
Answers to Exercises

1

Answers 2
Exercise 2.2

1 package Simple_Maths is
function Sqrt(F: Float) return Float;
function Log(F: Float) return Float;
function Ln(F: Float) return Float;
function Exp(F: Float) return Float;
function Sin(F: Float) return Float;
function Cos(F: Float) return Float;

end Simple_Maths;

The first few lines of the program Print_Roots
could now become
with Simple_Maths, Simple_IO;
procedure Print_Roots is

use Simple_Maths, Simple_IO;

Exercise 2.4

1 for I in 0 .. N loop
Pascal(I) := Next(I);

end loop;

2 for N in 0 .. 10 loop
Pascal2(N, 0) := 1;
for I in 1 .. N-1 loop

Pascal2(N, I) := Pascal2(N-1, I-1) +
Pascal2(N-1, I);

end loop;
Pascal2(N, N) := 1;

end loop;

3 type Month_Name is (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, Dec);

type Date is
record

Day: Integer;
Month: Month_Name;
Year: Integer;

end record;

Today: Date;
...
Today := (24, May, 1819);

Answers 3
Exercise 3.1

1 package Buffer_System is -- visible part
type Buffer is private;
Buffer_Error: exception;
procedure Load(B: in out Buffer; S: in String);
procedure Get(B: in out Buffer;

C: out Character);
function Is_Empty(B: Buffer) return Boolean;

private -- private part
Max: constant Integer := 80;
type Buffer is

record
Data: String(1 .. Max);
Start: Integer := 1;
Finish: Integer := 0;

end record;
end Buffer_System;

package body Buffer_System is
procedure Load(B: in out Buffer; S: in String) is
begin

if S'Length > Max or B.Start <= B.Finish then

Specimen answers are given to all the exercises. In some cases they do not necessarily
represent the best technique for solving a problem but merely one which uses the material
introduced at that point in the discussion.

vxiANSWERS.qxp 04/03/2024 14:37 Page 1

raise Buffer_Error;
end if;
B.Start := 1;
B.Finish := S'Length;
B.Data(B.Start .. B.Finish) := S;

end Load;

procedure Get(B: in out Buffer;
C: out Character) is

begin
if B.Start > B.Finish then

raise Buffer_Error;
end if;
C := B.Data(B.Start);
B.Start := B.Start + 1;

end Get;

function Is_Empty(B: Buffer) return Boolean is
begin

return B.Start > B.Finish;
end Is_Empty;

end Buffer_System;

The parameter Buffer of Load now has to be in
out because the original value is read. Also, we
could replace the test in Get by

if Is_Empty(B) then

Exercise 3.2

1 package Objects is
type Object is tagged

record
X_Coord: Float;
Y_Coord: Float;

end record;

function Distance(O: Object) return Float;
function Area(O: Object) return Float;

end Objects;

package body Objects is
function Distance(O: Object) return Float is
begin

return Sqrt(O.X_Coord**2 + O.Y_Coord**2);
end Distance;

function Area(O: Object) return Float is
begin

return 0.0;
end Area;

end Objects;

with Objects; use Objects;
package Shapes is

type Circle is new Object with
record

Radius: Float;
end record;

function Area(C: Circle) return Float;

type Point is new Object with null record;

type Triangle is new Object with
record

A, B, C: Float;
end record;

function Area(T: Triangle) return Float;
end Shapes;

package body Shapes is
function Area(C: Circle) return Float is
begin

return π * C.Radius**2;
end Area;

function Area(T: Triangle) return Float is
S: constant Float := 0.5 * (T.A + T.B + T.C);

begin
return Sqrt(S * (S - T.A) * (S - T.B) * (S - T.C));

end Area;
end Shapes;

Note that we can put the use clause for Objects
immediately after the with clause.

Exercise 3.3

1 procedure Add_To_List(The_List: in out List;
Obj_Ptr: in Pointer) is

Local: List := new Cell;
begin

Local.Next := The_List;
Local.Element := Obj_Ptr;
The_List := Local;

end Add_To_List;

or more briefly using a form of allocation with
initial values
procedure Add_To_List(The_List: in out List;

Obj_Ptr: in Pointer) is
begin

The_List := new Cell'(The_List, Obj_Ptr);
end Add_To_List;

2 package body Objects is
function Distance(O: Object) return Float is
begin

return Sqrt(O.X_Coord**2 + O.Y_Coord**2);
end Distance;

end Objects;

3 We have to add the function Area for the type
Point.

4 We cannot declare the function Moment for the
abstract type Object because it contains a call of
the abstract function Area.

2 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 2

5 function MO(OC: Object'Class) return Float is
begin

return MI(OC) + Area(OC) * Distance(OC)**2;
end MO;

Answers 4
Exercise 4.2

1 The default field is 6 for a 16-bit type Integer
and 11 for a 32-bit type Integer so
Put(123); -- "sss123" and "ssssssss123"
Put(-123); -- "ss-123" and "sssssss-123"

Exercise 4.4

1 with Ada.Text_IO, Etc;
use Ada.Text_IO, Etc;
procedure Table_Of_Square_Roots is

use My_Float_IO, My_Elementary_Functions;
Last_N: Integer;
Tab: Count;

begin
Tab := 10;
Put("What is the largest value please? ");
Get(Last_N);
New_Line(2);
Put("Number"); Set_Col(Tab);
Put("Square root");
New_Line(2);
for N in 1 .. Last_N loop

Put(N, 4); Set_Col(Tab);
Put(Sqrt(My_Float(N)), 3, 6, 0);
New_Line;

end loop;
end Table_Of_Square_Roots;

2 with Ada.Text_IO;
package My_Numerics.My_Float_IO is

new Ada.Text_IO.Float_IO(My_Float);

with Ada.Text_IO;
package My_Numerics.My_Integer_IO is

new Ada.Text_IO.Integer_IO(My_Integer);

with Ada.Numerics.Generic_Elementary_Functions;
package My_Numerics.My_Elementary_Functions is

new Ada.Numerics.
Generic_Elementary_Functions(My_Float);

3 package Objects is ...

with Ada.Numerics.Elementary_Functions;
use Ada.Numerics.Elementary_Functions;
package body Objects is ...

with Objects; use Objects;
package Shapes is ...

with Ada.Numerics.Elementary_Functions;
use Ada.Numerics.Elementary_Functions;
package body Shapes is ...

with Shapes; use Shapes;
with Ada.Text_IO, Ada.Float_Text_IO;
use Ada.Text_IO, Ada.Float_Text_IO;
procedure Area_Of_Triangle is

T: Triangle;
begin

Get(T.A); Get(T.B); Get(T.C);
Put(Area(T));

end Area_Of_Triangle;

We should really check that the sides do form a
triangle, if they do not then the call of Sqrt in
Area will have a negative parameter and so raise
Ada.Numerics.Argument_Error. See Program 1.

4 with Ada.Text_IO, Ada.Integer_Text_IO;
use Ada.Text_IO, Ada.Integer_Text_IO;
with Ada.Numerics.Discrete_Random;
procedure Sundays is

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
package Random_Day is

new Ada.Numerics.Discrete_Random(Day);
use Random_Day;
G: Generator;
D: Day;
Number_Of_Sundays: Integer;

begin
Number_Of_Sundays := 0;
for I in 1 .. 100 loop

D := Random(G);
if D = Sun then

Number_Of_Sundays :=
Number_Of_Sundays + 1;

end if;
end loop;
Put("Percentage of Sundays in selection was ");
Put(Number_Of_Sundays);
New_Line;

end Sundays;

5 with Ada.Text_IO, Ada.Integer_Text_IO;
use Ada.Text_IO, Ada.Integer_Text_IO;
procedure Triangle is

Size: Integer;
begin

Put("Size of triangle please: "); Get(Size);
declare

Pascal: array (0 .. Size) of Integer;
Tab: Count; -- indentation at start of row

begin
Tab := Count(2*Size + 1);
Pascal(0) := 1:
for N in 1 .. Size loop

3.3 Answers to exercises 3

vxiANSWERS.qxp 04/03/2024 14:37 Page 3

Pascal(N) := 1;
for I in reverse 1 .. N-1 loop

Pascal(I) := Pascal(I-1) + Pascal(I);
end loop;
Tab := Tab - 2;
New_Line(2); Set_Col(Tab);
for I in 0 .. N loop

Put(Pascal(I), 4);
end loop;

end loop;
New_Line(2);
if 2*Size > 8 then

Set_Col(Count(2*Size - 8));
end if;
Put("The Triangle of Pascal");
New_Line(2);

end;
end Triangle;

It is instructive to consider how this should be
written to accommodate larger values of Size in
a flexible manner and so avoid the confusing
repetition of the literal 2. A variable Half_Field
might be declared with the value 2 in the above
but would need to be 3 for values of Size up to
19 which will go off the screen anyway. Care is
needed with variables of type Count which are
not allowed to take negative values.

Answers 5
Exercise 5.3

1 The following are not legal identifiers
(b) contains &
(c) contains hyphens not underlines
(e) adjacent underlines
(f) does not start with a letter
(g) trailing underline
(h) this is two legal identifiers
(i) this is legal – but it is a reserved word

and not an identifier
Note that (a) is of course a legal identifier but it
would be unwise to declare our own variable
called Ada because it would conflict with the
predefined package of that name.

Exercise 5.4

1 (a) legal – real
(b) illegal – no digit before point
(c) legal – integer
(d) illegal – integer with negative exponent
(e) illegal – closing # missing
(f) legal – real
(g) illegal – C not a digit of base 12

(h) illegal – no number before exponent
(i) legal – integer – case of letter immaterial
(j) legal – integer
(k) illegal – underline at start of exponent
(l) illegal – integer with negative exponent

2 (a) 224 = 14 × 16
(b) 6144 = 3 × 211

(c) 4095.0
(d) 4095.0

3 (a) 32 ways
41, 2#101001#, 3#1112#, ... 10#41#, ... 16#29#,
41E0, 2#101001#E0, ... 16#29#E0

(b) 40 ways. As for example (a) plus, since
150 is not prime but 2 × 3 × 52 = 150, also
2#1001011#E1, 3#1212#E1, 5#110#E1,
5#11#E2, 6#41#E1, 10#15#E1,
15#A#E1, 15E1

Answers 6
Exercise 6.1

1 F: Float := 1.0;

2 Zero: constant Float := 0.0;
One: constant Float := 1.0;

but it might be better to write real number
declarations
Zero: constant := 0.0;
One: constant := 1.0;

3 (a) var is illegal – this is Ada not Pascal
(b) terminating semicolon is missing
(c) a constant declaration must have an initial

value
(d) no multiple assignment in Ada
(e) nothing – assuming M and N are of

integer type
(f) 2Pi is not a legal identifier

Exercise 6.2

1 There are four errors
(1) no semicolon after declaration of J, K
(2) K used before a value is assigned to it
(3) = instead of := in declaration of P
(4) Q not declared and initialized

4 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 4

Exercise 6.4

1 It is assumed that the values of all variables
originally satisfy their constraints.
(a) the ranges of I and J are identical so no

checks are required and consequently
Constraint_Error cannot be raised,

(b) the range of J is a subset of that of K and
again Constraint_Error cannot be raised,

(c) in this case a check is required since if K >
10 it cannot be assigned to J in which case
Constraint_Error will be raised.

Exercise 6.5

1 (a) –105 (e) –3
(b) –3 (f) illegal
(c) 0 (g) –1
(d) –3 (h) 2

2 All variables are of type Float

(a) M*R**2
(b) B**2 - 4.0*A*C
(c) (4.0/3.0)*π*R**3

-- parentheses not necessary
(d) (P*π*A**4) / (8.0*L*η)

-- parentheses are necessary

Exercise 6.6

1 (a) Sat
(b) Sat note that Succ applies to base type
(c) 2

2 (a) type Rainbow is (Red, Orange, Yellow, Green,
Blue, Indigo, Violet);

(b) type Fruit is (Apple, Banana, Orange, Pear);

3 Groom'Val((N-1) mod 8)

or perhaps better
Groom'Val((N-1) mod (Groom'Pos(Groom'Last) +1))

4 D := Day'Val((Day'Pos(D) + N - 1) mod 7);

5 If X and Y are both overloaded literals then
X < Y will be ambiguous. We would have to use
qualification such as T'(X) < T'(Y).

Exercise 6.7

1 T: constant Boolean := True;
F: constant Boolean := False;

2 The values are True and False, not T or F which
are the names of constants.
(a) False (d) True
(b) True (e) False
(c) True

3 The expression is always True. The predefined
operators xor and /= operating on Boolean
values are the same. But see the note at the end
of Section 11.3.

Exercise 6.8

1 (a) False (b) Sat

Exercise 6.9

1 All variables are of type Float except for N in
example (c) which is Integer.
(a) 2.0*π*Sqrt(L/G)
(b) M_0/Sqrt(1.0-(V/C)**2)
(c) Sqrt(2.0*π*Float(N)) * (Float(N)/E)**N

2 Sqrt(2.0*π*X) * Exp(X*Ln(X)-X)

Answers 7
Exercise 7.1

1 declare
End_Of_Month: Integer;

begin
if Month = Sep or Month = Apr

or Month = Jun or Month = Nov then
End_Of_Month := 30;

elsif Month = Feb then
if (Year mod 4 = 0 and Year mod 100 /= 0)

or Year mod 400 = 0 then
End_Of_Month := 29;

else
End_Of_Month := 28;

end if;
else

End_Of_Month := 31;
end if;
if Day /= End_Of_Month then

Day := Day + 1;
else

Day := 1;
if Month /= Dec then

Month := Month_Name'Succ(Month);
else

Month := Jan;
Year := Year + 1;

end if;

6.4 Answers to exercises 5

vxiANSWERS.qxp 04/03/2024 14:37 Page 5

end if;
end;

If today is 31 Dec 2399 then Constraint_Error
will be raised on attempting to assign 2400 to
Year.

2 if X < Y then
declare

T: Float := X;
begin

X := Y; Y := T;
end;

end if;

Exercise 7.2

1 declare
End_Of_Month: Integer;

begin
case Month is

when Sep | Apr | Jun | Nov =>
End_Of_Month := 30;

when Feb =>
if (Year mod 4 = 0 and Year mod 100 /= 0)

or Year mod 400 = 0 then
End_Of_Month := 29;

else
End_Of_Month := 28;

end if;
when others =>

End_Of_Month := 31;
end case;
-- then as before
...

end;

2 subtype Winter is Month_Name range Jan .. Mar;
subtype Spring is Month_Name range Apr .. Jun;
subtype Summer is Month_Name range Jul .. Sep;
subtype Autumn is Month_Name range Oct .. Dec;
...
case M is

when Winter => Dig;
when Spring => Sow;
when Summer => Tend;
when Autumn => Harvest;

end case;

Note that if we wished to consider winter as
December to February then we could not
declare a suitable subtype.

3 case D is
when 1 .. 10 => Gorge;
when 11 .. 20 => Subsist;
when others => Starve;

end case;

We cannot write 21 .. End_Of_Month because it
is not a static range. In fact others covers all
values of type Integer because although D is
constrained, nevertheless the constraints are not
static.

Exercise 7.3

1 declare
Sum: Integer := 0;
I: Integer;

begin
loop

Get(I);
exit when I < 0;
Sum := Sum + I;

end loop;
end;

2 declare
Copy: Integer := N;
Count: Integer := 0;

begin
while Copy mod 2 = 0 loop

Copy := Copy / 2;
Count := Count + 1;

end loop;
...

end;

3 declare
G: Float := -Ln(Float(N));

begin
for P in 1 .. N loop

G := G + 1.0/Float(P);
end loop;
...

end;

We assume that Ln is the function for natural
logarithm.

Answers 8
Exercise 8.1

1 declare
F: array (0 .. N) of Integer;

begin
F(0) := 0; F(1) := 1;
for I in 2 .. F'Last loop

F(I) := F(I-1) + F(I-2);
end loop;
...

end;

6 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 6

2 declare
Max_I: Integer := A'First(1);
Max_J: Integer := A'First(2);
Max: Float := A(Max_I, Max_J);

begin
for I in A'Range(1) loop

for J in A'Range(2) loop
if A(I, J) > Max then

Max := A(I, J);
Max_I := I; Max_J := J;

end if;
end loop;

end loop;
-- Max_I, Max_J now contain the result

end;

3 declare
Days_In_Month: array (Month_Name) of Integer

:= (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
End_Of_Month: Integer;

begin
if (Year mod 4 = 0 and Year mod 100 /= 0)

or Year mod 400 = 0 then
Days_In_Month(Feb) := 29;

end if;
End_Of_Month := Days_In_Month(Month);
... -- then as Exercise 7.1(1)

end;

4 Yesterday: constant array (Day) of Day :=
(Sun, Mon, Tue, Wed, Thu, Fri, Sat);

5 Bor: constant array (Boolean, Boolean) of Boolean
:= ((False, True), (True, True));

6 Unit: constant array (1 .. 3, 1 .. 3) of Float :=
((1.0, 0.0, 0.0),
(0.0, 1.0, 0.0),
(0.0, 0.0, 1.0));

Exercise 8.2

1 type Bbb is array (Boolean, Boolean) of Boolean;

2 type Ring5_Table is array (Ring5, Ring5) of Ring5;

Add: constant Ring5_Table :=
((0, 1, 2, 3, 4),
(1, 2, 3, 4, 0),
(2, 3, 4, 0, 1),
(3, 4, 0, 1, 2),
(4, 0, 1, 2, 3));

Mult: constant Ring5_Table :=
((0, 0, 0, 0, 0),
(0, 1, 2, 3, 4),
(0, 2, 4, 1, 3),
(0, 3, 1, 4, 2),
(0, 4, 3, 2, 1));

A, B, C, D: Ring5;
...
D := Mult(Add(A, B), C));

Exercise 8.3

1 Days_In_Month: array (Month_Name) of Integer :=
(Sep | Apr | Jun | Nov => 30,
Feb => 28,
others => 31);

2 Zero: constant Matrix := (1 .. N => (1 .. N => 0.0));

3 This cannot be done with the material at our
disposal at the moment. See Exercise 9.1(6).

4 type Molecule is (Methanol, Ethanol, Propanol,
Butanol);

type Atom is (H, C, O);

Alcohol:
constant array (Molecule, Atom) of Integer :=

(Methanol => (H => 4, C => 1, O => 1),
Ethanol => (H => 6, C => 2, O => 1),

Propanol => (H => 8, C => 3, O => 1),
Butanol => (H => 10, C => 4, O => 1));

Note the danger in the above. We have used
named notation in the first inner aggregate to act
as a sort of heading but omitted it in the others
to avoid clutter. However, if we had written H,
C and O in other than positional order then it
would have been very confusing because the
positional aggregates would not have had the
meaning suggested by the heading.

Exercise 8.4

1 Roman_To_Integer:
constant array (Roman_Digit) of Integer :=

(1, 5, 10, 50, 100, 500, 1000);

2 declare
V: Integer := 0;

begin
for I in R'Range loop

if I /= R'Last and then
Roman_To_Integer(R(I)) <

Roman_To_Integer(R(I+1)) then
V := V - Roman_To_Integer(R(I));

else

8.1 Answers to exercises 7

vxiANSWERS.qxp 04/03/2024 14:37 Page 7

V := V + Roman_To_Integer(R(I));
end if;

end loop;
...

end;

Note the use of and then to avoid attempting to
access R(I+1) when I = R'Last.

Exercise 8.5

1 AOA(1 .. 2) := (AOA(2), AOA(1));

2 Farmyard: String_3_Array := ("pig", "cat", "dog",
"cow", "rat", "hen");

...
Farmyard(4)(1) := 's';

3 if R'Last >= 2 and then
R(R'Last-1 .. R'Last) = "IV" then

R(R'Last-1 .. R'Last) := "VI";
end if;

Exercise 8.6

1 White, Blue, Yellow, Green, Red, Purple, Orange,
Black

2 (a) Black (c) Red
(b) Green

3 not (True xor True) = True
not (True xor False) = False

The result follows.

4 An aggregate of length one must be named.

5 "123", "ABC", "Abc", "aBc", "abC", "abc"

6 (a) 1 (c) 5
(b) 5
Note that the lower bound of the result of & may
depend upon the order of the operands; the same
applies to and, or and xor.

7 (a) 1 .. 10 (c) 6 .. 15
(b) 1 .. 10 (d) 0 .. 9

Exercise 8.7

1 C1, C2, C3: Complex;

(a) C3 := (C1.Rl+C2.Rl, C1.Im+C2.Im);
(b) C3 := (C1.Rl*C2.Rl - C1.Im*C2.Im,

C1.Rl*C2.Im + C1.Im*C2.Rl);

2 declare
Index: Integer;

begin
for S in People'Range loop

if People(S).Birth.Year >= 1980 then
Index := S;
exit;

end if;
end loop;
-- we assume that there is such a student

end;

Exercise 8.8

1 In a straightforward manner 8 as follows
((1, 0), (0, 1)), ((1, 0), [0, 1]), ([1, 0], (0, 1)),
[(1, 0), (0, 1)], [[1, 0], (0, 1)], [(1, 0), [0, 1]],
([1, 0], [0, 1]), [[1, 0], [0, 1]]

2 (for K in 1 .. 10 => K*(K+1)/2)

Answers 9
Exercise 9.1

1 B := N in 3 | 5 | 7 | 11 | 13 | 17 | 19;

2 Letter in 'a' .. 'e' | 'A' .. 'E' | 'v' .. 'z' | 'V' .. 'Z'

Exercise 9.2

1 Days_In_Month := (if M in Sep | Apr | Jun | Nov
then 30 elsif M = Feb then (if Year mod 4 = 0
then 29 else 28) else 31);

Exercise 9.3

1 L := (case Today is
when Monday | Friday | Sunday => 6
when Tuesday => 7
when Thursday | Saturday => 8
when Wednesday => 9);

2 Pension := Integer(
(if Age in 50 .. 69 then 50.0
elsif Age in 70 .. 79 then 60.0
elsif Age in 80.. 100 then 70.0
else 0.0)
*

(if Gender = Female then 0.9 else 1.0)
*
(if Disabled then 1.05 else 1.0)
+
(if Age = 100 then 100.0 else 0.0));

8 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 8

It is probably better to use a case expression for
the first part thus

(case Age is
when 50 .. 69 => 50.0
when 70 .. 79 => 60.0
when 80 .. 100 => 70.0
when others => 0.0)

assuming that Age is a static subtype of Integer.

Exercise 9.4

1 (for all K in A'First .. A'Last - 1 =>
A(K) <= A(K+1))

This assumes that the index type of the array is
an integer type. In the general case we have to
use T'Pred and T'Succ where T is the type of the
index thus
(for all K in A'First .. T'Pred(A'Last) =>

A(K) <= A(T'Succ(K)))

Exercise 9.6

1 Tn := ([for J in 1..N => J*(J+1)/2]'Reduce("+", 0));

Answers 10
Exercise 10.1

1 function Even(X: Integer) return Boolean is
begin

return X mod 2 = 0;
end Even;

2 function Factorial(N: Natural) return Positive is
begin

if N = 0 then
return 1;

else
return N * Factorial(N-1);

end if;
end Factorial;

3 function Outer(A, B: Vector) return Matrix is
C: Matrix(A'Range, B'Range);

begin
for I in A'Range loop

for J in B'Range loop
C(I, J) := A(I) * B(J);

end loop;
end loop;
return C;

end Outer;

4 type Primary_Array is
array (Integer range <>) of Primary;

function Make_Colour(P: Primary_Array)
return Colour is

C: Colour := (F, F, F);
begin

for I in P'Range loop
C(P(I)) := T;

end loop;
return C;

end Make_Colour;

Note that multiple values are allowed so that
Make_Colour((R, R, R)) = Red.

5 function Inner(A, B: Vector) return Float is
begin

if A'Length /= B'Length then
raise Constraint_Error;

end if;
return Result: Float := 0.0 do

for I in A'Range loop
Result := Result + A(I) * B(I+B'First-A'First);

end loop;
end return;

end Inner;

6 function Make_Unit(N: Natural) return Matrix is
begin

return M: Matrix(1 .. N, 1 .. N) do
for I in 1 .. N loop

for J in 1 .. N loop
if I = J then

M(I, J) := 1.0;
else

M(I, J) := 0.0;
end if;

end loop;
end loop;

end return;
end Make_Unit;

We can then declare
Unit: constant Matrix := Make_Unit(N);

7 function GCD(X, Y: Natural) return Natural is
begin

if Y = 0 then
return X;

else
return GCD(Y, X mod Y);

end if;
end GCD;
or

9.3 Answers to exercises 9

vxiANSWERS.qxp 04/03/2024 14:37 Page 9

function GCD(X, Y: Natural) return Natural is
XX: Integer := X;
YY: Integer := Y;
ZZ: Integer;

begin
while YY /= 0 loop

ZZ := XX mod YY; XX := YY; YY := ZZ;
end loop;
return XX;

end GCD;

Note that X and Y have to be copied because the
formal parameters behave as constants.

Exercise 10.2

1 function "<" (X, Y: Roman_Number) return Boolean is

function Value(R: Roman_Number)
return Integer is

V: Integer := 0;
begin

... -- then loop as in Exercise 8.4(2)
return V;

end Value;

begin
return Value(X) < Value(Y);

end "<";

2 function "+" (X, Y: Complex) return Complex is
begin

return (X.Rl + Y.Rl, X.Im + Y.Im);
end "+";

function "*" (X, Y: Complex) return Complex is
begin

return (X.Rl*Y.Rl - X.Im*Y.Im,
X.Rl*Y.Im + X.Im*Y.Rl);

end "*";

3 function "<" (P: Primary; C: Colour) return Boolean is
begin

return C(P);
end "<";

4 function "<=" (X, Y: Colour) return Boolean is
begin

return (X and Y) = X;
end "<=";

5 function "<" (X, Y: Date) return Boolean is
begin

if X.Year /= Y.Year then
return X.Year < Y.Year;

elsif X.Month /= Y.Month then
return X.Month < Y.Month;

else
return X.Day < Y.Day;

end if;
end "<";

Exercise 10.3

1 procedure Swap(X, Y: in out Float) is
T: Float;

begin
T := X; X := Y; Y := T;

end Swap;

2 procedure Rev(A: in out Vector) is
R: Vector(A'Range);

begin
for I in A'Range loop

R(I) := A(A'First + A'Last - I);
end loop;
A := R;

end Rev;

We might then write
Rev(Vector(R));

If we had two parameters and built the result
directly in the out parameter thus
procedure Rev(A: in Vector; R: out Vector) is
begin

for I in A'Range loop
R(I) := A(A'First + A'Last - I);

end loop;
end Rev;

then a call with both parameters denoting the
same array would result in a mess if passed by
reference because the result would overwrite the
data. Both parameters denote the same object
and are said to be aliased. This is a bounded
error.

3 The fragment has a bounded error because the
outcome depends upon whether the parameter is
passed by copy or by reference. If by copy then
A(1) ends up as 2.0; if by reference then A(1)
ends up as 4.0. There is aliasing because A and
V both refer to the same object.

Exercise 10.4

1 function Add(X: Integer; Y: Integer := 1)
return Integer is

begin
return X + Y;

end Add;

The following 6 calls are equivalent
Add(N) Add(N, 1)
Add(X => N, Y => 1) Add(X => N)
Add(N, Y => 1) Add(Y => 1, X => N)

10 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 10

2 function Favourite_Spirit return Spirit is
begin

case Today is
when Mon .. Fri => return Gin;
when Sat | Sun => return Vodka;

end case;
end Favourite_Spirit;

...

procedure Dry_Martini(Base: Spirit := Favourite_Spirit;
How: Style := On_The_Rocks;
Plus: Trimming := Olive);

This example illustrates that defaults are
evaluated each time they are required and can
therefore be changed from time to time.
Incidentally, we could just declare the
specification of Favourite_Spirit first and then
declare the bodies of both subprograms.

Answers 11
Exercise 11.2

1 procedure Append(First: in out Cell_Ptr;
Second: in Cell_Ptr) is

L: Cell_Ptr := First;
begin

if First = null then
First := Second;

else
while L.Next /= null loop

L := L.Next;
end loop;
L.Next := Second;

end if;
end Append;

2 function Size(T: Node_Ptr) return Integer is
begin

if T = null then
return 0;

else
return Size(T.Left) + Size(T.Right) + 1;

end if;
end Size;

3 function Copy(T: Node_Ptr) return Node_Ptr is
begin

if T = null then
return null;

else
return new Node'(Copy(T.Left),

Copy(T.Right), T.Value);
end if;

end Copy;

4 function "+" (A: A_String) return String is
begin

return A.all;
end "+";

and then Put(+Zoo(3)); will output the string
"camel".

5 function "&" (X, Y: A_String) return A_String is
begin

return new String'(X.all & Y.all);
end "&";

Exercise 11.4

1 type G_String is access constant String;
type G_String_Array is

array (Positive range <>) of G_String;

Aardvark: aliased constant String := "aardvark";
Baboon: aliased constant String := "baboon";
...
Zebra: aliased constant String := "zebra";

Zoo: constant G_String_Array :=
(Aardvark'Access, Baboon'Access, ...,

Zebra'Access);

2 N: Integer := ... ;
M: Integer := ... ;
World: array (1 .. N, 1 .. M) of Cell;
Abyss: constant Cell := (0, 0, (1 .. 8 => null));
...
-- offsets of 8 neighbours starting at North
type Offset is array (1 .. 8) of Integer;
H_Off: Offset := (+0, +1, +1, +1, +0, -1, -1, -1);
V_Off: Offset := (+1, +1, +0, -1, -1, -1, +0, +1);

-- now link up the cells
for I in 1 .. N loop

for J in 1 .. M loop
-- link to eight neighbours except on boundary
declare

H_Index, V_Index: Integer;
begin

for N_Index in 1 .. 8 loop
H_Index := I + H_Off(N_Index);
V_Index := J + V_Off(N_Index);
if H_Index in 1 .. N and

V_Index in 1 .. M then
World(I, J).Neighbour_Count(N_Index) :=

World(H_Index, V_Index).
Life_Count'Access;

else
-- edge of world, link to abyss
World(I, J).Neighbour_Count(N_Index) :=

Abyss.Life_Count'Access;
end if;

end loop;

10.4 Answers to exercises 11

vxiANSWERS.qxp 04/03/2024 14:37 Page 11

end;
end loop;

end loop;

Clearly the repetition of World(I, J) could be
eliminated by introducing an access type to the
cell itself. Or we could use renaming as
described in Section 13.7. It would be better if
we did not have so many occurrences of the
literal 8. Indeed, the enthusiastic reader might
like to consider how this example might be
extended to three or more dimensions. In three
dimensions of course the number of neighbours
is 33 – 1 = 26.

3 type Cell;
type Ref_Cell is access constant Cell;
type Ref_Cell_Array is

array (Integer range <>) of Ref_Cell;
type Cell is

record
Life_Count: Integer range 0 .. 1;
Total_Neighbour_Count: Integer range 0 .. 8;
Neighbour: Ref_Cell_Array(1 .. 8);

end record;
...
C.Total_Neighbour_Count := 0;
for I in C.Neighbour'Range loop

C.Total_Neighbour_Count :=
C.Total_Neighbour_Count +

C.Neighbour(I).Life_Count;
end loop;

The other changes are that World and Abyss
have to be declared as aliased
World: array (1 .. N, 1 .. M) of aliased Cell;
Abyss: aliased constant Cell := (0, 0, (1 .. 8 => null));

and the expressions assigned to the neighbours
omit Life_Count as in
World(I, J).Neighbour(N_Index) := Abyss'Access;

Exercise 11.6

1 The conversion to Ref1 is checked dynamically;
it passes for the call of P with X1'Access and
fails with X2'Access. The conversion to Ref2 is
checked statically and passes.

2 The conversion to Ref1 is checked dynamically;
it passes for X1 and fails for X2 and X3. The
conversion to Ref2 is checked dynamically and
passes in all cases. The conversion to Ref3 is
checked statically and passes.

Note that the case of X3 and Ref2 is where
the accessibility is adjusted on the chained call;
without this adjustment it would unnecessarily

fail. The point is that considering P1 as a whole,
since the type A2 is inside, the conversion is
always safe. But since the type A2 is outside P2
which actually does the conversion, it has to be
checked dynamically; the adjustment ensures
that it always passes.

Exercise 11.7

1 The first and last assignments are legal.

Exercise 11.8

1 function G(T: Float) return Float is
begin

return Exp(T) * Sin(T);
end G;
...
Answer: Float := Integrate(G'Access, 0.0, P);

2 function Solve(F: access function (X: Float)
return Float) return Float;

...
function G(X: Float) return Float is
begin

return Exp(X) + X - 7.0;
end G;
...
Answer := Solve(G'Access);

3 function Integrate(F: access function (X, Y: Float)
return Float);

LX, HX, LY, HY: Float return Float is
function Outer(X: Float) return Float is

function Inner(Y: Float) return Float is
begin

return F(X, Y);
end Inner;

begin
return Integrate(Inner'Access, LY, HY);

end Outer;
begin

return Integrate(Outer'Access, LX, HX);
end Integrate;

The functions have to be nested so that the inner
one can access the parameter X of the outer one.

12 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 12

Answers 12
Exercise 12.1

1 package Random is
Modulus: constant := 2**13;
subtype Small is Integer range 0 .. Modulus;
procedure Init(Seed: in Small);
function Next return Small;

end;

package body Random is
Multiplier: constant := 5**5;
X: Small;

procedure Init(Seed: in Small) is
begin

X := Seed;
end Init;

function Next return Small is
begin

X := X * Multiplier mod Modulus;
return X;

end Next;

end Random;

2 package Complex_Numbers is
type Complex is

record
Re, Im: Float := 0.0;

end record;

I: constant Complex := (0.0, 1.0);

function "+" (X: Complex) return Complex;
function "-" (X: Complex) return Complex;
function "+" (X, Y: Complex) return Complex;
function "-" (X, Y: Complex) return Complex;
function "*" (X, Y: Complex) return Complex;
function "/" (X, Y: Complex) return Complex;

end;

package body Complex_Numbers is

function "+" (X: Complex) return Complex is
begin

return X;
end "+";

function "-" (X: Complex) return Complex is
begin

return (-X.Re, -X.Im);
end "-";

function "+" (X, Y: Complex) return Complex is
begin

return (X.Re + Y.Re, X.Im + Y.Im);
end "+";

function "-" (X, Y: Complex) return Complex is

begin
return (X.Re - Y.Re, X.Im - Y.Im);

end "-";

function "*" (X, Y: Complex) return Complex is
begin

return (X.Re*Y.Re - X.Im*Y.Im,
X.Re*Y.Im + X.Im*Y.Re);

end "*";

function "/" (X, Y: Complex) return Complex is
D: Float := Y.Re**2 + Y.Im**2;

begin
return ((X.Re*Y.Re + X.Im*Y.Im)/D,

(X.Im*Y.Re - X.Re*Y.Im)/D);
end "/";

end Complex_Numbers;

Exercise 12.2

1 Inside the package body (or that of a child
package, see Section 13.3) we could write
function "*" (X: Float; Y: Complex) return Complex is
begin

return (X*Y.Re, X*Y.Im);
end "*";

but outside we could only write
use Complex_Numbers;

function "*" (X: Float; Y: Complex) return Complex is
begin

return Cons(X, 0.0) * Y;
end "*";

and similarly with the operands interchanged.

2 declare
C, D: Complex_Numbers.Complex;
F: Float;

begin
C := Complex_Numbers.Cons(1.5, -6.0);
D := Complex_Numbers."+" (C, Complex_Numbers.I);
F := Complex_Numbers.Re_Part(D) + 6.0;
...

end;

3 package Rational_Numbers is
type Rational is private;

function "+" (X: Rational) return Rational;
function "-" (X: Rational) return Rational;

function "+" (X, Y: Rational) return Rational;
function "-" (X, Y: Rational) return Rational;
function "*" (X, Y: Rational) return Rational;
function "/" (X, Y: Rational) return Rational;

function "/" (X: Integer; Y: Positive) return Rational;

12.1 Answers to exercises 13

vxiANSWERS.qxp 04/03/2024 14:37 Page 13

function Numerator(R: Rational) return Integer;
function Denominator(R: Rational) return Positive;

private
type Rational is

record
Num: Integer := 0; -- numerator
Den: Positive := 1; -- denominator

end record;
end;

package body Rational_Numbers is

function Normal(R: Rational) return Rational is
-- cancel common factors
G: Positive := GCD(abs R.Num, R.Den);

begin
return (R.Num/G, R.Den/G);

end Normal;

function "+" (X: Rational) return Rational is
begin

return X;
end "+";

function "-" (X: Rational) return Rational is
begin

return (-X.Num, X.Den);
end "-";

function "+" (X, Y: Rational) return Rational is
begin

return Normal((X.Num*Y.Den + Y.Num*X.Den,
X.Den*Y.Den));

end "+";

function "-" (X, Y: Rational) return Rational is
begin

return Normal((X.Num*Y.Den - Y.Num*X.Den,
X.Den*Y.Den));

end "-";

function "*" (X, Y: Rational) return Rational is
begin

return Normal((X.Num*Y.Num, X.Den*Y.Den));
end "*";

function "/" (X, Y: Rational) return Rational is
N: Integer := X.Num*Y.Den;
D: Integer := X.Den*Y.Num;

begin
if D < 0 then D := -D; N := -N; end if;
return Normal((Num => N, Den => D));

end "/";

function "/" (X: Integer; Y: Positive)
return Rational is

begin
return Normal((Num => X, Den =>Y));

end "/";

function Numerator(R: Rational) return Integer is

begin
return R.Num;

end Numerator;

function Denominator(R: Rational)
return Positive is

begin
return R.Den;

end Denominator;

end Rational_Numbers;

4 Although the parameter types are both Integer
and therefore the same as for predefined integer
division, nevertheless the result types are
different. The result types are considered in the
hiding rules for functions. See Section 10.5.

Exercise 12.3

1 package Metrics is
type Length is new Float;
type Area is new Float;
function "*" (X, Y: Length) return Length

is abstract;
function "*" (X, Y: Length) return Area;
function "*" (X, Y: Area) return Area is abstract;
function "/" (X, Y: Length) return Length

is abstract;
function "/" (X: Area; Y: Length) return Length;
function "/" (X, Y: Area) return Area is abstract;
function "**" (X: Length; Y: Integer) return Length

is abstract;
function "**" (X: Length; Y: Integer) return Area;
function "**" (X: Area; Y: Integer) return Area

is abstract;
end;

package body Metrics is

function "*" (X, Y: Length) return Area is
begin

return Area(Float(X) * Float(Y));
end "*";

function "/" (X: Area; Y: Length) return Length is
begin

return Length(Float(X) / Float(Y));
end "/";

function "**" (X: Length; Y: Integer) return Area is
begin

if Y = 2 then
return X * X;

else
raise Constraint_Error;

end if;
end "**";

end Metrics;

14 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 14

Exercise 12.4

1 package Stacks is
type Stack is private;
Empty: constant Stack;
...

private
...
Empty: constant Stack := ((1 .. Max => 0), 0);

end;

Note that Empty has to be initialized because it
is a constant despite the fact that Top which is
the only component whose value is of interest is
default initialized anyway. Another approach is
to declare a function Empty. This has the
advantage of being a primitive operation of
Stack and so inherited if we derived from Stack.

2 function Is_Empty(S: Stack) return Boolean is
begin

return S.Top = 0;
end Is_Empty;

function Is_Full(S: Stack) return Boolean is
begin

return S.Top = Max;
end Is_Full;

Whereas Is_Empty can test for an empty stack it
cannot be used to set a stack empty. A constant
or function Empty plus equality can do both.

3 function "=" (S, T: Stack) return Boolean is
begin

return S.S(1 .. S.Top) = T.S(1 .. T.Top);
end "=";

4 function "=" (A, B: Stack_Array) return Boolean is
begin

if A'Length /= B'Length then
return False;

end if;
for I in A'Range loop

if A(I) /= B(I+B'First-A'First) then
return False;

end if;
end loop;
return True;

end "=";

This uses the redefined = (via /=) applying to
the type Stack. This pattern for array equality
clearly applies to any type. Beware that we
cannot use slice comparison (as in the previous
answer) because that would call the function
being declared and so recurse infinitely.

Equality and inequality returning Boolean
arrays might be

type Boolean_Array is
array (Integer range <>) of Boolean;

function "=" (A, B: Stack_Array)
return Boolean_Array is

Result: Boolean_Array(A'Range);
begin

if A'Length /= B'Length then
return (A'Range => False);

end if;
for I in A'Range loop

Result(I) := A(I) /= B(I+B'First-A'First);
end loop;
return Result;

end "=";

It might be better to raise Constraint_Error in the
case of arrays of unequal lengths.
function "/=" (A, B: Stack_Array)

return Boolean_Array is
begin

return not (A = B);
end "/=";

Recall from Section 8.6 that not can be applied
to all one-dimensional Boolean arrays.

5 package Stacks is
type Stack is private;
procedure Push(S: in out Stack; X: in Integer);
procedure Pop(S: in out Stack; X: out Integer);

private
Max: constant := 100;
Dummy: constant Integer := 0;
type Integer_Vector is

array (Integer range <>) of Integer;
type Stack is

record
S: Integer_Vector(1 .. Max) :=

(1 .. Max => Dummy);
Top: Integer range 0 .. Max := 0;

end record;
end;

package body Stacks is
procedure Push(S: in out Stack; X: in Integer) is
begin

S.Top := S.Top + 1;
S.S(S.Top) := X;

end;

procedure Pop(S: in out Stack; X: out Integer) is
begin

X := S.S(S.Top);
S.S(S.Top) := Dummy;
S.Top := S.Top - 1;

end;
end Stacks;

12.4 Answers to exercises 15

vxiANSWERS.qxp 04/03/2024 14:37 Page 15

Note the use of Dummy as a default Integer
value for unused components of the stack.

6 function "=" (X, Y: Rational) return Boolean is
begin

return X.Num * Y.Den = X.Den * Y.Num;
end "=";

Overflow would soon occur without reduction
after each operation; this would not be sensible.

Exercise 12.5

1 In the case of the access formulation, although
Is_Empty is straightforward, it is difficult to
write an appropriate function Is_Full; we will
return to this when exceptions are discussed in
detail in Chapter 14.
function Is_Empty(S: Stack) return Boolean is
begin

return S = null;
end Is_Empty;

2 function "=" (S, T: Stack) return Boolean is
SL: Cell_Ptr := Cell_Ptr(S);
TL: Cell_Ptr := Cell_Ptr(T);

begin
while SL /= null and TL /= null loop

if SL.Value /= TL.Value then
return False;

end if;
SL := SL.Next;
TL := TL.Next;

end loop;
return SL = TL;

end "=";

3 package Queues is
Empty: exception;
type Queue is limited private;
procedure Join(Q: in out Queue; X: in Item);
procedure Remove(Q: in out Queue; X: out Item);
function Length(Q: Queue) return Integer;

private
type Cell;
type Cell_Ptr is access Cell;
type Cell is

record
Next: Cell_Ptr;
Data: Item;

end record;
type Queue is

record
First, Last: Cell_Ptr;
Count: Integer := 0;

end record;
end;

package body Queues is

procedure Join(Q: in out Queue; X: in Item) is
L: Cell_Ptr;

begin
L := new Cell'(Next => null, Data => X);
if Q.Count = 0 then -- queue was empty

Q.First := L;
Q.Last := L;

else
Q.Last.Next := L;
Q.Last := L;

end if;
Q.Count := Q.Count + 1;

end Join;

procedure Remove(Q: in out Queue; X: out Item) is
begin

if Q.Count = 0 then
raise Empty;

end if;
X := Q.First.Data;
Q.First := Q.First.Next;
Q.Count := Q.Count - 1;

end Remove;

function Length(Q: Queue) return Integer is
begin

return Q.Count;
end Length;

end Queues;

It would be tidy to assign null to Q.Last in the
case when the last item is removed but it is not
strictly necessary. See also Section 25.4 and in
particular Exercise 25.4(1).

Exercise 12.6
1 private

Max: constant := 1000; -- no of accounts
type Key_Code is new Integer range 0 .. Max;
subtype Key_Range is

Key_Code range 1 .. Key_Code'Last;
type Key is

record
Code: Key_Code := 0;

end record;
end;

package body Bank is
Balance: array (Key_Range) of Money :=

(others => 0);
Free: array (Key_Range) of Boolean :=

(others => True);

function Valid(K: Key) return Boolean is
begin

return K.Code /= 0;
end Valid;

16 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 16

procedure Open_Account(K: in out Key;
M: in Money) is

begin
if K.Code = 0 then

for I in Free'Range loop
if Free(I) then

Free(I) := False;
Balance(I) := M;
K.Code := I;
return;

end if;
end loop;

end if;
end Open_Account;

procedure Close_Account(K: in out Key;
M: out Money) is

begin
if Valid(K) then

M := Balance(K.Code);
Free(K.Code) := True;
K.Code := 0;

end if;
end Close_Account;

procedure Deposit(K: in Key;
M: in Money) is

begin
if Valid(K) then

Balance(K.Code) := Balance(K.Code) + M;
end if;

end Deposit;

procedure Withdraw(K: in out Key;
M: in out Money) is

begin
if Valid(K) then

if M > Balance(K.Code) then
Close_Account(K, M);

else
Balance(K.Code) := Balance(K.Code) - M;

end if;
end if;

end Withdraw;

function Statement(K: Key) return Money is
begin

if Valid(K) then
return Balance(K.Code);

end if;
end Statement;

end Bank;

Various alternative formulations are possible. It
might be neater to declare a record type
representing an account containing the two
components Free and Balance.

Note that the function Statement will raise

Program_Error if the key is not valid.
Alternatively we could return a dummy value of
zero but it might be better to raise our own
exception as described in Chapter 15.

2 An alternative formulation which represents the
home savings box could be that where the
limited private type is given by
type Box is

record
Code: Box_Code := 0;
Balance: Money;

end record;

In this case the money is kept in the variable
declared by the user. The bank only knows
which boxes have been issued but does not
know how much is in a particular box. The
details are left to the reader.

3 Since the parameter is of an explicitly limited
type, it is always passed by reference and
nothing can go wrong. However, if the record
type had not been explicitly limited then it
might be passed by copy or by reference. If it is
passed by copy then the call of Action will
succeed whereas if it is passed by reference it
will not.

4 Again, since the parameter is of an explicitly
limited type it will be passed by reference and
so cannot be changed. However, even if it had
not been explicitly limited and passed by copy
then he would still have been thwarted because
of the rule mentioned in Section 10.3 that a
record type with any default initialized
components is always copied in precisely so that
junk values cannot be created.

Answers 13
Exercise 13.1

1 The number of possible orders of compilation is
(a) 120, (b) 18. The source model thus gives the
programmer much more flexibility.

12.6 Answers to exercises 17

Main D body

D spec P Q

vxiANSWERS.qxp 04/03/2024 14:37 Page 17

Exercise 13.2

1 The number of possible orders of compilation is
(a) 120, (b) 8. The source model again is much
more flexible. Indeed the number of
combinations for the source model is always n!
(where n is the number of units) irrespective of
the dependency structure.

Exercise 13.3

1 package Complex_Numbers is
type Complex is private;
...
function "+" (X, Y: Complex) return Complex;
...

private
...

end Complex_Numbers;

package Complex_Numbers.Cartesian is
function Cons(R, I: Float) return Complex;
function Re_Part(X: Complex) return Float;
function Im_Part(X: Complex) return Float;

end Complex_Numbers.Cartesian;

package Complex_Numbers.Polar is
... -- as before

end Complex_Numbers.Polar;

The bodies are as expected.

2 We have used the abbreviation C_N for
Complex_Numbers.

3 The only subprograms inherited are the
arithmetic operations in the package
Complex_Numbers. Those in the child packages
are not primitive operations of the type Complex
and so are not inherited.

Exercise 13.4

1 private package Rational_Numbers.Slave is
function Normal(R: Rational) return Rational;

end;

package body Rational_Numbers.Slave is

function GCD(X, Y: Natural) return Natural is
...

end GCD;

function Normal(R: Rational) return Rational is
G: Positive := GCD(abs R.Num, R.Den);

begin
return (R.Num/G, R.Den/G);

end Normal;

end Rational_Numbers.Slave;

with Rational_Numbers.Slave;
package body Rational_Numbers is

use Slave;
-- as before without the function Normal
...

end Rational_Numbers;

An alternative is to make Normal a private child
function.

2 package Complex_Numbers.Trig is
function Sin(X: Complex) return Complex;
function Cos(X: Complex) return Complex;
...

end;

private function Complex_Numbers.Trig.
Sin_Cos(X: Complex) return Complex is

begin
...

end;

with Complex_Numbers.Trig.Sin_Cos;
package body Complex_Numbers.Trig is

...
end Complex_Numbers.Trig;

The function Sin_Cos can be called directly as
such within the body of Trig without a use
clause.

18 Answers to exercises

C_N.Cartesian spec C_N.Polar spec C_N body

C_N.Cartesian body C_N.Polar body

Complex_Numbers spec

Main Stack body

Pop Push

Stack spec

vxiANSWERS.qxp 04/03/2024 14:37 Page 18

Exercise 13.7

1 function Monday return Diurnal.Day
renames Diurnal.Mon;

2 This cannot be done because Next_Work_Day is
of an anonymous type.

3 Pets: String_3_Array renames Farmyard(2 .. 3);

Note that the bounds of Pets are 2 and 3.

4 function "+" (X, Y: Complex_Numbers.Complex)
return Complex_Numbers.Complex

renames Complex_Numbers."+";

5 This_Cell: Cell renames World(I, J);

Exercise 13.8

1 package P is
B: Boolean;

end;

with P;
package Q is

... -- spec of Q
end;

package body Q is
...

begin
P.B := True;

end Q;

with P;
package R is

... -- spec of R
end;

with Q;
pragma Elaborate(Q);
package body R is

...
begin

P.B := False;
end R;

We need to ensure that the bodies are elaborated
in a specific order. Placing the pragma Elaborate
for Q on the body of R ensures that the body of
Q is elaborated before that of R. Thus P.B will
be finally set False. Note also that R has to have
a with clause for Q. The pragma could
alternatively be placed on the specification of R
since a body is always elaborated after its
specification.

Answers 14
Exercise 14.1

1 P: Point := (Object(C) with null record);

2 R: Reservation:
...
R.Flight_Number := 77;
R.Date_Of_Travel := (5, Nov, 2007);
...
NR: Nice_Reservation := (R with Window, Green);

3 package Reservation_System.Supersonic is
type Supersonic_Reservation is

new Reservation with
record

...
end record;

procedure Make(SR: in out Supersonic_Reservation);
...

end Reservation_System.Supersonic;

Exercise 14.2

1 procedure Print_Area(OC: Object'Class) is
begin

Put(Area(OC)); -- dispatch to appropriate Area
end;

2 type Person is tagged
record

Birth: Date;
end record;

type Man is new Person with
record

Bearded: Boolean;
end record;

type Woman is new Person with
record

Children: Integer;
end record;

3 procedure Print_Details(P: in Person) is
begin

Print_Date(P.Birth);
end;
procedure Print_Details(M: in Man) is
begin

Print_Details(Person(M));
Print_Boolean(M.Beard);

end;

13.7 Answers to exercises 19

vxiANSWERS.qxp 04/03/2024 14:37 Page 19

procedure Print_Details(W: in Woman) is
begin

Print_Details(Person(W));
Print_Integer(W.Children);

end;
procedure Analyse_Person(PC: Person'Class) is
begin

Print_Details(PC); -- dispatch
end;

4 package body Queues is
procedure Join(Q: access Queue;

E: in Element_Ptr) is
begin

if E.Next /= null then -- already on a queue
raise Queue_Error;

end if;
if Q.Count = 0 then -- queue was empty

Q.First := E;
Q.Last := E;

else
Q.Last.Next := E;
Q.Last := E;

end if;
Q.Count := Q.Count + 1;

end Join;

function Remove(Q: access Queue)
return Element_Ptr is

Result: Element_Ptr;
begin

if Q.Count = 0 then
raise Queue_Error;

end if;
Result := Q.First;
Q.First := Result.Next;
Result.Next := null;
Q.Count := Q.Count - 1;
return Result;

end Remove;

function Length(Q: Queue) return Integer is
begin

return Q.Count;
end Length;

end Queues;

Exercise 14.3

1 function Further(X, Y: Object) return Object is
begin

if Distance(X) > Distance(Y) then
return X;

else
return Y;

end if;
end Further;

Since it returns the type Object it becomes
abstract when inherited by Circle and so has to
be overridden. This is very frustrating because
the text is essentially unchanged. But Point is
OK because the extension is null.

2 package Objects is
type Object is abstract tagged

record
X_Coord: Float;
Y_Coord: Float;

end record;

function Distance(O: Object'Class) return Float;
function Area(O: Object) return Float is abstract;

end Objects;

with Objects; use Objects;
package Shapes is

type Point is new Object with null record;

function Area(P: Point) return Float;

type Circle is new Object with
record

Radius: Float;
end record;

function Area(C: Circle) return Float;
... -- etc.

end Shapes;

3 function Further(X, Y: Object'Class)
return Object'Class is

begin
if Distance(X) > Distance(Y) then

return X;
else

return Y;
end if;

end Further;

This calls the class wide function Distance and
can be applied to all objects without change.
Moreover, it can be used to compare the
distances of two different types of object such
as a triangle and a circle.

4 The function Bigger cannot be written for the
type Object because it would contain a call of
the abstract function Area. Functions could of
course be written for Circle and Point but would
need to be written out for each. A better solution
is again to use class wide parameters as in

20 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 20

function Bigger(X, Y: Object'Class)
return Object'Class is

begin
if Area(X) > Area(Y) then

return X;
else

return Y;
end if;

end Bigger;

This dispatches to the appropriate functions
Area and can be used to compare the areas of
any two objects in the class. However, it would
be better to manipulate references to the objects
rather than the objects themselves. Indeed if we
wish to know which is bigger we don’t really
want to be given a copy of the bigger one, we
want an access value referring to it. The
extension problems with the function results
would then all go away.

5 package body Reservation_System.Subsonic is

procedure Make(BR: in out Basic_Reservation) is
Select_Seat(BR);

end Make;

procedure Make(NR: in out Nice_Reservation) is
Make(Basic_Reservation(NR));
Order_Meal(NR);

end Make;

procedure Make(PR: in out Posh_Reservation) is
Make(Nice_Reservation(PR));
Arrange_Limo(PR);

end Make;
... -- Select_Seat etc as before

end Reservation_System.Subsonic;

Exercise 14.4

1 function "=" (C, D: Circle) return Boolean is
begin

return Object(C) = Object(D) and
abs(C.Radius - D.Radius) < Epsilon;

end "=";

2 function "=" (C, D: Circle) return Boolean is
begin

return Old_Equality(Object(C), Object(D)) and
abs(C.Radius - D.Radius) < Epsilon;

end "=";

Exercise 14.5

1 It would fail to compile because, as mentioned
in Section 14.2, Order_Meal is not a primitive
operation of all types in the class rooted at
Reservation.

2 procedure Select_Seat(NR: in out Nice_Reservation) is
begin

if NR.Seat_Sort = Aisle then
-- choose aisle seat

else
-- choose window seat

end if;
end Select_Seat;
...
procedure Make(R: in out Reservation) is
begin

Select_Seat(Reservation'Class(R)); -- redispatch
end Make;

Observe that we know that the component
NR.Seat_Sort must exist because this is a nice
reservation or derived from it. Naturally enough
all seats are window or aisle seats in nice and
posh categories.

Exercise 14.6

1 We could not declare the function Further with
Shape as parameter and result because it has a
controlling result and would prevent further
extension from the partial view. But the class
wide version taking Shape'Class is acceptable.

Exercise 14.7

1 procedure Adjust(Object: in out Thing) is
begin

The_Count := The_Count + 1;
end Adjust;

The procedures Initialize and Finalize are as
before.

2 The type Key and the control procedures could
be
type Key is new Limited_Controlled with

record
Code: Key_Code;

end record;

procedure Initialize(K: in out Key) is
begin

K.Code := 0;
end Initialize;

procedure Finalize(K: in out Key) is
begin

Return_Key(K);
end Finalize;

We have chosen to use Initialize to set the initial
value but we could have left this to be done by
the default mechanism as before.

14.3 Answers to exercises 21

vxiANSWERS.qxp 04/03/2024 14:37 Page 21

Exercise 14.9

1 (a) legal – both tags statically the same
(b) illegal – tags statically different
(c) illegal – cannot mix static and dynamic cases
(d) legal – but tags checked at run time

2 procedure Convert(From: in Set'Class;
To: out Set'Class) is

begin
if From'Tag = To'Tag then

To := From;
else

declare
Temp: Set'Class := From;
-- and so on

end;
end if;

end Convert;

3 procedure Convert(From: in Stack'Class;
To: out Stack'Class) is

begin
To := Empty;
declare

Temp1: Stack'Class := From; -- copy original
Temp2: Stack'Class := To; -- the siding
E: Element;

begin
while Temp1 /= Empty loop

Pop(Temp1, E);
Push(Temp2, E);

end loop;
while Temp2 /= Empty loop

Pop(Temp2, E);
Push(To, E);

end loop;
end;

end Convert;

A double loop is required otherwise the
elements end up in reverse order. So having
copied the whole stack into Temp1 to avoid
destroying the original, we then move the
individual elements into a second temporary
which we can think of as a siding using a
railroad analogy and finally reverse them out
into the final destination.

Other approaches are possible such as
introducing a procedure Rev but these result in
lots of copying. Note the use of the inner block
so that Temp2 can be initialized with an empty
stack of the same type as To.

The linked stack might be

type Linked_Stack is new Stack with
record

Component: Inner;
end record;

where Inner is as for the Linked_Set. The deep
copy mechanism is identical. As in the answer
to Exercise 12.5(2), equality can be defined as
function "=" (S, T: Linked_Stack) return Boolean is

SL: Cell_Ptr := S.Component.The_Set;
TL: Cell_Ptr := T.Component.The_Set;

begin
... -- as Exercise 12.5(2)

end "=";

The array stack might be
type Array_Stack is new Stack with

record
S: Element_Vector(1 .. Max);
Top: Integer range 0 .. Max := 0;

end record;

with equality as in Section 12.4.

Answers 15
Exercise 15.1

1 procedure Quadratic(A, B, C: in Float;
Root_1, Root_2: out Float;
OK: out Boolean) is

D: constant Float := B**2 - 4.0*A*C;
begin

Root_1 := (-B+Sqrt(D)) / (2.0*A);
Root_2 := (-B-Sqrt(D)) / (2.0*A);
OK := True;

exception
when Constraint_Error =>

OK := False;
end Quadratic;

2 function Factorial(N: Integer) return Integer is

function Slave(N: Natural) return Positive is
begin

if N = 0 then
return 1;

else
return N * Slave(N-1);

end if;
end Slave;

begin
return Slave(N);

exception
when Constraint_Error | Storage_Error =>

return -1;
end Factorial;

22 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 22

Exercise 15.2

1 package Random is
Bad: exception;
Modulus: constant := 2**13;
subtype Small is Integer range 0 .. Modulus;
procedure Init(Seed: in Small);
function Next return Small;

end;

package body Random is
Multiplier: constant := 5**5;
X: Small;

procedure Init(Seed: in Small) is
begin

if Seed mod 2 = 0 then
raise Bad;

end if;
X := Seed;

end Init;

function Next return Small is
begin

X := X * Multiplier mod Modulus;
return X;

end Next;

end Random;

2 function Factorial(N: Integer) return Integer is

function Slave(N: Natural) return Positive is
begin

if N = 0 then
return 1;

else
return N * Slave(N-1);

end if;
end Slave;

begin
return Slave(N);

exception
when Storage_Error =>

raise Constraint_Error;
end Factorial;

3 function "+" (X, Y: Vector) return Vector is
R: Vector(X'Range);

begin
if X'Length /= Y'Length then

raise Constraint_Error;
end if;
for I in X'Range loop

R(I) := X(I) + Y(I+Y'First-X'First);
end loop;
return R;

end "+";

4 No. A malevolent user could write
raise Stack.Error;

outside the package. It would be nice if the
language provided some sort of ‘private’
exception that could be handled but not raised
explicitly outside its defining package.

5 procedure Push(S: in out Stack; X: in Integer) is
begin

S := new Cell'(S, X);
exception

when Storage_Error =>
raise Error;

end;

procedure Pop(S: in out Stack; X: out Integer) is
begin

if S = null then
raise Error;

else
X := S.Value;
S := S.Next;

end if;
end;

Exercise 15.3

1 Four checks are required. The one inserted by
the user, the overflow check on the assignment
to Top plus the two for the assignment to S(Top)
which cannot be avoided since we can say little
about the value of Top (except that it is not
equal to Max). So this is the worst of all worlds
thus emphasizing the need to give appropriate
constraints.

Exercise 15.4

1 The subprograms become
procedure Push(X: Integer) is
begin

if Top = Max then
raise Error with "stack overflow";

end if;
Top := Top + 1;
S(Top) := X;

end Push;

function Pop return Integer is
begin

if Top = 0 then
raise Error with "stack underflow";

end if;
Top := Top - 1;
return S(Top + 1);

end Pop;

15.2 Answers to exercises 23

vxiANSWERS.qxp 04/03/2024 14:37 Page 23

and the handler might become
when Event: Error =>

Put("Stack used incorrectly because of ");
Put(Exception_Message(Event));
Clean_Up;

Exercise 15.5

1 pragma Assert(for all K in A'First .. A'Last - 1 =>
A(K) <= A(K+1));

See also the answer to Exercise 9.4(1).

Exercise 15.6

1 package Bank is
Alarm: exception;
type Money is new Natural;
type Key is limited private;
... -- as before

end;

package body Bank is
Balance: array (Key_Range) of Money :=

(others => 0);
Free: array (Key_Range) of Boolean :=

(others => True);

function Valid(K: Key) return Boolean is
begin

return K.Code /= 0;
end Valid;

procedure Validate(K: Key) is
begin

if not Valid(K) then
raise Alarm;

end if;
end Validate;

procedure Open_Account(K: in out Key;
M: in Money) is

begin
if K.Code = 0 then

for I in Free'Range loop
if Free(I) then

Free(I) := False;
Balance(I) := M;
K.Code := I;
return;

end if;
end loop;

else
raise Alarm;

end if;
end Open_Account;

procedure Close_Account(K: in out Key;
M: out Money) is

begin
Validate(K);
M := Balance(K.Code);
Free(K.Code) := True;
K.Code := 0;

end Close_Account;

procedure Deposit(K: in Key;
M: in Money) is

begin
Validate(K);
Balance(K.Code) := Balance(K.Code) + M;

end Deposit;

procedure Withdraw(K: in out Key;
M: in out Money) is

begin
Validate(K);
if M > Balance(K.Code) then

raise Alarm;
else

Balance(K.Code) := Balance(K.Code) - M;
end if;

end Withdraw;

function Statement(K: Key) return Money is
begin

Validate(K);
return Balance(K.Code);

end Statement;
end Bank;

For convenience we have declared a procedure
Validate which raises the alarm in most cases.
The Alarm is also explicitly raised if we attempt
to overdraw but as remarked in the text we
cannot also close the account (unless we are
assured that the key is either explicitly limited
or tagged). An attempt to open an account with
a key which is in use also causes Alarm to be
raised. We do not however raise the Alarm if the
bank runs out of accounts but have left it to the
user to check with a call of Valid that he was
issued a genuine key; the rationale is that it is
not the user’s fault if the bank runs out of keys.

2 Suppose N is 2. Then on the third call, P is not
entered but the exception is raised and handled
at the second level. The handler again calls P
without success but this time, since an exception
raised in a handler is not handled there but
propagated up a level, the exception is handled
at the first level. The pattern then repeats but the
exception is finally propagated out of the first
level to the originating call. In all there are three
successful calls and four unsuccessful ones. The
diagram opposite might help.

24 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 24

An * indicates an unsuccessful call, H
indicates a call from a handler.

More generally suppose Cn is the total
number of calls for the case N = n. Then by
induction

Cn+1 = 2Cn + 1
with the initial condition C0 = 1 since in the case
N = 0 it is obvious that there is only one call
which fails. It follows that the total number of
calls CN is 2N+1 – 1. Of these 2N are unsuccessful
and 2N – 1 are successful.

I am grateful to Bob Bishop for this amusing
example.

Answers 16
Exercise 16.1

1 type My_Boolean is new Boolean
wiith Default_Value => True;

In the case of most Boolean aspects such as
Inline we can omit True which is then taken by
default. But this does not apply to Default_Value
since it can apply to any type and not just
Boolean.

Exercise 16.2

1 overriding
function Area(S: Square) return Float

with Pre => S.Side > 0.0 and
S.X_Coord > S.Side,

Post => abs (Area'Result - S.Side**2) >
Eps;

The precondition ensures that all of the square is
in the positive half-plane for some reason. The
postcondition requires the answer to be correct
within some small value Eps.

Exercise 16.3

1 function Is_Unduplicated(S: Stack)
return Boolean is

begin
for I in 1 .. S.Top-1 loop

for J in I+1 .. S.Top loop
if S.S(I) = S.S(J) then

return False;
end if;

end loop;
end loop;
return True;

end Is_Unduplicated;

2 function Is_Unduplicated(S: Stack)
return Boolean is

(not(for some I in 1 .. S.Top-1 =>
(for some J in I+1 .. S.Top => S.S(I) = S.S(J))));

Note how this closely mimics the previous
answer. Of course this expression function
cannot be used as the precondition directly
because it needs access to the implementation
details. So it is just used as a completion.
However, remember that it can be given in the
private part as a completion and so is visible to
the human reader of the package specification.

Exercise 16.4

1 subtype Primary is Rainbow
with Static_Predicate =>

Primary in Red | Yellow | Blue;

2 subtype Curious is Integer
with Dynamic_Predicate => Curious in 1 .. 999

and Curious mod 37 = 1;

If we wanted to use a static predicate then we
would have to write the possible values out thus
subtype Curious is Integer

with Static_Predicate =>
Curious in 38 | 75 | 112 | 149 | 186 | 223 ... ;

Exercise 16.6

1 subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0,

Predicate_Failure => raise Constraint_Error
with "something odd about even!";

15.6 Answers to exercises 25

P3* P3* P3* P3*

P2 P2
H P2 P2

H

P1 P1
H

vxiANSWERS.qxp 04/03/2024 14:37 Page 25

Answers 17
Exercise 17.1

1 P: on A: like Integer, on B: like Short_Integer
Q: on A: like Long_Integer, on B: like Integer
R: on A: not possible, on B: like Long_Integer

2 No, the only critical case is type Q on machine
A. Changing to one’s complement changes the
range of Integer to
-32767 .. +32767

and so only Integer'First is altered.

3 (a) Integer'Base
(b) illegal – need explicit conversion
(c) My_Integer'Base
(d) Integer'Base
(e) root_integer
(f) My_Integer'Base

4 type Longest_Integer is
range System.Min_Int .. System.Max_Int;

Exercise 17.2

1 (a) 16#EF# (c) 222
(b) 120 (d) 239

2 type Ring5 is mod 5;
A, B, C, D: Ring5;
...
D := (A + B) * C;

3 (a) 4 (b) 1

DeMorgan’s theorem that
not (A and B) = not A or not B

does not hold if the modulus is not a power of
two.

4 type Bearing is mod 360 * 60;
Degree: constant Bearing := 60;
SE: constant Bearing := 135*Degree;
NNW: constant Bearing := 337*Degree+30;
NE_by_E: constant Bearing := 56*Degree+15;

Exercise 17.3

1 (a) illegal (d) Integer'Base
(b) Integer'Base (e) root_real
(c) root_real (f) root_integer

2 R: constant := N * 1.0;

Exercise 17.4

1 type Real is digits 7;
type Real_Vector is

array (Integer range <>) of Real;

function Inner(A, B: Real_Vector) return Real is
type Long_Real is digits 14;
Result: Long_Real := 0.0;

begin
for I in A'Range loop

Result := Result +
Long_Real(A(I)) * Long_Real(B(I));

end loop;
return Real(Result);

end Inner;

Exercise 17.5

1 The literal 0.5 is universal_real and this matches
universal_fixed.

2 function "**" (X: Complex; N: Integer)
return Complex is

Result_θ: Angle := 0.0;
begin

for I in 1 .. abs N loop
Result_θ := Normal(Result_θ + X.θ);

end loop;
if N < 0 then

Result_θ := -Result_θ;
end if;
return (X.R**N, Result_θ);

end "**";

We cannot simply write
return (X.R**N, Normal(X.θ * N));

because if abs N is larger than 3 the
multiplication is likely to overflow; so we have
to repeatedly normalize. A clever solution
which is faster for all but the smallest values of
abs N is
function "**" (X: Complex; N: Integer)

return Complex is
Result_θ: Angle := 0.0;
Term: Angle := X.Theta;
M: Integer := abs N;

begin
while M > 0 loop

if M rem 2 /= 0 then
Result_θ := Normal(Result_θ + Term);

end if;
M := M / 2;
Term := Normal(Term * 2);

end loop;
if N < 0 then

26 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 26

Result_θ := -Result_θ;
end if;
return (X.R**N, Result_θ);

end "**";

This is a variation of the standard algorithm for
computing exponentials by decomposing the
exponent into its binary form and doing a
minimal number of multiplications. In our case
it is the multiplier N which we decompose and
then do a minimal number of additions.

Recognizing that our repeated addition
algorithm is essentially the same as for
exponentiation, we can in parallel compute
X.R**N by the same method. A little
manipulation soon makes us realize that we
might as well write
function "**" (X: Complex; N: Integer)

return Complex is
One: constant Complex := Cons(1.0, 0.0);
Result: Complex := One;
Term: Complex := X;
M: Integer := abs N;

begin
while M > 0 loop

if M rem 2 /= 0 then
Result := Result * Term; -- Complex *

end if;
M := M / 2;
Term := Term * Term; -- Complex *

end loop;
if N < 0 then Result := One / Result; end if;
return Result;

end "**";

This brings us back full circle. This is the
standard algorithm for computing exponentials
applied in the abstract to our type Complex.
Note the calls of "*" and "/" applying to the type
Complex. This version of "**" can be declared
outside the package Complex_Numbers and is
quite independent of the internal representation
(but it will be very inefficient unless it is polar).

3 private
type Angle is delta 0.05 range -720.0 .. 720.0;
for Angle'Small use 2.0**(-5);
type Complex is

record
R: Float;
θ: Angle range 0.0 .. 360.0;

end record;
I: constant Complex := (1.0, 90.0);

end;
...
function Normal(φ: Angle) return Angle is
begin

if φ >= 360.0 then
return φ - 360.0;

elsif φ < 0.0 then
return φ + 360.0;

else
return φ;

end if;
end Normal;

The choice of delta and small is deduced as
follows. We need 10 bits to cover the range
0 .. 720 plus one bit for the sign thus leaving 5
bits after the binary point. So small will be 2–5

and thus any value of delta greater than that will
do. We have chosen 0.05.

Answers 18
Exercise 18.1

1 Trace((M'Length, M))

If the two dimensions of M were not equal then
Constraint_Error would be raised. Note that the
lower bounds of M do not have to be 1; all that
matters is that the number of components in
each dimension is the same since sliding is
permitted when building the aggregate.

2 package Stacks is
type Stack(Max: Natural) is private;
Empty: constant Stack;
...

private
type Integer_Vector is

array (Integer range <>) of Integer;
type Stack(Max: Natural) is

record
S: Integer_Vector(1 .. Max);
Top: Integer := 0;

end record;
Empty: constant Stack(0) := (0, (others => 0), 0);

end;

We have naturally chosen to make Empty a
stack whose value of Max is zero. Note that the
function "=" only compares the parts of the
stacks which are in use. Thus we can write
S = Empty to test whether a stack S is empty
irrespective of its value of Max.

3 function Is_Full(S: Stack) return Boolean is
begin

return S.Top = S.Max;
end Is_Full;

4 S: constant Square := (N, Make_Unit(N));

17.5 Answers to exercises 27

vxiANSWERS.qxp 04/03/2024 14:37 Page 27

Exercise 18.2

1 Z: Polynomial := (0, (0 => 0));

The named notation has to be used because the
array has only one component.

2 function "*" (P, Q: Polynomial) return Polynomial is
R: Polynomial(P.N+Q.N) := (P.N+Q.N, (others => 0));

begin
for I in P.A'Range loop

for J in Q.A'Range loop
R.A(I+J) := R.A(I+J) + P.A(I)*Q.A(J);

end loop;
end loop;
return R;

end "*";

It is largely a matter of taste whether we write
P.A'Range rather than 0 .. P.N.

3 function "-" (P, Q: Polynomial) return Polynomial is
Size: Integer;

begin
if P.N > Q.N then

Size := P.N;
else

Size := Q.N;
end if;
declare

R: Polynomial(Size);
begin

for I in 0 .. P.N loop
R.A(I) := P.A(I);

end loop;
for I in P.N+1 .. R.N loop

R.A(I) := 0;
end loop;
for I in 0 .. Q.N loop

R.A(I) := R.A(I) - Q.A(I);
end loop;
return Normal(R);

end;
end "-";

There are various other ways of writing this
function. We could initialize R.A by using slice
assignments
R.A(0 .. P.N) := P.A;
R.A(P.N+1 .. R.N) := (P.N+1 .. R.N => 0);

or even more succinctly by
R.A := P.A & (P.N+1 .. R.N => 0);

4 procedure Truncate(P: in out Polynomial) is
begin

if P'Constrained then
raise Truncate_Error;

else
P := (P.N-1, P.A(0 .. P.N-1));

end if;
end Truncate;

5 Any unconstrained Polynomial could then
include an array whose range is 0 .. Integer'Last.
This will take a lot of space. Since most
implementations are likely to adopt the strategy
of setting aside the maximum possible space for
an unconstrained record it is thus wise to keep
the maximum to a practical limit by the use of a
suitable subtype such as Index.

6 type Polynomial(N: Index := 0) is
record

A: Integer_Vector(0 .. N) :=
(0 .. N-1 => 0) & (N => 1);

end record;

We cannot write a single aggregate because an
aggregate can only have one dynamic choice
which must be the only choice. An alternative
approach is to declare a function thus
function F(N: Integer) return Integer_Vector;

type Polynomial(N: Index := 0) is
record

A: Integer_Vector(0 .. N) := F(N);
end record;

...

function F(N: Integer) return Integer_Vector is
R: Integer_Vector(0 .. N);

begin
for I in 0 .. N-1 loop

R(I) := 0;
end loop;
R(N) := 1;
return R;

end F;

If the full type Polynomial is declared in the
private part of a package then the function
specification can also be in the private part with
the function body in the package body. It does
not matter that F is referred to before its body is
elaborated provided that it is not actually called.
If we declared a polynomial (without an initial
value) before the body of F then Program_Error
would be raised.

Clearly any initial value can be computed this
way even if it cannot be written as aggregates.

28 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 28

7 package Rational_Polynomials is
Max: constant := 10;
subtype Index is Integer range 0 .. Max;
type Rational_Polynomial(N, D: Index := 0) is

private;

function "+" (X: Rational_Polynomial)
return Rational_Polynomial;

function "-" (X: Rational_Polynomial)
return Rational_Polynomial;

function "+" (X, Y: Rational_Polynomial)
return Rational_Polynomial;

function "-" (X, Y: Rational_Polynomial)
return Rational_Polynomial;

function "*" (X, Y: Rational_Polynomial)
return Rational_Polynomial;

function "/" (X, Y: Rational_Polynomial)
return Rational_Polynomial;

function "/" (X, Y: Polynomial)
return Rational_Polynomial;

function Numerator(R: Rational_Polynomial)
return Polynomial;

function Denominator(R: Rational_Polynomial)
return Polynomial;

private
type Rational_Polynomial(N, D: Index := 0) is

record
Num: Polynomial(N) := (N, (0 .. N => 0));
Den: Polynomial(D) :=

(N, (0 => 1) & (1 .. N => 0));
end record;

end;

It might be more elegant to write functions Zero
and One taking a parameter giving the value of
N like the function F of the previous exercise.

We make no attempt to impose any special
language constraint on the denominator as we
did in the type Rational where the denominator
has subtype Positive.

8 function "&" (X, Y: V_String) return V_String is
begin

return (X.N + Y.N, X.S & Y.S);
end "&";

Exercise 18.3

1 procedure Shave(P: in out Person) is
begin

if P.Sex = Female then
raise Shaving_Error;

else
P.Bearded := False;

end if;
end Shave;

2 procedure Sterilize(M: in out Mutant) is
begin

if M'Constrained and M.Sex /= Neuter then
raise Sterilize_Error;

else
M := (Neuter, M.Birth);

end if;
end Sterilize;

3 type Figure is (Circle, Point, Triangle);

type Object(Shape: Figure) is
record

X_Coord: Float;
Y_Coord: Float;
case Shape is

when Circle =>
Radius: Float;

when Point =>
null;

when Triangle =>
A, B, C: Float;

end case;
end record;

function Area(X: Object) return Float is
begin

case X.Shape is
when Circle =>

return Pi * X.Radius**2;
when Point =>

return 0.0;
when Triangle =>

return ... ;
end case;

end Area;

Note the similarity between the case statement
in the function Area and the variant part of the
type Object.

18.2 Answers to exercises 29

vxiANSWERS.qxp 04/03/2024 14:37 Page 29

4 type Category is (Basic, Nice, Posh);
type Position is (Aisle, Window);
type Meal_Type is (Green, White, Red);

type Reservation(C: Category) is
record

Flight_Number: Integer;
Date_Of_Travel: Date;
Seat_Number: String(1 .. 3) := " ";
case C is

when Basic => null;
when Nice | Posh =>

Seat_Sort: Position;
Food: Meal_Type;
case C is

when Basic | Nice => null;
when Posh =>

Destination: Address;
end case;

end case;
end record;

Note the curiously nested structure which is
forced upon us by the rule that the individual
components must have distinct names.

Exercise 18.4

1 type Boxer(W: Weight; Sex: Gender) is
new Person(Sex => Sex) with

record
...

end record;

We have chosen to give the new discriminant
Sex the same name as the old one.

2 function Geometry.Polygons.Four_Sided.
Make_Quadrilateral(Sides, Angles: Float_Array)

return Quadrilateral is
P: Polygon := Make_Polygon(Sides, Angles);

begin
if P.No_Of_Sides /= 4 then

raise Queer_Quadrilateral;
end if;
return (P with null record);

end Geometry.Polygons.Four_Sided.
Make_Quadrilateral;

3 package Geometry.Polygons.Four_Sided.
Conversions is

function To_Parallelogram(Q: Quadrilateral'Class)
return Parallelogram;

function To_Square(Q: Quadrilateral'Class)
return Square;

end;

package body Geometry.Polygons.Four_Sided.
Conversions is

function To_Parallelogram(Q: Quadrilateral'Class)
return Parallelogram is

begin
if Q.Sides(1) /= Q.Sides(3) or

Q.Sides(2) /= Q.Sides(4) then
raise Poor_Parallelogram;

end if;
return (Quadrilateral(Q) with null record);

end To_Parallelogram;

function To_Square(Q: Quadrilateral'Class)
return Square is

P: Parallelogram := To_Parallelogram(Q);
begin

if P.Sides(1) /= P.Sides(2) or
P.Angles(1) /= P.Angles(2) then

raise Silly_Square;
end if;
return (P with null record);

end To_Square;

end Geometry.Polygons.Four_Sided.Conversions;

These two functions suffice. Putting them in a
child package ensures that there are no problems
of going abstract on extension. Using a class
wide parameter gives greater flexibility. We can
convert towards the type Quadrilateral by
normal type conversion. Other intermediate
types such as Rectangle or Rhombus could be
dealt with in a similar manner.

Note also the use of the extension aggregates
in the return statements – and especially that the
ancestor type must be specific and so a type
conversion is required in To_Parallelogram in
order to convert the class wide formal parameter
Q to the specific type Quadrilateral.

Exercise 18.5

1 function Heir(P: Person_Name) return Person_Name is
Mother: Womans_Name;

begin
if P.Sex = Male then

Mother := P.Wife;
else

Mother := P;
end if;
if Mother = null

or else Mother.First_Child = null then
return null;

end if;
declare

Child: Person_Name := Mother.First_Child;
begin

while Child.Sex = Female loop
if Child.Next_Sibling = null then

return Mother.First_Child;

30 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 30

end if;
Child := Child.Next_Sibling;

end loop;
return Child;

end;
end Heir;

2 procedure Divorce(W: Womans_Name) is
begin

if W.Husband = null or W.First_Child /= null then
return; -- divorce not possible

end if;
W.Husband.Wife := null;
W.Husband := null;

end Divorce;

3 procedure Marry(Bride: Womans_Name;
Groom: Mans_Name) is

begin
if Bride.Father = Groom.Father then

raise Incest;
end if;
... -- then as before

end Marry;

Note that there is no need to check for marriage
to a parent because the check for bigamy will
detect this anyway. Our model does not allow
remarriage if there are children.

4 Marry is unchanged. Note however that calls of
Marry with parameters of the wrong sex will be
detected at compile time whereas with variants
this is detected at run time.

5 function Spouse(P: Person_Name)
return Person_Name is

begin
if P in Man then

return Mans_Name(P).Wife;
else

return Womans_Name(P).Husband;
end if;

end Spouse;

This is not good because not only is there a
check required in doing the membership test but
also a conversion to the appropriate specific
type so that the component can be selected; this
conversion requires yet another check (which
always passes and might be optimized away).

A better solution is to make Spouse a
primitive abstract operation of Person with an
access parameter
function Spouse(P: access Person)

return Person_Name is abstract;

and then provide specific functions for each sex

function Spouse(P: access Man)
return Person_Name is

begin
return P.Wife;

end Spouse;

function Spouse(P: access Woman)
return Person_Name is

begin
return P.Husband;

end Spouse;

A call of Spouse will then resolve at compile
time to the correct function if the parameter is
of a specific type (such as Womans_Name) or
will dispatch if it is class wide (Person_Name);
this gives the best of all worlds.

6 function New_Child(Mother: Womans_Name;
Boy_Or_Girl: Gender;
Birthday: Date)

return Person_Name is
Child: Person_Name;

begin
if Mother.Husband = null then

raise Out_Of_Wedlock;
end if;
case Boy_Or_Girl is

when Male => Child := new Man;
when Female => Child := new Woman;

end case;
Child.Birth := Birthday;
... -- and so on as before

end New_Child;

This feels most uncomfortable. It seems strange
to have a parameter giving the sex because we
have not otherwise had to introduce the type
Gender. We could pass the tag (such as
Man'Tag) as a parameter T but that seems really
dirty and anyway we would still have to write a
conditional statement

if T = Man'Tag then
Child := new Man;

else
Child := new Woman;

end if;

This example illustrates a common problem
with polymorphism; it all works fine for output
when we know what we have but it is difficult
for input when we do not.

18.5 Answers to exercises 31

vxiANSWERS.qxp 04/03/2024 14:37 Page 31

Exercise 18.6

1 If the user declared a constrained key with a
nonzero discriminant thus
K: Key(7);

then he will have bypassed Get_Key and be able
to call the procedure Action without authority.
Note also that if he calls Return_Key then
Constraint_Error will be raised on the attempt to
set the code to zero because the key is
constrained.

Hence forged keys can be recognized since
they are constrained and so we could rewrite
Valid to check for this
function Valid(K: Key) return Boolean is
begin

return not K'Constrained and K.Code /= 0;
end Valid;

We must also insert calls of Valid into Get_Key
and Return_Key.

Exercise 18.7

1 The first assignment is illegal because there is a
type mismatch, the second inserts the
appropriate conversion but still fails because of
the dynamic accessibility check. The third is
illegal because the type is limited.

Answers 19
Exercise 19.1

1 generic
type Item is private;

package Stacks is
type Stack(Max: Natural) is private;
procedure Push(S: in out Stack; X: in Item);
procedure Pop(S: in out Stack; X: out Item);
function "=" (S, T: Stack) return Boolean;

private
type Item_Array is

array (Integer range <>) of Item;
type Stack(Max: Natural) is

record
S: Item_Array(1 .. Max);
Top: Integer := 0;

end record;
end Stacks;

The body is much as before. To declare a stack
we must first instantiate the package thus
package Boolean_Stacks is

new Stacks(Item => Boolean);

and then
use Boolean_Stacks;
S: Stack(Max => 30);

2 generic
type Thing is private;

package P is
procedure Swap(A, B: in out Thing);
procedure CAB(A, B, C: in out Thing);

end P;

package body P is
procedure Swap(A, B: in out Thing) is

T: Thing;
begin

T := A; A := B; B := T;
end;

procedure CAB(A, B, C: in out Thing) is
begin

Swap(A, B); Swap(A, C);
end;

end P;

Exercise 19.2

1 function "not" is new Next(Boolean);

2 generic
type Number is range <>;

package Rational_Numbers is
type Rational is private;
function "+" (X: Rational) return Rational;
function "-" (X: Rational) return Rational;
function "+" (X, Y: Rational) return Rational;
function "-" (X, Y: Rational) return Rational;
function "*" (X, Y: Rational) return Rational;
function "/" (X, Y: Rational) return Rational;

subtype Positive_Number is
Number range 1 .. Number'Last;

function "/" (X: Number; Y: Positive_Number)
return Rational;

function Numerator(R: Rational) return Number;
function Denominator(R: Rational)

return Positive_Number;
private

type Rational is
record

Num: Number := 0;
Den: Positive_Number := 1;

end record;
end;

3 generic
type Index is (<>);
type Floating is digits <>;
type Vec is array (Index range <>) of Floating;

32 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 32

type Mat is array (Index range <>,
Index range <>) of Floating;

function Outer(A, B: Vec) return Mat;

function Outer(A, B: Vec) return Mat is
C: Mat(A'Range, B'Range);

begin
for I in A'Range loop

for J in B'Range loop
C(I, J) := A(I) * B(J);

end loop;
end loop;
return C;

end Outer;

function Outer_Vector is
new Outer(Integer, Float, Vector, Matrix);

4 package body Set_Of is
function Make_Set(L: List) return Set is

S: Set := Empty;
begin

for I in L'Range loop
S(L(I)) := True;

end loop;
return S;

end Make_Set;
function Make_Set(E: Element) return Set is

S: Set := Empty;
begin

S(E) := True;
return S;

end Make_Set;
function Decompose(S: Set) return List is

L: List(1 .. Size(S));
I: Positive := 1;

begin
for E in Set'Range loop

if S(E) then
L(I) := E; I := I + 1;

end if;
end loop;
return L;

end Decompose;
function "+" (S, T: Set) return Set is
begin

return S or T;
end "+";
function "*" (S, T: Set) return Set is
begin

return S and T;
end "*";
function "-" (S, T: Set) return Set is
begin

return S xor T;
end "-";

function "<" (E: Element; S: Set) return Boolean is
begin

return S(E);
end "<";

function "<=" (S, T: Set) return Boolean is
begin

return (S and T) = S;
end "<=";

function Size(S: Set) return Natural is
N: Natural := 0;

begin
for E in Set'Range loop

if S(E) then
N := N + 1;

end if;
end loop;
return N;

end Size;

end Set_Of;

Sadly, we cannot use renaming as bodies for
"+", "*" and "-". This is because the functions
become frozen at the end of the package
specification (see Section 25.1) and are given
convention Ada by default whereas the
predefined operations "or" etc. have convention
Intrinsic and so do not match. On the other hand,
we could put such renamings in the private part
of the package and then the new operations
would take the convention of the renamed
operations and so themselves be Intrinsic.

5 private
type Element_Array is array (Element) of Boolean;
type Set is

record
Value: Element_Array := (Element => False);

end record;

Empty: constant Set :=
(Value => (Element => False));

Full: constant Set :=
(Value => (Element => True));

end;

We have to make the full type into a record
containing the array as a single component to
give it a default initial expression. Sadly, this
means that the body needs rewriting and the
functions become rather untidy. Also we cannot
write the default expression as Empty.Value.
This is because we cannot use the component
name Value in its own declaration. In general,
however, we can use a deferred constant as a
default value before its full declaration. Note
also that we have to use the named notation for
the single component record aggregates.

19.2 Answers to exercises 33

vxiANSWERS.qxp 04/03/2024 14:37 Page 33

Exercise 19.3

1 First we have to declare our function "<" which
we define as follows: if the polynomials have
different degrees, the one with the lower degree
is smaller; if the same degree, then we compare
coefficients starting at the highest power. So
function "<" (X, Y: Polynomial) return Boolean is
begin

if X.N /= Y.N then
return X.N < Y.N;

end if;
for I in reverse 0 .. X.N loop -- or X.A'Range

if X.A(I) /= Y.A(I) then
return X.A(I) < Y.A(I);

end if;
end loop;
return False; -- they are identical

end "<";

procedure Sort_Poly is
new Sort(Integer, Polynomial, Poly_Array);

2 type Mutant_Array is
array (Integer range <>) of Mutant;

function "<" (X, Y: Mutant) return Boolean is
begin

if X.Sex /= Y.Sex then
return X.Sex > Y.Sex;

else
return Y.Birth < X.Birth;

end if;
end "<";

procedure Sort_Mutant is
new Sort(Integer, Mutant, Mutant_Array);

Note that the order of sexes asked for is
precisely the reverse order to that in the type
Gender and so we can directly use ">" applied to
that type. Similarly, younger first means later
birth date first and so we use the function "<" we
have already defined for the type Date but with
the arguments reversed.

We could not sort an array of type Person
because we cannot declare such an array
anyway since Person is indefinite.

3 We cannot do this because the array is of an
anonymous type.

4 We might get Constraint_Error. If C'First =
Index'Base'First then the attempt to evaluate
Index'Pred(C'Last) will raise Constraint_Error.
Considerable care can be required to make such
extreme cases foolproof. The easy way out in
this case is simply to insert

if C'Length < 2 then return; end if;

5 The generic body corresponds closely to the
procedure Sort in Section 11.2. The type Vector
is replaced by Collection. I is of type Index. The
types Node and Node_Ptr are declared inside
Sort because they depend on the generic type
Item. The incrementing of I cannot be done with
"+" since the index type may not be an integer
and so we have to use Index'Succ. Care is
needed not to cause Constraint_Error if the array
embraces the full range of values of Index. But,
the key thing is that the generic specification is
completely unchanged and so we see how an
alternative body can be sensibly supplied.

6 with Ada.Exceptions; use Ada.Exceptions;
generic

type Index is (<>);
type Item is limited private;
type Collection is array (Index range <>) of Item;
with function Is_It(X: Item) return Boolean;
Ex: Exception_Id := Constraint_Error'Identity;

function Search(C: Collection) return Index;

function Search(C: Collection) return Index is
begin

for J in C'Range loop
if Is_It(C(J)) then return J; end if;

end loop;
Raise_Exception(Ex);

end Search;

7 generic
type Item is private;
type Vector is array (Integer range <>) of Item;
with function "=" (X, Y: Item) return Boolean is <>;

function Equals(A, B: Vector) return Boolean;

function Equals(A, B: Vector) return Boolean is
begin

... -- body exactly as for Exercise 11.4(4)
end Equals;

We can instantiate by
function "=" is new Equals(Stack, Stack_Array, "=");

or simply by
function "=" is new Equals(Stack, Stack_Array);

in which case the default parameter is used.
Note that it is essential to pass "=" as a

parameter otherwise predefined equality would
be used and the whole point is that we have
redefined "=" for the type Stack.

34 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 34

8 generic
type Floating is digits <>;
with function F(X: Floating) return Floating;

function Solve return Floating;

function G(X: Float) return Float is
begin

return Exp(X) + X - 7.0;
end;
...
function Solve_G is new Solve(Float, G);
...
Answer: Float := Solve_G;

Exercise 19.4

1 package body Generic_Complex_Functions is
use Elementary_Functions;

function Sqrt(X: Complex) return Complex is
begin

return Cons_Polar(Sqrt(abs X), 0.5*Arg(X)));
end Sqrt;

function Log(X: Complex) return Complex is
begin

return Cons(Log(abs X), Arg(X));
end Log;

function Exp(X: Complex) return Complex is
begin

return Cons_Polar(Exp(Rl_Part(X)), Im_Part(X));
end Exp;

function Sin(X: Complex) return Complex is
Rl: Float_Type := Rl_Part(X);
Im: Float_Type := Im_Part(X);

begin
return Cons(Sin(Rl)*Cosh(Im), Cos(Rl)*Sinh(Im));

end Sin;

function Cos(X: Complex) return Complex is
Rl: Float_Type := Rl_Part(X);
Im: Float_Type := Im_Part(X);

begin
return Cons(Cos(Rl)*Cosh(Im), -Sin(Rl)*Sinh(Im));

end Cos;

end Generic_Complex_Functions;

2 package Poly_Vector is new General_Vector
(Integer, Polynomial, Poly_Array);

procedure Sort_Poly is new Sort(Poly_Vector);

3 generic
with package Signature is new Group(<>);
use Signature;

function Power(E: Element; N: Integer)
return Element;

function Power(E: Element; N: Integer)
return Element is

Result: Element := Identity;
begin

for I in 1 .. abs N loop
Result := Op(Result, E);

end loop;
if N < 0 then Result := Inverse(Result); end if;
return Result;

end Power;
...
package Integer_Addition_Group is

new Group(Element => Integer, Identity => 0,
Op => "+", Inverse => "-");

function Multiply is
new Power(Integer_Addition_Group);

4 generic
type Element is (<>);
Identity: in Element;
with function Op(X, Y: Element) return Element;
with function Inverse(X: Element) return Element;

package Finite_Group is end;

generic
with package Signature is new Finite_Group(<>);
use Signature;

function Is_Group return Boolean;

function Is_Group return Boolean is
begin

-- check the operation is closed,
-- the actual parameter could be constrained
for E in Element'Range loop

for F in Element'Range loop
declare

Result: Element;
begin

Result := Op(E, F);
exception

when Constraint_Error =>
return False;

end;
end loop;

end loop;

-- check identity is OK
for E in Element'Range loop

if Op(E, Identity) /= E or
Op(Identity, E) /= E then

return False;
end if;

end loop;

19.3 Answers to exercises 35

vxiANSWERS.qxp 04/03/2024 14:37 Page 35

-- check inverse is OK
for E in Element'Range loop

if Op(E, Inverse(E)) /= Identity or
Op(Inverse(E), E) /= Identity then

return False;
end if;

end loop;

-- check associative law OK
for E in Element'Range loop

for F in Element'Range loop
for G in Element'Range loop

if Op(E, Op(F, G)) /= Op(Op(E, F), G) then
return False;

end if;
end loop;

end loop;
end loop;
return True;

end Is_Group;

Exercise 19.5

1 generic
type Floating is digits <>;

package Generic_Complex_Numbers is
...

end Generic_Complex_Numbers;

generic
package Generic_Complex_Numbers.Cartesian is

...
end Generic_Complex_Numbers.Cartesian;

generic
package Generic_Complex_Numbers.Polar is

...
end Generic_Complex_Numbers.Polar;

with Ada.Numerics.Generic_Elementary_Functions;
use Ada.Numerics;
with Generic_Complex_Numbers;
with Generic_Complex_Numbers.Cartesian;
with Generic_Complex_Numbers.Polar;
generic

with package Elementary_Functions is
new Generic_Elementary_Functions(<>);

with package Complex_Numbers is
new Generic_Complex_Numbers

(Elementary_Functions.Float_Type);
with package Cartesian is

new Complex_Numbers.Cartesian;
with package Polar is

new Complex_Numbers.Polar;
package Generic_Complex_Functions is

use Complex_Numbers, Cartesian, Polar;

function Sqrt(X: Complex) return Complex;

...
end Generic_Complex_Functions;

Note that the generic formals ensure that the
packages passed as actuals are correctly related.
For example if we did two instantiations of the
hierarchy (one for Float and one for Long_Float)
then we need to ensure that we do not use the
parent from one with a child from the other.
However, there is no such guarantee if the
hierarchy has a generic subprogram as a child
since we can only express the requirement that
the profile is correct; this will be enough in
most cases but is not foolproof. Of course the
program would not crash, just do something
silly.

Answers 20
Exercise 20.1

1 procedure Shopping is

task Get_Salad;

task body Get_Salad is
begin

Buy_Salad;
end Get_Salad;

task Get_Wine;

task body Get_Wine is
begin

Buy_Wine;
end Get_Wine;

task Get_Meat;

task body Get_Meat is
begin

Buy_Meat;
end Get_Meat;

begin
null;

end Shopping;

Exercise 20.2

1 task body Char_To_Line is
Buffer: Line;

begin
loop

for I in Buffer'Range loop
accept Put(C: in Character) do

Buffer(I) := C;
end;

end loop;
accept Get(L: out Line) do

36 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 36

L := Buffer;
end;

end loop;
end Char_To_Line;

Exercise 20.3

1 with Calendar;
generic

First_Time: Calendar.Time;
Interval: Duration;
Number: Integer;
with procedure P;

procedure Call;

procedure Call is
use type Calendar.Time;
Next_Time: Calendar.Time := First_Time;
Now: Calendar.Time := Calendar.Clock;

begin
if Next_Time < Now then

Next_Time := Now;
end if;
for I in 1 .. Number loop

delay until Next_Time;
P;
Next_Time := Next_Time + Interval;

end loop;
end Call;

2 The trouble with writing
delay Next_Time - Clock;

is that the task might be temporarily suspended
between calling Clock and issuing the delay; the
delay would then be wrong by the amount of
time for which the task did not have a processor.

3 use Calendar;
Date: Time;
Y: Year_Number;
M: Month_Number;
D: Day_Number;
S: Day_Duration;
High_Noon: Time;
...
Split(Clock, Y, M, D, S);
High_Noon := Time_Of(Y, M, D, 43_200.0);
if S > 43_200.0 then -- afternoon, so add a day

High_Noon := High_Noon + 86_400.0;
end if;

Exercise 20.4

1 protected Variable is
entry Read(Value: out Item);
procedure Write(New_Value: in Item);

private
Data: Item;
Value_Set: Boolean := False;

end Variable;

protected body Variable is
entry Read(Value: out Item) when Value_Set is
begin

Value := Data;
end Read;

procedure Write(New_Value: in Item) is
begin

Data := New_Value;
Value_Set := True; -- clear the barrier

end Write;
end Variable;

The problem with this solution is that it no
longer allows multiple readers because the
function has been replaced by an entry.

2 This is a bit of a trick question. It cannot be
done because a discriminant is not static and
therefore cannot be used to declare the type
Index. One possible alternative is to make the
index type of the array and the type of the
variables In_Ptr and Out_Ptr to be type Integer
and to use the mod operator to do the cyclic
arithmetic. The structure would then be
generic

type Item is private;
package Buffers is

type Item_Array is array (Integer range <>) of Item;
protected type Buffering(N: Integer) is

-- and so on
end Buffering;

end Buffers;

3 protected Buffer is
entry Put(X: in Item);
entry Get(X: out Item);

private
V: Item;
Is_Set: Boolean := False;

end;
protected body Buffer is

entry Put(X: in Item) when not Is_Set is
begin

V := X;
Is_Set := True;

end Put;
entry Get(X: out Item) when Is_Set is
begin

X := V;
Is_Set := False;

end Get;
end Buffer;

20.2 Answers to exercises 37

vxiANSWERS.qxp 04/03/2024 14:37 Page 37

4 protected Char_To_Line is
entry Put(C: in Character);
entry Get(L: out Line);

private
Buffer: Line;
Count: Integer := 0; -- number of items in buffer

end;

protected body Char_To_Line is
entry Put(C: in Character) when

Count < Buffer'Last is
begin

Count := Count + 1;
Buffer(Count) := C;

end Put;

entry Get(L: out Line) when Count = Buffer'Last is
begin

Count := 0;
L := Buffer;

end Get;
end Char_To_Line;

Exercise 20.7

1 protected type Mailbox is
entry Deposit(X: in Item);
entry Collect(X: out Item);

private
Full: Boolean := False;
Local: Item;

end;

protected body Mailbox is

entry Deposit(X: in Item) when not Full is
begin

Local := X;
Full := True;

end Deposit;

entry Collect(X: out item) when Full is
begin

X := Local;
Full := False;

end Collect;

end Mailbox;

This mailbox is reusable whereas the task
version was not (indeed the task just terminated
after use). We could prevent the protected object
from being reused by further state variables.

The advantages of the protected object are
that there need be no concern with termination
in the event of it not being used and it is of
course much more efficient. A possible
disadvantage is that the closely coupled form is
not possible.

Exercise 20.8

1 task type Buffering is
entry Put(X: in Item);
entry Finish;
entry Get(X: out Item);

end;

task body Buffering is
N: constant := 8;
type Index is mod N;
A: array (Index) of Item;
In_Ptr, Out_Ptr: Index := 0;
Count: Integer range 0 .. N := 0;
Finished: Boolean := False;

begin
loop

select
when Count < N =>
accept Put(X: in Item) do

A(In_Ptr) := X;
end;
In_Ptr := In_Ptr + 1; Count := Count + 1;

or
accept Finish;
Finished := True;

or
when Count > 0 =>
accept Get(X: out Item) do

X := A(Out_Ptr);
end;
Out_Ptr := Out_Ptr + 1; Count := Count - 1;

or
when Count = 0 and Finished =>
accept Get(X: out Item) do

raise Done;
end;

end select;
end loop;

exception
when Done =>

null;
end Buffering;

This curious example illustrates that there may
be several accept statements for the same entry
in the one select statement. The exception Done
is propagated to the caller and also terminates
the loop in Buffering before being quietly
handled. Of course the exception need not be
handled by Buffering because exceptions
propagated out of tasks are lost, but it is cleaner
to do so.

2 The server aborts the caller during the
rendezvous thereby placing the caller into an
abnormal state. Although the caller cannot be

38 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 38

properly completed until after the rendezvous is
finished (the server might have access to the
caller’s data space via a parameter), nevertheless
the caller is no longer active and does not
receive the exception Havoc.

3 select
Trigger.Wait;

then abort
loop

... -- compute next estimate in Z
-- then store it in the protected object
Result.Put_Estimate(Z);
-- loop back to improve estimate

end loop;
end select;

Exercise 20.9

1 If we wrote
requeue Reset with abort;

then there would be a risk that the task that
called Signal was aborted before it could clear
the occurred flag. The system would then be in
a mess since subsequent tasks calling Wait could
proceed without waiting for the next signal.

2 protected Event is
entry Wait;
procedure Signal;

private
Occurred: Boolean := False;

end Event;

protected body Event is
entry Wait when Occurred is
begin

if Wait'Count = 0 then
Occurred := False;

end if;
end Wait;

procedure Signal is
begin

if Wait'Count > 0 then
Occurred := True;

end if;
end Signal;

end Event;

The last of the waiting tasks to be let go clears
the occurred flag back to false (the last one out
switches off the light). It is important that the
procedure Signal does not set the occurred flag
if there are no tasks waiting since in such a case
there is no waiting task to clear it and the signal
would persist (remember this is a model of a

transient signal).
An amazing alternative solution is

protected Event is
entry Wait;
entry Signal;

end Event;

protected body Event is
entry Wait when Signal'Count > 0 is
begin

null;
end Wait;

entry Signal when Wait'Count = 0 is
begin

null;
end Signal;

end Event;

This works because joining an entry queue is a
protected action and results in the evaluation of
barriers (just as they are evaluated when a
protected procedure or entry body finishes).
Note that there is no protected data (and hence
no private part) and that both entry bodies are
null; in essence the protected data is the Count
attributes and these therefore behave properly.
In contrast, the Count attributes of task entries
are not reliable because joining and leaving task
entry queues are not protected in any way.

3 task Controller is
entry Sign_In(P: Priority; D: Data);

private
entry Request(Priority) (P: Priority; D: Data);

end;

task body Controller is
Total: Integer := 0;

begin
loop

if Total = 0 then
accept Sign_In(P: Priority; D: Data) do

Total := 1;
requeue Request(P);

end;
end if;
loop

select
accept Sign_In(P: Priority; D: Data) do

Total := Total + 1;
requeue Request(P);

end;
else

exit;
end select;

end loop;

20.8 Answers to exercises 39

vxiANSWERS.qxp 04/03/2024 14:37 Page 39

for P in Priority loop
select

accept Request(P) (P: Priority; D: Data) do
Action(D);

end;
Total := Total - 1;
exit;

else
null;

end select;
end loop;

end loop;
end Controller;

The variable Total records the total number of
requests outstanding. Each time round the outer
loop, the task waits for a call of Sign_In if no
requests are in the system, it then services any
outstanding calls of Sign_In. The calls to
Sign_In requeue onto the appropriate member of
the entry family Request. The task then deals
with a request of the highest priority. Observe
that we had to make P a parameter of the entry
family as well as the index; this is because
requeue can only be to an entry with the same
parameter profile (or parameterless).

Note that the solution works if a calling task
is aborted; this is because the requeue does not
specify with abort and so is considered as part
of the abort deferred region of the original
rendezvous.

4 package Monitor is
protected Call is

entry Job(D: Data);
end;

private
task The_Task is

entry Job(D: Data);
end;

end;

package body Monitor is
protected body Call is

entry Job(D: Data) when True is
begin

Log_The_Call(Calendar.Clock);
requeue The_Task.Job;

end Job;
end Call;
...

end Monitor;

Exercise 20.10

1 package Cobblers is
procedure Mend(A: Address; B: Boots);

end;

package body Cobblers is
type Job is

record
Reply: Address;
Item: Boots;

end record;

package P is new Buffers(Job);
use P;
Boot_Store: Buffer(100);

task Server is
entry Request(A: Address; B: Boots);

end;

task type Repairman;
Tom, Dick, Harry: Repairman;

task body Server is
Next_Job: Job;

begin
loop

accept Request(A: Address; B: Boots) do
Next_Job := (A, B);

end;
Put(Boot_Store, Next_Job);

end loop;
end Server;

task body Repairman is
My_Job: Job;

begin
loop

Get(Boot_Store, My_Job);
Repair(My_Job.Item);
My_Job.Reply.Deposit(My_Job.Item);

end loop;
end Repairman;

procedure Mend(A: Address; B: Boots) is
begin

Server.Request(A, B);
end;

end Cobblers;

We have assumed that the type Address is an
access to a mailbox for handling boots. Note
one anomaly; the server accepts boots from the
customer before checking the store – if it turns
out to be full, he is left holding them. In all, the
shop can hold 104 pairs of boots – 100 in store,
1 with the server and 1 with each repairman.

40 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 40

Answers 21
Exercise 21.1

1 function Volume(C: Cylinder) return Float is
begin

return Area(C.Base) * C.Height;
end Volume;

function Area(C: Cylinder) return Float is
begin

return 2.0*Area(C.Base) +
2.0*Pi*C.Base.Radius*C.Height;

end Area;

We cannot apply the function Moment to a
cylinder because the type Cylinder is not in
Object'Class. We are thus protected from such
foolishness.

Exercise 21.3

1 with Ada.Finalization; use Ada;
generic

type Raw_Type is tagged private;
package Tracking is

type Tracked_Type is new Raw_Type with private;
function Identity(TT: Tracked_Type) return Integer;

private
type Control is new Finalization.Controlled with

record
Identity_Number: Integer;

end record;

procedure Initialize(C: in out Control);
procedure Adjust(C: in out Control);
procedure Finalize(C: in out Control);

type Tracked_Type is new Raw_Type with
record

Component: Control;
end record;

end Tracking;

package body Tracking is
The_Count: Integer := 0;
Next_One: Integer := 1;

function Identity(TT: Tracked_Type)
return Integer is

begin
return TT.Component.Identity_Number;

end Identity;

procedure Initialize(C: in out Control) is
begin

The_Count := The_Count + 1;
C.Identity_Number := Next_One;
Next_One := Next_One + 1;

end Initialize;

procedure Adjust ...
procedure Finalize ...

end Tracking;

2 with Objects; use Objects;
with Tracking;
package Hush_Hush is

type Secret_Shape is new Object with private;
function Shape_Identity(SS: Secret_Shape)

return Integer;
...

private
package Q is

new Tracking(Raw_Type => Object);
type Secret_Shape is new Q.Tracked_Type with

record
... -- other hidden components

end record;
end Hush_Hush;

package body Hush_Hush is
function Shape_Identity(SS: Secret_Shape)

return Integer is
begin

return Identity(SS);
end Shape_Identity;
...

end Hush_Hush;

Note carefully that the type Secret_Shape
inherits the function Identity from
Q.Tracked_Type. Of course we could have
laboriously written

return Q.Identity(Q.Tracked_Type(SS));

However, we do not actually have to write out a
body for Shape_Identity but can simply use a
renaming thus
function Shape_Identity(SS: Secret_Shape)

return Integer renames Identity;

Exercise 21.4

1 package body Lists is
procedure Insert(After: Cell_Ptr; Item: Cell_Ptr) is
begin

if Item = null or else Item.Next /= null then
raise List_Error;

end if;
if After = null then

raise List_Error;
end if;
Item.Next := After.Next;
After.Next := Item;

end Insert;

21.1 Answers to exercises 41

vxiANSWERS.qxp 04/03/2024 14:37 Page 41

function Remove(After: Cell_Ptr) return Cell_Ptr is
Result: Cell_Ptr;

begin
if After = null then

raise List_Error;
end if;
Result := After.Next;
if Result /= null then

After.Next := Result.Next;
Result.Next := null;

end if;
return Result;

end Remove;

function Next(After: Cell_Ptr) return Cell_Ptr is
begin

if After = null then
raise List_Error;

end if;
return After.Next;

end Next;
end Lists;

Note that we do not have to do anything about a
dummy first element. The user has to do that by
declaring a list with one cell already in place by
for example
The_List: Cell_Ptr := new Cell;

2 Using null exclusions enables most of the
checks to be omitted. The subprograms become

procedure Insert(After: not null Cell_Ptr;
Item: not null Cell_Ptr) is

begin
if Item.Next /= null then

raise List_Error;
end if;
Item.Next := After.Next;
After.Next := Item;

end Insert;

function Remove(After: not null Cell_Ptr)
return Cell_Ptr is

begin
return Result: Cell_Ptr := After.Next do

if Result /= null then
After.Next := Result.Next;
Result.Next := null;

end if;
end return;

end Remove;

function Next(After: not null Cell_Ptr)
return Cell_Ptr is

begin
return After.Next;

end Next;

Exercise 21.5

1 package List_Iteration_Stuff is
new Iteration_Stuff(Lists.List,

Lists.Iterators.Iterator);

procedure Green_To_Red is
new Generic_Green_To_Red(I_S =>

List_Iteration_Stuff);

2 package Iterators is
type Structure is interface;
procedure Iterate(S: in Structure;

Action: access procedure (C: in out Colour));
end;

package Trees is
type Tree is new Structure with private;
...
procedure Iterate(T: in Tree;

Action: access procedure (C: in out Colour));
private

type Node;
type Node_Ptr is access Node;

type Node is
record

Left, Right: Node_Ptr;
C: Colour;

end record;
type Tree is new Structure with

record
Root: Node_Ptr;

end record;
end;

package body Trees is
...
procedure Iterate(T: in Tree;
Action: access procedure (C: in out Colour)) is

procedure Inner(N: in Node_Ptr) is
begin

if N /= null then
Action(N.C); -- indirect call
Inner(N.Left);
Inner(N.Right);

end if;
end Inner;

begin
Inner(T.Root);

end Iterate;

end Trees;

Note that Action is an access to procedure
parameter of the primitive procedure Iterate of
the interface Structure. This is called from
within the body of Iterate. We then have

42 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 42

function Count(S: Structure'Class; C: Colour)
return Natural is

Result: Natural := 0;

procedure Action(C: in out Colour) is
begin

if C = Count.C then
Result := Result + 1;

end if;
end Action;

begin
Iterate(S, Action'Access); -- dispatch on S
return Result;

end Count;

Oak: Tree; -- declare some tree
... -- build the tree
N := Count(Oak, Green);

Note that this has a mixture of dispatching and
access to subprogram calls.

Exercise 21.9

1 The tagged type case is easy; we simply write
package People is

type Person_Name(<>) is private;
type Mans_Name (<>) is private;
type Womans_Name(<>) is private;

function Man_Of(P: Person_Name)
return Mans_Name;

function Woman_Of(P: Person_Name)
return Womans_Name;

function Person_Of(M: Mans_Name)
return Person_Name;

function Person_Of(W: Womans_Name)
return Person_Name;

... -- other subprograms
private

type Person;
...
type Person_Name is access all Person'Class;
type Mans_Name is access all Man;
...
type Person is abstract tagged ...
...

end People;

where the private part is exactly as before. The
conversion functions are simply
function Man_Of(P: Person_Name)

return Mans_Name is
begin

Mans_Name(P);
end;

and so on. Remember that conversion is allowed
between general access types referring to
derived types in the same class. Constraint_Error
is raised if we attempt to convert a person to a
name of the wrong sex. Conversion in the
opposite direction (towards the root) always
works.

The variant formulation requires more care.
We cannot write, in the private part, something
like
type Person_Name is access Person;
type Mans_Name is Person_Name(Male);

because the full type always has to be a new
type. But we can write
type Person_Name is access all Person;
type Mans_Name is access all Person(Male);
type Womans_Name is access all Person(Female);

where we have again used general access types
so that that we can convert between them.

Answers 22
Exercxise 22.2

1 procedure Gauss_Seidel is
N: constant := 5;
subtype Full_Grid is Integer range 0 .. N;
subtype Grid is Full_Grid range 1 .. N-1;
type Real is digits 7;
Tolerance: constant Real := 0.0001;
Error_Limit: constant Real := Tolerance * (N-1)**2;
Converged: Boolean := False;
Error_Sum: Real;

function F(I, J: Grid) return Real is separate;

task type Iterator is
entry Start(I, J: in Grid);

end;

protected type Point is
procedure Set_P(X: in Real);
function Get_P return Real;
function Get_Delta_P return Real;
procedure Set_Converged(B: in Boolean);
function Get_Converged return Boolean;

private
Converged: Boolean := False;
P: Real;
Delta_P: Real;

end;

Process: array (Grid, Grid) of Iterator;
Data: array (Full_Grid, Full_Grid) of Point;

21.5 Answers to exercises 43

vxiANSWERS.qxp 04/03/2024 14:37 Page 43

task body Iterator is
I, J: Grid;
P: Real;

begin
accept Start(I, J: in Grid) do

Iterator.I := Start.I;
Iterator.J := Start.J;

end Start;

loop
P := 0.25 * (Data(I-1, J).Get_P +

Data(I+1, J).Get_P +
Data(I, J-1).Get_P +
Data(I, J+1).Get_P - F(I, J));

Data(I, J).Set_P(P);
exit when Data(I, J).Get_Converged;

end loop;
end Iterator;

protected body Point is
procedure Set_P(X: in Real) is
begin

Delta_P := X - P;
P := X;

end;

function Get_P return Real is
begin

return P;
end;

function Get_Delta_P return Real is
begin

return Delta_P;
end;

procedure Set_Converged(B: in Boolean) is
begin

Converged := B;
end;

function Get_Converged return Boolean is
begin

return Converged;
end;

end Point;

begin -- of main subprogram; tasks now active

for I in Grid loop
for J in Grid loop -- tell them who they are

Process(I, J).Start(I, J);
end loop;

end loop;

loop
Error_Sum := 0.0;
for I in Grid loop

for J in Grid loop
Error_Sum := Error_Sum +

Data(I, J).Get_Delta_P**2;

end loop;
end loop;

Converged := Error_Sum < Error_Limit;
exit when Converged;

end loop;

-- tell protected objects that system has converged

for I in Grid loop
for J in Grid loop

Data(I, J).Set_Converged(True);
end loop;

end loop;

-- output results

end Gauss_Seidel;

Note that there are protected objects on the
boundary points but we have not shown how to
initialize them. The central computation could
be made neater by using renaming in order to
avoid repeated evaluation of Data(I, J) and so
on; this would also speed things up. Thus we
could write
function Get_P1 return Real

renames Data(I-1, J).Get_P;
function Get_P2 return Real

renames Data(I+1, J).Get_P;
...
procedure Set_P(X: in Real)

renames Data(I, J).Set_P;
function Get_Converged return Boolean

renames Data(I, J).Get_Converged;

and then
Set_P(0.25 *

(Get_P1+Get_P2+Get_P3+Get_P4 - F(I, J)));
exit when Get_Converged;

Exercise 22.3

1 protected A_Map is new Map with
procedure Insert(K: in Key; V: in Value);
procedure Find(K: in Key; V: out Value);

private
...

end A_Map;

44 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 44

Exercise 22.4

1 procedure Handle(CD: access Cannon_Data;
E: in Exception_Occurrence) is

begin
if Exception_Identity(E) = Bang'Identity then

Put_Line("Cannon seems to have exploded.");
Put("Perhaps ");
Put(CD.Pounds_Of_Powder);
Put(" pounds of powder was too much!");

else
Put("Some other catastrophe ...");

end if;
end Handle;

2 The root package might be
package Root_Activity is

type Root_Descriptor is abstract tagged private;

function No_Of_Cycles return Integer;
function No_Of_Cycles(D: access

Root_Descriptor'Class) return Integer;
private

Total_Count: Integer := 0;

type Root_Descriptor is tagged
record

Instance_Count: Integer := 0;
end record;

end;

package body Root_Activity is

function No_Of_Cycles return Integer is
begin

return Total_Count;
end;

function No_Of_Cycles(D: access
Root_Descriptor'Class) return Integer is

begin
return D.Instance_Count;

end;

end Root_Activity;

The type Descriptor and associated operations
are now placed in the child package together
with the task type Control whose body is
modified to update the counts on each cycle.
Remember that the body of a child package can
see the private part of its parent. So we have
package Root_Activity.Cyclic is

type Descriptor is new Root_Descriptor with ...
...
task type Control(Activity: access Descriptor'Class);

end;

package body Root_Activity.Cyclic is
...

task body Control is
Next_Time: Calendar.Time := Activity.Start_Time;

begin
loop

Total_Count := Total_Count + 1;
Activity.Instance_Count :=

Activity.Instance_Count + 1;
delay until Next_Time;
...

end Control;
end Root_Activity.Cyclic;

3 It could be rewritten as follows. Type extension
is necessary to pass the additional data.
task type Control(Activity: access Descriptor'Class);

task body Control is
Next_Time: Calendar.Time := Activity.Start_Time;

begin
loop

delay until Next_Time;
Activity.Action(Activity); -- indirect call
Next_Time := Next_Time + Activity.Interval;
exit when Next_Time > Activity.End_Time;

end loop;
Activity.Last_Wishes(Activity); -- indirect call

exception
when Event: others =>

Activity.Handle(Activity, Event); -- indirect call
end Control;

package Root_Activity is
type Descriptor is tagged;
type Action_Type is access

procedure (D: access Descriptor'Class);
type Last_Wishes_Type is access

procedure (D: access Descriptor'Class);
type Handle_Type is access

procedure (D: access Descriptor'Class;
E: in Exception_Occurrence);

procedure Null_Last_Wishes
(D: access Descriptor'Class) is null;

procedure Default_Handle
(D: access Descriptor'Class;
E: in Exception_Occurrence);

type Descriptor is tagged
record

Start_Time, End_Time: Calendar.Time;
Interval: Duration;
Action: Action_Type;
Last_Wishes: Last_Wishes_Type :=

Null_Last_Wishes'Access;
Handle: Handle_Type :=

Default_Handle'Access;
end record;

end;

22.4 Answers to exercises 45

vxiANSWERS.qxp 04/03/2024 14:37 Page 45

package body Root_Activity is

procedure Default_Handle
(D: access Descriptor'Class;
E: in Exception_Occurrence) is

begin
Put_Line("Unhandled exception");
Put_Line(Exception_Information(E));

end Default_Handle;

end Root_Activity;

use Root_Activity;

type Cannon_Data is new Descriptor with
record

Pounds_Of_Powder: Integer;
end record;

procedure Cannon_Action
(D: access Descriptor'Class) is

begin
Load_Cannon(Cannon_Data(D.all).

Pounds_Of_Powder);
Fire_Cannon;

end Cannon_Action;

The_Data: aliased Cannon_Data :=
(Start_Time => High_Noon;
End_Time => When_The_Stars_Fade_And_Fall;
Interval => 24*Hours;
Action => Cannon_Action'Access;
...
Pounds_Of_Powder => 100);

Cannon_Task: Control(The_Data'Access);

So here is a deep point. The access problems are
overcome by type extension itself and not by the
dispatching. However, the dispatching approach
is neater because the default subprograms are
automatically inherited and do not clutter the
record.

Exercise 22.5

1 package Start_Up
with Elaborate_Body is

end;

with Ada.Task_Termination;
use Ada.Task_Termination;
package body Start_Up is
begin

Set_Dependents_Fallback_Handler
(RIP.One'Access);

end Start_Up;

with Start_Up; pragma Elaborate(Start_Up);
package Library_Tasks is

... -- declare library tasks here
end;

Exercise 22.8

1 Good luck with the contemplation. The website
might have a solution.

Exercise 22.9

1 Presumbly the optimistic programmer writes
pragma Conflict_Check_Policy(No_Conflict_Checks);

and the pessimistic programmer writes
pragma Conflict_Check_Policy(All_Conflict_Checks);

Answers 23
Exercise 23.3

1 Index(S, Decimal_Digit_Set or To_Set('.'))

2 "begins" which seems to be the longest word in
English with the letters in alphabetical order.
Other Ada words, "abort" and "first", are good
runners-up.

3 function Make_Map(K: String)
return Character_Mapping is

Key_Set, Non_Key_Set: Character_Set;
In_letters, Out_Letters: String(1 .. 26);

begin
Key_Set := To_Set(To_Upper(K));
Non_Key_Set := To_Set(('A', 'Z')) - Key_Set;
In_Letters := To_Sequence(Key_Set) &

To_Sequence(Non_Key_Set);
Out_Letters := To_Sequence(To_Set(('A', 'Z')));
return To_Mapping

(In_Letters & To_Lower(In_Letters),
Out_Letters & To_Lower(Out_Letters));

end Make_Map;
...
Translate(S, Make_Map("Byron"));

4 function Decode(M: Character_Mapping)
return Character_Mapping is

begin
return To_Mapping(To_Range(M), To_Domain(M));

end Decode;
...
Translate(S, Decode(Make_Map("Byron")));

The functions To_Domain and To_Range
produce the domain and range of the original
mapping and the reverse map is simply created
by calling To_Mapping with them reversed.
Note that To_Mapping raises Translation_Error
anyway if the first argument has duplicates and
so no additional check is required.

46 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 46

Exercise 23.4

1 with Ada.Numerics.Elementary_Functions;
use Ada.Numerics;
package body Simple_Maths is

function Sqrt(F: Float) return Float is
begin

return Elementary_Functions.Sqrt(F);
exception

when Argument_Error =>
raise Constraint_Error;

end Sqrt;

function Log(F: Float) return Float is
begin

return Elementary_Functions.Log(F, 10.0);
exception

when Argument_Error =>
raise Constraint_Error;

end Log;

function Ln(F: Float) return Float is
begin

return Elementary_Functions.Log(F);
exception

when Argument_Error =>
raise Constraint_Error;

end Ln;

function Exp(F: Float) return Float
renames Elementary_Functions.Exp;

function Sin(F: Float) return Float
renames Elementary_Functions.Sin;

function Cos(F: Float) return Float
renames Elementary_Functions.Cos;

end Simple_Maths;

We did not write a use clause for Elementary_
Functions because it would not have enabled us
to write for example return Sqrt(F); since this
would have resulted in an infinite recursion.

2 type Hand is (Paper, Stone, Scissors);
type Jacks_Hand is new Hand;
type Jills_Hand is new Hand;
type Outcome is (Jack, Draw, Jill);
Payoff: array (Jacks_Hand, Jills_Hand) of Outcome :=

((Draw, Jack, Jill),
(Jill, Draw, Jack),
(Jack, Jill, Draw));

package Random_Hand is
new Discrete_Random(Hand);

use Random_Hand;
Jacks_Gen: Generator;
Jills_Gen: Generator;
Result: Outcome;
...

Reset(Jacks_Gen); Reset(Jills_Gen);
loop

Result := Payoff(Jacks_Hand(Random(Jacks_Gen)),
Jills_Hand(Random(Jills_Gen)));

case Result is
when Jack =>

...
when Draw =>

...
when Jill =>

...
end case;

end loop;

The types Jacks_Hand and Jills_Hand are
introduced simply so that the array Payoff
cannot be indexed incorrectly. There are clearly
lots of different ways of doing this example. A
more object oriented approach might be to
declare a type Player containing the personal
generator and perhaps the player’s score.

Exercise 23.5

1 with Ada.Direct_IO;
generic

type Element is private;
procedure Rev(From, To: in String);

procedure Rev(From, To: in String) is
package IO is new Ada.Direct_IO(Element);
use IO;
Input: File_Type;
Output: File_Type;
X: Element;

begin
Open(Input, In_File, From);
Open(Output, Out_File, To);
Set_Index(Output, Size(Input));
loop

Read(Input, X);
Write(Output, X);
exit when End_Of_File(Input);
Set_Index(Output, Index(Output)-2);

end loop;
Close(Input);
Close(Output);

end Rev;

Remember that reverse is a reserved word.
Note also that this does not work if the file is
empty (the first call of Set_Index will raise
Constraint_Error).

23.4 Answers to exercises 47

vxiANSWERS.qxp 04/03/2024 14:37 Page 47

Exercise 23.6

1 The output is shown in string quotes in order to
reveal the layout. Spaces are indicated by s. In
reality of course, there are no quotes and spaces
are spaces.
(a) "Fred" (f) "ss8#170#"
(b) "sss120" (g) "-3.80000E+01"
(c) "sssss120" (h) "sssss7.00E-2"
(d) "120" (i) "3.1416E+01"
(e) "-120" (j) "1.0E+10"

2 with Ada.Text_IO;
with Ada.Float_Text_IO;
use Ada;
package body Simple_IO is

procedure Get(F: out Float) is
begin

Float_Text_IO.Get(F);
end Get;

procedure Put(F: in Float) is
begin

Float_Text_IO.Put(F);
end Put;

procedure Put(S: in String)
renames Text_IO.Put;

procedure New_Line(N: in Integer := 1) is
begin

Text_IO.New_Line(Text_IO.Count(N));
end New_Line;

end Simple_IO;

We have used the nongeneric package
Ada.Float_Text_IO. We have to use the full
dotted notation to avoid recursion. We cannot
use renaming for Get and Put for the type Float
because those in Float_Text_IO have additional
parameters (which have defaults).

The other point of note is the type conversion
in New_Line.

Exercise 23.7

1 procedure Date_Read(Stream: not null access
Root_Stream_Type'Class;
Item: out Date) is

Month_Number: Integer range 1 .. 12;
begin

Integer'Read(Stream, Item.Day);
Integer'Read(Stream, Month_Number;
Item.Month := Month_Name'Val(Month_Number - 1);
Integer'Read(Stream, Item.Year);

end Date_Read;
...

for Date'Read use Date_Read;

Answers 24
Exercise 24.2

1 private with Ada.Containers.Doubly_Linked_Lists;
package Queues is

Empty: exception;
type Queue is limited private;
procedure Join(Q: in out Queue; X: in Item);
procedure Remove(Q: in out Queue; X: out Item);
function Length(Q: Queue) return Integer;

private
use Ada.Containers;
package Q_Container is

new Doubly_Linked_Lists(Item);
type Queue is

new Q_Container.List with null record;
end;

package body Queues is
procedure Join(Q: in out Queue; X: in Item) is
begin

Append(Q, Item);
end Join;

procedure Remove(Q: in out Queue; X: out Item) is
begin

if Is_Empty(Q) then
raise Empty;

end if;
X := First_Element(Q);
Delete_First(Q);

end Remove;

function Length(Q: Queue) return Integer is
begin

return Integer(Count_Type'(Q.Length));
end Length;

end Queues;

We have used a private with clause since there
is no need for access to the container in the
visible part of the package.

The type Queue is not visibly tagged but is
visibly limited. The fact that the full type is
tagged but not limited does not matter.

The function Length which results from the
instantiation and type derivation might appear to
clash with the function Length that we have to
provide. But the new one has result of type
Count_Type (which is declared in
Ada.Containers). Thus the call of Q.Length can
be qualified to select the correct one and the
result is then converted.

48 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 48

Exercise 24.3

1 private with Ada.Containers.Vectors;
package Queues is

Empty: exception;
type Queue is limited private;
procedure Join(Q: in out Queue; X: in Item);
procedure Remove(Q: in out Queue; X: out Item);
function Length(Q: Queue) return Integer;

private
use Ada.Containers;
package Q_Container is new Vectors(Item);
use Q_Container;
type Queue is new Vector with null record;

end;

The body remains unchanged. But it will be
terribly slow because each call of Remove will
result in the vector sliding.

2 with Ada.Containers.Vectors;
with Ada.Containers.Doubly_Linked_Lists;
use Ada.Containers;
generic

with package DLL is
new Doubly_Linked_Lists(<>);

with package V is new Vectors(
Element_Type => DLL.Element_Type;
others => <>);

function Convert(The_Vector: V.Vector)
return DLL.List;

function Convert(The_Vector: V.Vector)
return DLL.List is

The_List: DLL.List;
begin;

for Ind in The_Vector.First_Index ..
The_Vector.Last_Index loop

The_List.Append(The_Vector.Element(Ind));
end loop;
return The_List;

end Convert;

We have to ensure that the element types of
both containers are the same. But the
Index_Type for the vector does not matter nor
do the equality operations have to be the same –
so we have used the others => <> notation to
cover them.

The function body could be written in many
ways. We have chosen to use the index facilities
of the vector container for illustration. We could
equally have used a cursor thus
function Convert(The_Vector: V.Vector)

return DLL.List is
The_List: DLL.List;
V_Cursor: V.Cursor;

begin;

V_Cursor := The_Vector.First;
loop

exit when V_Cursor = V.No_Element;
The_List.Append(The_Vector.Element);
V.Next(V_Cursor);

end loop;
return The_List

end Convert;

3 with Ada.Containers.Vectors;
with Ada.Containers.Doubly_Linked_Lists;
use Ada.Containers;
generic

with package DLL is
new Doubly_Linked_Lists(<>);

with package V is new Vectors(
Index_Type => <>;
Element_Type => DLL.Element_Type;
"=" => DLL."=");

function Equals(The_Vector: V.Vector;
The_List: DLL.List) return Boolean;

function Equals(The_Vector: V.Vector;
The_List: DLL.List) return Boolean is

begin;
if The_List.Length /= The_Vector.Length then

return False;
end if;
for Ind in The_Vector.First_Index ..

The_Vector.Last_Index loop
if The_List.Find(The_Vector.Element(Ind)) =

DLL.No_Element then
return False;

end if;
end loop;
return True;

end Equals;

In this case it is necessary for the equality
operations to be the same, but naturally the
Index_Type does not matter.

This simple solution assumes that there is no
duplication of elements. It checks that the two
containers have the same number of elements
and that for each element in the vector there is
an element in the list with the same value. The
reader is invited to extend the solution to avoid
the assumption of no duplication.

24.3 Answers to exercises 49

vxiANSWERS.qxp 04/03/2024 14:37 Page 49

Exercise 24.4

1 with Ada.Containers.Ordered_Maps;
with Ada.Tags; use Ada.Tags;
package body Tag_Registration is

package Map_It is
new Ada.Containers.Ordered_Maps(

Key_Type => Character,
Element_Type => Tag);

use Map_It;
The_Map: Map;

procedure Register(The_Tag: Tag;
Code: Character) is

begin
The_Map.Insert(Code, The_Tag);

end Register;

function Decode(Code: Character) return Tag is
C: Cursor := The_Map.Find(Code);

begin
If C = No_Element then

return No_Tag;
else

return Element(C);
end if;

end Decode;

end Tag_Registration;

The test for No_Element in Decode could be
done in several ways. We could use
Has_Element or we could even crudely call the
function Element that directly takes a Code and
this would raise Constraint_Error which could
then be handled to return No_Tag. Thus

function Decode(Code: Character) return Tag is
begin

return The_Map.Element(Code);
exception

when Constraint_Error =>
return No_Tag;

end Decode;

Shorter but not sweeter.

Exercise 24.5

1 with Abstract_Sets;
private with Ada.Containers.Ordered_Sets;
package Container_Sets is

type C_Set is
new Abstract_Sets.Set with private;

function Empty return C_Set;
function Unit(E: Element) return C_Set;
function Union(S, T: C_Set) return C_Set;
function Intersection(S, T: C_Set) return C_Set;
procedure Take(From: in out C_Set;

E: out Element);

private
use Ada.Containers;
package S_Container is

new Ordered_Sets(Element);
use S_Container;
type C_Set is new Abstract_Sets.Set with

record
The_Set: Set; -- that is S_Container.Set

end record;
end;

package body Container_Sets is
function Empty return C_Set is
begin

return (The_Set => Empty_Set);
end Empty;

function Unit(E: Element) return C_Set is
begin

return R: C_Set := (The_Set => <>) do
R.The_Set.Insert(E);

end return;
end;

function Union(S, T: C_Set) return C_Set is
begin

return (The_Set => S.The_Set or T.The_Set);
end Union;

function Intersection(S, T: C_Set) return C_Set is
begin

return (The_Set => S.The_Set and T.The_Set);
end Intersection;

procedure Take(From: in out C_Set;
E: out Element) is

begin

E := From.The_Set.First_Element;
From.The_Set.Delete_First;

end Take;
end Container_Sets;

In this case we have used a wrapper and have to
remember that aggregates of one element must
be named. We have chosen to use an extended
return for Unit – there is no need to initialize R
but it helps to emphasize the structure.

If we use a hashed set then Take will need to
be rewritten in terms of cursors because
First_Element and Delete_First do not exist for
hashed sets. Thus

procedure Take(From: in out C_Set;
E: out Element) is

C: Cursor;
begin

C := From.The_Set.First;
E := Element(C);
From.The_Set.Delete(C);

end Take;

50 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 50

A more important point is that we can use
multiple inheritance and so avoid the wrapper.
with Abstract_Sets;
private with Ada.Containers.Ordered_Sets;
package Container_Sets is

type C_Set is
new Abstract_Sets.Set with private;

function Empty return C_Set;
function Unit(E: Element) return C_Set;
function Union(S, T: C_Set) return C_Set;
function Intersection(S, T: C_Set) return C_Set;
procedure Take(From: in out C_Set;

E: out Element);
private

use Ada.Containers;
package S_Container is

new Ordered_Sets(Element);
use S_Container;
type C_Set is new Set and Abstract_Sets.Set

with null record;
end;

package body Container_Sets is
function Empty return C_Set is
begin

return (Empty_Set with null record);
end Empty;

function Unit(E: Element) return C_Set is
begin

return R: C_Set do
R.Insert(E);

end return;
end;

function Union(S, T: C_Set) return C_Set is
begin

return S or T;
end Union;

function Intersection(S, T: C_Set) return C_Set is
begin

return S and T;
end Intersection;

procedure Take(From: in out C_Set;
E: out Element) is

begin

E := From.First_Element;
From.Delete_First;

end Take;
end Container_Sets;

Using multiple inheritance makes the body a bit
shorter. Note that Union and Intersection are not
simply inherited; this is because although C_Set
does inherit Union and Intersection from Set
nevetheless they get overridden by the new ones we

are trying to declare. But luckily the renamings and
and or are also inherited and so we can use them
instead. We could equally have used a renaming as
body thus

function Union(S, T: C_Set) return C_Set
renames "or";

Maybe the wrapper solution is easier to understand.

Exercise 24.10

1 function Most(The_Index: Text_Map)
return String is

Max: Count_Type := 0;
L: Count_Type;
Best_One: Indexes.Cursor;

begin
for C in The_Index.Iterate loop

L := Indexes.Element(C).Length;
if L > Max then

Best_One := C;
Max := L;

end if;
end loop;
return Indexes.Element(Best_One);

end Most;

24.5 Answers to exercises 51

vxiANSWERS.qxp 04/03/2024 14:37 Page 51

Answers 25
Exercise 25.4

1 with Ada.Unchecked_Deallocation; use Ada;
package body Queues is

procedure Free is
new Unchecked_Deallocation(Cell, Cell_Ptr);

...
procedure Remove(Q: in out Queue; X: out Item) is

Old_First: Cell_Ptr := Q.First;
begin

if Q.Count = 0 then
raise Empty;

end if;
X := Q.First.Data;
Q.First := Q.First.Next;
Q.Count := Q.Count - 1;
if Q.Count = 0 then

Q.Last := null;
end if;
Free(Old_First);

end Remove;
...

end Queues;

Note that we assign null to Q.Last if the last
item is removed. Otherwise it would continue to
refer to the deallocated cell – of course, this
should do no harm since it will never be used
again but it seems wise not to tempt fate.

Answers 27
Exercise 27.1

1 (a) dynamic – Integer
(b) static – Integer
(c) static – root_integer

52 Answers to exercises

vxiANSWERS.qxp 04/03/2024 14:37 Page 52

