3

Dynamics of regulatory links

3.1 Regulating a piece of DNA

3.1.1 Consider a titration experiment that varies R concentration with a fixed operator concentration in order to probe the first-order chemical reaction $R + O \leftrightarrow RO$. Compare the fractions of bound [RO] to [O] as a function of $[R_T]$, for $[O_T] = 10 K$ and K/10.

Answer As explained in the main text:

$$\frac{[\text{CIO}]}{[O_t]} = \frac{[\text{CI}]}{K + [\text{CI}]}$$
(3.1)

where K is the CI concentration at which [O] is half occupied. Here the free concentrations [CI] is less than the total concentrations, as

$$[CI_{total}] = [CI] + [CIO]$$
(3.2)

The equation where we ignore the operator's effect on free concentration of CI is:

$$\frac{[\text{CIO}]}{[\text{O}_{t}]} = \frac{[\text{CI}_{\text{total}}]}{K + [\text{CI}_{\text{total}}]}$$

In contrast, the complete equation is:

$$K = \frac{([CI_{total}] - [CIO])([O_t] - [CIO])}{[CIO]} \Rightarrow$$
$$[CIO] = \frac{[CI_{total}] + [O_t] + K}{2} - \sqrt{\frac{([CI_{total}] + [O_t] + K)^2}{4} - [CI_{total}][O_t]}$$

10

Figure 3.1 Comparison between a case where there is a lot of DNA, and the case with little operator DNA using K = 1.

which we investigate in Fig. 3.1 for the case where K = 1 and $[O_t] = 0.1$, and $[O_t] = 10$, plotting in both cases $[CIO]/[O_t]$.

3.2 Transcription regulation

3.2.1 Simulate the three different regulatory systems in Fig. 3.5 by integrating the temporal evolution. Hint: for simple repression this amounts to $C(t + dt) = C(t) + (\frac{1}{1+R} - C) \cdot dt$, with dt = 0.01 from t = 0 to t = 10. Start by using R = 0.1 and initialize C at its steady-state value $C = \tau/(R+1)$, $C = 1/(R+1/\tau)$ and $C = \tau R/(R+1)$. At time t = 10 increase R by a factor of 100 to inspect the relaxation dynamics to the new steady state (integrating from t = 10 to t = 20). What parameter is important for determining the characteristic time of the relaxation, and what parameters define the steady state of C?

Answer Results as shown in the figure in main text.

(a) Steady state is determined by setting $dC/dt = 0 \Rightarrow \frac{1}{1+R} = C/\tau$, which implies that steady state $C = \frac{\tau}{1+R}$ with a prefactor that will be given by promoter strength and number of proteins per mRNA. The response time, on the other hand, is simply equal to τ , as $C \propto \exp(-t/\tau)$

(b) Steady state is determined from $C = 1/(R+1/\tau)$ with the prefactor given by overall promoter strength and a rescaling of the "R" factor proportional to the strength of the proteolytic degradation. The relaxation to new steady

Figure 3.2 Self repression and response using a reservoir as a buffer. Gray area marks the value of R/10.

state is given by $C \propto \exp(-(R + \frac{1}{\tau}) \cdot t)$, and thus becomes very fast if the activity of R is large.

(c) Steady state is $C = \frac{\tau R}{R+1}$ with relaxation given by $C \propto \exp(-t/\tau)$.

3.2.2 Simulate the two regulatory systems in Fig. 3.6. For the right-hand panel use $\tau = 1$, and investigate also $\tau = 10$.

Answer The simulations are conducted in discrete time steps of size, say, dt = 0.01, with = 0.01 for t < 0 and R = 10 for t > 0. Initially, the system is started at t = -10 and will reach steady state long before the switch in R. The result is shown in Fig. 3.2.

(A) Simulation of $dC/dt = (R/R+1) \cdot (2/(10C+1) - C \text{ (red)} and <math>dC/dt = (R/R+1) - C \text{ (blue)}$. Notice the thin red curve, which shows the behavior of the self-repressed system (red) when rescaled to the final steady-state value at R = 10. The system is seen to respond faster because it initially responds without sensing its final repressed value.

(B) Notice the overshoot of C, reflecting a fast conversion of a reservoir of m. This type of response is part of the unfolded protein response, where a passive mRNA is activated through cleaving by the protein Ire1.

Figure 3.3 Simulation of activation of a small RNA on the expression of its target mRNA. The gray area marks value of α .

3.3 Post-transcription regulation

3.3.1 Consider the sRNA regulations from Eqs. (3.21) and (3.22) with parameter $\gamma = 10$, $\gamma = 100$, respectively $\gamma = 1000$. Calculate the steady-state concentration mRNA at $\alpha = 0.1$, then shift to $\alpha = 4$ and simulate the response. Use $\tau = 1$.

Answer Simulate the equations:

$$ds = dt \cdot (\alpha - \gamma \cdot s \cdot m - s)$$
$$dm = dt \cdot (1 - \gamma \cdot s \cdot m - m)$$

with $dt < \gamma \alpha$, for example use dt = 0.0001. Switch from $\alpha = 0.1$ at t < 0 to $\alpha = 4$ at larger times. The result is shown in Fig. 3.3

3.3.2 Simulate activation and de-activation of a small RNA on the expression of its target mRNA with $\alpha = 0.1 \rightarrow \alpha = 4 \rightarrow \alpha = 0.1$, and $\gamma = 100$, $\tau = 1$. Repeat the simulation for $\alpha = 0.1 \rightarrow \alpha = 40 \rightarrow \alpha = 0.1$ and $\gamma = 100$, $\tau = 1$.

Answer Simulate the equations:

$$ds = dt \cdot (\alpha - \gamma \cdot s \cdot m - s)$$
$$dm = dt \cdot (1 - \gamma \cdot s \cdot m - m)$$

Figure 3.4 Simulation of activation and deactivation of a small RNA on the expression of its target mRNA. Gray area marks value of α .

with $dt < \gamma \alpha$, for example use dt = 0.0001. The result is shown in Fig. 3.4. Notice that large intermediate production of α makes recovery slow.

3.3.3 Examine the indirect regulation caused by a protein R that sequesters a transcriptional repressor C as a function of the concentration of R with fixed C = 1. Assume that C only represses the promoter in its free form. This can be done by plotting the activity of the repressed promoter as one varies R around the critical value C = 1, for different values of K_0 and K, with $K \cdot K_0 = 10^{-4}$ being fixed.

Answer Plot as a function of R, the function:

Activity(R) =
$$\frac{1}{1 + C_{\rm f}/K_{\rm o}}$$

 $C_{\rm f} = \frac{1}{2} \cdot (1 - R - K) + \sqrt{\frac{1}{4} \cdot (1 + R + K)^2 - R}$

for the different values of K and K_o , see Fig. 3.5. As R increases, the repressor C is sequestered and therefore its inhibition is removed. As an result the regulator R effectively acts as an activator. Importantly, when binding

Figure 3.5 Activity of a promoter that is repressed by a protein, which in turn is sequestered by another protein.

between R and C is strong, the activation function exhibits a high Hill coefficient.

Noticeably, one may alternatively vary the repressor concentration C for a fixed value of R = 1. This amounts to plotting:

Activity(C) =
$$\frac{1}{1 + C_{\rm f}/K_{\rm o}}$$

 $C_{\rm f} = \frac{1}{2} \cdot (C - 1 - K) + \sqrt{\frac{1}{4} \cdot (C + 1 + K)^2 - C}$

a dependence shown in Fig. 3.6. Importantly, when binding between R and C is strong, the activation function exhibits a high Hill coefficient.

3.3.4 Consider a simplified toxin-anti-toxin system of two proteins T and A, where free $A(A_f)$ is a repressor of T:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{1}{1 + A_{\mathrm{f}}/K_{\mathrm{o}}} - T/10 \tag{3.3}$$

where $A_{\rm f}$ is given by the total toxin amount T with an A:T binding constant K = 0.01. Set $K_{\rm o} = 0.01$ and investigate fixed points for the above equation

Figure 3.6 Activity of a promoter that is repressed by a protein, that in turn is sequestered by another protein.

Figure 3.7 Production and decay of a toxin T as function of a fixed amount of antitoxin A. In the real toxin–anti-toxin systems, the toxins are short-lived, whereas anti-toxins are long-lived. Thus one may investigate fluctuations in T around fixed points set by the slowly varying antitoxin A (Kenn Gerdes, private communication)

when total A = 0.1, A = 1 and A = 10. For literature on TA systems see [127, 128].

Answer

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{1}{1 + A_{\mathrm{f}}/K_{\mathrm{o}}} - T/10 = 0 \Rightarrow$$
$$K_{\mathrm{o}}/A = K_{\mathrm{o}} + A_{\mathrm{f}}$$

where the concentration of free A, $A_{\rm f}$, is calculated from the part of A that is not sequestered by T, giving:

Production of
$$T = \frac{K_o}{K_o + \frac{1}{2} \cdot (A - T - K) + \sqrt{\frac{1}{4} \cdot (A + T + K)^2 - A \cdot T}}$$

Decay of $T = T/10$

which is plotted for A = 0.1, A = 1 and A = 10 in Fig. 3.7. Intersections define fixed points. With three intersections there are two stable and one unstable fixed point in the middle. The two stable fixed points correspond to a *T*-dominated state and an *A*-dominated states, respectively. For literature on real TA systems see:

K. Gerdes and E. Maisonneve, Bacterial persistance and toxin-antitoxin loci. *Annu. Rev. Microbiol.* 66: 103–123 2012.

I. Cataudella K. Sneppen, K. Gerdes and N. Mitarai, Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. *Nucl. Acids Res.* 40:6424, 2012.