
3

Dynamics of regulatory links

3.1 Regulating a piece of DNA

3.1.1 Consider a titration experiment that varies R concentration with a
fixed operator concentration in order to probe the first-order chemical reaction
R + O ↔ RO. Compare the fractions of bound [RO] to [O] as a function of
[RT], for [OT] = 10K and K/10.

Answer As explained in the main text:

[CIO]

[Ot]
=

[CI]

K + [CI]
(3.1)

where K is the CI concentration at which [O] is half occupied. Here the free
concentrations [CI] is less than the total concentrations, as

[CItotal] = [CI] + [CIO] (3.2)

The equation where we ignore the operator’s effect on free concentration of
CI is:

[CIO]

[Ot]
=

[CItotal]

K + [CItotal]

In contrast, the complete equation is:

K =
([CItotal]− [CIO])([Ot]− [CIO])

[CIO]
⇒

[CIO] =
[CItotal] + [Ot] +K

2
−

√
([CItotal] + [Ot] +K)2

4
− [CItotal][Ot]

10 c© K. Sneppen
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Effect of high operator concentration in limiting its occupancy:
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Figure 3.1 Comparison between a case where there is a lot of DNA, and the
case with little operator DNA using K = 1.

which we investigate in Fig. 3.1 for the case where K = 1 and [Ot] = 0.1,
and [Ot] = 10, plotting in both cases [CIO]/[Ot].

3.2 Transcription regulation

3.2.1 Simulate the three different regulatory systems in Fig. 3.5 by integrating
the temporal evolution. Hint: for simple repression this amounts to C(t +
dt) = C(t) + ( 1

1+R
− C) · dt, with dt = 0.01 from t = 0 to t = 10. Start

by using R = 0.1 and initialize C at its steady-state value C = τ/(R + 1),
C = 1/(R+1/τ) and C = τR/(R+1). At time t = 10 increase R by a factor
of 100 to inspect the relaxation dynamics to the new steady state (integrating
from t = 10 to t = 20). What parameter is important for determining the
characteristic time of the relaxation, and what parameters define the steady
state of C?

Answer Results as shown in the figure in main text.

(a) Steady state is determined by setting dC/dt = 0 ⇒ 1
1+R

= C/τ , which
implies that steady state C = τ

1+R
with a prefactor that will be given by

promoter strength and number of proteins per mRNA. The response time,
on the other hand, is simply equal to τ , as C ∝ exp(−t/τ)
(b) Steady state is determined from C = 1/(R+1/τ) with the prefactor given
by overall promoter strength and a rescaling of the “R” factor proportional
to the strength of the proteolytic degradation. The relaxation to new steady

c© K. Sneppen



12

1.2
(A) (B)

Self-repression
No self-repression

t =1t =10
1

0.8

0.6C C

0.4

0.2

0
0 1 2 3 4 5 6 0

0

1

2

3

1 2 3
tt

4 5

Rescaled self-repression

Figure 3.2 Self repression and response using a reservoir as a buffer. Gray
area marks the value of R/10.

state is given by C ∝ exp(−(R + 1
τ
) · t), and thus becomes very fast if the

activity of R is large.
(c) Steady state is C = τR

R+1
with relaxation given by C ∝ exp(−t/τ).

3.2.2 Simulate the two regulatory systems in Fig. 3.6. For the right-hand
panel use τ = 1, and investigate also τ = 10.

Answer The simulations are conducted in discrete time steps of size, say,
dt = 0.01, with = 0.01 for t < 0 and R = 10 for t > 0. Initially, the system is
started at t = −10 and will reach steady state long before the switch in R.
The result is shown in Fig. 3.2.
(A) Simulation of dC/dt = (R/R+1) · (2/(10C +1)−C (red) and dC/dt =
(R/R+1)−C (blue). Notice the thin red curve, which shows the behavior of
the self-repressed system (red) when rescaled to the final steady-state value
at R = 10. The system is seen to respond faster because it initially responds
without sensing its final repressed value.
(B) Notice the overshoot of C, reflecting a fast conversion of a reservoir of
m. This type of response is part of the unfolded protein response, where a
passive mRNA is activated through cleaving by the protein Ire1.

c© K. Sneppen
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Figure 3.3 Simualtion of activation of a small RNA on the expression of its
target mRNA. The gray area marks value of α.

3.3 Post-transcription regulation

3.3.1 Consider the sRNA regulations from Eqs. (3.21) and (3.22) with
parameter γ = 10, γ = 100, respectively γ = 1000. Calculate the steady-
state concentration mRNA at α = 0.1, then shift to α = 4 and simulate the
response. Use τ = 1.

Answer Simulate the equations:

ds = dt · (α− γ · s ·m− s)

dm = dt · (1− γ · s ·m−m)

with dt < γα, for example use dt = 0.0001. Switch from α = 0.1 at t < 0 to
α = 4 at larger times. The result is shown in Fig. 3.3

3.3.2 Simulate activation and de-activation of a small RNA on the expression
of its target mRNA with α = 0.1 → α = 4 → α = 0.1, and γ = 100, τ = 1.
Repeat the simulation for α = 0.1 → α = 40 → α = 0.1 and γ = 100, τ = 1.

Answer Simulate the equations:

ds = dt · (α− γ · s ·m− s)

dm = dt · (1− γ · s ·m−m)
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Large sRNA pool delay recovery after downregulation:
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Figure 3.4 Simulation of activation and deactivation of a small RNA on the
expression of its target mRNA. Gray area marks value of α.

with dt < γα, for example use dt = 0.0001. The result is shown in Fig. 3.4.
Notice that large intermediate production of α makes recovery slow.

3.3.3 Examine the indirect regulation caused by a protein R that sequesters a
transcriptional repressor C as a function of the concentration of R with fixed
C = 1. Assume that C only represses the promoter in its free form. This
can be done by plotting the activity of the repressed promoter as one varies
R around the critical value C = 1, for different values of Ko and K, with
K ·Ko = 10−4 being fixed.

Answer Plot as a function of R, the function:

Activity(R) =
1

1 + Cf/Ko

Cf =
1

2
· (1−R−K) +

√
1

4
· (1 +R +K)2 −R

for the different values of K and Ko, see Fig. 3.5. As R increases, the re-
pressor C is sequestered and therefore its inhibition is removed. As an result
the regulator R effectively acts as an activator. Importantly, when binding
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Figure 3.5 Activity of a promoter that is repressed by a protein, which in
turn is sequestered by another protein.

between R and C is strong, the activation function exhibits a high Hill coef-
ficient.

Noticeably, one may alternatively vary the repressor concentration C for
a fixed value of R = 1. This amounts to plotting:

Activity(C) =
1

1 + Cf/Ko

Cf =
1

2
· (C − 1−K) +

√
1

4
· (C + 1 +K)2 − C

a dependence shown in Fig. 3.6. Importantly, when binding between R and
C is strong, the activation function exhibits a high Hill coefficient.

3.3.4 Consider a simplified toxin–anti-toxin system of two proteins T and A,
where free A(Af) is a repressor of T:

dT

dt
=

1

1 + Af/Ko

− T/10 (3.3)

where Af is given by the total toxin amount T with an A:T binding constant
K = 0.01. Set Ko = 0.01 and investigate fixed points for the above equation
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Figure 3.6 Activity of a promoter that is repressed by a protein, that in turn
is sequestered by another protein.
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Figure 3.7 Production and decay of a toxin T as function of a fixed amount of
antitoxin A. In the real toxin–anti-toxin systems, the toxins are short-lived,
whereas anti-toxins are long-lived. Thus one may investigate fluctuations in
T around fixed points set by the slowly varying antitoxin A (Kenn Gerdes,
private communication)

when total A = 0.1, A = 1 and A = 10. For literature on TA systems see [127,
128].
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Answer

dT

dt
=

1

1 + Af/Ko

− T/10 = 0 ⇒

Ko/A = Ko + Af

where the concentraton of free A, Af , is calculated from the part of A that
is not sequestered by T , giving:

Production of T =
Ko

Ko +
1
2
· (A− T −K) +

√
1
4
· (A+ T +K)2 − A · T

Decay of T = T/10

which is plotted for A = 0.1, A = 1 and A = 10 in Fig. 3.7. Intersections
define fixed points. With three intersections there are two stable and one
unstable fixed point in the middle. The two stable fixed points correspond to
a T -dominated state and an A-dominated states, respectively. For literature
on real TA systems see:

K. Gerdes and E. Maisonneve, Bacterial persistance and toxin-antitoxin
loci. Annu. Rev. Microbiol. 66: 103–123 2012.

I. Cataudella K. Sneppen, K. Gerdes and N. Mitarai, Conditional coop-
erativity in toxin-antitoxin regulation prevents random toxin activation and
promotes fast translational recovery. Nucl. Acids Res. 40:6424, 2012.
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