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Equation of motion via energy methods 
 
SDF case 
 
 An alternative method to derive the equation of motion is based energy 
consideration.  The energy methods are very powerful especially for analyzing 
conservative (lossless) systems. We derive here a lossless form of the equation of 
motion.  Although all real mechanical resonators dissipate energy, most analyses of 
many degrees of freedom and continuous system start the lossless idealization and 
thus we analyze here a lossless version of the resonator (no damper!).  For a 
conservative system we have two types of energy: kinetic energy T (energy of motion), 
and potential energy V (energy that is a function of the position, or the configuration of 
the system).  

 
 

        

 
 
 
 

Figure 1: A spring-mass 

system (a) a symbolic 

diagram, (b) free-body 

diagram. 

 
 

 
2-DOF model. 
 
 In our system, the kinetic energy is the energy of a lumped mass constrained to 
move along a line and is given by      2/2. The potential energy is the elastic energy of 
the spring is given by V = ½ kx2.  We sketch the derivation of Lagrange equations and 
then apply them to the SDF.  The complete derivation can be found in texts on 
dynamics e.g. [1-5]   Lagrangian is a quantity defined by the difference between kinetic 

and potential energy L = T  V.  The time integral of Lagrangian is called action 
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Setting the variation of action to zero with the fixed start and the fixed end point gives 
Hamilton’ principle 
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which, in turn, gives rise to Lagrange equations as follows 
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Thus, the Lagrange equation is  
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 If we substitute the kinetic and potential energy in the Lagrange equation, we have 
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  0 kxxm   
 
The non-conservative forces, including dissipative and external forces are added to the 
right hand side of the Lagrange equation.  Hamilton principle and Lagrange equations 
are very useful tools for analyzing more complex, systems.  It is important to note that 
Lagrange equations are much easier to use than to derive.  
  
MDF equation of motion via energy methods 
 

 

Figure 2: 2-DOF model. 

 
 As is the case with SDF mode, the conservative version of the equations can be 
derived from the energy consideration.  Generally, as the number of degrees increase, 
obtaining equations of motion via energy methods becomes easier than obtaining from 
the force balance (Newton’s law). The kinetic energy of this 2 DOF model is  
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and the potential energy is  
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The Lagrange equations give us the conservative part of the left-hand side of (A2-16) 
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Note that the kinetic energy and the potential energy can be written compactly in terms 
of matrices:  
 

  xMx  TT 2/1  

  KxxTV 2/1  
 
These relations are general and, because T and V are positive quantities, the relations  
gives us some insight in properties of M and K – they are both positive definite 
matrices1.  

 A SDF system has one resonant frequency o = (k/m)1/2, but n DOF system has 
n resonances.  The resonances are obtained using eigen analysis.  
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1
 This is not generally true. The system exhibiting rigid body modes have V = 0 and positive semi-definite 

K. However, all present MEMS systems are constrained, with V > 0. 


