Typically this is a search for the best solution
guided by an optimization algorithm.

7.4.3 Low-level Methods

The simplest methods rely entirely on local image
operators and a heuristic grouping of pixels with sim-
ilar local photometric characteristics. Hence, these
methods use only common knowledge of the photom-
etry or geometry. They are therefore considered as
low-level methods. They consist of the following steps.
First, a local image operator may be applied, yielding
a new image in which the local features are empha-
sized. Examples of local image operators are given in
Section 1.3.4. Second, pixels with similar local photo-
metric characteristics are grouped. Typical examples
of low-level methods are region growing and edge
detection.

- Region growing partitions an image into regions
by grouping adjacent pixels with similar gray val-
ues, thus creating boundaries between contrast-
ing regions (Figure 7.4). It is often initiated by
indicating so-called seed points, which grow by
iteratively merging adjacent pixels with similar
gray values. Gray value similarity is assessed with
simple measures that compare the gray values
of neighboring regions. Two adjacent regions are
merged if, for example, their mean values differ
less than a specified value. In medical imaging,
the assumptions on which region growing is based
are usually violated. Object intensity is often not
homogeneous because of noise and artifacts (see,
e.g., Figure 4.45), and adjacent structures may
not have sharp boundaries because of poor con-
trast or insufficient resolution, or because there
is simply no clear biological boundary. When
applied to medical images region growing then
results in regions that are either too small or too
large.

An important positive exception is the seg-
mentation of bony structures in CT images.
Because bone is much denser than soft tissue, its
CT values are significantly higher, and a simple
threshold operation is usually sufficient to sep-
arate bone from its surrounding structures (see
Figure 7.5). Thresholding is particularly useful for
images with a bimodal histogram (see Figure 1.8).
The threshold value partitions the image into two
classes, which typically correspond to object pixels
and background pixels. More than one threshold
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value can also be used to model one or more dif-
ferent classes, each corresponding to a distinctive
interval in the histogram.

- Edge detection is basically similar to region grow-
ing, but instead of grouping pixels, boundary
points are linked or tracked. Boundaries are found
by first applying a local differential operator, such
as the gradient or Laplacian (see Section 1.3.4.1),
and subsequently linking those pixels that are
most sensitive to this operator. In the ideal case
of images with high contrast and without noise,
the physical object boundary is found. Medical
image data, however, are typically complex. Conse-
quently, the output of a local differential operator
does not always reflect the expected meaningful
edges, causing an automatic edge linking proce-
dure to get lost (Figure 7.6).

Despite the heuristic nature and the poor perfor-
mance of these low-level approaches, they are popular
in commercial image analysis tools. The reason is
that these methods are fast, simple to understand
and to implement, and they are generic as they do
not assume specific knowledge about the objects to
be analyzed. Furthermore, low-level methods are also
used to segment the image into subparts or to com-
bine pixels into patterns as input for more sophisti-
cated, model-based methods.>

7.4.4 Model-based Methods

Effective image analysis methods must incorporate
prior knowledge of the photometry, geometry, and/or
context of the considered structures. The nature of
these properties can be physical, statistical, and tissue-
dependent as well. Such methods rely on a built-in
conceptual model for the objects they are looking for.
These model-based methods must be able to cope
with complex image data. In the remainder of this
chapter the basic model-based methods for medical
images are discussed. The following two categories are
distinguished.

7.4.4.1 Data Classification/Regression

In this data-driven approach, characteristic object
features, such as mean gray value or color, area,

35 P. Suetens, P. Fua, and A. J. Hanson. Computational
strategies for object recognition. ACM Computing Sur-
veys, 24(1):5-61, 1992.
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(b)

Segmentation of an
empty colon in a CTimage of the
abdomen for virtual endoscopy.
(@) Original CT image through the
colon. (b) A 3D region growing
procedure initiated from a seed
point in the colon extracts all
contiguous pixels with CT intensity
similar to air while excluding
nonconnected pixels with similar
intensity such as the background.
Segmented regions that are not
connected on this slice are
effectively connected in 3D. (c) 3D
rendering of the segmented colon.

Segmentation of the skull and the mandibula in CT images using thresholding. (a) Original CT image of the head. (b) Result with
a threshold value of 276 Hounsfield units. The segmented bony structures are represented in color. (€) 3D rendering of the skull shows a
congenital growth deficiency of the mandibula in this eight-year-old patient. This information was used preoperatively to plan a

repositioning of the mandibula. (Courtesy of Nobel Biocare.)

perimeter, compactness, and so forth, are calculated
from the image data and typically represented as a
feature vector. For many features it implies that the
considered objects have been delineated in the image
without any knowledge of the exact model appear-
ance. Based on its descriptive features, an object is

then assigned to the most appropriate class from a
discrete set of classes (i.e., classification) and/or given
the most related value from a continuous range of
values (i.e., regression). The feature vector strategy
is well established and has proved its usefulness in
many industrial applications. It has been described



Chapter 7: Medical Image Computing

Figure 7.6 Delineation of a brain lesion in a CT image. (a) Original image. (b) Gradient magnitude image. (c) Result of the Canny edge
detector, which tracks the local maxima of the gradient magnitude. Closed contours are not guaranteed. (d) Edges converted into closed
contours by considering the gradient magnitude image as a topographic relief and computing watershed lines. This typically results in
oversegmentation of the image into a large number of small regions. (e) By interactively merging adjacent regions with similar intensity, only
relevant boundaries corresponding to prominent edges remain.

extensively in the literature since the early years of

digital imaging.3 6

- Pixel labeling
In its simplest form this computational strategy
assigns individual pixels to the most probable class
based on their photometry, geometry, and context.

- Pattern recognition
More generally, this method does not start from
pixels, but from image patches or patterns, i.e.,
groups of pixels, with photometric, geometric, and
contextual features. Characteristic image patterns
can be found by image segmentation but this is
not an easy task unless the image data are simple.
Interactive delineation may be helpful. Generat-
ing an oversupply of image patterns, classifying
them all and retaining the best set, is an alter-
native. In the limit features can be investigated
for all possible groups of pixels without the need
for segmentation. Given the image patterns with
their features, the goal then is to assign them to
the most probable category from a discrete set

36 R. O. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. John Wiley & Sons, New York, 1973.
J. T. Tou and R.C. Gonzales. Pattern Recognition Prin-
ciples. Addison-Wesley, Reading, Massachusetts, 1974.

(classification) and/or give them a value of a con-
tinuous dependent variable (regression).

7.4.4.2 Model Fitting

This model-driven approach generates model insta-
nces with varying geometry, photometry, and context
and finds the most probable model instance that
describes the image data. Typically, this is a search
procedure that optimizes a measure expressing the
similarity between the model instance and the image
data while taking the prior probability of the model
instance into account.

- Geometric model fitting using a transformation
matrix
These strategies assume that the geometric variabi-
lity of the model can be described by a general geo-
metric transformation matrix (see Section 1.3.3),
such as a translation, rotation, scaling, shear, affine
transformation, and perspective projection. The
shape can be represented explicitly as a graph, a
curve, surface, or implicitly as an image pattern
itself.

- Flexible geometric model fitting
In many cases, the model needs to be more
flexible to take the variability in appearance
into account. Flexible geometric models can be
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represented as constraints and penalties on the
geometric properties of a deformable curve or on
a deformable picture or image pattern. Examples
of geometric properties are smoothness, curva-
ture, rectilinearity, parallelism, symmetry, elastic-
ity, and rigidity.

Data classification/regression assigns pixels or image
patterns to a category and/or gives them a value.
The pixels or patterns are described by their photo-
metric, geometric, and contextual features, typically
represented by a feature vector. Note that groups
of pixels or image patterns arranged in a 2D array,
graph, curve, or surface are image patterns as well
and can also be represented by a linear array of fea-
tures, making feature vector classification/regression
a fairly generally applicable strategy. Image patterns
can be obtained by image segmentation but for com-
plex image data this process is often inaccurate. This
problem can be overcome by generating an oversup-
ply of candidate image patterns, classifying them all
and choosing the best. This principle is implicitly used
in Convolutional Neural Networks (Section 7.5.2.2),
which investigates all possible image patterns starting
from the raw image data.

A well-chosen set of features is discriminative, i.e.,
pixels or image patterns of the same type have similar
feature vectors and contrast with the feature vectors
of pixels of a different type. If the feature vectors
are represented in a multidimensional feature space,
the classification strategy then consists of partition-
ing the feature space into a number of classes (i.e.,
nonoverlapping regions that separate the different
categories).

The boundaries between the regions in the feature
space are constructed by means of a decision criterion
that is based on prior knowledge. A variety of decision
criteria exists to discriminate the classes in the fea-
ture space. Popular are methods that learn the decision
boundaries from examples, such as K-nearest neigh-
bors, neural networks, support vector machines, and
random forests. They are extensively studied in the
scientific discipline of machine learning®’ but details
are beyond the scope of this textbook.

37 Simon J. D. Prince. Computer Vision: Models, Learning,
and Inference. Cambridge University Press, 2012.

7.5.1 Pixel Labeling

Pixel classification is a special case of feature vector
classification. Pixels can be considered as the smallest
possible image patterns and do not need to be out-
lined. Pixel features can simply be calculated or are
directly available as a single value, such as the gray
value, or, more generally, as a vector, such as the red-
green-blue (RGB) values in color images or (p, T1, T2)
in MRI. Partly because of this simplicity, pixel clas-
sification is very popular in medical image comput-
ing. Based on their feature vector, pixels can then be
assigned, for example, to a vegetation type in aerial
images or a particular tissue type in medical images.

Sometimes, in order to account for the partial
volume effect, mixture classes are introduced whose
intensities are a weighted sum of the intensities of
the pure tissue classes. In other cases a rejection class
that collects all pixels that cannot be classified into
one of the modeled classes can be included to cope,
for example, with pathological areas (see Figure 7.45
below).

Generally, the problem can be stated as finding
argmaxe p(®|I) with & = {¢;k = 1,---,N} the
tissue labels and I = {3k = 1,---, N} the intensi-
ties or other features of the pixels k = 1,---,N. For
a proper application of the classification strategy the
tissue labels of neighboring pixels are assumed to be
independent. p(®|I) can then be written as

p(@ID = [ [ p(ox 1 T0). (7.1)
k

and the problem reduces to finding the maximum
of p(¢x | I) for each pixel k independently, i.e., find
arg maxg, p(¢ | Ir). Hence, each pixel with intensity
or feature vector I is assigned to the class with the
highest probability p(¢x|Ix), with ¢ the class or tissue
label of pixel k. The shape of the decision bound-
aries in feature space, defined by the transitions where
one class becomes more likely than another, can be
learned.

7.5.1.1 Supervised Learning

Using supervised learning the probabilities p(¢y|Ix)
can be learned from a representative set of pixel sam-
ples for which the class they belong to is known.
This can, for example, be done by manually outlin-
ing several regions of pixels, each corresponding to
a different class. This process is known as supervised
learning. After this training phase, the unclassified
pixels are assigned to the most probable class ¢y,



i.e., the one with the maximal posterior probability
Pp(éx | Ir). This way the image is segmented into the
different classes. It is also possible to represent the
posterior probabilities p(¢y | Ix) as gray values in each
pixel, which yields a so-called fuzzy segmentation.

Instead of learning the posterior probability dis-
tribution p(¢y|lx) directly, it may also be learned
indirectly from the likelihood p(Ij | ¢x) and the prior
probability p(¢x) using the Bayes’ rule

Pk | 1) p(¢r)
Iy) = —7—7—. 7.2
p(x | Ii) o) (7.2)
When maximizing p(¢x|Ix), the probability p(Iy) is
constant and can be ignored. Hence,

arg n;;x p(Prllx) = arg n;;X(p(Ik l#x) - plor)). (7.3)

In this case the prior p(¢y) is assumed to be known
and can be different for each pixel. If no prior infor-
mation is available, all classes are equally likely and
maximizing the posterior probability p(¢x|I;) does
not differ from maximizing the likelihood p(Ii | ¢x),
ie,

arg max p(¢x|lx) = arg max p(Iy | ¢x)- (7.4)
Pk Pk

Often, the intensity variations within a given tissue
class ¢y (e.g., white matter, gray matter, cerebrospinal
fluid, and so forth in the case of brain tissue) can be
assumed to have a Gaussian distribution, i.e.,

1 I — pup)?
Py | g ks 0x) = N2 - ex ((kzggk)) (7.5)

with uj and oy the unknown mean and standard
deviation of class ¢». Because an exponential function
is monotonically decreasing
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(I — )

arg max p(Ix|¢y) = argmin ————. (7.6)
bx Pk o

Hence, each pixel k is assigned to the tissue class

2
for which (Ikg—?k) is minimal. Note that a uniform

prior distributkion p(¢y) is assumed here. Instead,
prior knowledge about the spatial distribution of the
various tissue classes in the image can be derived
from a statistical atlas and used to solve Eq. 7.3 (see
Figure 7.7).

If multispectral MR data or multimodal image
data are available, the model for each class ¢
can be extended to a multivariate distribution with
vector mean u; and covariance matrix S;. For
the n-dimensional case the likelihood p(Ix|¢y) then
becomes

Pk |bk)
1

1
= exp(— = — ) TS A — 1)
@27)2 /ISl (=3 )

(7.7)
and the most likely tissue labels

argn;}axp(lk |pg) = arg n;bin(lk - uk)TSkfl(Ik — g
k k
(7.8)

7.5.1.2 Unsupervised Learning

The training phase in supervised learning typically
requires user interaction, which may be too cum-
bersome in clinical practice. For a fully automated
procedure, the values of the mean pj and standard
deviation o} of a Gaussian distribution can, for exam-
ple, be considered as unknown model parameters in
the optimization process. This is called unsupervised
learning. Let ® = {1}, 0} be the unknown mean and
standard deviation of all the tissue classes. The goal is

Statistical images of (a)
the gray brain matter and (b) the
white brain matter. The intensity in
each pixel is proportional to its prior
probability p(¢y = ¢j) of belonging
to that particular tissue class.
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(d)

Brain tissue segmentation in multispectral MR images using unsupervised pixel classification. (@ and b) Original T>- and
p-weighted MR images. (c and d) Classification of white and gray matter represented in red and green, respectively. (e) Scatter plot of the
pixels in (c) and (d) as a function of p and T3, colored according to their tissue type, together with the 0.99 percentile contours of the
Gaussian class intensity model that was fitted using the EM algorithm. (f) 3D representation of the cortex obtained by volume rendering of

the gray matter segmentation (d).

then to find {®, ®} with the highest probability given
the data I, i.e., find arg maxe,@ p(®, ®|I). This can be
solved iteratively with the expectation-maximization
(EM) algorithm. This method iteratively generates
hypotheses for the tissue classes ¢ and their param-
eters ® and matches them against the data I. Details
of this optimization algorithm are beyond the scope
of this textbook. Figure 7.8 shows an example.
Similarly, the model can be any other probability
distribution or function with unknown parameters
that must be defined during the pixel labeling. For
example, in fMRI, the intensity variation in a time
series of fMRI images, acquired during brain stimu-
lation, is modeled as a linear combination of time-
dependent functions that represent the stimulation
course in the experiment and the low-frequency sig-
nal drift over time (Figure 7.9(a)). Voxels with a good
match with the stimulation pattern are classified as

functional areas that respond to the stimulus (Fig-
ure 7.9(b)). Similarly, in perfusion studies, a time-
dependent model for the contrast or tracer accu-
mulation in tissue is fitted to the observed intensity
changes.

7.5.1.3 Spatial Dependency

Tissue labels of neighboring pixels are not necessar-
ily independent. For example, neighboring pixels can
be expected to belong to the same class. Employing
this knowledge yields a smooth label image. Similarly,
local geometric knowledge can be incorporated in
pixel classification. Consider, for example, the prob-
lem of blood vessel classification, in which for each
pixel the probability that it belongs to a vessel needs
to be calculated. Blood vessels are smooth tubular
structures. If the labels of neighboring pixels were
independent it would be sufficient to apply a local
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Pixel labeling in fMRI. (@) The
fMRI signal in each voxel (green noisy line)
is modeled as a linear combination of
functions (red line) that reflect the
activation stimuli (“activation-rest” step
signal) and the low-frequency signal drift.
Clusters of voxels with a significant
response to the applied stimulus are
classified as brain activation areas.

(b) Activation areas. Columns 1 and 3:
hearing and seeing words (red) during
respectively auditory and visual

stimulation. Columns 2 and 4: subsequent

image operator sensitive to bar-like primitives and use
it as an additional feature in the feature vector. How-

ever, tubular structures of neighboring pixels have a
similar orientation. This requirement should also be
taken into account.

Because the classification of a pixel depends on
the labels of its neighboring pixels, iterative methods
are typically needed to find the best solution. This
way new model instances are iteratively generated
and matched with the data. Note that this strategy
of generating and matching model instances is to be
considered as an example of model fitting, which is
explained below (see Section 7.6).

7.5.2 Pattern Recognition

Depending on the geometry of the image patterns,
plenty of descriptive features at multiple scales can be

semantic decision (green) and right-hand
response (blue). The yellow color is a
mixture of red (perception) and green
(interpretation). (Courtesy of Professor

S. Sunaert, Department of Radiology.)

generated. Good properties are characteristic for the
object they describe and must be able to distinguish
different categories and provide compact distinctive
clusters in the feature space. Since the emergence of
digital image processing in the 1960s research toward
better features has always been a focus. For a long
time, image features have been hand-crafted. How-
ever, this has changed since the emergence of Convo-
lutional Neural Networks (Section 7.5.2.2 below).

7.5.2.1 Dimensionality Reduction

The number of patterns that can be generated in
an image is immens. In image analysis tasks it is
often not obvious to select an appropriate small set
of characteristic and distinctive features. Some of the
chosen features may be redundant, interdependent,
or insignificant, and too many features increases the
computational cost as well as the sparsity of the data
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BMI

Average
face

in the feature space. Sparse data give the classifier a
higher degree of freedom, which may cause overfit-
ting if the classifier fits the training data too closely
and does not generalize well to new data. Overfitting
can be avoided by increasing the amount of train-
ing data, by modeling a classifier with less degrees of
freedom, or by dimensionality reduction. The dimen-
sion of the feature space can be reduced by selecting

Gender

Figure 7.10 Schematic
representation of the uncorrelated
feature space after dimensionality
reduction by PCA. The contextual
features, such as age, BMI, and
gender, remain linear axes in this new
feature space. The faces shown at
both ends are extremes within the
normal range.

Figure 7.11 Each column from left
to right shows two extreme learned
faces described by respectively the
first four eigenvectors, i.e.,

v=v=+t 3mqk, k=1,--,4with
/A the standard deviation along gy.

a subset of principal features or by transforming the
feature space to a lower dimensional space and pro-
jecting the data into that space.

Here is an example. A high-dimensional feature
space is shown in Figures 7.10-7.11. Given a database
of 3D textured face surfaces, a model is built by rep-
resenting each complete face as a high-dimensional
linear array of landmarks through their 3D surface



coordinates and corresponding skin color. Contextual
properties, such as age, gender, bmi, ancestry, etc.,
are added as additional features to this list. Note
that this global face representation implies that no
prior segmentation is needed. It is, however, assumed
that corresponding face landmarks in different faces
have the same vector index. Pose differences of the
3D faces are eliminated by spatially aligning the sur-
faces (for example, by minimizing the sum of squared
differences). Dimensionality reduction is performed
using principal component analysis (PCA), yielding a
reduction from tens of thousands of features to a few
tens of new uncorrelated features, represented by the
eigenvectors, also known as eigenfaces.

PCA and ICA. Given a training set of m para-
metric shapes {v;,i = 1,2,---,m}. In two dimen-
sions, for example, each shape is written as a col-
umn vector of coordinates (xj,yi), that is, v; =
[xi1 yi1 Xi2 Yi2 - Xin yin]T.The shape variations v; —
v, where v is the mean shape defined as

1 m
V= —~ ;‘v,-, (7.9)
1=

can be represented in a 2n-dimensional feature space
whose axes correspond to the n points along the
contour. The variations on different features are not
necessarily uncorrelated. To work in an uncorrelated
feature space, the theory of principal component
analysis (PCA) can be applied as follows. The shape
variability in the training set is represented by the
2n X 2n covariance matrix S of shape distortions v; — v
of all the shapes in the set

1 & _ i
S=—2 i—9)- -9 (7.10)
i=1
This matrix can also be written as
$S=Q-A-QF, (7.11)

where Q = [q1 q2 - qzs] is the 2n x 2n unitary
matrix of eigenvectors qx of S, and A is the diag-
onal matrix of corresponding eigenvalues Ay (with
A1 = Xy > ---). The new axes qj in feature space
correspond to the new modes of variation, which are
mutually uncorrelated and are characteristic for the
shape diversity in the training set. /Ay is the standard
deviation along qy of all the shapes in the learning set.
The shape model can then be written as
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2n
V=V4 ) o g (7.12)
k
or
v=v+Q-c (7.13)
with
c=1[c1 2 con)” (7.14)
and
Q=I[q q - qul (7.15)

Because Q! = Q7 ¢ can be calculated from v as

c=Ql . (v—-v) (7.16)

or

a=q} - (v—¥). (7.17)

Each eigenvector qx has a corresponding eigenvalue
Ak, which is the variance of parameter ¢; in the set
of training shapes. Because A; > A, > --- holds, the
foremost modes of variation explain most of the vari-
ability in the training set. By constraining the model
to include only the v most important modes of varia-
tion that explain most of the variability in the training
set, the number of degrees of freedom of the model
can be significantly reduced without affecting much
of its descriptive power.

Any given shape instance v* can then be written as
the sum of the average shape and a linear mixture of
uncorrelated eigenshapes, that is,

Vv
v*%\7+Zc;‘;-qk

(7.18)
k
or

vVirRvV+Q.-c* (7.19)

with
= & cﬁ]T (7.20)

and
Q=1[q @ ql (7.21)

The coefficients cz can be calculated from v* as

G = q;‘: (V=) (7.22)

Obviously, this theory can easily be extended
from two-dimensional curves to three-dimensional
surfaces or any other set of parametric functions.
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For example, spatially aligned images, represented by
their gray values, can be written as

2n
I=I+) c I (7.23)
k

where I is the average intensity image of the training
set and Ij, the eigenvectors, i.e., the principal modes of
variation, also known also eigenimages or eigenfaces.

Note that features that are uncorrelated are not
necessarily independent. PCA removes only linear
dependencies, i.e., second order correlations. This is
appropriate if the data, i.e., the shapes in the fea-
ture space, have a Gaussian distribution. To remove
higher-order correlations, statistically independent
features can be required, which can be obtained
by minimizing the multivariate mutual information.
More about the concept of mutual information can be
found in Section 7.6.1.1.

Faces are points in the feature space and can be
written as

v
VAV o g (7.24)
k

with qx the eigenvectors and A; the corresponding
eigenvalues (A\; > Ay > --). J/Ag is the standard
deviation along qy of all the shapes in the learning set
(Figure 7.10). Figure 7.11 shows some extreme faces
described by, respectively, the first four eigenvectors,
ie,v=vE3/hqr (k=1,-,4).

For any given face v* the coefficients ¢ can be
calculated as

G=qf (=) (7.25)

Note that the contextual features, such as age, BMI,
and gender, remain linear axes in the new uncorre-
lated feature space (Figure 7.10).

Pattern classification. Figure 7.12 shows an example
of the effect of two extreme SNP variations in one
particular gene (SLC35D1). SNPs are variations in a
single nucleotide at a specific location in the genome.
Mutations in this gene are known to cause Schneck-
enbecken dysplasia, with superiorly oriented orbits
as a typical feature. This facial characteristic can also
be noticed in a normal population by looking at the
difference between faces with varying SNP in this par-
ticular gene. Significant local differences may yield
characteristic biomarkers for this genetic disorder.

Predicting missing data. Figure 7.13 (top) shows a
patient with hemifacial hypertrophy subject to max-
illofacial surgery. Let us assume that the affected part
of the face was delineated and deleted from the surface
description. The most likely normal face that fits the
unaffected part of the patient’s face while completing
the resected part can be calculated using a face model.
It is called the normal-equivalent face (Figure 7.13
(middle)) and found as follows. Given the face model
and the incomplete data v*, that is, the unaffected por-
tion of the face, the goal is to find the best model
instance c*, taking into account how likely this model
instance a priori is, i.e., p(c*), and how similar the
model instance and the data are, i.e., p(v*|c*).

If the parameters ¢, have a normal distribution,
the model instance ¢* that maximizes p(c) is the one
that maximizes

v Vo2
1 1 ¢
plep) = =———=—=-exp(—2 ) —). (7.26)
1!:[1 [Ties V27 Ak ( zgxk)
Because the exponential function is monotonically
decreasing as a function of ¢}, maximizing [] p(cx)

2
yields the same result as minimizing %{:

v v 2
. Ck
arg ma () = arg min —. 7.27
g Ckx}[[lp( o) = argmi k; o 72

In the absence of constraints, the solution of this
equation would yield the average face, i.e., ¢ = 0
for all k. However, in this example, the model instance
should maximally resemble the unaffected part v*
of the patients face, expressed by the likelihood
p(v*|c). The normal-equivalent face can be calcu-
lated by maximizing the posterior probability, i.e.,
arg maxc(p(v*|c) - p(c)), which can be performed effi-
ciently by iteratively generating model instances c*
and finding the most probable normal face that fits the
unaffected part v*. Instead of pattern classification,
this strategy, used in case of missing data, is to be con-
sidered as model fitting, which is discussed in the next
section (Section 7.6). The distance map between the
patient’s face and the calculated normal-equivalent is
shown in Figure 7.13 (bottom).

The idea of predicting missing facial parts can be
extended to the complete face when only contextual
data is available. Besides age, gender, ancestry, and
BMI, these data can, for example, be genes respon-
sible for facial development. Figure 7.19 shows the
result of face reconstruction from DNA based on a
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B Figure 7.12 Result of a study of a
selected set of SNP genotypes in a
normal population. Faces A and B show
the effect of two extreme SNP variants in
gene SLC35D1. Mutations in this gene
cause Schneckenbecken dysplasia. The
color images show the differences
between faces A and B of some local
features (from left to right: strain,
curvature change, and distance).
Significant local differences, such as at the
orbits, may define charactistic biomarkers
for this particular genetic disorder.

Decreased 0 Increased Inward

convexity convexity

Decrease 0  Increase

database of 3D photographs of an admixed popula-
tion and gene variants known to be responsible for
facial development.

7.5.2.2 Convolutional Neural Networks

The systematic increase of computer power and avail-
able training data have triggered methods for auto-
matically learning suitable features from a training
set of raw images. Particularly a Convolutional Neural
Network (CNN or ConvNet) has proven to be a pow-
erful representation to solve classification/regression
tasks in computer vision. In addition, CNNs are
suited to be efficiently implemented on graphics pro-
cessing units (GPUs), yielding computationally inten-
sive but highly parallel algorithms. CNNs, to some
extent inspired by the functioning of the visual sys-
tem, exist since several decades. For medical image
analysis, early applications include the detection of
lung nodules in 2D chest X-rays 8. In 2012 the

38 S.-C. B. Lo, Y.-S. J. Lin, M. T. Freedman and S. K. Mun.

Computer-assisted diagnosis of lung nodule detection
using artificial convolution neural network, SPIE Med-
ical Imaging, 1898: 859-869, 1993.
S.-C. B. Lo, S.-L. A. Lou Y.-S. J. Lin, M. T. Freedman,
M. V. Chien and S. K. Mun. Artificial convolutional
neural network techniques and applications for lung
nodule detection, Medical Imaging, IEEE Transactions
on, 14(4):711-718, December 1995.

0

Outward

adoption of CNNs got a tremendous boost when
Krizhevsky et al.*® showed their superior perfor-
mance on a classification task with 1000 categories
and a training set of 1.2 million images. Since then
CNNs have become increasingly popular and they are
able to surpass human performance in many narrowly
defined tasks.

A CNN is a specific type of Artificial Neural Net-
work (ANN) and, as such, consists of layers of arti-
ficial neurons or nodes (Figure 7.14). In a simple
ANN every node in the network assigns weights to
its incoming signals and adds them together. This
weighted sum then activates the artificial neuron
through a nonlinear” function. The output of a neu-
ron serves as input for nodes in the next layer. The
weights in the network are iteratively updated via gra-
dient descent to optimize the network for the available
training data.

* Nonlinear activation functions are able to construct deci-
sion boundaries (see p. 192) with flexible shapes, as against
linear activation functions, whose decision boundaries are
linear.

39 A. Krizhevsky, I. Sutskever and G. Hinton. Imagenet
classification with deep convolutional neural networks,
Neural Information Processing Systems, 197-1105, 2012.
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Figure 7.13 Left - before surgery, right - after surgery. Top to
bottom: patient with hemifacial hypertrophy; the
normal-equivalent face, i.e., the most likely normal face that fits the
unaffected part of the patient’s face; distance map between the
patient’s real face and the patient’s

calculated normal-equivalent face.

An ANN with multiple so-called hidden lay-
ers layers between the input and output layer can
learn increasingly complex functions, however, at the
expense of an increasing number of weights with
issues of overfitting (see p. 196), and high computa-
tion time and memory requirements. Several methods
exist to cope with these problems. In Section 7.5.2.1
dimensionality reduction was introduced to avoid
overfitting. For neural networks, specific strategies
have been developed, such as autoencoders, pool-
ing, regularization, and data augmentation. A detailed
discussion is beyond the scope of this textbook.

Networks with multiple hidden layers are often
called deep neural networks and training them is
referred to as deep learning.

In a CNN the final layers behave like a traditional
ANN that performs a classification or regression task
(see p. 192). Typically a CNN has several preceding
convolution layers, which generate image features by
means of discrete convolution operations. In this con-
text, convolution is identical to cross-correlation, see
Chapter 1 Section 1.3.4.1. The principle is shown in
Figures 7.15-7.16.

A node in a convolution layer is comparable to a
node in an ANN, i.e., it performs a nonlinear mapping
of a weighted sum of the input signals. But specific
is that the weights w; are the parameters of a con-
volution mask (filter, kernel, see p. 8), and that a
convolution layer consists of one or more images or
feature maps, which ensure that the spatial relation-
ships are retained. The convolution is applied to one
of the images of the preceding layer (Figure 7.15(a)).
If the preceding layer consists of k images, a filter
bank of k convolutions is applied and the convolved
images are added together. The result can be written
as ) i, wi.xj, with n the number of weights in one
convolution mask (3 x 3 in this picture) times k, i.e.,
the number of images in the preceding layer (three in
Figure 7.15(b)).

The input layer of a CNN is the original image
itself, which can also consist of multiple components,
such as red, green, and blue (RGB) in a color image
(Figure 7.16). The image components are convolved,
each with a different template, and added together.
These values pass through the activation function of
the nodes in the first hidden convolution layer where
the results are stored in a feature map (Figure 7.16).
Multiple feature maps per layer are typically estab-
lished by means of different filter banks (Figure 7.16).

Next, the feature maps of the first convolution
layer are convolved with new convolution masks to
yield new feature maps in the second hidden convo-
lution layer. Each time this process is repeated, a new
hidden convolution layer is added to the network.
The number of parameters per feature map equals the
number of elements of a convolution mask times the
number of feature maps k in the preceding layer.

While the nodes in the initial layers are excited
by very local features, the nodes in subsequent lay-
ers are triggered by more complex and increasingly
meaningful features. The CNN by Krizhevsky et al.%°

40 A. Krizhevsky, I. Sutskever and G. Hinton. Imagenet
classification with deep convolutional neural networks,
Neural Information Processing Systems, 197-1105, 2012.
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Figure 7.14 (@) Schematic representation of an artificial neuron or node, and (b) an artificial neural network (ANN). Every node in the
network assigns weights w; to its incoming signals x; and adds them together, i.e,, > w;.x;. This weighted sum is transformed into an
output signal by a nonlinear activation function.

Figure 7.15 Schematic representation
of an artificial neuron in a convolution
layer of a CNN. (@) Compare to

Figure 7.14. The weights w; are the
parameters of the convolution mask,
which are multiplied with the values x;
of the corresponding pixels in one of the
images of the preceding layer. (b) If the
preceding layer contains k images (three
in this picture), k convolution masks are
applied and the resulting k values are
added together. Together the k
convolution masks form a filter bank.
The resultis YL, wi.xj, with n the
number of weights in a convolution
mask (3 x 3 in this picture) times k.
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feature maps

convolution masks

Ao jr/’IP

image

first (hidden) convolution layer

feature maps

convolution masks

second (hidden) convolution layer

Schematic representation of a concatenation of image convolutions in a CNN. Each convolution layer consists of multiple
feature maps. A feature map is an image of node outputs obtained from convolving the input values x; of the preceding layer with the
weights w; as shown in Figure 7.15. Different features are extracted by different filter banks, but all the nodes in one feature map share the
same weights w;. Because the operations are image convolutions (cross-correlations, see Chapter 1 Section 1.3.4.1), the spatial geometry is
maintained from the input image through all convolution layers in the network. Each individual node corresponds to a particular
characteristic feature and is activated by similar image patches. At lower levels the triggering features are local, while at higher levels they are
more global and increasingly meaningful. Note that between subsequent convolution layers other layers are often inserted to perform
specific tasks such as pooling and upsampling. However, a detailed discussion about CNN architectures is beyond the scope of this textbook.

prognosis

no treatment
(core + penumbra)

complete reperfusion
(core only)

validation

thrombectomy
3h after imaging

follow-up (5d)

Outcome prediction of thrombectomy in acute stroke based on CT perfusion images. The left three images show the
prognosis, and the right image shows the lesion in a the follow-up scan five days after the intervention. Three cases are predicted, (left) a
complete reperfusion, which corresponds to the core, (middle) the final lesion without treatment, which corresponds to the initial core and
penumbra, and (right) the lesion if the thrombectomy takes place three hours after imaging with a presumed and validated mTICl grade 2a
(i.e, an antegrade reperfusion of less than half of the occluded target artery). Note the good match with the follow-up scan.

consisted of five convolution layers and about 500,000
nodes. Nowadays, CNNs with dozens of layers and
tens of millions of parameters are no exception. The-
oretically, an infinite number of different features at
many different scales can be assembled and feature
engineering is no longer needed, which is an impor-
tant reason why CNNs have become powerful and
attractive. However, increasing the number of layers
and nodes is no guarantee for better performance. Too

many parameters increase the computation cost and
cause overfitting.

CNNs are often seen as a black box. However, in
2014 Zeiler and Fergus*!' contributed to understand-
ing CNNs by visualizing those features that strongly

41 M. D. Zeiler and R. Fergus. Visualizing and understand-
ing convolutional networks, European Conference on
Computer Vision (ECCV), 818-833, 2014.
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Example of automatic delineation of the organs at
risk for radiotherapy planning in the head and neck area (blue
contour by CNN, red by expert). Sixteen structures were delineated,
i.e., the brainstem, left and right cochlea, upper esophagus, glottic
larynx, mandible, oral cavity, supraglottic larynx, left and right
parotid gland, inferior, mid and superior pharyngeal constrictor
muscles (PCM), left and right submandibular gland, and spinal cord.
Five of them are visualized here.

activate particular nodes at subsequent levels. At the
first convolution level the features are very local,
while at higher levels they become more global and
meaningful.

Figure 7.17 shows an example of a CNN that
predicts the outcome of intra-arterial thrombectomy
in acute stroke based on CT perfusion images. The
network was trained on the following data: 180 CT
perfusion images in the acute phase; whether or not
followed by an endovascular treatment, which was
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the case for about 50% of the training set; the time
between imaging and the end of the thrombectomy;
whether or not an occlusion was present; and a
follow-up CT scan after five days with a delineation
of the final lesion by an expert.

Figure 7.18 is an illustration of automatic delin-
eation of the organs at risk for planning proton ther-
apy in the head and neck area. The network was
trained with 70 images, Five out of the sixteen delin-
eated structures are visualized.

For a survey about deep learning for medical
image analysis the reader is referred to the work of
Litjens et al.*2.

Model-driven approaches search for the best model
appearance in the raw, processed or segmented
images. During this search the geometric (pose,
shape, motion, deformation), photometric, and con-
textual variability is exploited to generate different
model instances while satisfying the geometric and
photometric constraints and optimizing a suitable
objective function. Examples of optimization algo-
rithms are relaxation, dynamic programming, or gra-
dient descent. For details about optimization theory
we refer to Nocedal and Wright.*3

The objective function expresses how likely the
model instance is a priori and how similar the model
instance and the data are. The measure can be for-
mulated in terms of a total penalty, cost, or energy
that should be minimized, or a probability that should
be maximized. To keep the computation time feasible
this strategy intrinsically assumes that the number of
generated model instances is limited, which implies
that a good initial hypothesis is available.

Typically the objective function consists of two
components, which can easily be explained using
Bayes’ rule. If the optimization aims to find the model
instance @ that maximizes its posterior probability
given the image data I, Bayes’ rule states

42 G. Litjens, T. Kooi, B. E. Bejnordi, A. Arindra, A. A. A.
Setio, E. Ciompi, M. Ghafoorian, J. A. W. M. van der
Laak, B. van Ginneken and C. I. Sanchez. A survey on
deep learning in medical image analysis, Medical Image
Analysis, 42:60-88, 2017.

43 J. Nocedal and S. Wright. Numerical Optimization, vol-
ume XXII of Springer Series in Operations Research and
Financial Engineering. Springer, second edition, 2006.
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