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Nonlinear and parametric resonator 
 
This section describes the most common nonlinearity that occurs in mechanical 
resonators.   Typically nonlinearity enters the equation of motion as the nonlinear 
stiffness (nonlinear spring).  While absolute displacement in a MEMS device are 
small compared to the macro world, their size can be relatively large compared to 
the size of the structure itself.   Geometric nonlinearities, such as nonlinearity of 
the pendulum for large displacement, rarely occur in MEMS devices and will not 
be discussed.   
 

1. Duffing equation (nonlinear spring) 
 
  The restoring force of a linear spring is proportional to its stiffness and the 

constitutive equation of the linear spring is Fk = kx.  A spring force always acts 
against the external force.  If we expand the force of a general nonlinear spring in 
Taylor series, the first nonlinear term that is retained is the cubic term ~x3.  The 
quadratic term does not have the restoring property of the spring, i.e., it does not 
always counteract the external force.  If the constitutive equation of the nonlinear 

spring is Fk =  kx  kx3 is inserted into Newton’s law, the equation of motion 
becomes 
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or in normalized form 
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When the force is harmonic, Fe = Focos(t + ), this equation of motion called 

Duffing equation, after the scientist who first analyzed it in 1918 [1].  For  > 0 

the nonlinearity increases overall stiffness (spring hardening effect). For  < 0, 
the nonlinearity decreases overall stiffness (spring softening effect).  Figure 1 
shows the simulated amplitude and phase response.  We see that for spring 
hardening the amplitude characteristics bends to the right and the peak is lower 
than the peak of the associated linear system. 
 
In the case of spring softening the amplitude characteristics bends to the left and 
the peak is higher than the peak of the associated linear system.  



Appendix B: Review of Mechanical Resonators – supplemental material 2/5 

 

Figure 1: Amplitude and 
phase characteristic of a 
Duffing oscillator with a 
hardening spring. 

 More detailed analysis reveals a hysteresis in amplitude and phase 
characteristics.   This hysteresis can be problematic when the mechanical 
system is driven in resonance using a phase locked loop (PLL) that locks on 
quadrature, i.e., 90 o phase difference between the excitation and the response.  
The hysteresis in the phase characteristic gives rise to different amplitudes when 
the PLL locks from above the resonance than when it locks from below the 
resonance.  
 
2. Analytical derivation of the amplitude and phase response 
 
The harmonic analysis using successive approximation starts by assuming the 

response in the form x(1) = Xcos(t)*.  Then the first approximation is substituted 
in the equation of motion to obtain 
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where we used cos3() = ¼ cos(3) + ¾ cos() †.  After direct integration, we get 
the second iteration 
 

                                                 
*
 The derivation is similar to that of Jorge and Saletan [2]. 

†
 To derive the trigonometric identity one can start with exp(j3) = cos(3) + jsin(3) = (cos() + 

jsin())
3
, equate the real parts, and get cos(3) = cos

3
()  3cos()sin

2
() = cos

3
()  3cos()  

3cos
3
(), from which cos

3
() = ¼ cos(3) + ¾ cos() follows. 
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x(2) is then equated to x(1). Ignoring the harmonic term (at 3), and introducing 

relative frequency r=/o, we have the following identities 
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If the two identities (B-73) are squared and summed, after some manipulation, 
we get a biquadratic equation 
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where Xn = Xo/(F/k).  The solution of the biquadratic equation  is given by 
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 The phase is simply the ratio of the two identities above 
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After completing the derivation it is instructive to look at Figure 1 again.  The 

darker trace correspond to “-“ solution for n, while the lighter traces correspond 

to the “+” solution of n.  The darker arrows follow the frequency sweep from low 
to high frequencies, while the lighter arrows follow the frequency sweep from 
high to low frequencies.  The paths of the two sweeps are different and we say 
that the resonator exhibits hysteretic behavior*.  This behavior can be readily 
observed experimentally: a jump in the response amplitude during a frequency 
sweep and the dependence of the peak location on the direction of the frequency 
sweep are telltale signs of nonlinearity.   
 
 
 
 

                                                 
*
 The bistable response of Duffing oscillator is studied by Batista et al. [3]. 
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Mathieu Equation 
 
 The general linear parametric oscillator is described by Hill’s equation 
 

0)(  xtGx , (B9) 

where G(t) is a general periodic function. The parametric term is due to 
electromechanical coupling. When the parametric term of the oscillator is in the 
form of cosine, 
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the equation is known as Mathieu equation.  An example of the application is 
quality factor enhancements (Grasser et al.[4]).  Numerical simulations showed 

that amplitude of the response increases tenfold when p = 2o is used to 
modulate stiffness.  
 Often real devices have both nonlinear and parametric terms due to 
coupling.  Nonlinear, parametrically-excited MEMS oscillators can exhibit abrupt 
changes in their behavior.  They have found application in filtering, mass 
sensing, and scanning probe microscopy. For detail analysis of a nonlinear, 
parametrically excited oscillator see Rhoads et al [5]. 
  
 
3. To probe further 
 
Nonlinearities can be quite important in MEMS, especially for devices that feature 
resonant operation and large deflections, as some gyroscopes do.   There are 
several excellent introductory texts on nonlinear dynamics including  [6-8], but 
our favorite is  Strogatz [9]. 
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