machine. The final authority on data types and
synonyms 1is the header file “ifstypes.h” which contains a table relating synonyms
to the proper data type. Note that the data types ARE case sensitive. The possible
data types are:

8bit Signed byte. Synonyms are byte, char, i1, and I1.

u8bit Unsigned byte. Synonyms are ubyte, uchar, ul, and Ul.

16bit Signed 16 bit integer. Synonyms are short, 12, and 12.

ulébit Unsigned 16 bit integer. Synonyms are ushort, u2, and U2.

32bit Signed 32 bit integer. Synonyms are int, long, i4, and 14.

u32bit Unsigned 32 bit integer. Synonyms are uint, ulong, u4, and U4.

32flt 32 bit floating point number. Synonyms are float, real, real*4, r4, and R4.
64flt 64 bit floating point number. Synonyms are double, real*8, r8, and R8.

32emp Complex number consisting of two 32flt numbers (real and imaginary parts).
Synonyms are complex, complex*4, c4, and C4.

64ecmp Complex number consisting of two 64flt numbers (real and imaginary parts).
Synonyms are complex*8, c8, and C8.

struct Arbitrary user defined structure. Although IFS will read and write such
images, 1t supplies no intrinsic routines to manipulate such images.

1.7 The structure of an IFS image

An IFS image, whether it is in a disk file or in program memory, is stored as a set
of three distinct pieces. When written to disk, each piece will begin on a block
boundary, where the size of a block is given by the constant BLOCKSIZE, which is
defined the #include file < ifs.h >. Hence, there may be garbage bytes between
one section and the next.

58 CHAPTER 1. IFS REFERENCE MANUAL

The first piece is a header for the image. This header contains all sorts of
information relevant to the processing of the image, along with information intended
solely for the user’s benefit. Sample items in the header include the number of
dimensions the image has, how long each dimension i1s, who the creator of the
image is, and so on.

The second entity in an image is the actual image data. The data is just stored
in one long linear array, in exactly the same way that any C program stores arrays.
The user can directly access this data if he/she so desires, although the usual way
to to get at the data is to use various IFS routines such as ¢fsigp and ifsipp.

The third part of the image is the ta:l. The tail is just a block of data at the
end of the file which IFS places no particular interpretation upon. It is up to the
users’ programs to manipulate and understand the contents of the tail. An sample
usage for the tail might be to store the text of a spoken message for which the data
block was the digitized message.

In most cases, it is not necessary for the user to directly alter any of the infor-
mation in the image header as the IFS routines themselves will fill in the header
with all the information needed to process the image, and all of the user information
fields will be set to default values which are fine for most applications. However, at
times 1t 1s desirable to alter fields in the header, which requires that the user know
what the fields in the header are, and how they are used.

The header actually consists of several C structures. These structures are de-
fined in the #include file < ifs.h >. The header actually consists of two types of
structures. The first structure is the main image header structure, and contains
most of the relevant information about the image, such as the number of dimen-
sions, the format of the data, etc. This structure is the so called IFSHDR structure
which one refers to when one declares an image pointer variable in a program (e.g:
IFSHDR * imgl, * img2;).

Along with the IFSHDR structure exists a variable number of dimension sub-
headers. There is one of these sub-headers for each dimension of the image, e.g.,
a 2-d image would have two sub-headers. The main piece of information in these
subheaders is how long each dimension is. This structure goes by the name IFSDIM.
The IFSDIM structures come directly after the the main header structure, both in
the in-core images and the disk images. Hence, given a pointer to the main header
structure, and the sizes of the headers, one can easily generate pointers to any of
the dimension headers. The macro ifsgetdim (defined in < ifs.h >) may be used
for this:

IFSDIM * dim;
IFSHDR * img;
dim = ifsgetdim(img,2);

will return a pointer to the third dimension sub-header (the first sub-header has
number of zero).

1.7. THE STRUCTURE OF AN IFS IMAGE 59

1.7.1 The image header fields

char ifsmgc[4] This is the “magic number” field in the header. This field is used
by the various routines as a way of verifying the validity of the header passed
to them. If this field does not contain a special “magic number” (really, a
character string rather than a number), then the IFS routines will assume
that an invalid pointer was sent to them. The user should never alter this

field.

int ifsbb This is the number of bytes in a physical block, when images are stored
on disk. This value is set to the constant BLOCKSIZE, which is defined in
“ifs.h”. For all systems to date, the blocksize is 512. When images are written
to disk files, the header always starts at block 0, and the data always begins at
the start of the next block after the header, i.e, there may be a small amount
of wasted space between the end of the header and the start of the data, if
the header does not completely fill the last block it occupies.

int ifssoh This is the block number of the first block of the header. This is always
set to zero, at least for the time being.

int ifssod This is the number of the block at which the data starts. The user can
position directly to the start of the data array by using fseek to position an
I/0 pointer to the ifssod*ifsbb byte of the file. Of course, this only works for
disk files.

int ifssot This is the block number of the start of the tail for the file. If this field
is negative, it indicates that there is no tail present; taking the absolute value
of it would give the block number at which the tail would be if it existed.

char * ifstail This is a pointer to the image tail, for an in-core image. If there is
no tail, this is set to NULL.

int ifstsz This gives the size of the tail in bytes. If there is no tail, this is just
zero.

char ifsfc[8] This is the file class field. This is not used by UNIX installationss of
IFS, and is intended for systems running operating systems other than UNIX.

char ifsct[8] This is the file class type field. This also is not used and is for
non-UNIX systems.

char ifsunm[32] This field is used to store the name of the owner of the file, as
a null terminated character string. Note that since one byte must be reserved
for the terminating null, that the effective username length is 31 characters.
The user can put anything here he wants. When a user creates a new image,

this field is filled in with his/her login id.

60 CHAPTER 1. IFS REFERENCE MANUAL

char ifscdt[32] This is a character string giving the time and date at which the
image was created. This is automatically filled in when a user creates a new
image, but the user can change it if he so desires. As with the name field,
there can be up to 31 characters, plus the terminating null character.

char ifscpg[32] This is a character string giving the name of the program which
created the image. When a user first creates an image, this field is normally
filled with the name of the subroutine which actually created the image (e.g.:
“ifsmkh”).

char ifsver[8] This is a character string giving the version of the program which
created the image. E.g., “V 1.00” or “Ver 1A” or something in that vein.
Certain routines such as ¢fsmkh will stuff their version number in here.

char ifsrs1[40] This is just space reserved for future expansion.

char ifsdts[16] This is a character string giving the units of data for the pixels
in the image, e.g., for an intensity image, this field might contain “lumens”.
One must make sure not to use names for units which exceed 15 characters.
The default for this field is just “pixels”.

float ifsdsc This field gives a scaling factor for the data in the image. This can
be used along with the data offset (defined below) to convert values in the
image array to some other scale. This might be used for example, if an image
is taken and digitized using some measuring instrument, and later it is found
that the instrument was “offcenter” (a data offset) or suffered from some sort
of compression (scaling) problem. The default for this field is 1.0.

float ifsdof This field gives an offset which should be applied to the data in an
image. l.e., the real value for a point in the image array should be calculated
as

real — value = stored — value x ifsdsc + ifsdof

Note that the routines which get values from the image array (such as ifsfgp)
do NOT apply the scaling factors. The default for this field is 0.0.

char ifsdt[16] This is a character string which tells what number format the pixels
in the image are stored in, such as u8bit or 32flt.

int dtype This is a numeric encoding of the ifsdt field which has been added to
the header structure with version four of IFS. This has been added to increase
the speed at which certain routines work.

1.7. THE STRUCTURE OF AN IFS IMAGE 61

int ifsbpd This is the number of bytes which are needed to store a single pixel

value, 1.e., it’s the “sizeof” whatever data type is used for the image. Of
course, this field can be deduced from the ifsdt field.

int ifsdims This gives the number of dimensions for the image. This refers to the

char

number of indices needed to get at values in the image array, i.e, the pixels
themselves don’t count as a dimension. For instance, an image which has 10
rows and 20 columns is a 2-d image. Some other nomenclatures might refer to
this as a 3-d image, where the third axis is the pixel measurement axis (range,
brightness, or whatever).

* ifsptr This is a pointer which gives the address of the of the first data
element in the data array, for in-memory images. When files are written to
disk, the value NULL is written for this field. This is normally automatically
set to the correct value when an image is read in, although the user can alter
it to point to some other array.

int * ifsdln This is a pointer to an array which is used when calculating the address

char

char

of any arbitrary point of the image. This array has ifsdims elements. The
first element is just set to 1, the next element 1s the number of columns in the
image, the next element is the number of rows times the number of columns,
the fourth element is numcols * numrows * numframes, and so on. If the user
has an N dimensional image, and the N-length vector V gives the coordinate
of some point in the image (i.e., V = [col, row, frame, cube...]), then
the dot-product of V and ifsdin will give you an offset which may be added
to the starting address of the image to find the desired element, assuming
the “starting address” is an appropriately declared pointer. If the “starting
address” is declared as a “char *” (such as with the header field ifsptr) then
the offset must be scaled by the data size (ifsbpd). This may sound confusing,
but really just represents the usual way that a set of indices are converted to
absolute memory addresses for an array, whether by IFS or the C language
itself. Note: the array itself is not written to disk when an image is stored. It
is created when an image is read in (such as by ifsRdImg, ifspin, etc.) using
information in the dimension sub-headers.

* userptr This field is not used at present.

ifsrs3[4] More reserved space.

1.7.2 The dimension sub-header fields

For each dimension of the image, there will be a structure of the following form
tacked on after the end of the main header structure. The user can obtain a pointer

62 CHAPTER 1. IFS REFERENCE MANUAL

to one of these structures using the ifsgetdem macro, or can calculate their positions
manually using the size of the main header and subheaders.
The dimension sub-header fields are:

int ifslen The length (number of elements) of this dimension.

int ifsrnk The rank of this dimension. The rank of the dimension defines the
order in which the dimensions are actually stored in memory. The dimension
with the lowest rank is the dimension which changes most rapidly. Hence,
the dimension with rank 1 is equivalent to “columns”, the rank 2 dimension
1s “rows”, the rank 3 dimension is “frames”, and so on. Note that images
are stored in row-major order (as with all C arrays), which is contrary to
the way some languages store arrays — Fortran for instance stores in column-
major form. Also note that the first dimension subheader after the main
header is not necessarily the header for the lowest rank (columns) although
the IFS routines do by convention store the dimension subheaders in order of
ascending rank, this is not a requirement.

char ifsdir[8] The direction of this dimension. This is for images for which lines
are not always stored in a top to bottom, left to right form. For instance, some
camera systems scan from left to right on one line, then go from right to left
on the next line, and store the data in the same form. This would be known
as “forward-backward alter” storage. Other possibilities include “forward”
(normal), “backward”, and “backward-forward alter”. Currently, IFS does
NOT recognize this field, and treats all images as being stored in “forward”
format. This is only for possible future expansion. The string “fwd” is placed

in this field.

char ifsxun[8] This is a character string which gives the units for this dimension
e.g., “inches” or “mils”. Make sure not to use names exceeding 7 characters.
The default for this field is “pixels”.

float ifsxsc The scaling factor to apply to this dimension, analogous to the scaling
factor which exists in the main header.

float ifsxof The scaling offset for this dimension.

char rs4[32] Reserved space.

Chapter 2

Image Processing
Subroutines

In this chapter, A number of subroutines are presented which are of general appli-
cability. Most have been written using pointers and sophisticated code in order to
optimize speed.

2.1 Subroutine descriptions

The following subroutines are available in the library /usr/local/lib/libiptools.a

63

64 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.1 ifsadd
ifsadd— add two ifs images, point by point

out(i,j) = inl(i, 7) + in2(4, j)

int ifsadd (ini1,in2,out)
IFSHDR *inl,*in2,*out;

RETURNS 0 if successful,

-1 if all three arguments do not have same dimensions
-2 if data type unsupported (complex double)

-3 if one input has type complex and output is real

-4 if both inputs are real and output is complex

CAUTION if output is type char, values greater than 255 will be clipped to
lie between 0 and 255

NOTES if one image is real and the other complex, the output must be complex
and the real parts of the images will be added

Ifscfft2d 65

2.1.2 ifscfft2d
ifscfft2d— perform in-place 2D fast Fourier transform

len = cfft2d(img_ptr,type)
IFSHDR * imgptr;
int type;

Ifscfft2dperforms an in-place 2-D fast Fourier transform on a complex ifs image.
The transform is performed in place on 8BYTE-PER-PIXEL (complex float) data
only! Note that fft’s only work on images of dimension 2" x 27.

The second argument is an indicator for forward or inverse fft. -1 for forward,
+1 for inverse

If there is some error, the subroutine exits to the user with an error message.
Possible errors are:

e Image dimensions are not a power of two

e Image data type is not complex float

66 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.3 ifsc2imag

ifsc2imag— extract imaginary part of a complex ifs image, point by point

val = ifsc2imag (inl,out)
int val;
IMSHDR *inl,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be clipped to
lie between 0 and 255

Ifsc2mag 67

2.1.4 ifsc2mag

ifsc2mag— return magnitude of a complex ifs image, point by point

val = ifsc2mag (ini,out)
int val;
IMSHDR *inl,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be truncated
to 255

68 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.5 ifsc2phase

ifsc2phase— return phase of a complex ifs image, point by point

val = ifsc2phase (ini,out)
int val;
IMSHDR *inl,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be truncated
to 255

Ifsc2real 69

2.1.6 ifsc2real
ifsc2real— return real part of a complex ifs image, point by point

val = ifsc2real (inil,out)
int val;
IMSHDR *inl,*out;

RETURNS 0 if successful,
-1 if both arguments do not have
same dimensions -2 if data type unsupported (complex double)

CAUTION: if output is type char, values greater than 255 will be truncated
to 255

70 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.7 ifsmult

ifsmult— multiply two ifs images, point by point

int ifsmult (inil,in2,out)
IFSHDR *inl,*in2,*out;

RETURNS 0 if successful,

-1 if all three arguments do not have same dimensions
-2 if data type unsupported (complex double)

-3 if one input has type complex and output is real

-4 if both inputs are real and output is complex

CAUTION if output is type char, values greater than 255 will be truncated to

255
NOTES if one image is real and the other complex, the output must be complex
and the real parts of the images will be added

Ifsrecip

2.1.8 ifsrecip

ifsrecip— take reciprocal of an ifs image, point by point

int ifsrecip (inil,out)
IFSHDR *inl,*out;

RETURNS 0 if successful,

-1 if both arguments do not have same dimensions
-2 if data type unsupported (complex double)

-3 if one input has type complex and output is real
-4 if both inputs are real and output is complex

71

CAUTION if output is type char, values greater than 255 will be truncated to

255

NOTES if one image is real and the other complex, the output must be complex

and the real parts of the images will be added

72 CHAPTER 2. IMAGE PROCESSING SUBROUTINES

2.1.9 ifssub

ifssub—subtracts two ifs images, point by point. The second argument is subtracted
from first.

int ifssub (inil,in2,out)
IFSHDR *inl,*in2,*out;

RETURNS 0 if successful,

-1 if all three arguments do not have same dimensions
-2 if data type unsupported (complex double)

-3 if one input has type complex and output is real

-4 if both inputs are real and output is complex

CAUTION if output is type char, values greater than 255 will be truncated to

255
NOTES if one image is real and the other complex, the output must be complex

and the real parts of the images will be added

Chapter 3

Image Synthesis Programs

3.1 (qgsyn-synthesize range images

Qsyn generates synthetic altitude images of objects which are composed of quadric
surfaces or pieces of quadric surfaces.

Usage:

% qsyn formatfile.q

Qsyn is a program which generates synthetic altitude images of objects which
are composed of quadric surfaces or pieces of quadric surfaces. The image data is
in an unsigned byte format, although a few minor changes could be made to Qsyn
to allow for some other output data type. Image manipulation is done using the
IF'S image manipulation routines in use at Communication Unlimited.

Qsyn generates altitude images, i.e., two dimensional images which contain
three dimensional information, where the coordinates of a pixel (its row and column
index) correspond directly to the z and y values for the pixel, and the pixel value
itself (the datum) corresponds directly to the altitude or z value for the point. Hence,
a point in three-space at position [z,y,z] corresponds to some pixel in an image I

[2,y,2] — I[r,c] (3.1)

where Ifr, ¢/ is the value of the pixel at row 7, column ¢ of the image. R, ¢, and Ifr,c]
are linearly related to y, z, and z, respectively. In Qsyn, the linear relationship is
simply taken to be r = y, ¢ = «, and I[r,¢] = z. Note that an allilude image is
not the same as a range image, which is also commonly used to represent three-
dimensional images. In a range image, the pixel value represents the distance from
some point in three space to a fixed reference position (i.e., the viewpoint), whereas
an altitude image is based on the distance to some reference plane, hence a range
image is actually a perspective projection of an altitude image.

73

74 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

Qsyn generates images composed of quadric surfaces. An image may contain
any number of surfaces; in addition, each surface may also have constraints placed
on it. These constraints are also quadric surfaces (quadric inequalities). A quadric
surface is a 3-dimensional surface which may be described by a general quadric
equation:

q(z,y,2) = Ax® + By* + C2* + Fyz + (3.2)
Gez+ Hzy+ Pr+Qy+ Rz 4+ K =0.

This includes common shapes such as spheres, cones, and planes. Qsyn works by
generating a quadric surface which is bounded by a set of quadric constraints. For
example, an image of an open-ended can may be produced by synthesizing an image
of a cylinder which is constrained by two planes perpendicular to the cylinder. The
constraints would specify those points on the cylindrical surface which lie above the
lower plane and below the upper plane. As a matter of terminology, I will use the
term quadric section to refer to a quadric surface along with a set of constraints on
that surface.

In order to use Qsyn, you must understand the coordinate systems it uses to
orient surfaces and sections. Theoretically, you could place surfaces wherever you
wanted by specifying the appropriate coefficients in the quadric equation 3.2. In
practice, this is a pain since the coefficients are a function of the objects position
and orientation as well as its shape. E.g.,

N (3.3)

describes a sphere of radius r centered at the origin. The quadric coefficients are
A=DB=C=1,K = —(r?). Moving this sphere so that its center is at location
(x,y,2) = (10,5,0) gives:

(x =102+ (y—5)* + 2% = r? (3.4)
which when put into the form of equation 3.2 looks like
2?4+ y? + 27 — 202 — 10y + (125 — r%) = 0. (3.5)

Rotating an object affects the quadric coefficients in a still more complicated way.

Qsyn allows you to specify asurface using any coordinate system you desire; you
may then translate or rotate the object to move 1t to a different coordinate system.
Qsyn uses several different coordinate systems to ease the task of creating images
which are composed of multiple surfaces. Figure 3.1 shows the various coordinate
systems used, and are described here in the text.

Fach surface (including constraints) is defined in terms of its own local coordi-
nate system. Typically you would choose the coordinate system in which it was

3.1.

QSYN-SYNTHESIZE RANGE IMAGES

Figure 3.1: Coordinate systems used by QSYN

75

76 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

easiest to describe the shape you want. Each quadric section has its own coordinate
system, known as a section or object coordinate system. The latter term is perhaps
misleading in that what you think of as an object may actually consist of more than
one section.

By specifying the relationship between the local coordinate system for each sur-
face in a section to the section’s coordinate system, you specify how the various parts
of the section fit together. This essentially i1s used to relate the constraints to the
actual surface being synthesized, with the coordinate system of the surface itself (its
local system) typically being coincident with the section coordinate system. This is
not a requirement though; the surface and its constraints are all placed relative to
a common section system, rather than the constraints being placed relative to the
local system of the surface.

The next higher level coordinate system is the reference or base coordinate sys-
tem. This 1s the base coordinate system for the entire image to be synthesized. Its
relationship to the object coordinate systems is the same as that of the object to local
coordinate systems. By specifying the relative locations of each object coordinate
system in the base system, you define how the various quadric sections fit together,
and define what the overall image will look like.

The highest level coordinate system 1s the wiewpoint coordinate system. This
corresponds to the coordinate system for the image array, and hence, the display
equipment. The z and y axes correspond to the horizontal and vertical axes of the
display, and the z axis would be the actual pixel value, z.e., the brightness or color
of the pixel indicates the altitude. The relation between the view coordinate system
and the base coordinate system specifies the position which you are actually seeing
the image from. In many cases the two coordinate systems may be coincident, or one
merely a translation of the other. Note that the term viewpoint system is somewhat
misleading in that this is not a range image; this transform really defines a plane of
projection for the image (which is fully described at the level of the base system).
The projection plane itself is the xy plane of the viewpoint coordinate system. The
image array itself is just a finite piece of this infinite projection plane. Specifically,
the origin [z,y] = [0,0] corresponds with the pixel at location [col, row] = [0, 0]
in the image array (which is in one corner of the image). Hence, if you define
the objects in your image to lie around the origin (in the base coordinate system),
when you display the image you will probably find that all of the objects will lie in
one corner of the image, unless you have displaced the base system relative to the
viewpownt system. Put simply, the origin of the base system will be in one corner of
the image you synthesize unless you make sure to move it — and you may end up
not seeing parts of your objects since they will be clipped at the image borders.

In Qsyn, the relations between coordinate systems is expressed in terms of six
basic motions: translations along the three coordinate axes, and rotations about
the axes. Motions along the axes go by the names of movez, movey, and movez.
Rotations about the axes go by the names of rotz, roty, and roiz or alternatively

3.1. QSYN-SYNTHESIZE RANGE IMAGES 77

as yaw, pitch, and roll, respectively. When specifying the relationship between two
coordinate systems, the motions are given in terms of the higher coordinate system,
1.e., the higher level system is the base system. For example, to specify that the
local coordinate system for a constraint has its origin at location (#,y, z) = (10,5, 2)
in the section coordinate system, you would specify the motion as (movez 10, movey
5, movez 2). Note that you do not specify the motion as (movex -10, movey -7,
movez -2), as this would be specifying the origin of the higher system (the section
system) in terms of the lower (the local system). This is easy to see for motions
which are pure translations, but may provide a source of confusion when rotations

are involved.

The best way to regard the motions is as being object oriented. Although you are
specifying the relationship between two coordinate systems, the lower coordinate
system can be regarded as an object in the higher coordinate system (imagine that
the lower level system has a cube sitting at its origin, and you are moving the cube
around in the higher level system). Initially, the two coordinate systems start out
with coincident axes, i.e., the lower system is an object sitting at location (0,0,0)
in the higher system. If you specify a motion of movez 10, then all ‘objects’ in the
higher level system are displaced 10 units down the z axis. If you specify a motion
of roll 20, then all objects swivel around the z axis of the higher system. This is
not the same as simply rotating the lower coordinate system’s coordinate system by
20 degrees! If the lower system’s origin coincides with the higher system’s origin,
then the effects are the same; however, if the origin points do not coincide, then the
lower system’s origin will be seen to swing on an arc around the higher system’s
axis. Hence, the rotation will also cause a translation in two of the axes of the
higher system. Figures 3.2 illustrate this, and also show how the order of motions
1s important.

Qsyn works by reading a file which describes the image to be synthesized.
This file contains the quadric coefficients for each surface and constraint (in their
own local coordinate system), and movement commands which specify how the
coordinate systems are located. Qsyn reads this specification file and generates the
image; when it is done, it prompts for the name of a file to write the image to. The
output file is a 2-d IFS format image. The data type for the image will be unsigned
byte, with the value of a pixel indicating its height. The nearer a pixel is, the higher
its pixel value.

The format for the image specification file is relatively simple. presented below
is a sample specification file; the format is described below. It is a text file composed
of several blocks. These blocks may contain other blocks within them.

At the beginning of the file is a header block which specifies the size (number
of rows and columns) of the image to be generated, the number of quadric sections
to synthesize, and a set of motions which will translate the reference coordinate
system to the viewpoint coordinate system.

The motions which specify the relationship between the two coordinate systems

78

CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

Figure 3.2: Order of motions

3.1.

QSYN-SYNTHESIZE RANGE IMAGES 79

###H RS RS R RS RHH RS R R R R S R A R R R R R R R R R R S R R

H o H H H HHHHH R H R SR YRR R

This is a QSYN description file which will generate a simple altitude image

of a clipped lead sticking through a hole in the underside of a printed
circuit board. The lead will have a "clinch angle" (angle that lead is
bent away from pointing straight up) of 80 degrees, and a "lead angle"
(angle in the xy plane -- the plane representing the PC board) of 30
degrees.

The image is composed of 4 pieces (quadric sections):

NOTE:

A4 cylindrical piece which is the body of the lead.

A plane with a hole in it which represents the circuit board.

The cylinder in (1) goes through the hole.

A sphere at one end of the cylinder in (1) [same radius as the
cylinder] which terminates the lower end of the lead.

L second spherical section which caps the other end of the lead.
This second sphere has a larger radius than the sphere, so that
the higher end of the cylinder is clipped almost in a plane.

Note that if this cap wasn’t here, you’d be able to see inside the
cylinder in (1)!

This file is not directly suitable to be passed as input to QSYN.
QSYN does not understand comments in a file (comments going from
the ’#° symbol to the end of the line). However, a little
cleverness under Unix systems will make it suitable:

sed ’s/#.%$//’ example.q | gsyn

The strange looking "sed" command will edit out the comments before
piping the file into gsyn.

Eventually, I will fix QSYN so that it will remove the comments
itself.

H o H H H HHHHH R H R SR YRR R

###H RS RS R RS RHH RS R R R R S R A R R R R R R R R R R S R R

Figure 3.3: QSYN example, page 1

80 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

128 128 # Dimensions of image
4 # Number of quadric sections in image

This is the ‘base’ to ‘viewpoint’ coordinate system transform block:
roll 030 # Rotate 30 degrees about the Z axis

This rotates EVERYTHING by 30 degrees, and is

what gives the lead a "lead angle'" of 30 degrees.

Note that I’m really rotating the board too, but

since the board is an infinite xy-plane, you can’t

tell it. Hence, a more technically accurate, but

slightly more cumbersome way to do this is to have

the "roll 30" in the ‘section’ to ‘base’ transforms

of each of the actual pieces making up the lead.
movex 64 # Now I’ll do a translation in X and Y so that
movey 64 # the object is centered in the image rather
movez 75 # than in the lower left corner.
end # movez 75 is just ’cause I want board at Z = 75.

H O HH R H

#
- End of header section ---—-————————————————————————————-
This is the first quadric section. It describes the plane which represents

the printed circuit board.

SECTION to BASE coordinate system transform block.
A1l of the surfaces in this sections (that is, including the constraint
surfaces) will be moved by this transform.
end # A Null block (i.e., the two systems here
are coincident).

+

Define quadric surface:

The quadric surface coefficients:
000
000
001 O # The plane "Z = Q"

#

and the transform relating the LOCAL system to the SECTION system:
end # Null block. systems are coincident.

######E end of definition for the quadric surface.

Figure 3.4: QSYN example, page 2

3.1. QSYN-SYNTHESIZE RANGE IMAGES 81

= B o= H B W

#
#

Now: define the constraints on the above surface:
this is the number of constraints.
1 1 # constraint quadric coefficients
000 # X+X + Y*Y + Z*Z = 100, ie, a sphere of

0 00 -100 # radius 10.

LOCAL to SECTION transform for this constraint:

end # Once again, no transform.

#
#

H B B R

H B HH

H

And lastly, a "<" or ">" symbol which indicates on which side of the
constraint surface the object must lie:
> # The ">" specifies that my constraint
equation actually is
X+X + Y*Y + Z*Z >= 100
Hence, only points on the plane Z = 0 which
are OUTSIDE this sphere are valid.
This puts a hole at the center of my plane.

This is the second quadric section. It’s the cylinder which makes up the
body of the lead. I originally define the cylinder as lying on the Z axis
(which also makes it easy to specify constraints on it). Then I use the
SECTION to BASE transform to tip the cylinder (and its constraints) over
to give the appearance of a clinched lead.

The SECTION to BASE transform: 1lead is clinched 80 degrees. The '"movez 6"

displaces the cylinder upwards 6 units, which is needed because otherwise

the lead will be embedded in the board plane, rather than lying just above it
pitch 080 movez 6 end

Define my cylinder: cylinder on Z axis with radius 6:
110
000
000
-36

end # No transform.

Figure 3.5: QSYN example, page 3

82 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

#
Now, specify my constraints. Remember that the cylinder is defined as
lying on the Z axis (even in the SECTION system, since the above transform
was null), so the constraints clip the cylinder at right angles to its
axis. Now, the SECTION to BASE transform applies to both the cylinder
and its constraints, so the net effect is to pitch the CLIPPED cylinder
by 80 degrees.
#

2 # there will be two constraints.
000 000 001 0 end > # Constraint 1: Z >= 0
000 000 001 -34 end < # Constraint 2: Z <= 34
#
So, now I have a cylindrical piece lying between Z = O and Z = 34.
Note that the cylinder is NOT capped at the ends.

Section 3. This is a sphere which will cap off the lower end of the lead.

movez 6 end # The "movez 6" is same as in section 2.
111
0 0 0 # Sphere of radius 6 (at the origin in the local
0 00 # system)
-36
end # ... and at the origin in the SECTION system ...
but centered at x,y,z = 0,0,6 in the BASE system.

0 # Zero constraints.

Figure 3.6: QSYN example, page 4

3.1. QSYN-SYNTHESIZE RANGE IMAGES 83

Lastly, section 4, the sphere capping off the upper end of the lead.
You need to pay careful attention to the movements for this piece to
observe how the spherical patch does indeed end up capping off the
cylinder described in section 2. Note that the movements given here
certainly do not describe the ONLY valid way to get the patch; any of
a variety of movements would do the trick.
pitch 080 movez 6 end

1 1 1 # sphere of radius 8.

000

000

-64
movez 28.7085 end # That goofy number you have to work out from

the geometry of the situation. The sphere
is placed so that it will sit right at the
end of the clipped cylinder. The sphere

will intersect the cylinder at a height of
Z = 34 (or Z = 40 after the "movez 6" is

applied).

1 # 1 constraint:

000 000 001 -34 end > # only want that part of the
sphere which will cap off
the cylinder; I don’t want
to put a big ball at the
end of the cylinder.

H O H#®

And now, the name of the file to write the image to:
pcb_lead.ifs

Figure 3.7: Sample QSYN input file, page 5

84 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

are actually an instance of a type of sub-block known as a coordinate transform
block, or just transform. These transforms occur in several places, and always have
the same format. There are six basic motions which may be specified in a transform
block. There are also several complex motions which are simply composites of the
basic motions. All of the motions are specified by some keyword describing the
motion to perform, followed by the parameters appropriate for that keyword. The
six basic motions are those mentioned earlier: mover, movey, movez, rotz (roll),
roty (pitch), and rotr (yaw). The mover, movey, and movez commands can also be
shortened to z, y, and z. Each motion takes a single argument which is the amount to
move or the angle to rotate (in degrees). To specify a complete transform block, you
merely specify an arbitrary number of basic motions (in arbitrary order), followed
by the keyword end. The basic motions are performed in the order specified. A
sample transform block might look like:

movex 20 movey 10 pitch 30 end

This will shift an object 20 units along the z axis, 10 units in y, and swing the
object 30 degrees around the y axis.

The composite motions are just shortcuts for specifying certain common sets of
motions. The combination ‘movex 10 movey 20 movez 30’ can be specified more
rapidly as ‘movezryz 10 20 30 or just ‘zyz 10 20 30°. Similarly, ‘rpy 10 20 30’ is
short for ‘roll 10 pitch 20 yaw 30°. All six basic motions can be expressed using
the commands ‘rpyt 0.0,0. A A A, and ‘“trpy 0.0,0,A:AyA,’. Rpyt does the
rotations first, then the translations; ¢rpy performs the translations first. Note that
the syntax for {rpy is inconsistent in that although the translations are performed
first, they are the last arguments specified for the command.

After the header block there comes a set of section blocks, one block for each
quadric section to synthesize. Each block describes a surface to generate, and all
the constraints for the surface. The quadric section blocks are in turn composed
of smaller blocks. The first sub-block is a transform block which converts from the
section coordinate system to the base coordinate system. This is followed by a sur-
face block. A surface block contains a set of quadric coefficients to describe a single
quadric surface, and also contains a transform block which translates the surface’s
local coordinate system to the section coordinate system. After the surface block
comes the number of constraints, followed by a set of constraint blocks. A constraint
block is identical to a surface block except that it contains a flag indicating which
way the constraint inequality goes (e.g., choose all points in the surface below some
plane).

3.2 3dsyn-synthesize density images

3dsyn generates synthetic three dimensional density images of objects which are

3.2. 3DSYN-SYNTHESIZE DENSITY IMAGES 85

composed of quadric surfaces or pieces of quadric surfaces.

Usage:

% 3dsyn formatfile.q

3dsyn is a program which generates synthetic three dimensional density images
of objects which are composed of quadric surfaces or pieces of quadric surfaces.
The image data is in an unsigned byte format, although a few minor changes could
be made to 3dsyn to allow for some other output data type. Image manipula-
tion is done using the IFS image manipulation routines in use at Communication
Unlimited.

3dsyn generates density images, i.e., three dimensional images which contain
three dimensional information, where the coordinates of a voxel (its row and column
and frame index) correspond directly to the z, y, and z values for the voxel, and
the voxel value itself (the datum) corresponds directly to the density for the point.
Hence, a point in three-space at position [z,y,z] corresponds to some voxel in an
image I:

[2,y,2] — > I[f, 7 ¢] (3.6)

where Iff,r,c]is the value of the voxel at frame f, row 7, column ¢ of the image. F, r,
¢, and Iff,r,c] are linearly related to z, y, and z, respectively. In 3dsyn, the linear
relationship is simply taken to be f =z, r =y, and ¢ = @, and I[f, 7, ¢] = density.

3dsyn generates images composed of quadric surfaces. An image may contain
any number of surfaces; in addition, each surface may also have constraints placed
on it. These constraints are also quadric surfaces (quadric inequalities). A quadric
surface is a 3-dimensional surface which may be described by a general quadric
equation:

q(x,y,2) = Ax” + By* + C2* + Fyz + (3.7)
Gez+ Hzy+ Pr+Qy+ Rz 4+ K =0.

This includes common shapes such as spheres, cones, and planes. 3dsyn works by
generating a quadric surface which is bounded by a set of quadric constraints. For
example, an image of an open-ended can may be produced by synthesizing an image
of a cylinder which is constrained by two planes perpendicular to the cylinder. The
constraints would specify those points on the cylindrical surface which lie above the
lower plane and below the upper plane. As a matter of terminology, I will use the
term quadric section to refer to a quadric surface along with a set of constraints on
that surface.

In order to use 3dsyn, you must understand the coordinate systems it uses to
orient surfaces and sections. Theoretically, you could place surfaces wherever you
wanted by specifying the appropriate coefficients in the quadric equation 3.7. In
practice, this is a pain since the coefficients are a function of the objects position
and orientation as well as its shape. E.g.,

24yt 422 =7 (3.8)

86 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

describes a sphere of radius r centered at the origin. The quadric coefficients are
A=DB=C=1,K = —(r?). Moving this sphere so that its center is at location
(x,y,2) = (10,5,0) gives:

(x —10)* + (y —5)* + 22 = »? (3.9)
which when put into the form of equation 3.7 looks like
2?4+ y? + 27 — 202 — 10y + (125 — r%) = 0. (3.10)

Rotating an object affects the quadric coefficients in a still more complicated way.

3dsyn allows you to specify a surface using any coordinate system you desire;
you may then translate or rotate the object to move it to a different coordinate
system. 3dsyn uses several different coordinate systems to ease the task of creat-
ing images which are composed of multiple surfaces. Figure 3.1 show the various
coordinate systems used, and are described here in the text.

Fach surface (including constraints) is defined in terms of its own local coordi-
nate system. Typically you would choose the coordinate system in which it was
easiest to describe the shape you want. Each quadric section has its own coordinate
system, known as a section or object coordinate system. The latter term is perhaps
misleading in that what you think of as an object may actually consist of more than
one section.

By specifying the relationship between the local coordinate system for each sur-
face in a section to the section’s coordinate system, you specify how the various parts
of the section fit together. This essentially i1s used to relate the constraints to the
actual surface being synthesized, with the coordinate system of the surface itself (its
local system) typically being coincident with the section coordinate system. This is
not a requirement though; the surface and its constraints are all placed relative to
a common section system, rather than the constraints being placed relative to the
local system of the surface.

The next higher level coordinate system is the reference or base coordinate sys-
tem. This 1s the base coordinate system for the entire image to be synthesized. Its
relationship to the object coordinate systems is the same as that of the object to local
coordinate systems. By specifying the relative locations of each object coordinate
system in the base system, you define how the various quadric sections fit together,
and define what the overall image will look like.

The highest level coordinate system 1s the wiewpoint coordinate system. This
corresponds to the coordinate system for the image array, and hence, the display
equipment. The relation between the view coordinate system and the base coordi-
nate system specifies the position which you are actually seeing the image from. In
many cases the two coordinate systems may be coincident, or one merely a transla-
tion of the other. Note that the term viewpoint system is somewhat misleading in
that this 1s not a range image; this transform really defines a plane of projection for

3.2. 3DSYN-SYNTHESIZE DENSITY IMAGES 87

the image (which is fully described at the level of the base system). The projection
plane itself 1s the zy plane of the wviewpoint coordinate system. The image array
itself is just a finite piece of this infinite projection plane. Specifically, the origin
[2,y,2] = [0,0,0] corresponds with the voxel at location [frame, col, row] = [0, 0, 0]
in the image array (which is in one corner of the image). Hence, if you define the
objects in your image to lie around the origin (in the base coordinate system), when
you display the image you will probably find that all of the objects will lie in one
corner of the image, unless you have displaced the base system relative to the view-
point system. Put simply, the origin of the base system will be in one corner of the
image you synthesize unless you make sure to move it — and you may end up not
seeing parts of your objects since they will be clipped at the image borders.

In 3dsyn, the relations between coordinate systems is expressed in terms of six
basic motions: translations along the three coordinate axes, and rotations about
the axes. Motions along the axes go by the names of movez, movey, and movez.
Rotations about the axes go by the names of rotz, roty, and roiz or alternatively
as yaw, pitch, and roll, respectively. When specifying the relationship between two
coordinate systems, the motions are given in terms of the higher coordinate system,
1.e., the higher level system is the base system. For example, to specify that the
local coordinate system for a constraint has its origin at location (#,y, z) = (10,5, 2)
in the section coordinate system, you would specify the motion as (movez 10, movey

5, movez 2). Note that you do not specify the motion as (movex -10, movey -7,
movez -2), as this would be specifying the origin of the higher system (the section
system) in terms of the lower (the local system). This is easy to see for motions
which are pure translations, but may provide a source of confusion when rotations
are involved.

The best way to regard the motions is as being object oriented. Although you are
specifying the relationship between two coordinate systems, the lower coordinate
system can be regarded as an object in the higher coordinate system (imagine that
the lower level system has a cube sitting at its origin, and you are moving the cube
around in the higher level system). Initially, the two coordinate systems start out
with coincident axes, i.e., the lower system is an object sitting at location (0,0,0)
in the higher system. If you specify a motion of movez 10, then all ‘objects’ in the
higher level system are displaced 10 units down the z axis. If you specify a motion
of roll 20, then all objects swivel around the z axis of the higher system. This is
not the same as simply rotating the lower coordinate system’s coordinate system by
20 degrees! If the lower system’s origin coincides with the higher system’s origin,
then the effects are the same; however, if the origin points do not coincide, then the
lower system’s origin will be seen to swing on an arc around the higher system’s
axis. Hence, the rotation will also cause a translation in two of the axes of the
higher system. Figures 3.2 illustrate this, and also show how the order of motions
1s important.

3dsyn works by reading a file which describes the image to be synthesized. This

88 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

file contains the quadric coefficients for each surface and constraint (in their own
local coordinate system), the density of the material contained within that surface,
and movement commands which specify how the coordinate systems are located.
3dsyn reads this specification file and generates the image; when it 1s done, it
prompts for the name of a file to write the image to. The output file is a 3-d IFS
format image. The data type for the image will be unsigned byte, with the value of
a voxel indicating its density.

The format for the image specification file is relatively simple. Figure 3.8 shows a
sample specification file; the format (described below), is identical to the description
for QSYN except for the inclusion of density value on each line describing a quadric.

It is a text file composed of several blocks. These blocks may contain other
blocks within them. At the beginning of the file is a header block which specifies
the size (number of frames, rows and columns) of the image to be generated, the
number of quadric sections to synthesize, and a set of motions which will translate
the reference coordinate system to the viewpoint coordinate system.

The motions which specify the relationship between the two coordinate systems
are actually an instance of a type of sub-block known as a coordinate transform
block, or just transform. These transforms occur in several places, and always have
the same format. There are six basic motions which may be specified in a transform
block. There are also several complex motions which are simply composites of the
basic motions. All of the motions are specified by some keyword describing the
motion to perform, followed by the parameters appropriate for that keyword. The
six basic motions are those mentioned earlier: mover, movey, movez, rotz (roll),
roty (pitch), and rotr (yaw). The mover, movey, and movez commands can also be
shortened to z, y, and z. Each motion takes a single argument which is the amount to
move or the angle to rotate (in degrees). To specify a complete transform block, you
merely specify an arbitrary number of basic motions (in arbitrary order), followed
by the keyword end. The basic motions are performed in the order specified. A
sample transform block might look like:

movex 20 movey 10 pitch 30 end

This will shift an object 20 units along the z axis, 10 units in y, and swing the
object 30 degrees around the y axis.

The composite motions are just shortcuts for specifying certain common sets of
motions. The combination ‘movex 10 movey 20 movez 30’ can be specified more
rapidly as ‘movezryz 10 20 30 or just ‘zyz 10 20 30°. Similarly, ‘rpy 10 20 30’ is
short for ‘roll 10 pitch 20 yaw 30°. All six basic motions can be expressed using
the commands ‘rpyt 0.0,0. A A A, and ‘“trpy 0.0,0,A:AyA,’. Rpyt does the
rotations first, then the translations; ¢rpy performs the translations first. Note that
the syntax for {rpy is inconsistent in that although the translations are performed
first, they are the last arguments specified for the command.

3.2. 3DSYN-SYNTHESIZE DENSITY IMAGES 89

32 32 32
7

rpyt 0.0 0.0 0.0 15.0 15.0 15.0 end

end
0.7164 0.4030 0.4030 0 0 0 0 O O -87.3151 255.0 0.0
end 0

rpyt 0.0 0.0 0.0 0.0 -0.2944 -0.2944 end
0.5835 0.3352 0.3352 0 0 0 0 0 0 -65.5430 -255.0 0.0
end 0

rpyt -18.0 0.0 0.0 3.52 0.0 0.0 end
0.00923521 0.00116281 0.00116281 0 0 0 0 0 0 -0.028607 31.0 0.0
end 0

rpyt 18.0 0.0 0.0 -3.52 0.0 0.0 end
0.02825761 0.00430336 0.00430336 0 0 0 0 O 0 -0.1851891 31.0 0.0
end 0

rpyt 0.0 0.0 0.0 0.0 5.6 0.0 end
0.00390625 0.00275625 0.00275625 0 0 0 0 0 O -0.04410 23.0 0.0
end 0

rpyt 0.0 0.0 0.0 0.0 1.6 0.0 end
1.0 1.0 1.0 0 00 0 0 0 -0.541696 47.0 0.0
end 0

rpyt 0.0 0.0 0.0 0.0 -1.6 0.0 end
1.0 1.0 1.0 0 00 0 0 0 -0.541696 47.0 0.0
end 0

Figure 3.8: Example 3Dsyn input file (A synthetic head)

90 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

After the header block there comes a set of section blocks, one block for each
quadric section to synthesize. Each block describes a surface to generate, and all
the constraints for the surface. The quadric section blocks are in turn composed
of smaller blocks. The first sub-block is a transform block which converts from
the section coordinate system to the base coordinate system. This is followed by
a surface block. A surface block contains a set of quadric coefficients to describe
a single quadric surface, the interior and exterior densities of the object, and also
contains a transform block which translates the surface’s local coordinate system
to the section coordinate system. After the surface block comes the number of
constraints, followed by a set of constraint blocks. A constraint block is identical
to a surface block except that it contains a flag indicating which way the constraint
inequality goes (e.g., choose all points in the surface below some plane).

3.3 Matte - synthesize luminance images

Name: ifsmatte.c

Action: Produces a matte luminance image given a range image and one or more
light sources of any brightnesses.

ifsmatte converts a 2d range image into a matte luminance image.
USAGE:
ifsmatte [flags] [Lfile [Rfile [Mfile]]]

All of these command line arguments are optional. Read on for a description of the
flags and filenames. If the filenames are present, they must be in the order shown
above. Some examples of good and bad usage follow...

ifsmatte (good: input will be interactive)
ifsmatte -h (good: displays this helpscreen)

ifsmatte Lfile Rfile Mfile (good: This is the most common usage. Light sources
scanned from Lfile, range image scanned from Rfile and matte image written

to Mfile.)

ifsmatte Rfile Lfile Mfile (Error! Files out of order!)

FLAGS: command line flags are...

-h short help-screen
-H long help-screen
-d debug output

3.3. MATTE - SYNTHESIZE LUMINANCE IMAGES 91

-n turn off 0-255 scaling

-f float output; default is ubyte

-b process background pixels also

-v echoes version, history, date, etc

LIGHTS: This program generates a matte image illuminated by a set of light sources
that you define. You can either store the light sources in a file and then enter the
file on the command line (like Lfile in the examples in the 'usage’ section, above),
or you can enter the lights in response to prompts (by leaving the the filenames off
of the command line).

(Example) Here is what a light source file would look like for 2 lights sources,
centered above a 300x300 image, with a bright light (500) to the left (column
zero) and a dim light (100)to the right (column 300).

2 /* number of lights */
160 0 1000 /* coordinates of light 1 */
50O /* brightness of light 1 */

150 300 1000 /* coordinates of light 2 */
100 /* brightness of light 2 */

Notes
1. Comments (like in the example) aren’t allowed.

2. Careful with the z coordinate. Large positive z values place the light source
in front of the object (good). Negative z, or even small positive z, may
place the light BEHIND the object (bad), which may generate a null
image.

3. When you sit directly in front of the parallax looking at a 300x300 img

your face is approximately at coord- inates 150 150 1000. Use this as a
reference when positioning light sources.

4. 50 lights max.

Files: if given on command line, must be in order shown below...

Lfile - Input; holds light data; see above description.
Rfile - Input; ifs range image, 2d, assumed float
Mfile - Output; ifs matte image, 2d, ubyte unless —-f is used

Algorithm:

92 CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

if (filenames on command line)
read lights from Lfile
else
interactive input;
call ifsderiv to compute gradients of range image
for every pixel
Compute normal to thispix;
Compute vector from thispix to each light;
Take dot product of normal and light vectors;
Compute cosine of angle between normal and lights;
Light thispix by summing the following...
\begin{displaymath}
pixbrite = \sum_{i = 1} {num} (light_i \cos \theta_1)
\end{displaymath}

FLAGS:command line flags are...

-h short help-screen

-H long help-screen

-d debug output

-n turn off 0-255 scaling

-f float output; default is ubyte

-b process background pixels also

-v echoes version, history, date, etc

USAGE:Some examples...

matte \{Good. Interactive input\}\\
matte [flags] \{Good. Will prompt for files\}\\
matte Lfile Rfile Mfile \{Good. Files in order\}\\

matte Mfile Rfile Lfile \{Error! Files out of order\}

3.4 Tomosim - simulate tomographic X-ray source

This program to simulates a 3-D beam tomographic sensor Either cone-beam or
parallel-beam sensors may be simulated An ifs 3D image is used as input (as pro-
duced, for example, by 3dsyn) The program produces a set of ifs 2D images, where
each of the output images corresponds to one projection

USAGE:

tomosim inputimage numofpoints radius detector_rows detector_cols<-o> <-d n>

IFSIMG inputimage; /*three dimensionalx*/

3.4. TOMOSIM - SIMULATE TOMOGRAPHIC X-RAY SOURCE 93

int numofpoints; /*The number of points around a 360 degree circle,
*/

/* centered at the */

/* center of the volume specified by the input image*/

int radius; /*The distance (in voxels) from the center of the */
/* volume to the detector. Will be treated as */
/* identical as the destance from the */

/* center of the volume to the center of the detector array*/
int detector_rows; /* number of rows on the detector*/
int detector_cols; /* number of columns on the detector*/

The names of the output files are read from stdin as they are needed. Since the
program may take quite a while to run, manually typing these names is tedious.
The recommended way to run the program is to first create a file containing the
names of all the output image files, and then to run tomosim redirecting stdin to
this file.

Switches

-0 The-o switch, if used, will use parallel-beam (orthographic) rather then conebeam
projection

-d The -d switch, if used, means that the next argument will be the debug control
value (really only of interest to the programmer)

Application: For cone beam, just specify the number of points. The sensor
rotates in x-y plane, about an origin at the center of the 3D volume provided. For
fan beam, simply specify a detector with only one row. The -o switch provides
parallel beam simulation in either single row or multiple row cases.

94

CHAPTER 3. IMAGE SYNTHESIS PROGRAMS

Chapter 4

Programs for processing
images

The following is a list of programs which exist in the ifs bin directory. (Depending
of local installations, this is usually /usr/local/bin/ifs)

These programs are for the most part, simply “mains” wrapped around some of
the standard subroutines documented in earlier chapters. These programs are only
documented briefly here, since the operation is generally obvious.

Generally, on-line help for any program can be obtained by simply starting that
program up, but providing it an incorrect number of arguments.

add - add two ifs images, point by point Author: Wes Snyder

addhdr — adds an IFS header to a raw data file. “rmvhdr” is the reverse function.
Perpetrator: Mark Lanzo

atoi — Converts an ascii file to ifs. Input file is to be in the format produced by
itoa using the -v switch. The -v switch on itoa adds two lines at the beginning
of the file which specifies the size and data type. Author: Wes Snyder

c2imag - take imaginary part of an ifs image, point by point Author: Wes Snyder
c2mag — take magnitude of an ifs image, point by point Author: Wes Snyder
c2phase — take phase of an ifs image, point by point Author: Wes Snyder
c2real — take real part of an ifs image, point by point Author: Wes Snyder

compmag — produces an ifs file (type float) equal to the log of the square of the
magnitude of a complex image Victim: Wes Snyder

95

96 CHAPTER 4. PROGRAMS FOR PROCESSING IMAGES

ipde_to_ifs — converts ipde format images to ifs Author: Gary McCauley
itoa — prints an IFS 2D image in ascii format. Author: Mark Lanzo

mkdoc — makes a LaTeX compatible version of this index on standard out. Au-

thor: Wes Snyder
mult — multiply two ifs images, point by point Author: Wes Snyder

profile — Take a cross section of an IFS 2D image. Output is in standard plot
filter format (to stdout). Author: Mark Lanzo

prthdr — Print the header structure for an IFS image (in human readable format).
Author: Mark Lanzo

rmvhdr — Remove the header from an IFS image to yield a raw data file. Author:
Mark Lanzo

subsample — subsamples an arbitrary ifs image to be of a specified size: Author:

Wes Snyder
recip — take reciprocal of an ifs image, point by point Author: Wes Snyder
sub — subtract two ifs images, point by point Author: Wes Snyder
vidscale — video scale an ifs image

window This program extracts a window from an ifs image. The resultant output
image is of the same data type as the input. Call: window input output xleft
ylower xright yupper

input and output are two dimensional ifs image files. output will be created
by this program.

xleft is the index of the left-most column of the input image which should be
in the window.

ylower is the index of the lowest-index row of the desired window.

xright and yupper are the other extremes. NOTE: yupper must be greater
than ylower. Thus, upper and lower correspond to indices, not to a top-bottom
relation on a display screen. Author: Wes Snyder

Chapter 5

Programs for displaying
images

Any X-11 device can be used to display ifs images.

5.1 IMP - system for displaying, manipulating,
and processing ifs images

IMP is a new package which supports many of the features of X11 release 4. It in-
cludes a number of processing functions as well as display. Complete documentation
on IMP is available as a separate publication.

5.2 Xdisp - driver for X-windows devices
Xdisp 1s a general-purpose display driver which will display IFS images on any
display which supports Xwindows, version 11. If the device is only binary, the user
may select to view either a thresholded version of the image (with user-defined
threshold), or a dithered version.

Usage:
xdisp [-f filename] [-z zoomxy] [-1 threshold] [-s] [-h]

Options:

-f flag: File name that contains ifs image.

97

98

-z flag:

-1 flag:

-s flag:

-h flag:

CHAPTER 5. PROGRAMS FOR DISPLAYING IMAGES

If not specified, program prompts for name.
Specifies integer zoom. Default is 1.

Specifies threshold for bitmap displays. A1l pixels
below threshold are displayed black. Default is O.

Specifies shading on bitmap display. Uses 2x2 random
dither which gives 5 shades of gray.

Prints this help statement.

Note: Other X options like -display,-geometry etc. can be used. The opened
window can be dynamically resized, as allowed by the window manager. Clicking
the image after resizing will either

1. center the image within the window, if the resized window is bigger than the
image, but not bigger than 1.5 times the size of the image, in which case the
image is automatically zoomed in that dimension

OR

2. shrink the image to a smaller size if the resized window is smaller than 67

The horizontal and vertical scrollbars are used to scroll the image within the
window, if it is smaller than the image.
In this version of xdisp, only displays with depth < 8 planes are supported.

Furthermore, it is optimized for single bit and 8 bit plane displays.

