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In this way, the time-independent Hamiltonian Ĥe↵ can reproduce exactly the same
time evolution of the real periodical system at integer periods of time. We can
diagonalize Û(T ) as

Û(T )|'ni = e� i
~ ✏nT |'ni. (7.81)

where ✏n is defined in the range of �⇡/T and ⇡/T and is called the quasi-energy, and
|'ni is the corresponding eigen-wave-function. Usually we can numerically evaluate
the Floquet operator Û(T ) and determine its eigenvalues via Eq. 7.81.

Keeping in mind that ~! is the largest energy scale of the problem, we can also
determine He↵ by the 1/! expansion. We first expand Ĥ (t) as

Ĥ(t) =
X

n

ein!tĤn, (7.82)

and by 1/! expansion it is straightforward to deduce Ĥe↵ as
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Ĥ�n, Ĥ0
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Here the terms in {...} keeps 1/! order. The first term has a very clear physical
meaning. From the expansion Eq. 7.82, it is clear that Ĥn and Ĥ�n can be viewed
as processes absorbing n-“photon”s and emitting n-“photon”s, respectively, with
energy change being n~!. Thus, both ĤnĤ�n/(n~!) and Ĥ�nĤn/(�n~!) are two
second order perturbation processes, and they together give the first term in {...}.

The last two terms in {...} of Eq. 7.83 depend on ↵. Considering two di↵erent ↵1

and ↵2, it means that when the two sets of observations are shifted by (↵1 � ↵2)T ,
it leads to di↵erent conclusions of the e↵ective Hamiltonian. Note that (↵1 � ↵2)T
is a microscopic time-scale, these two terms is therefore called the micromotion
term. Whether the e↵ect of such terms exists depends on experimental realization.
Usually the experimental measurements are averaged over many runs. If every time
the experiment realization and measurement are performed with a fixed ↵, then
the e↵ect of such terms exists. If every time ↵ is chosen randomly, then the e↵ect
of these terms are averaged out.

In the single-band model discussed so far, two of the most important energy scales
are the kinetic energy characterized by the band width and the on-site interaction
energy, both of which are smaller than the inter-band transition energy. Here we will
consider two di↵erent cases, as shown in Fig. 7.14. In the non-resonant case shown
in Fig. 7.14, the driving frequency is much larger than both the band width and
the interaction energy, and is not resonant with the inter-band transition energy.
In this case we can straightforwardly apply the 1/! expansion for the single-band
Hamiltonian. In the resonant case shown in Fig. 7.14, we consider the situation
that the interaction energy is much larger than the kinetic energy, but the driving
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i

ei2⇡n↵n~!

9
=

; + . . . . (7.83)

Here the terms in {...} keeps 1/! order. The first term has a very clear physical
meaning. From the expansion Eq. 7.82, it is clear that Ĥn and Ĥ�n can be viewed
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second order perturbation processes, and they together give the first term in {...}.

The last two terms in {...} of Eq. 7.83 depend on ↵. Considering two di↵erent ↵1

and ↵2, it means that when the two sets of observations are shifted by (↵1 � ↵2)T ,
it leads to di↵erent conclusions of the e↵ective Hamiltonian. Note that (↵1 � ↵2)T
is a microscopic time-scale, these two terms is therefore called the micromotion
term. Whether the e↵ect of such terms exists depends on experimental realization.
Usually the experimental measurements are averaged over many runs. If every time
the experiment realization and measurement are performed with a fixed ↵, then
the e↵ect of such terms exists. If every time ↵ is chosen randomly, then the e↵ect
of these terms are averaged out.

In the single-band model discussed so far, two of the most important energy scales
are the kinetic energy characterized by the band width and the on-site interaction
energy, both of which are smaller than the inter-band transition energy. Here we will
consider two di↵erent cases, as shown in Fig. 7.14. In the non-resonant case shown
in Fig. 7.14, the driving frequency is much larger than both the band width and
the interaction energy, and is not resonant with the inter-band transition energy.
In this case we can straightforwardly apply the 1/! expansion for the single-band
Hamiltonian. In the resonant case shown in Fig. 7.14, we consider the situation
that the interaction energy is much larger than the kinetic energy, but the driving


