
Appendix F

Concepts from probability theory

This appendix provides a ready reference for many of the basic concepts from

elementary probability theory.

F.1 Probability space

Let � denote the set of all elementary events where the choice of these events

very much depends on the specific problem of interest. Consider the experiment

of tossing a single coin. In this case � consists of two elements each denoting

the outcome of a single toss namely, the coin falling head or tail. Consider the

problem of simultaneously throwing two dice. Recall that each dice has six faces

labelled with integers from 1 through 6. Hence � contains 36 pairs {(i, j)} where

i and j take independently values from 1 through 6, where i denotes the number

on the top face of the first dice and j on the second dice. If we are considering the

price of a technology stock, � will consists of all factors that directly or indirectly

affect the raise and fall of the prices of these stocks which includes status of the

national economy, foreign competition for the products, weather, acts of terrorism,

foreign exchange rate, quality of accounting practices, and the credibility of the

upper management, to mention a few.

Let P denote an assignment of probability to each of the elementary events in

�. Thus, if ω denotes an elementary event, then it is required that

P(ω) ≥ 0 and
∑

ω∈� P(ω) = 1. (F.1.1)

In the case of a coin tossing experiment

P(head) = p and P(tail) = q

where p and q are nonnegative real numbers and p + q = 1. In the case of a single

throw of one dice, let pi denote the probability that this dice will fall with its face

marked i where

pi ≥ 0 and
∑6

i=1 pi = 1. (F.1.2)
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Thus, in the case of a single throw of two dices simultaneously, � consists of

36 pairs of the form (i, j) that is,

� = {(i, j)|1 ≤ i ≤ 6 and 1 ≤ j ≤ 6}.
Let qi j be the probability assigned to the elementary event (i, j). Then

qi j ≥ 0 and qi j = pi p j with
∑6

i=1

∑6
j=1 qi j = 1. (F.1.3)

Any subset A of � (denoted by A ⊆ �) is called an event. Let A and B be two

events. Then A ∪ B (read as A union B) denotes the combined event denoting the

occurrence of the event A or event B or both. Similarly, A ∩ B or equivalently AB
(read as A intersection B) denotes the combined event denoting the simultaneous
occurrence of the events A and B. It can be verified that

P(A ∪ B) = P(A) + P(B) − P(AB). (F.1.4)

Let F denote the set of events of interest to us. Then the triple (�,F,P) is

called the probability space. The set � can be finite or infinite. When � is finite,

F consists of all subsets of � and F is the power set
†

of �. The term P is known

as the probability measure. It is required that P satisfies the following technical

conditions:

(1) If φ is the null set, then P(φ) = 0.

(2) For any subset S ⊆ �,P(S) ≥ 0.

(3) If {S1,S2,S3, . . .} is an infinite collection of subsets of � that are mutually
disjoint

‡
, then

P
[⋃∞

i=0 Si
] = ∑∞

i=0 P(Si ). (F.1.5)

As an example, the probability space (�,F,P) for the single throw of two

dices is such that � has 36 elementary events, F has 236 = 68 719 476 736 events

and P is the probability measure given by (F.1.3). Now what is the probability of

obtaining the sum of six in one single simultaneous throw of two dices? Here we

want i + j = 6 and this could happen in five mutually exclusive ways as

i + j = 6 = (1 + 5) or (2 + 4) or (3 + 3) or (4 + 2) or (5 + 1).

Thus,

P [i + j = 6] = p2
3 + 2p1 p5 + 2p2 p4. (F.1.6)

† If � = {a, b, c}, then the power set of � consists of 23 = 8 subsets given by
{φ, a, b, c, ab, bc, ac, abc} where for simplicity the subset {a, b} is denoted as ab, and φ denotes
the null set. In general, if � contains k elements, then the power set of � contains 2k elements each
of which is a subset of �.

‡ Two subsets A and B of � are said to be mutually disjoint or exclusive if A and B do not have any
common elementary event. That is, the intersection of A and B is a null set.
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Fig. F.2.1 A view of the probability space and random variable x : � → R.

F.2 Random variables and vectors

A real-valued random variable x is a function that maps � to the real line, R.

That is, x : � → R. Thus, for each elementary event ω, x(ω) is a real number. Let

Px denote the induced probability measure on R. To define Px we must first relate

events in (�,F,P) to intervals in R. Let B = [a, b] denote a closed interval in R.

Let S ∈ F be both such that

S = {ω ∈ �|x(ω) ∈ B} = x−1(B). (F.2.1)

That is, x is such that it maps the elements of S onto the interval B. Then by

definition,

Px (B) = P(x−1(B)). (F.2.2)

The induced probability measure Px so defined satisfies the following conditions:

Px (φ) = P
[
x−1(φ)

] = P(φ) = 0

and

Px (R) = P
[
x−1(R)

] = P(�) = 1.

Given (�,F,P) we can now define a new triple (x,B,Px ) where the values that

the random variable x(ω) takes as ω is varied in � provides a new representation

of the elementary events in � and B denotes the set of all intervals of the real line

for which Px is defined using (F.2.1).

The relation between these two representations of the probability spaces is given

in Figure F.2.1.

In the coin tossing experiment � = {head, tail} and x : � → R is defined by

x(head) = 1 with probability p
x(tail) = 0 with probability q

where p + q = 1. When p = 1/2 = q , it is called a fair coin, otherwise it is a

biased coin. This random variable has a special name called Bernoulli random
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variable. In the case of the dice, � = {six faces of the dice numbered 1 through

6}. Define x : � → R as

x(face marked i) = i with probability pi

for i = 1 to 6. Here again, if pi = 1/6 for each i , then it is called a balanced or

fair dice, otherwise it is said to be biased.

Remark F.2.1 Elements of B which are all intervals of the real line are known

as Borel sets and B itself is called the Borel σ -field (pronounced as Borel sigma

field). Any closed subset of a real line is a Borel set. The advantage of working with

(x,B,Px ) is that in addition to performing all the operations on (x,F,P), since the

real line is endowed with a rich topological structure, we can readily bring to bear

all the mathematical tools at the disposal of probabilistic analysis. As an example,

Px can be defined in terms of a probability distribution function whose derivative

corresponds to the notion of probability density function as described below.

Let x be a (continuous) random variable. The cumulative distribution of x is

the function F : R → R where for any real number a

F(a) = Px [x ≤ a]

= ∫ a
−∞ f (x)dx (F.2.3)

where f (x) ≥ 0 is called the probability density function of x . That is, the induced

probability measure can be defined using the probability density function f (x)

satisfying the following conditions:

(1) f (x) ≥ 0 for all x ∈ R and F(a) ≥ a for all a ∈ R.

(2) F(a) is an increasing function of a with

lima→−∞ F(a) = 0 and lima→∞ F(a) = 1.

(3)

∫ b
a f (x)dx = F(b) − F(a)

= Px [a < x ≤ b]

= P
[
x−1(B)

]
with B = (a, b].

In the special case when x takes only finitely many values, that is x ∈
{b1, b2, . . . , bk} where bi ’s are real and k < ∞, it is called a discrete random
variable. In this case, the probability distribution of x is given by

Px [x = bi ] = pi > 0

and

F(a) = Px [x ≤ a]

= ∑
j p j

⎫⎪⎪⎬
⎪⎪⎭

(F.2.4)

where the summation is taken over all those j’s for which b j ≤ a.
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Let x = (x1, x2, . . . , xn)T denote a random vector of size n where each com-

ponent xi is a random variable defined over the same underlying probability space

(�,F,P). That is, xi : � → R for each i = 1 to n. Thus x : �n → R
n where

�n = � × � × · · · × �, the n fold cartesian product† of � and R
n is the stan-

dard n-dimensional Euclidean space (Appendix A).

In the interest of simplicity in notation, in the following random vectors of size

two, that is, n = 2 are used. Extension to general n is rather obvious.

Let x = (x1, x2)T be a random vector and f : R
2 → R be the joint probability

density function of the vector x. Let a = (a1, a2)T ∈ R
2. Then

F(a) = Prob [x1 ≤ a1 and x2 ≤ a2]

= ∫ a1

−∞
∫ a2

−∞ f (x1, x2)dx1dx2

= ∫ a
−∞ f (x)dx

⎫⎬
⎭ (F.2.5)

denotes the joint cumulative probability distribution of x. Clearly,

lima1→−∞ F(a) = 0 = lima2→−∞ F(a)

and

lima1→∞ lima2→∞ F(a) = 1.

Prob [x1 ≤ a1] = ∫ a1

−∞
∫ ∞
−∞ f (x1, x2)dx1dx2 (F.2.6)

is called the marginal distribution of x1. Similarly the marginal distribution of x2

can be defined.

In the discrete case x = (x1, x2)T with x1 ∈ {b1, b2, . . . , bn} and x2 ∈
{c1, c2, . . . , cn}. Then

Px
[
x1 = bi and x2 = c j

] = pi j (F.2.7)

defines the joint distribution of x. Then

F(a) = Px [x1 = a1 and x2 = a2]

= ∑
i

∑
j pi j

where the sum is taken over all those i’s and j’s such that bi ≤ a1 and c j ≤ a2.

F.3 Expected value, variance and covariance

Let x be a given random variable. Let f (x) denote the probability density of x when

x is continuous and let x take the value xi with probability pi for i = 1 to k when

x is discrete.

† If �1 = {a, b, c} and �2 = {α, β}, then the cartesian product �1 × �2 is the set of all pairs of the
form (x, y) with x ∈ �1 and y ∈ �2. Thus, �1 × �2 = {(a, α), (a, β), (b, α), (b, β), (c, α),
(c, β)}
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(a) The expected value or the mean of x is denoted by E(x) and is defined by

E(x) =
{∫ ∞

−∞ x f (x)dx when x is continuous∑k
i=1 xi pi when x is discrete

(F.3.1)

The function E(·) so defined is called the expectation operator. Let x1 and x2

be two random variables and let a be real constant. It can be verified that

E(x1 + x2) = E(x1) + E(x2) – Additivity

E(ax1) = aE(x1) – Homogeneity

}
(F.3.2)

from which it follows that E(·) is a linear operator. The following are easily

verified.

E(x + a) = E(x) + a
E [x − E(x)] = 0

}
(F.3.3)

(b) The variance of x denoted by σ 2 is defined by

σ 2 = Var(x) =
⎧⎨
⎩

∫ ∞
−∞ [x − E(x)]2 f (x)dx – x continuous

∑k
i=1 [xi − E(x)]2 pi – x discrete

(F.3.4)

After simplification of the r.h.s., it can be verified that

σ 2 = E(x2) − [E(x)]2 .

For any constant a, it follows that

Var(ax) = a2Var(x). (F.3.5)

The square root of the variance is known as the standard deviation and is

denoted by σ .

(c) Normalizing a random variable If x is a random variable with mean

μ = E(x)and variance σ 2, then

z = x−μ

σ
(F.3.6)

is the normalized random variable with mean, E(z) = 0 and variance,

Var(z) = 1.

(d) Mean, variance and covariance of random vectors Let x = (x1, x2)T be a

random vector with the joint probability density given by f (x) = f (x1, x2).

Let μ = (μ1, μ2)T with μi = E(xi ) denote the mean of x. Then

μ = ∫
R2 x f (x)dx = E(x) (F.3.7)
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where

μ1 = ∫ ∞
−∞

∫ ∞
−∞ x1 f (x1, x2)dx1dx2

= ∫ ∞
−∞ x1

[∫ ∞
−∞ f (x1, x2)dx2

]
dx1

= ∫ ∞
−∞ x1 f1(x1)dx1

where

f1(x1) = ∫ ∞
−∞ f (x1, x2)dx2 (F.3.8)

is called the marginal density of x1. Similarly μ2 can be defined.

If x and y are two random vectors and if a = (a1, a2)T, then it can be verified

that

E(x + y) = E(x) + E(y)

E(x + a) = E(x) + a
E(aTx) = ∑2

i=1 ai E(xi )

⎫⎬
⎭ (F.3.9)

Let σ 2
1 and σ 2

2 be the variances of x1 and x2. Then

σ 2
1 = ∫ ∞

−∞(x1 − μ1)2 f1(x1)dx1 = E(x1 − μ1)2

σ 2
2 = ∫ ∞

−∞(x2 − μ2)2 f2(x2)dx2 = E(x2 − μ2)2.
(F.3.10)

The covariance between x1 and x2 denoted by

Cov(x1, x2) = ∫ ∞
−∞

∫ ∞
−∞(x1 − μ1)(x2 − μ2) f (x1, x2)dx1dx2

= E [(x1 − μ1)(x2 − μ2)]

= E [(x2 − μ2)(x1 − μ1)]

= Cov(x2, x1). (F.3.11)

It is convenient to denote the Cov(x1, x2) as σ 2
12. Clearly σ 2

12 = σ 2
21.

The covariance matrix � is defined by expected value of the outer product

matrix as

� = E
[
(x − μ)(x − μ)T

]

= E

[(
x1 − μ1

x2 − μ2

)
(x1 − μ1)(x2 − μ2)

]

=
[

E(x1 − μ1)2 E [(x1 − μ1)(x2 − μ2)]

E [(x2 − μ2)(x1 − μ1)] E(x2 − μ2)2

]

=
[

σ 2
1 σ 2

12

σ 2
12 σ 2

2

]
, a symmetric matrix.

(F.3.12)

The above development readily generalizes to the case of a random vector

x = (x1, x2, . . . , xn)T of size n. Then μ = E(x) is the mean vector of size n
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and

� = E
[
(x − μ)(x − μ)T

]
(F.3.13)

is an n × n symmetric matrix which is the covariance matrix of the vector

x.

(e) Transformation of random vectors Let x = (x1, x2, . . . , xn)T and A ∈ R
n×n

a matrix. We consider two types of transformations of x. First consider the

scalar product aTx. It can be verified

E(aTx) = aT E(x)

and

Var(aTx) = E
[
aTx − aT E(x)

]2

= E
[
aT(x − E(x))

]2

= E
[
aT(x − E(x))aT(x − E(x))

]
= E

[
aT(x − E(x))(x − E(x))Ta

]
[since aTb = bTa]

= aT E
[
(x − E(x))(x − E(x))T

]
a

= aT� a (F.3.14)

which is a quadratic form in a.

Now consider the matrix transformation of the vector x, where z = Ax.

Then, if E(x) = μ, we have

E(z) = AE(x) = Aμ

and

Cov(z) = �z = E
[
(z − Aμ)(z − Aμ)T

]
= E

[
A(x − μ)(x − μ)TAT

]
= AE

[
(x − μ)(x − μ)T

]
AT

= A�xAT (F.3.15)

where �x is the covariance matrix of x.

Now let x and y be two random vectors of size n and A and B be two n × n
matrices. Let E(x) = μx and E(y) = μy. Then

Cov(Ax, By) = E
[
(Ax − Aμx)(By − Bμy)T

]
= E

[
A(x − μx)(y − μy)TBT

]
= AE

[
(x − μx)(y − μy)T

]
BT

= A Cov(x, y)BT. (F.3.16)
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(f) Correlation matrix Let x = (x1, x2, . . . , xn)T. Then ρi j , the correlation coef-
ficient between xi and x j (i 
= j) is given by

ρi j = Cov(xi , x j ) = Cov(xi ,x j )√
Var (xi )

√
Var(x j )

= σ 2
i j

σi σ j

= σ 2
j i

σi σ j
= ρ j i . (F.3.17)

It can be verified that when i 
= j , the value of ρi j can be either positive or

negative but its absolute value is always less than one, that is, |ρi j | ≤ 1. When

i = j

ρi i = σ 2
i

σi σi
= 1 for all i. (F.3.18)

We thus obtain an n × n symmetric matrix

R =

⎡
⎢⎢⎢⎣

1 ρ12 ρ13 · · · ρ1n

ρ12 1 ρ23 · · · ρ2n
...

...
...

...

ρ1n ρ2n ρ3n · · · 1

⎤
⎥⎥⎥⎦ (F.3.19)

called the correlation matrix.

To see the relation between the covariance matrix � and the correlation

matrix R, first define a diagonal matrix D consisting of the diagonal elements

of � as

D =

⎡
⎢⎢⎢⎣

σ 2
1 0 · · · 0

0 σ 2
2 · · · 0

...
...

...

0 0 · · · σ 2
n

⎤
⎥⎥⎥⎦ . (F.3.20)

Then define the square root of D as

D
1
2 =

⎡
⎢⎢⎢⎣

σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σn

⎤
⎥⎥⎥⎦ , (F.3.21)

where the diagonal elements are the standard deviations. Then from the defi-

nition (F.3.17), it follows that

R = D− 1
2 �D− 1

2 (F.3.22)

where D− 1
2 is the inverse of D

1
2 . It can also be verified that

R = Cor(z) where z = D− 1
2 (x − μ) (F.3.23)

is the normalized vector.
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When σ 2
i j = 0 for i 
= j it implies that ρi j = 0 and the random variables xi

and x j are uncorrelated or orthogonal. When σ 2
i j = 0 for all i and j , then all

the components of x are uncorrelated and � becomes the diagonal matrix D
in (F.3.20) and in this case R reduces to an identity matrix.

In the special case when n = 2, we have

Cov(x) = � =
[

σ 2
1 ρ σ1σ2

ρ σ1σ2 σ 2
2

]
(F.3.24)

and

Cor(x) = R =
[

1 ρ

ρ 1

]
(F.3.25)

where ρ = σ 2
12/σ1σ2.

F.4 Independence

The notion of independence in probability theory is quite basic and it naturally arises

in modelling many real world phenomenona. For example, in the tossing of a coin

experiment, the result of the second toss does not depend on or is independent
of the knowledge that we obtained a head or tail in the first toss. Similarly, in

simultaneously throwing two dice, the result of one dice does not affect the other.

Examples of this type abound in nature and the notion of statistical independence
is the mathematical formalism of this naturally occurring notion of independence.

In terms of the original probability space (�,F,P), two events A and B are

said to be independent if

P(AB) = P(A)P(B). (F.4.1)

In terms of the random variables, if x = (x1, x2)T and f (x) = f (x1, x2) is the

joint density of x then x1 and x2 are independent if

f (x1, x2) = f1(x1) f2(x2). (F.4.2)

Thus, if x1 and x2 are independent, then

E(x1x2) = ∫ ∞
−∞

∫ ∞
−∞ x1x2 f (x1, x2)dx1dx2

= ∫ ∞
−∞ x1 f1(x1)dx1

∫ ∞
−∞ x2 f2(x2)dx2

= E(x1)E(x2) (F.4.3)

and

Cov(x1x2) = ∫ ∞
−∞

∫ ∞
−∞(x1 − E(x1))(x2 − E(x2)) f (x1, x2)dx1dx2

= ∫ ∞
−∞ [x1 − E(x1)] f1(x1)dx1

∫ ∞
−∞ [x2 − E(x2)] f2(x2)dx2

= 0 using (F.3.3). (F.4.4)
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Let x1 and x2 be two random variables. Then let g(x1) and h(x2) be two functions

of x1 and x2 respectively. It can be verified that if x1 and x2 are independent, then so

are the random variables g(x1) and h(x2). If x1 and x2 are independent, their covari-

ance and hence their correlation is zero. That is, independence implies uncorre-
lated. The converse is not, in general, true. For, let x1 and x2 be two independent

zero mean random variables. Let z = x1x2. Then E(z) = E(x1)E(x2) = 0. Then

E(zx1) = E(x2
1 x2) = E(x2

1 )E(x2) = 0 that is, z and x1 are uncorrelated. Clearly,

they are not independent. Notice that we have used the fact that if x1 and x2 are

independent, then, as random variables, so are g(x1) = x2
1 and h(x2) = x2.

F.5 Conditional probability and Bayes’ rules

We now move on to analyzing dependency among events. Let A and B be two

events. It is often of interest to compute the probability of occurrence of the event

A given that the event B has already occurred. This conditional probability of

the occurrence of A given that B has occurred is denoted by P(A|B). Likewise,

one can define P(B|A). It is well known that the joint probability P(AB) of the

simultaneous occurrence of events A and B can be expanded in two ways using the

conditional probabilities as

P(AB) = P(A|B)P(B) = P(B|A)P(A) (F.5.1)

where P(A) and P(B) denote the probabilities of the occurrence of the individual

events A and B respectively. P(A) and P(B) are also known as prior probabilities.

On rewriting, (F.5.1) becomes

P(B|A) = P(A|B)

P(A)
= P(A|B)P(B)

P(A)
(F.5.2)

which is known as the Bayes’ rule.

Let x = (x1, x2)T be a random vector with f (x1, x2) as the joint density.

Then the conditional density of x1 given x2 denoted by f (x1|x2) is given

by

f (x1|x2) =

⎧⎪⎨
⎪⎩

f (x1,x2)

f2(x2)
when f2(x2) > 0

0 otherwise

(F.5.3)

where f2(x2) is the marginal density of x2. It can be verified that

∫ ∞
−∞ f (x1|x2)dx1 = 1

f2(x2)

∫ ∞
−∞ f (x1, x2)dx1

= 1.

(F.5.4)
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F.6 Conditional expectation

The conditional expectation of x1 given x2 given by

E [x1|x2 = a] = ∫ ∞
−∞ x1 f (x1, x2 = a)dx1. (F.6.1)

As x2 takes on different values in its domain, this conditional expectation will

also take different values. In other words, the conditional expectation E(x1|x2) is

clearly a function of the conditioning random variable and hence it itself is a random

variable. Sometimes it is useful to distinguish the conditional expectation operator

by using the conditioning random variable as the subscript. Thus, E(x1|x2) is also

denoted as Ex2
(x1). Thus,

E{Ex2
(x1)} = E{E [x1|x2]}

= ∫ ∞
−∞

[∫ ∞
−∞ x1 f (x1|x2)dx1

]
f2(x2)dx2

= ∫ ∞
−∞ x1

[∫ ∞
−∞ f (x1|x2) f2(x2)dx2

]
dx1

= ∫ ∞
−∞ x1 f1(x1)dx1

= E(x1). (F.6.2)

Thus, the random variable Ex2
(x1) has the same expectation as x1 and (F.6.2) is

called the law of iterated expectations.

We now quote a standard result relating to the conditional expectation of normal

variates. Let x ∈ R
n and z ∈ R

m be jointly normal random vectors, that is,

(
x
z

)
∼ N (m, �) (F.6.3)

where

m =
(

mx

mz

)
and � =

[
�x �xz

�zx �z

]
. (F.6.4)

Then, the conditional density of f (x|z) of x given z is also normal and is given by

f (x|z) ∼ N (μ, A) (F.6.5)

where the conditional mean

μ = E[x|z] = mx + �xz�
−1
z [z − mz] (F.6.6)

and the conditional covariance

A = Cov(x |z) = �x − �xz�
−1
z �zx . (F.6.7)
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F.7 Special distributions

In this section, we list the properties of some of the common distributions of interest

in our analysis.

(a) Bernoulli distribution This is a discrete distribution wherein a random vari-

able x takes on only two values:

x =
{

1 with probability p
0 with probability q = 1 − p

(F.7.1)

It can be verified that

E(x) = p, Var(x) = pq.

(b) Binomial distribution This is again a discrete distribution that models the

distribution of the number of heads in n successive tosses of a coin that falls

head with probability p and tail with probability q = 1 − p. Since the n tosses

are independent, the random variable x , that denotes the total number of heads

in n tosses, can take values from 0 through n according to the following rule.

Prob [x = k] =
(

n
k

)
pkqn−k (F.7.2)

where k = 0, 1, 2, . . . , n.

It can be verified that E(x) = np and Var(x) = npq.

(c) Univariate normal distribution A continuous random variable x is said to be

normally distributed with mean μ and variance σ 2, denoted by x ∼ N (μ, σ 2)

if the probability density function of x is given by

f (x) = 1√
2πσ

exp
[
− (x−μ)2

2σ 2

]
. (F.7.3)

It can be verified that E(x) = μ and Var(x) = σ 2. When μ = 0 and σ 2 = 1, x
is called the standard normal distribution. The graph of the standard normal

distribution

f (z) = 1√
2π

exp
[
− z2

2

]
(F.7.4)

is given in Figure F.7.1. It can be verified that

∫ 1

−1
f (z)dz = 0.6826 and

∫ 2

−2
f (z)dz = 0.9544, (F.7.5)

that is, slightly over 95% of the total area of f (z) is contained in the line

segment from -2 to 2. Normal distribution was originally invented by Gauss

and is also known as Gaussian distribution.

(d) Multivariate normal distribution Let x = (x1, x2, . . . , xn)T be a vector. The

vector x is said to be normally distributed with mean vector μ and covariance



724 Concepts from probability theory

m−sm−2s m m+2sm+s

f (x)

x

[(2π)1/2s] 1

∫
m−s
m+s f (x) dx = 0.683∫

m−2s
m+2s f (x) dx = 0.955

Fig. F.7.1 The plot of the standard normal distribution function.

matrix � denoted by x ∼ N (μ, �) if f (x) is given by

f (x) = 1

(2π )
n
2 |�| 1

2

exp
[− 1

2
(x − μ)T�−1(x − μ)

]
(F.7.6)

where μ ∈ R
n , � ∈ R

n×n is a symmetric and positive definite matrix and

|�| is the determinant of �. The exponent

− 1
2

(x − μ)T�−1(x − μ) (F.7.7)

is a quadratic form in x and �−1 denotes the inverse of �. It can be shown that

E(x) = μ and Cov(x) = E
[
(x − μ)(x − μ)T

] = �

To get a feel for this important distribution consider the case when n = 2.

Then

� =
⎡
⎣σ 2

1 σ 2
12

σ 2
12 σ 2

2

⎤
⎦ =

⎡
⎣σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

⎤
⎦ (F.7.8)

where ρ is the correlation coefficient between x1 and x2 (refer to (F.3.17)).

Hence

|�| 1
2 = σ1σ2(1 − ρ2)

1
2

�−1 = 1
�

[
σ 2

2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]

and

(x − μ)T�−1(x − μ) = (x1 − μ1, x2 − μ2)�−1

(
x1 − μ1

x2 − μ2

)

= σ 2
2 (x1 − μ1)2 − 2ρσ1σ2(x1 − μ1)(x2 − μ2) + σ 2

2 (x2 − μ2)2

σ 2
1 σ 2

2 (1 − ρ2)
.
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In the special case when x1 and x2 are uncorrelated, that is, when ρ = 0, it

follows that � reduces to a diagonal matrix given by

� =
[

σ 2
1 0

0 σ 2
2

]

|�| 1
2 = σ1σ2

and

(x − μ)T�−1(x − μ) = (x1 − μ1)2

σ 2
1

+ (x2 − μ2)2

σ 2
2

.

Hence, the joint distribution becomes

f (x1, x2) = 1√
2πσ1

exp
[
− (x1−μ1)2

2σ 2
1

]
1√

2πσ2

exp
[
− (x2−μ2)2

2σ 2
2

]

= f1(x1) f2(x2). (F.7.9)

That is, x1 and x2 are independent. This result stating that if two normal

variables are uncorrelated then they are also independent is one of the key dis-

tinguishing feature of this important class of distributions. Refer to Figure F.7.2

for contours of constant probability in the case of bivariate normal distribution

for various values of ρ.

F.8 Functions of random variables

Let x = (x1, x2)T be a random vector in R
2 with f (x) as its joint density. Let y ∈ R

2

be such that

y = (y1, y2)T = (g1(x1), g2(x2))T = g(x). (F.8.1)

Clearly, y is a vector function of a random vector x and hence is also random. Let

h(y) be the distribution function of y. The question is: given f (x) and y = g(x), how

to compute h(y)? In answering this question, recall that the Jacobian (Appendix C)

of g(x) is given by

Dg(x) =

⎡
⎢⎣

∂g1

∂x1

∂g1

∂x2

∂g2

∂x1

∂g2

∂x2

⎤
⎥⎦ .

Let |Dg(x)| denote the determinant of Dg(x). Given y = (y1, y2)T ∈ R
2 define

Sy = {x | g(x) = y}.
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Fig. F.8.1 Contour plots of bivariate normal distribution for ρ = 0 and ±0.8.
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That is, Sy consists of all points in R
2 that are mapped onto y by g(x). Then, it can

be shown (Papoulis(1984)) that

h(y) = �x∈Sy

1

|Dg(x)| f (x). (F.8.2)

We now illustrate this using a couple of examples.

Example F.8.1 Let y = g(x) = Ax where x, y ∈ R
2 and A ∈ R

2×2 is a non-

singular matrix. Let f (x) and h(y) be the probability density functions of x and y
respectively. Then

y1 = g1(x) = a11x1 + a12x2

y2 = g2(x) = a21x1 + a22x2

and

Dg(x) =
⎡
⎣ a11 a12

a21 a22

⎤
⎦ = A

and

|Dg(x)| = |A| 
= 0.

Since A is non-singular, the association between x and y is one-to-one and hence

for each x there is a unique y = Ax. From (F.8.2), we obtain

h(y) = 1
|A| f (A−1y). (F.8.3)

We now apply this derivation to the case of a linear transformation of a normal

random vector. Let x ∈ R
n with x ∼ N (μx, �x), that is,

f (x) = 1

(2π )
n
2 |�x|

1
2

exp
[−(x − μx )T�−1(x − μx )

]
. (F.8.4)

Let A ∈ R
n×n be non-singular and b ∈ R

n define

y = g(x) = Ax + b

Then, Dg = A and

h(y) = 1
|A| f (A−1(y − b)) (F.8.5)

= 1

(2π )
n
2 |�x|

1
2 |A|

exp
[
− [

A−1(y − b) − μx
]T

�−1
x

[
A−1(y − b) − μx

]]
. (F.8.6)

But [
A−1(y − b) − μx

]T
�−1

x

[
A−1(y − b) − μx

]
= [

A−1(y − (Aμx + b))
]T

�−1
x

[
A−1(y − (Aμx + b)

]
= (y − μy)T�−1

y (y − μy) (F.8.7)
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where

μy = Aμx + b and �y = A�xAT. (F.8.8)

Similarly, it can be verified that

|�y| = |A�xAT| = |A|2|�x|. (F.8.9)

Now, combining (F.8.7)–(F.8.9) with (F.5.6), it follows that

h(y) = 1

(2π )
n
2 |�y|

1
2

exp
[−(y − μy)T�−1

y (y − μy)
]

(F.8.10)

that is,

y ∼ N (Aμx + b, A�xAT). (F.8.11)

F.9 Distribution of quadratic forms of normal
random vectors

Estimation of covariance of normal random vectors naturally leads to the analysis of

the distribution of quadratic forms of normal random vectors. Since the notion

of chi-square distribution plays a fundamental role in this analysis, we begin by

describing this important family of distribution. A non-negative random variable

z is said to be chi-square distributed with k-degrees of freedom, for some integer

(k ≥ 1), denoted by z ∼ χ2(k), if the density function of z is given by

f (z) = 1

2
k
2 ( k

2
)
z

k
2
−1e− z

2 , for z > 0 (F.9.1)

where

(r ) = ∫ ∞
0

xr−1e−x dx (F.9.2)

is the standard gamma function. It can be verified that

(a) (1) = 1.

(b) ( 1
2
) = √

π .

(c) (r + 1) = r(r ) if r is a positive integer.

We now state several facts.

(P1) Let x = (x1, x2, . . . , xn)T ∼ N (0, I). Then

z = xTx =
n∑

i=1

x2
i ∼ χ2(n). (F.9.3)

The mean and the variance of this random variable z with distribution χ2(n)

are given by

E(z) = n and Var(z) = 2n.
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(P2) If z1 ∼ χ2(n1) and z2 ∼ χ2(n2) are independent, then

z = z1 + z2 ∼ χ2(n1 + n2). (F.9.4)

(P3) Let x ∈ R
n and x ∼ N (0, I). Let A and B be two symmetric n × n matrices

which are idempotent, that is A2 = A and B2 = B. Then as random variables

z1 = xTAx and z2 = xTBx are independent if AB = 0. First recall that since

A and B are symmetric and idempotent it follows that

A = A2 = AA = ATA

and

B = B2 = BB = BTB.

Hence

xTAx = xTATAx = (Ax)T(Ax) = xT
a xa

xTBx = xTBTBx = (Bx)T(Bx) = xT
b xb

where

xa = Ax and xb = Bx,

which are linear transformations of the normal random vector x. Now applying

the results in Example F.8.1 to xa and xb, it follows that

xa ∼ N (0, AIAT) = N (0, A)

xb ∼ N (0, BIBT) = N (0, B).

The covariance between xa and xb is then given by

Cov(xa, xb) = E
[
xaxT

b

]
= E

[
AxxTB

]
= AE

[
xxT

]
B

= AB

= 0.

That is, if AB = 0, then xa and xb are uncorrelated normal random vectors

and hence are independent by the results of Section F.7.

(P4) Let A be a symmetric and idempotent matrix with A 
= I, the identity matrix.

Then it is well known (Appendix B) that the eigenvalues of A are either 0 or

1 and the number of non-zero eigenvalues is equal to the rank of A. Since A
is symmetric there exists an orthogonal matrix P such that

A = PΛPT



730 Concepts from probability theory

where PPT = I and Λ is the diagonal matrix with k non-zero eigenvalues.

Without loss of generality, let

λ1 = λ2 = · · · = λk = 1

λk+1 = λk+2 = . . . = λn = 0.

Clearly, such a matrix A is singular. Let x ∼ N (0, I) and z = xTAx. Then

z = xTPΛPTx
= (PTx)TΛ(PTx)

= yTΛy where y = Px
= ∑k

i=1 y2
i . (F.9.5)

Since x ∼ N (0, I), by the results of section F.7, it follows that y ∼
N (0, PIPT) = N (0, I), that is, the components of y are standard normal vari-

ables. Combining this with (F.9.3), it follows z in (F.9.5) is χ2(k), where the

degree of freedom is equal to the rank of the matrix A.

In closing, we present an application of these results. Let x ∼ N (0, I).

Then

xTx = ∑n
i=1 x2

i

= ∑n
i=1(xi − x̄)2 + nx̄2 (F.9.6)

where

x̄ = 1
n

∑n
i=1 xi .

We now analyze the two terms on the r.h.s. of (F.9.6). Consider first

z1 = nx̄2 = n
[

1
n

∑n
i=1 xi

]2

= xTBx (F.9.7)

where B is a rank-one, symmetric, idempotent, outer-product matrix given

by

B = 1
n ι ιT (F.9.8)

with ι = (1, 1, . . . , 1)T ∈ R
n . Similarly,

z2 = ∑n
i=1(xi − x̄)2 = xTAx

where A is a symmetric matrix given by

A = I − 1
n ι ιT = I − B.

It can be verified that A is symmetric, idempotent matrix whose rank is equal

to its trace which is (n − 1). Further it can be verified that

AB = (I − B)B = B − B2 = B − B = 0.
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Hence, by property (P3) proved above, z1 and z2 are independent. Further,

z1 ∼ χ2(1) and z2 ∼ χ2(n − 1)

and hence

xTx = z1 + z2 ∼ χ2(n)

which is to be expected from the definition.

F.10 Stationary random sequence and white noise

Let x = {x0, x1, x2, x3, . . .} be a sequence of (scalar) random variables (also called

a time series). Let p(xt ) be the probability density function of xt for t = 0, 1, 2, . . .

. In general, p(xt ) may vary with time t . Then

E(xt ) = μt =
∫

R

xt p(xt )dxt (F.10.1)

is the mean of xt . Similarly,

E[(xt − μt )(xt− j − μt− j )]

= γt, j

=
∫

R

∫
R

(xt − μt )(xt− j − μt− j )p(xt , xt− j )dxt dxt− j (F.10.2)

where p(xt , xt− j ) is the joint density of xt and xt− j is called the covariance between

xt and xt− j . Clearly, γt,0 = σ 2
t is the variance of xt .

The sequence x is said to be weakly (or second-order) stationary if

E(xt ) ≡ μ (F.10.3)

and

E[(xt − μt )(xt− j − μt− j )] = γ j (F.10.4)

that is, the mean and the covariance are independent of t . The plot of γ j vs. j is

called the covariance function. It can be verified γ j = γ− j , that is, γ j is a symmetric

function with γ0 = σ 2, the common variance of xt . If γ j ≡ 0 for j 
= 0, then the

sequence x is said to be uncorrelated. A weakly stationary random sequence that is

uncorrelated is called a stationary white noise. In addition if each of the elements

xt of the sequence has a common normal distribution, say N (0, σ 2), then it is called

Gaussian white noise. All of these notions readily carry over to the sequence of

random vectors as well.
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Notes and references

The material covered in this appendix is rather standard in the first year grad-

uate level course in probability theory. There are numerous excellent exposi-

tions of these topics. We particularly recommend the following: Brammer and

Siffling (1989), Feller (1957), Sage and Melsa (1971), and Papoulis (1984). For

a comprehensive discussion of time series refer to Hamilton (1994) and Harvey

(1989).


