10.2 Modulation Schemes 303

Pockels effect or the magneto-optic Faraday effect. Any orthonormal set of unit polarization vectors $\{\hat{e}_1, \hat{e}_2\}$ on the plane that is normal to the wave propagation direction \hat{k} can be used to expand the unit polarization vector \hat{e} on this plane as a linear superposition of two orthogonal polarizations:

$$\hat{e} = c_1 \hat{e}_1 + c_2 \hat{e}_2, \tag{10.9}$$

where c_1 and c_2 are two complex constants subject to the normalization condition of $c_1 \cdot c_1^* + c_2 \cdot c_2^* = 1$. On the $\{\hat{e}_1, \hat{e}_2\}$ basis, the unit polarization vector \hat{e}_{\perp} that is orthogonal to the unit polarization vector \hat{e} can be expressed as

$$\hat{e}_{\perp} = c_2^* \hat{e}_1 - c_1^* \hat{e}_2.$$
 (10.10)

It is clear that $\{\hat{e}, \hat{e}_{\perp}\}$ is also an orthonormal basis because $\hat{e} \cdot \hat{e}^* = \hat{e}_{\perp} \cdot \hat{e}^*_{\perp} = 1$ and $\hat{e} \cdot \hat{e}^*_{\perp} = \hat{e}_{\perp} \cdot \hat{e}^* = 0$. Therefore, the two unit polarization vectors \hat{e}_1 and \hat{e}_2 can be expressed in terms of the $\{\hat{e}, \hat{e}_{\perp}\}$ basis as

$$\hat{e}_1 = c_1^* \hat{e} + c_2 \hat{e}_\perp, \quad \hat{e}_2 = c_2^* \hat{e} - c_1 \hat{e}_\perp.$$
 (10.11)

As an example, any polarization state on the xy plane can be represented by the unit vector $\hat{e} = \hat{x} \cos \alpha + \hat{y} e^{i\varphi} \sin \alpha$ given in (1.65), which is the linear superposition of the two orthonormal linear polarization unit vectors \hat{x} and \hat{y} with $c_1 = \cos \alpha$ and $c_2 = e^{i\varphi} \sin \alpha$. In this case, $\hat{e}_1 = \hat{x}$, $\hat{e}_2 = \hat{y}$, and $\hat{e}_{\perp} = \hat{x} e^{-i\varphi} \sin \alpha - \hat{y} \cos \alpha$. As another example, the linear polarization unit vector \hat{x} can be expressed as $\hat{e} = \hat{x} = (\hat{e}_+ + \hat{e}_-)/\sqrt{2}$ in terms of the linear superposition of the orthonormal circular polarization unit vectors with $c_1 = c_2 = 1/\sqrt{2}$. In this case, $\hat{e}_1 = \hat{e}_+$, $\hat{e}_2 = \hat{e}_-$, and $\hat{e}_{\perp} = i\hat{y} = (\hat{e}_+ - \hat{e}_-)/\sqrt{2}$.

When the phases of the two orthogonally polarized field components are differentially modulated, the polarization vector of the modulated optical wave becomes a function of time:

$$\hat{e}_{\rm m}(t) = c_1 {\rm e}^{{\rm i}\varphi_1(t)} \hat{e}_1 + c_2 {\rm e}^{{\rm i}\varphi_2(t)} \hat{e}_2 = \left[c_1 \hat{e}_1 + c_2 {\rm e}^{{\rm i}\Delta\varphi(t)} \hat{e}_2 \right] {\rm e}^{{\rm i}\varphi_1(t)},$$
(10.12)

where

$$\Delta\varphi(t) = \varphi_2(t) - \varphi_1(t) \tag{10.13}$$

is the time-varying phase difference due to differential phase modulation between the \hat{e}_1 and \hat{e}_2 components of the optical field. By substituting \hat{e}_1 and \hat{e}_2 of (10.11) into (10.12), we can express the modulated time-varying unit polarization vector $\hat{e}_m(t)$ in terms of \hat{e} and \hat{e}_{\perp} as

$$\hat{e}_{m}(t) = \left[c_{1}c_{1}^{*}e^{i\varphi_{1}(t)} + c_{2}c_{2}^{*}e^{i\varphi_{2}(t)}\right]\hat{e} + \left[c_{1}c_{2}e^{i\varphi_{1}(t)} - c_{1}c_{2}e^{i\varphi_{2}(t)}\right]\hat{e}_{\perp} = \left[c_{1}c_{1}^{*} + c_{2}c_{2}^{*}e^{i\Delta\varphi(t)}\right]e^{i\varphi_{1}(t)}\hat{e} + c_{1}c_{2}\left[1 - e^{i\Delta\varphi(t)}\right]e^{i\varphi_{1}(t)}\hat{e}_{\perp}.$$
(10.14)

It is clear from (10.14) that $\hat{e}_{\rm m}(t) \cdot \hat{e}_{\perp} \neq 0$ and $\hat{e}_{\rm m}(t) \neq \hat{e}$ when $c_1 c_2 \neq 0$ and $\Delta \varphi(t) \neq 2m\pi$, resulting in a polarization change caused by differential phase modulation.

As discussed in Section 1.6, the polarization state of a wave depends only on the phase difference and the magnitude ratio of the two orthogonally polarized field components. Therefore, the polarization state defined by $\hat{e}_{\rm m}(t)$ is determined by the phase difference $\Delta \varphi(t)$ and the magnitude ratio $|c_1/c_2|$ of the \hat{e}_1 and \hat{e}_2 components, and is independent of the common