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Introduction 
This collection of computational exercises accompanies the Third Edition of Input-Output 

Analysis: Foundations and Extensions which is a textbook and desk reference for students and 
scholars in the input–output research and applications community. The book includes extensively 
referenced and indexed coverage of most subtopics in the field. It is an ideal introduction to the 
subject for advanced undergraduate and graduate students in a wide variety of fields, including 
economics, regional science, regional economics, city, regional and urban planning, 
environmental planning, public policy analysis, and public management. This workbook is an 
expanded discussion of exercise problems aligned with the book chapters, illustrating major 
concepts and key analytical approaches as well as exploring applications using examples and 
selected real-world data. 

The new edition of this book has been fully revised and updated to reflect important 
developments in the field since earlier editions. New topics covered include expanded coverage 
of non-survey estimation procedures, structural decomposition analysis (SDA), environmentally 
extended input-output models, social accounting matrices (SAMs), and international input–
output models.  

This edition is also supported by an accompanying website with supplemental appendices 
including further information for more advanced readers, exercise problems and solutions, and a 
sampling of real-world data sets (http://cambridge.com/millerandblair).  
Overview of Input-Output Analysis 
Professor Wassily Leontief’s 1971 presidential address to the American Economic Association 
was entitled “Theoretical Assumptions and Non-observed Facts.” The address took many in the 
economics profession to task for failing to underscore the necessity of empirically verifying 
economic theory. This was a longstanding concern of Leontief’s about how much of the 
economics profession had evolved in the post-World War II period and one that he was 
particularly focused on in developing his own research on systematically analyzing the 
interdependence of industries in an economy.  

Leontief characterized his work as expressing mathematically the efforts of 18th century 
French economist, Francois Quesnay, to produce a diagrammatic representation of how 
expenditures can be traced through an economy in a systematic way, known as the Tableau 
Économique. Leontief referred to the analytical framework he had been devising since the 1930s 
as input-output analysis (IOA), referring to the essence of his approach of capturing from 
observed economic data for a specific geographic region (e.g., a nation, state, or county) the 
activity of a group of industries that both produce goods and services (outputs) and consume 
goods and services from other industries (inputs) in the process of producing each industry’s own 
output. In recognition of this work, Leontief received the 1973 Nobel Memorial Prize in 
Economic Sciences. Today, the basic concepts of IOA set forth by Leontief are key if not central 
components of many types of economic analysis and, indeed, IOA and its extensions over the 
last three-quarters of a century remain one of the most widely applied methods in economics.  

The number of industries considered in an IOA model may vary from only a few, to 
hundreds or thousands. The observed data are the flows among or transactions of products 
between each of an economy’s industries (as a producer/seller) and each of the industries (as a 
purchaser/buyer) over a standard time-period, usually a year. In more contemporary terms, 
depending upon the level of industry and geographic aggregation and accounting for the role of 
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imports, IOA equations quantify essentially the complete and detailed supply chains for all 
products and services in the economy. 

 As noted at the beginning of this overview, one of Leontief’s central concerns was the 
degree to which the transactions table presented an empirically accurate and stable picture of 
economic activity and what time-period was suitable for sufficiently and faithfully capturing the 
production characteristics of the economy. Leontief often referred to production functions of 
industries in his model as production recipes, found by normalizing each column of the 
transactions table by the value of total output of the corresponding industry in the economy to 
produce a matrix of technical coefficients.  

Mathematically, in its simplest form, IOA is based on a matrix of interindustry 
transactions, Z, the rows of which correspond with producing industry sectors in the economy 
and the columns to those same industries as consumers of industrial products from across the 
economy, usually measured value terms such as dollars. The most common form of IOA is 
called an open model in which a schedule of final consumption is specified of industrial products 
in the economy, i.e., consumption outside the network of interindustry production, such as the 
total of personal consumption, government expenditures, capital expenditures, and exports. For 
this vector of total final demand, f , the total industrial production for all sectors in the economy, 
including both deliveries to interindustry and final consumers, is specified as = +x Zi f  where x 
is the vector of total industrial outputs for all sectors in the economy. The production recipes or 
technical coefficients are defined by normalizing each column of Z by the value of total 
production for the industry designated by the column, 1ˆ −=A Zx , i.e., elements of this matrix of 
technical coefficients or direct requirements designate the dollars’ worth of input from each 
industry in the economy consumed directly to produce one dollar’s worth of the output for the 
industry designated by the column. The total production accounting can then also be written as
= +x Ax f  or, rearranging terms, as 1( )−= −x I A f or =x Lf where 1( )−= −L I A .  The matrix, L, 

is known as the Leontief inverse or matrix of total requirements.   

Since, mathematically, 1 2 3( ) ... n−= − = + + + +L I A I A A A , we can interpret the terms of 
this power series expression as the “rounds” of industrial production necessary to ultimately 
supply the final consumption. That is, the production necessary to directly supply final 
consumption is Af. The production necessary to supply the inputs to that direct production (i.e., 
induced by the direct production) is ( )A Af  or 2A f  and subsequent “rounds” of induced 
production are 3A f , 4A f , ..., nA f  so that the value of total industry production in the economy, 
including the final consumption itself as well as the direct and all the induced production 
necessary to supply that final consumption, is 2 3 1... ( )n −= + + + + = −x f A f A f A f I A f . In a 
Leontief economy, for any newly projected increment of final consumption, Δf , the additional 
total industrial production, ∆x necessary to satisfy that new increment of final consumption is 
then found by ∆ = ∆x L f . 

The matrix of technical coefficients, A, incorporates the central assumptions of the basic 
IOA model, i.e., that the interindustry flows from one industry to another for a given time-period 
depend entirely on the total output the consuming industry for that same time-period, i.e., 
industries exhibit a linear production function defined by fixed technical coefficients for that 
time-period. Thus, in a basic Leontief economy, an industry uses inputs in fixed proportions and 
ignores returns to scale.  
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Throughout Leontief’s research career he spent much of his effort exploring the 
robustness of these assumptions and devising extensions and enhancements to the basic model to 
accommodate the situations when such assumptions were less suitable and to identifying 
characteristics of the approach and application that most influenced error and uncertainty in its 
use. Extensions to IOA became an important area of research in economics, many efforts of 
which focused on the practical challenges of implementing IOA, including managing the 
prodigious data and computational requirements, effects of industrial and geographic 
aggregation, and devising methods to characterize secondary industrial production, final 
consumer consumption, and the role of capital investment and use. Other extensions enabled 
IOA to be focused on analyzing structural change in the economy or on specific sectoral issues 
such as analyzing energy use, environment impacts, and labor utilization.  

With growing confidence in the utility of IOA in many different types of economic 
analysis, much more attention was paid by governments to assembling local, regional, and 
national data suitable for IOA. A pivotal development in broad implementation of IOA was a 
widespread, if not essentially uniform adoption of a standardized System of National Accounts 
(SNA) for economic activity. Work spearheaded by British economist Richard Stone, for which 
he received the 1984 Nobel Memorial Prize in Economic Sciences, and subsequently 
promulgated by the United Nations, the SNA enabled systematic tracking of economic activities 
on a national and international scale. Since the late 1950s most developed nations and many 
developing ones routinely construct IOA tables along with governments or related agencies for 
many regions and localities and, increasingly, IOA efforts capture transactions between regions 
or nations in multiregional models, some at a global scale. 

Perhaps the three most significant early limitations to widespread use of IOA were: (1) 
the lack of reliable data from which to construct the basic interindustry accounts, (2) the lack of 
uniform standards in the kinds and scale of data collected for IOA, and (3) the extraordinary 
computational requirements of IOA relative to computer capacity at the time. In the earliest days 
of IOA, the computational requirements were dominant constraints, limiting its application, even 
if the necessary data were available, to scores of industries rather than the hundreds or thousands 
today. Even the most basic of IOA applications involves a large system of linear equations. 
While conceptually straightforward, computational solution at the time was challenging for even 
the most powerful computers of the day.  

The constraint on computational capacity at the time put IOA front and center in use of 
the earliest electronic computers, but with the exponential growth in computing capacity over the 
last half century, such limitations have all but evaporated today. With standardized and much 
more readily available data, supplemented with methods for utilizing alternative sources of data, 
IOA is experiencing a fresh resurgence of interest in its utility for many economic issues, 
especially for global issues requiring large multiregional models. As a result, long avoided 
because its data and computational burden was often considered a bridge too far, IOA has re-
emerged as a central tool in economics and, increasingly, in other areas such as accounting for 
pollution emissions and mitigation (and related ecosystem models), social accounting models, 
and many others.  

In the last decade IOA’s integration with other modeling frameworks has blossomed as 
well, including links with econometrics, resource planning, demographic modeling, and many 
others. Leontief’s original framework conceived of industry production functions as measured in 
physical units, such as specifying the technical coefficients in terms of tons of coal or bushels of 
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wheat, as inputs, required per dollars’ worth of an industry’s output or per ton of steel output. 
However, the data collection requirements and other constraints rendered implementation of the 
framework measured in physical units too unwieldy, certainly at the time and even today to a 
lesser extent. But, while the basic methodology for IOA evolved, in both theory and application, 
largely through measuring all quantities in value terms with implicit fixed prices, its use 
expressed in physical units was always considered desirable, both to moderate the impact of 
prices in analysis and to allow IOA to relate more easily with other modeling frameworks.  

The generalization of IOA techniques to a broader conceptual level, such as accounting 
for economic activity beyond its primary focus on interindustry production, also originated with 
simpler attempts to link IOA models and other national income accounting techniques. Such 
generalizations enabled extension of IOA to explore the roles of labor, households, and the social 
institutions of the economy. Extensions to IOA, such as social accounting matrices and other 
related constructs, capture many different socioeconomic characteristics of an economy 
associated with interindustry activity, and enable analysis, for example, of income from 
employment and its disposition, labor costs, and the demographics of the work force that 
comprise the market for the supply and demand of labor.  

Even late in his own life, Leontief continued to explore ways in which his framework 
could be implemented more widely, e.g., using physical units rather than value terms to facilitate 
wider use. These techniques involved many measurable quantities associated with interindustry 
activity, such as employment, energy use, and environmental pollution. Integration with 
ecosystem models, for example, addresses the interface between the economy and ecosystems, 
enabling systematic analysis of such contemporary issues as consumption accounting of global 
carbon emissions, measuring the energy and environmental resource “footprint” of nations, or 
the environmental emissions embodied in international trade.   

Today, IOA is a well-established and widely utilized tool for analyzing economic activity 
at any geographic scale, most recently at a global scale. Enabled by increasingly standardized 
data characteristics and availability of data as well as the formidable computational capacity 
available today, IOA will continue to grow in its use and utility for addressing many types of 
economic policy and planning issues. Our text captures most of the important features and 
extensions of IOA since its conception and its initial applications nearly a century ago.  The 
computational exercise problems in this workbook illustrate many of these features. 
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Chapter 2, Foundations of Input–Output Analysis  
Chapter 2 introduces Leontief’s conceptual input–output framework and explains how to develop 
the fundamental mathematical relationships from the interindustry transactions table. The key 
assumptions associated with the basic Leontief model and implications of those assumptions are 
recounted and the economic interpretation of the basic framework is explored. The basic 
framework is illustrated with a highly aggregated model of the US economy. In addition, the 
“price model” formulation of the input–output framework is introduced to explore the role of 
prices in input–output models. Appendices to this chapter include a fundamental set of 
mathematical conditions for input–output models, known as the Hawkins–Simon conditions. The 
exercise problems for this chapter explore applications of the basic mathematical relationships of 
input-output analysis.  
 
Problem 2.1  
This problem explores the relationships of the fundamental input-output analysis identities 
developed in chapter 2: = +x Zi f  and = +x Ax f where 1ˆ −=A Zx . Consider a two-sector 
economy (agriculture and manufacturing), the basic data for which are the matrix of interindustry 
transactions, Z, and vector of total outputs, x, expressed in dollar values, specified as:  

500 350 1,000
   

320 360 800
   

= =   
   

Z x   

Rearranging terms in the first input-output identity, = +x Zi f , to = −f x Zi  makes it easy to 
calculate the vector of final demands, f, for this economy as 

1,000 500 350 1 1,000 850
  = 

800 320 360 1 800 680
150
120

          
= − = − − =          

          
f x Zi   

To illustrate the process of impact analysis, i.e., computing the impact on industrial 
production in the economy resulting from a new final demands presented to the economy, we 
specify new final demands as 1f  increased by $50 and 2f decreased by $20, so that the vector of 

new final demands is 
200
100

new  
=  
 

f .  To determine the production of total output for each sector 

in this economy necessary to support these new levels of final demand, we first invoke the basic 
Leontief model assumptions defining the matrix of technical coefficients or direct requirements: 

1 500 350 1/1000 0
320 360 0 1/ 800

.5 .4375
ˆ

.32 .45
−     

= = =    
     

A Zx  

We can compute a “round-by-round” approximation of the impacts of the new final 
demands on this economy to intuitively illustrate the effect of these new final demands on total 
industrial production throughout the economy by computing, first, the direct requirements to 
satisfy the new final demand vector added to the final demands themselves, new new+f Af , then 
added the production necessary to supply that first “round” of direct requirements, ( )newA Af , 
and so on. Mathematically, as discussed in chapter 2, this is expressed as the infinite power 
series 2( ) ( )new new new new new= + + + = + + +x f Af A Af I A A f  . This infinite power series 
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ultimately converges to the total amount of production, required directly and indirectly through 
the successive rounds of intermediate industrial production, to support the new final demands. 

Terminating the power series is an approximation of the “exact” values found by 
rearranging = +x Ax f as 1( )−= −x I A f or =x Lf where 1 2( ) n−= − = + + + +L I A I A A A  
with increasing precision of the approximation as n increases. The matrix of total 
requirements, L, is often referred to as the Leontief inverse.  

For this economy, computing the “round by round” requirements for the first five terms 
yields only a rough approximation of the total outputs in the economy necessary to satisfy the 

new final demands: 2 4 650.81
( )

453.98
new new  

= + + + =  
 

x I A A A f , compared with the “exact” value, 

1,138.90
844.40

new new  
= =  

 
x Lf  where 1 4.07 3.24

( )
2.37 3.7

−  
= − =  

 
L I A . It is a rough approximation 

because, in this particular case, the power series converges very slowly, e.g., for 25n = , the 

approximation is 25 1,122.80
( )

831.60
new new  

= + + + =  
 

x I A A f
 , compared again with the “exact” 

value, 
1,138.90
844.40

new  
=  
 

x , and it is not until 57n =  that new new=x x for both elements within 0.1. 

This feature of slow convergence, however, is not always the case depending upon the 
characteristics of A.  For example, if .01= ×A A , for the same vector of final demands, 
convergence, i.e., when new new=x x for both elements within 0.1, occurs at 6n = . This result is 
analogous to the result in ordinary algebra, 2 31/ (1 ) 1 na a a a a− = + + + + +  for a scalar a 
where 1a < . For example, if .427a = , this series converges to within 0.001 at 8n =   while, for 
.0427, i.e. .01a , the series converges at 2n = . 
 
Problem 2.2 
This problem explores a more extensive example of basic input-output relationships. We specify 
interindustry sales and industry total outputs in a three-sector national economy for year t, given 
in the following table, where values are shown in thousands of dollars. (S1, S2, and S3 designate 
the three industry sectors). 

  Interindustry Sales Total Output   S1 S2 S3 
S1  350 0 0 1,000 
S2  50 250 150 500 
S3  200 150 550 1,000 

From the table, the matrix of interindustry transactions, tZ , and the vector of total outputs, tx , 

are defined as 
350 0 0
50 250 150
200 150 550

t

 
 =  
  

Z , and 
1,000
500

1,000

t

 
 =  
  

x . The matrix of technical coefficients for 
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year t, tA , and the corresponding matrix of total requirements, tL , are then found as

1

.35 0 0
ˆ( ) .05 .5 .15

.2 .3 .55

t t t −

 
 = =  
  

A Z x , and 1

1.538 0 0
( ) .449 2.5 .833

.983 1.667 2.778

t t −

 
 = − =  
  

L I A .  

Suppose that government tax policy changes generate final demands for the products 
delivered by sectors 1, 2, and 3 projected for next year (year t + 1) to be 1,300, 100, and 200 for 
the three sectors, respectively (also measured in thousands of dollars). The corresponding total 
outputs that would be necessary from the three sectors to meet this projected new demand, 
assuming that there is no change in the technological structure of the economy (that is, assuming 

that the A matrix does not change from year t to year t + 1), would be 1 1

2,000
1,000
2,000

t t t+ +

 
 = =  
  

x Lf  for 

1

1,300
100
200

t+

 
 =  
  

f . The original vector of final demands for year t is computed as 

650
50

100

t t t

 
 = − =  
  

f x Z i , from which we can observe that 1 2t t+ =f f , so it can be easily verified that 

that 1 2t t+ =x x  since 1 1 2 2t t t t t t+ += = =x Lf Lf x , illustrating the linearity of the Leontief model.  
 
Problem 2.3 
This problem illustrates the distinctions between the open and closed Leontief models using the 
data of problem 2.1, where the interindustry transaction matrix and vector of total outputs, 

respectively, were defined as 500 350
320 360
 =   

Z  and 1,000
800

 =   
x .  

Suppose that the part of the original final demands attributable to household 
(consumption) expenditures for this economy are $90 from sector 1 and $50 from sector 2 with 
the remaining parts of final demand reported as exports of products 1 and 2. Suppose, further, 
that (1) payments from sectors 1 and 2 for household labor services were $100 and $60, 
respectively; (2) that total household (labor) income in the economy was $300; (3) that 
household purchases of labor services was $40; and (4) that any new final demands presented to 
the economy are for exports.  

This additional information allows us to expand Z and x of the basic data for two-sector 

model from problem 2.1, to be 
500   350   90
320   360   50
100     60   40

c

 
 =  
  

Z  and 

1,000
800
300

c

 
 =  
  

x . This illustrates the 

process known as closing the model to households. The result is a three-sector representation of 
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the economy for which the matrices of direct and total requirements, respectively, are 

1

.5 .438 .3
ˆ( ) .32 .45 .167

.1 .075 .133

c c c −

 
 = =  
  

A Z x  and 1

5.820  5.036  2.983
( ) 3.686  5.057  2.248

0.990  1.019  1.693

c c −

 
 = − =  
  

L I A . 

We can now find the impacts in terms of required new production for sectors 1 and 2 of 
the new final demands specified in problem 2.1, but this time using the Leontief inverse for the 
new, expanded matrix of technical coefficients of dimension 3 3× . The vector of new final 

demands (now attributed solely to exports) is 
200
100

0

c

 
 =  
  

f , and we compute the resulting new 

vector of total outputs necessary to support those final demands as  
1,667.5
1,242.9

300

c c c

 
 = =  
  

x L f . Since 

in problem 2.1 we found 
1,138.9
844.4

o o o  
= =  

 
x L f  for 0 200

100
 

=  
 

f , the increases in outputs for both 

sectors 1 and 2 using the closed model reflect increased interindustry production resulting from 
the inclusion of households as an endogenous sector in the 3-sector model.  
 
Problem 2.4 
This problem explores the Hawkins-Simon conditions for the Leontief model developed in 
chapter 2. Consider an economy organized into three industries: (1) lumber, (2) machinery, and 
(3) paper characterized by the following:  
• A consulting firm estimates that last year the lumber industry had an output valued at $50 

(assume all monetary values are in units of $100,000), 5 percent of which the industry 
consumed itself; 70 percent of the lumber industry’s output was consumed by final demand; 
20 percent by the paper industry; and 5 percent by the machinery industry.  

• The machinery industry consumed 15 percent of its own products, out of a total of $l00; 25 
percent went to final demand; 30 percent to the lumber industry; 30 percent to the paper 
industry.  

• Finally, the paper industry produced $50, of which it consumed 10 percent; 80 percent went 
to final demand; 5 percent went to the lumber industry; and 5 percent to the machinery 
industry.  

Using this information the matrix of interindustry transactions and the vector of total 

outputs for this economy are 
2.5 10 2.5
2.5 5 2.5
30 30 15

 
 =  
  

Z  and 
35
40
25

 
 =  
  

f , respectively, so the vector of 

total outputs, x,  and the matrix of technical coefficients, A, are then 
35
40
25

 
 =  
  

f , 
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50
50

100

 
 = + =  
  

x Zi f and 1

.05 .2 .025
ˆ .05 .1 .025

.6 .6 .15

−

 
 = =  
  

A Zx . The Hawkins-Simon conditions require 

positivity of all principal minors of 
.95 .2 .025

( ) .05 .9 .025
.6 .6 .85

− − 
 − = − − 
 − − 

I A . Here the three first-order 

principal minors are the main diagonal elements, 0.95, 0.9 and 0.85; the three second-order 
principal minors are 0.845, 0.75 and 0.793, and the third-order principal minor is just the 
determinant 0.687− =I A , so all the principal minors are positive (see Appendix A of the text 
for discussion of minors in matrix operations).  

The Leontief inverse for this economy is 1

1.092 .269 .04
( ) .084 1.154 .036

.830 1.005 1.23

−

 
 = − =  
  

L I A . If we 

anticipate an economic recession reflected in decreased final demands for lumber, machinery, 
and paper of 25, 10, and 5 percent, respectively. The vector of new final demands is then

1

2

3

(.75) 26.25
(.90) 36.00
(.95) 23.75

new

f
f
f

   
   = =   
      

f and the corresponding vector of total outputs supporting this change in 

final demand is found by 1

39.317
( ) 44.606

87.181

new new−

 
 = − =  
  

x I A f  for 
1

2

3

(.75) 26.25
(.90) 36.00
(.95) 23.75

new

f
f
f

   
   = =   
      

f . The new 

matrix of interindustry transactions is 
  1.97    8.92    2.18

ˆ( )   1.97    4.46    2.18
 23.59  26.76  13.08

new new

 
 = =  
  

Z A x , so the vectors of 

value-added inputs and of intermediate outputs, respectively, are then computed as 

( ) ( ) 11.795  4.461 69.744new new new   ′ ′= − =v x i Z and 
13.067

( )  8.606
63.431

new new

 
 = =  
  

u Z i .  

 
Problem 2.5 
This problem assembles an input-output transactions table and explores the Hawkins-Simon 
conditions along with impact analysis for a new vector of final demands for the defined 
economy.  
 Consider a simple two-sector economy containing industries A and B. Industry A requires 
$2 million worth of its own product and $6 million worth of Industry B’s output in the process 
of supplying $20 million worth of its own product to final consumers. Similarly, Industry B 
requires $4 million worth of its own product and $8 million worth of Industry A’s output in the 
process of supplying $20 million worth of its own product to final consumers.  
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 Using these data, we define the matrix of interindustry transactions and vector of final 

demands as 
2 8
6 4
 

=  
 

Z  and 
20
20
 

=  
 

f , respectively, so the corresponding vector of total outputs 

is computed as
30

 
30
 

= + =  
 

x f Zi . Hence, the matrix of direct requirements is found by 

1 .067 .267
ˆ

.2 .133
−  

= =  
 

A Zx  and the Hawkins-Simon conditions are satisfied as positive values for 

the determinant and the principal minors of the matrix ( )−I A , i.e., 0.756− =I A , 

11(1 ) 0.993a− = , and 22(1 ) 0.867a− = .  The matrix of total requirements is then found as 

1 1.147 .353
( )

.265 1.235
−  

= − =  
 

L I A  and, for new vector of final demands, 
15
18

new  
=  
 

f , the 

corresponding vector of total outputs is computed as 
23.559
26.206

new new  
= =  

 
x Lf  and related 

interindustry activity (matrix of interindustry transactions) is 
1.571  6.988

ˆ
4.712  3.494

new new  
= =  

 
Z Ax . 

 
Problem 2.6  
While computer advances have considerably reduced the computational constraints for many 
applications of input-output analysis, it has also made possible the construction and use of much 
larger scale input-output models with thousands of sectors specified. This problem illustrates, on 
a small scale, practical considerations in working with very large input-output models for 

determining when using round-by-round calculations for impact analysis, 
0

r
i

i=
=∑x A f , is a cost-

effective substitute for using the direct computation of the Leontief inverse in impact analysis, 
=x Lf   where  1( )−= −L I A . 

Consider the following transactions table, Z , and total outputs vector, x, for a two-sector 
economy: 

6 2 20
   

4 2 15
= =
   
   
   

Z x  

For this economy, the vectors of value-added inputs and final demands are computed as 

[ ]10 11′ ′ ′= − =v x i Z and 
20
20
 

= − =  
 

f x Zi , respectively. With 1 .3 .133
ˆ

.2 .133
−  

= =  
 

A Zx  we show 

first that the Hawkins-Simon conditions are satisfied by positive values for the determinant and 
the principal minors of the matrix ( )−I A : 0.58− =I A , 11(1 ) 0.7a− = , and 22(1 ) 0.867a− = , so 
we consider the economy to be “well behaved.” The r-order round-by-round approximation of 

20
15
 

= =  
 

x Lf  is found as: 
0

r
i

i=
=∑x A f (remember that 0 =A I  ), shown in the following table. 
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Round-by-round approximation of total outputs for 1, 2, , 10r =    

r 1 2 3 4 5 6 7 8 9 10
16.800 18.720 19.488 19.795 19.918 19.967 19.987 19.995 19.998 19.999
12.600 14.040 14.616 14.846 14.939 14.975 14.990 14.996 14.998 14.999

1x

2x  
We see from the table that 0.05j jx x− <  for both sectors ( 1, 2j = ) at 6r = .  

The specified cost of performing impact analysis on the computer using the round-by-
round method is then computed as 1 2 ( 1.5)rC c r c r= + −  where r is the order of the 
approximation ( 1c  is the cost of an addition operation and 2c  is the cost of a multiplication 
operation). Also, we assume further that 1 0.5c c= , that the cost of computing 1( )−−I A exactly 
rather than via successive approximation is given by 220eC c= , and that the cost of using this 
inverse in impact analysis (multiplying it by a final-demand vector) is given by 2fC c= .  

If we want to determine whether to use the round-by-round method or to compute the 
exact inverse and then perform impact analysis, i.e., to determine the least-cost method for 
computing the solution, for one final demand vector, the equation defining the computation cost 
is  2 2 2 2 2 20.5 1.5 (0.5 1.5) (1.5 1.5) 1.5( 1)rC c r c r c r r c r c r c= + − = + − = − = −  and, from the table, 
for 0.2j jx x− <  then 5r =  so 26rC c= .  

Hence, for one final demand vector, the cost of the round-by-round approximation is 
26rC c= which is less than the cost of using the exact inverse 221e fC C c+ = , it is much more 

cost effective to use the round-by-round round method. For five final demand vectors, however, 
2 2 2 2 25(6 ) 30 4 20 4 24r e fC c c C C c c c= = + = + => , so it is more cost effective to use the exact 

method. For four final demand vectors, it turns out, the total cost of computation is 
2 2 2 2 24(6 ) 24 4 20 4 24r e fC c c C C c c c= = + = + == , i.e., the costs of both methods are identical 

so at least in terms of cost effectiveness we are indifferent as to which method to employ.   
Problem 2.7 
This problem explores computation of the Leontief inverse and impact analysis for an eight-
sector economy (practical only with computer tools). 

Consider the following matrix of interindustry transactions, Z, and vector of total outputs, 
x, for an eight-sector economy: 

8,565 8,069 8,843 3,045 1,124 276 230 3,464
1,505 6,996 6,895 3,530 3,383 365 219 2,946

98 39 5 429 5,694 7 376 327
999 1,048 120 9,143 4,460 228 210 2,226

4,373 4,488 8,325 2,729 2,9671 1,733 5,757 14,756
2,150 36 640 1,234 165 821 90 6,717

506 7

=Z

180 0 2,352 0 18,091 26,529
5,315 1,895 2,993 1,071 13,941 434 6,096 46,338

 
 
 
 
 
 
 
 
 
 

 

[ ]37,610 45,108 46,323 41,059 209, 403 11, 200 55,992 161,079′ =x  
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We compute the matrices of direct requirements, A, and the matrix of total requirements, L, as 
the following: 

 

 

1( )

  1.339  .296    .312    .172     .034     .058   .030    .067
  .089   1.214   .209    .153     .038     .057   .025    .051
  .013    .009   1.011   .019     .034     .008   .018    .013
  .0−− − =L I A

65    .056    .034   1.306    .038     .041   .021    .041
  .265    .215    .320    .174   1.207     .230   .229    .240
  .100    .029    .045    .059     .011   1.089   .018    .074
  .109    .049    .068    .035     .054    .030   1.547   .372
  .321    .162    .210    .117     .135    .103   .269   1.506

 
 
 
 
 
 
 
 
 
 
 
  

 

For a case where final demands in sectors 1 and 2 increase by 30 percent while in sector 5 
they decrease by 20 percent with all other final demands unchanged, we first compute the base  

final demands as = −f x Ax , then new new=x Lf , for 

   3,994
 19,269
 39,348
 22,625
137,571
    -653
   8,327
 82,996

 
 
 
 
 
 = − =  
 
 
 
 
  

f x Ax , and, applying the 

changes 

1ˆ

  .228  .179  .191  .074  .005  .025  .004  .022
  .040  .155  .149  .086  .016  .033  .004  .018
  .003  .001  .000  .010  .027  .001  .007  .002
  .027  .023  .003  .223  .021  .020  .004  .014−= =A Zx
  .116  .099  .180  .066  .142  .155  .103  .092
  .057  .001  .014  .030  .001  .073  .002  .042
  .013     0    .004     0    .011     0    .323  .165
  .141  .042  .065  .026  .067  .039  .109  .288






 
 
 
 
 
 
 
 
 
 
 



2021 August 3 
 
 

P-14 
 

 indicated, 

5,192
25,050
39,348
22,625

110,057
653

8,327
82,996

new

 
 
 
 
 
 =  
 
− 

 
 
  

f  to yield 

  39,998
  51,181
  45,455
  40,404
177,756
  11,182
  54,929
158,687

new new

 
 
 
 
 
 = =  
 
 
 
 
  

x Lf . 

 
Problem 2.8 
The problem explores changes in relative prices in an input-output formulation resulting from 
changes in value-added inputs. Consider a two-sector input-output table measured in millions of 
dollars: 
 

  Manuf. Services 
Final 

Demand 
Total 

Output 
Manufacturing 10 40 50 100 
Services 30 25 85 140 
Value Added 60 75 135   
Total Output 100 140     

 

Using the table data, we define the matrix of interindustry transactions, 0 10 40
30 25=  
  

Z , 

the vector of total outputs, 0 100
140
 =   

x , and the vector of total value-added inputs 

[ ]0( ) 60 75′ =w , and we can then compute 

0 0 0 1
1 010 40 .1 .286100ˆ( )

30 25 1 .3 .1790 140

−
     = = =        

A Z x and 0 0 1 1.257 .437
( )

.459 1.377
−  

= − =  
 

L I A . For 

this formulation we will need the matrix transposes of 0A  and 0L  , i.e., 0 .1 .3
( )

.286 .179
 ′ =  
 

A  

and 0 0 1 1.257 .459
( ) [ ( ) ]

.437 1.377
−  ′ ′= − =  

 
L I A . The value-added coefficients are computed as 

[ ]0 0 0 1 60 75ˆ( ) ( ) .6 .536100 140c
−  ′= = = v w x for which the normalized prices are found, not 

surprisingly, as 0 0 0 1
( ) ( )

1c
 ′ ′= =  
 

p L v  or, perhaps more intuitively, since the transpose of a product 

of matrices is the product of the transposes of the individual matrices in the reverse order (see 
Appendix A) and the row vector, [ ]0 0 0( ) 1 1c′ = =p v L . This is not surprising since, beginning 
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with the basic accounting identity, ′ ′= −w x i Z , which we can express as ˆ′ ′= −w x i Ax , we first 
postmultiply through by 1ˆ −x to obtain 1 1 1ˆ ˆ ˆ ˆ ( )c

− − −′ ′ ′ ′= = − = − = −v wx x x i Axx i iA i I A . Then, 
postmultiplying through by 1( )−−I A , the result is 1 1( ) ( )( )c

− −′− = − −v I A i I A I A  which reduces 
to the general result, c ′=v L i .  

If labor costs in the services sector increase, causing a 25 percent increase in value added 
inputs required per unit of services and labor costs in manufacturing decrease by 25 percent, the 

new value-added coefficients, reflecting the changes are [ ]1 01.25 0
.75 .402

0 .75c c
 

= = 
 

v v , so 

the prices for the new period 1 relative to the current period 0 are [ ]1 1 0
0( ) 1.127 .881c′ = =p v L .   

 
Problem 2.9 
This problem explores changes in relative product prices resulting from a change in value-added 
inputs generated by a national corporate income tax. We use the 2003 U.S. direct requirements 
table given in Table 2.6. For the matrix of direct requirements, A, given in the table, the 
transpose of the Leontief inverse is 

1

  1.262  0.009  0.008  0.229  0.149  0.238  0.024
  0.006  1.075  0.003  0.119  0.085  0.293  0.024
  0.013  0.012  1.005  0.262  0.137  0.270  0.023

( )   0.057  0.034  0.006  1.342  0.156  0.29−′ ′= − =L I A 2  0.037
  0.004  0.019  0.007  0.069  1.089  0.271  0.028
  0.007  0.003  0.011  0.086  0.060  1.412  0.030
  0.007  0.007  0.025  0.126  0.085  0.314  1.034

 
 
 
 
 
 
 
 
 
  

.   

Suppose that the new corporate income tax generates increases in the total value-added 
inputs of 10 percent for primary industries (agriculture and mining), of 15 percent for 
construction and manufacturing, and of 20 percent for all other sectors. The vector of value- 
added coefficients for the original input output economy is found as 

[ ]0 .486 .633 .580 .470 .699 .629 .640c
′′= − =v i i A , so that 0 0

c′= =p L v i .  We define 
the vector of value-added growth factors, reflecting the value-added changes indicated, as  
=d [1.1   1.1   1.15   1.15   1.2   1.2   1.2]′ so that we can find the new vector of 

value-added coefficients by 1 0

.534
1.1 0 0 0 0 0 0 .486

.6960 1.1 0 0 0 0 0 .633

.6670 0 1.15 0 0 0 0 .58
ˆ .5400 0 0 1.15 0 0 0 .47

0 0 0 0 1.2 0 0 .699 .839
0 0 0 0 0 1.2 0 .629 .754
0 0 0 0 0 0 1.2 .64

.768

c c

 
     
     
     
     = = =     
     
     
     
      

v dv . 
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Hence the new prices are found as 

[ ]1 1 1.133 1.129 1.163 1.163 1.197 1.197 1.195c
′′= =p L v . 

 
Problem 2.10 
This problem explores the process of opening a “U.S.-style” input-output economy (adopting the 
accounting conventions of national input-output tables assembled in the United States) to imports 
by “scrubbing” from the assembled interindustry transactions matrix the portion of interindustry 
transactions that represent competitive imports from outside the economy and reassigning them 
as value-added imports (noncompetitive imports are already treated as value added inputs). 

Consider an input-output economy with three sectors: agriculture, services, and personal 
computers.  The matrix of interindustry transactions and vector of total outputs are given, 

respectively, by 
2 2 1
1 0 0
2 0 1

=
 
 
  

Z and 
5
2
2

=
 
 
  

x  so that the associated vector of final demands is 

0
1
1

= − =
−

 
 
  

f x Zi . Notice, first, that this is a closed economy where all industry outputs become 

inputs. That is, with the given vector of total outputs, x, the vector of total value-added inputs is 
found by [ ]0 0 0′ ′ ′= − =v x i Z  and, of course, the gross domestic product is 0′ ′= =v i i f . For 

this economy, 
.4 1 .5
.2 0 0
.4 0 .5

 
 =  
  

A , so we can compute 0− =I A . This means that ( )−I A is a 

singular matrix and L does not exist.  
 Suppose that we determine all the inputs for the personal computers sector are imported. 
We can create a domestic transactions matrix by “opening” the economy to imports, i.e., transfer 
the value of all inputs to personal computers to final demand. For a “U.S. style” input-output 
table, competitive imports are included in the matrix of transactions and a corresponding 
negative entry for imports is included in final demand.  

To “scrub” this transactions table of competitive imports we need to, first, subtract the 
value of imports from the first and third entries in the column for personal computers, then, add 
those amounts to the first and third entries of final demand. We define D as the matrix of 
domestic transactions where the values of competitive imports are subtracted to remove them 
from the matrix of interindustry transactions, Z, and g as the new vector of final demands where 
the values of competitive imports are added to remove imports from final demand, f, (recall that 
they were included originally in final demand as negative values).   

Thus, 
2 2 1
1 0 0
2 0 1

 
 =  
  

Z  becomes 
2 2 1 1 2 2 0
1 0 0 1 0 0
2 0 1 1 2 0 0

−   
   = =   
   −   

D  and f becomes 

0 1 1
1 1

1 1 0

+   
   = =   
   − +   

g . The vector of total outputs, x, is unchanged, but the new vector of total value 
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added is [ ]0 0 2′ ′ − =v = x iD and, hence, gross domestic product is 2′ ′= =v i i f . We then can 

compute the matrix of direct requirements as 
.4 1 0
.2 0 0
.4 0 0

 
 =  
  

A , for which 0.4− =I A  so the 

matrix ( )−I A  is non-singular and the matrix of total requirements can be computed as 

1

2.5 2.5 0
( ) .5 1.5 0

1 1 1

−

 
 = − =  
  

L I A . 
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Chapter 3, Input–Output Models at the Regional Level 
Chapter 3 extends the basic input–output framework to analysis of regions and the relationships 
between regions. First, “single-region” models are presented, and the various assumptions 
employed in formulating regional models versus national models are explored. Next, the 
structure of an interregional input–output (IRIO) model, designed to expand the basic input–
output framework to capture transactions between industrial sectors in regions, is presented. An 
important simplification of the IRIO model designed to deal with the most common of data 
limitations in constructing such models is known as the multiregional input–output (MRIO) 
model. This chapter introduces the basic MRIO formulation and explores the implications of its 
simplifying assumptions along with the features of the balanced regional model which captures 
the distinction between industrial production for regional versus national markets. Finally, the 
chapter summarizes the fast-growing range of applications of MRIO analysis to multinational 
and global economic models and issues. The exercise problems for this chapter explore various 
characteristics of regional, IRIO, and MRIO model configurations and their applications.  
 
Problem 3.1 
This problem explores the use of regional purchase coefficients to analyze regional interindustry 
activity. We begin with the data from problem 2.2, which describes a small national economy 
that contains firms producing in each of the three industry sectors.  

Suppose that for a regional economy within this national economy, the technological 
structure of production of firms within the region is estimated to be the same as that reflected in 
the national data, but that there is need to import into the region (from producers elsewhere in the 
country) some of the inputs used in production in each of the regional sectors. In particular, the 
percentages of required inputs from sectors 1, 2, and 3 that come from within the region are 60, 
90, and 75, respectively, which defines the vector of regional purchase coefficients as 

0.60
0.90
0.75

 
 =  
  

p . Using the matrix of technical coefficients, A, from problem 2.2, we compute the 

regional direct requirements matrix as ˆR = =A pA
.210 0 0
.045 .450 .135
.150 .225 .413

 
 
 
  

and 

1

1.266 0 0
( ) .202 2.007 .461

.401 .759 1.879

R −

 
 − =  
  

I A is the regional total requirements matrix. If new final 

demands for the outputs of the regional producers are projected to be 1300, 100, and 200, 

respectively, or 
1,300
100
200

new

 
 =  
  

f , the total regional production necessary to support those final 

demands is computed as the vector of regional total outputs,  1

1,645.57
( ) 555.346

973.257

new R new−

 
 = − =  
  

x I A f . 
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Problem 3.2 
This problem explores the basic structure of an interregional input-output (IRIO) model. The 
following table shows sales (in dollars) between and among two industry sectors in two regions, 
r and s. 

 
 
In addition, sales to final demand purchasers for each region are designated, respectively for 

regions r and s, are 
200 300

 and 
200 400

r s= =
   
   
   

f f .  

These data are sufficient to create a two-region IRIO model connecting regions r and s. 
Using the data from the table, Z is defined as the matrix of IRIO transactions, the corresponding 

vector of final demands is found as 
r

s

 
=  
  

f
f

f
, and the vector of total outputs is found as 

365
385
540
640

 
 
 = + =
 
 
 

x f Zi . Consequently, the matrix of technical coefficients is found as 1ˆ −=A Zx  

which can be partitioned into 

0.110     0.130 0.056     0.070
0.164     0.026 0.130     0.070
0.137     0.156 0.093     0.125
0.192     0.182 0.093     0.078

rr rs

sr ss

 
    = =       
  

A A
A

A A
. If, because of 

a stimulated region r economy, household demand increased by $280 for the output of sector 1 in 
region r and by $360 for the output of sector 2 in region r, the vector of changes in final demand 

is 

280
360

0
0

 
 
 ∆ =
 
 
 

f . Computing, 1

1.205 0.202 0.115 0.123
0.263 1.116 0.189 0.131

( )
0.273 0.262 1.177 0.200
0.330 0.289 0.179 1.156

−

 
 
 = − =
 
 
 

L I A , the matrix of total 

requirements, then we can compute 

409.98
475.67
170.62
196.24

r

s

∆

∆

 
    ∆ = = ∆ =       
 

x
x

x L f , defining the new necessary 

Industry 1 Industry 2 Industry 1 Industry 2
Industry 1 40 50 30 45
Industry 2 60 10 70 45
Industry 1 50 60 50 80
Industry 2 70 70 50 50

Region r Region s

Region r

Region s
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gross outputs from each of the sectors in each of the two regions to satisfy this new final 
demand. Note that the increased outputs in region s for sector 1 of 170.62 and 196.24 for sector 2 
are attributable solely to the interregional feedback effects associated with the new final demands 
in region r. 
Problem 3.3 
This problem explores the basic structure of the multiregional input-output (MRIO) model. 
 Suppose that you have assembled the following information on (1) the dollar values of 
purchases of each of two goods in each of two regions and (2) on the shipments of each of the 
two goods between regions: 

Purchases in Region r Purchases in Region s 

11 40rz =  12 50rz =  11 30sz =  12 45sz =  

21 60rz =  22 10rz =  21 70sz =  22 45sz =  
Shipments of Good 1 Shipments of Good 2 

1 50rrz =  1 60rsz =  2 50rrz =  2 80rsz =  

1 70srz =  1 70ssz =  2 50srz =  2 50ssz =  

These data are sufficient to generate the necessary matrices for a two-region MRIO model 
involving regions r and s. There will be six necessary matrices— ˆ ˆ ˆ ˆ,  ,  ,  ,   and ,r s rr rs sr ssA A c c c c . All 
of these will be 2 2×  matrices, configured from the transactions and trade shipments for each 
region. First, from the table we can construct the matrix of total transactions for each region as 

40 50 0 0
60 10 0 00
0 0 30 450
0 0 70 45

r

s

 
    = =    
 
 

Z
Z

Z
. These transactions for each region, rZ or sZ , include the 

inputs from all regions to support production in that region. We can configure the shipments of 

goods 1 and 2 in a matrix defined as 

1 1

2 2

1 1

2 2

0 0
0 0

0 0
0 0

rr rs

rr rs

sr ss

sr ss

z z
z z

z z
z z

 
 
 =
 
 
  

Q

50 0 60 0
0 50 0 80
70 0 70 0
0 50 0 50

 
 
 =
 
 
 

 so the 

vector of row sums of Q is 

110
130
140
100

 
 
 = =
 
 
 

x Qi , which is the vector of total deliveries of commodities 

of each type for each region to all regions, and the vector of the column sums of Q is
[ ]120 100 130 130′= =q i Q , which is the vector of total availability from all regions of 

each commodity in each region. Hence, we can define matrix of technical coefficients as 
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1

.364 .385 0 0
0 .545 .077 0 0

ˆ
0 0 0 .214 .45

0 0 .5 .45

r

s
−

 
    = = =       
 

A
A Zx

A
and the matrix of trade coefficients as 

1

.417 0 .462 0
ˆ ˆ 0 .5 0 .615

ˆ
ˆ ˆ .583 0 .538 0

0 .5 0 .385

rr rs

sr ss
−

 
    = = =       
 

c c
C Qq

c c
.  Now we compute the matrix of multiregional 

total requirements as 1

0.971     0.556 1.024     0.524
0.882     1.197 0.889     1.251

( ) 1.297     0.714 1.264     0.677
0.663     1.010 0.673     0.8 54

−

 
 
 − =  
 
  

I CA C . If the projected demands 

for the coming period are ( ) ( )50 40
 and 

50 60
r new s new= =

   
   
   

f f , then 
( )

( )

50
50
40
60

r new
new

s new

 
  

= =   
   

 

ff
f

. The 

corresponding vector of new total outputs for each sector in each region;  and r sx x , necessary to 
satisfy this new vector of final demands is found as the vector of new total outputs, 

( )
1

( )

148.778
214.539

( ) 191.718
161.772

r new
new new

s new
−

 
    = = − =       
  

x
x I CA Cf

x
.  

 
Problem 3.4 
This problem illustrates several important features of regional input-output data. Suppose that a 
federal government agency for a three-region country has collected the following data on input 
purchases for two sectors, (1) manufacturing and (2) agriculture, measured in dollars for 
previous year. These flows are not specific with respect to region of origin; that is, they can be 
described as of the s

ijz• sort rather than of the rs
ijz sort. The three regions are denoted by A, B, and 

C. 
 

 Region A Region B Region C 
 1 2 1 2 1 2 
1 200 100 700 400 100 0 
2 100 100 100 200 50 0 

Also, gross (total) outputs for each of the two sectors in each of the three regions are known and 
specified by the vectors: 
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600 1, 200 200
,   and  

300 700 0
A B C= = =

     
     
     

x x x  

From the table we can define total regional interindustry transactions for each region as: 
200 100
100 100

A  
=  
 

Z , 
700 400
100 200

B  
=  
 

Z  and 
100 0
50 0

C  
=  
 

Z . We can then construct matrices of 

regional technical coefficients as 1ˆ( )r r r −=A Z x  for regions r = A, B and C as 
0.333     0.333
0.167     0.333

A  
=  
 

A , 
0.583     0.571
0.083     0.286

B  
=  
 

A ,  and 
0.500     0
0.250     0

C  
=  
 

A . It is also 

straightforward to assemble the matrix of national transactions as the sum of all the regional 

transactions matrices, 
1,000   500
 250    300

N A B C  
= + + =  

 
Z Z Z Z , and the vector of national total 

outputs as the sum of regional total output vectors, 
2,000
1,000

N A B C  
= + + =  

 
x x x x . Hence, the 

national technical coefficients matrix is found by 1 .500 .500
ˆ( )

.125 .300
N N N −  
= =  

 
A Z x .   

Since origin-destination data on shipments of each good have not been specified it is not 
yet possible to construct these data as an IRIO or MRIO model, but using the data specified, if 
the federal government is considering spending $5,000 on manufactured goods and $4,500 on 
agricultural products next year, we can define the vector of changes in final demand as 

5,000
4,500

new  
=  
 

f . Using NA and newf , we compute 1 2.435     1.739
( )

0.435     1.739
N −  

− =  
 

I A and we find that 

1 20,000
( )

10,000
new N new−  

= − =  
 

x I A f .  Note that the original national total outputs vector was

2,000
1,000

N  
=  
 

x and the corresponding national final demand vector is 
500
450

N  
=  
 

f , found as 

N N N= −f x Z i  or as  N A B C= + +f f f f where r r r= −f x Z i  for regions r =  A, B and C.  This 
simply illustrates the linearity of the input-output model, since 10new N=x x  follows directly from 

10new N=f f . (See also the solution to problem 2.2.) 

Problem 3.5 
This problem illustrates the key features of an interregional input-output (IRIO) model 
configuration, especially the role of interregional linkages. Consider the following two-region, 
three-sector interregional input-output transactions table: 
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Using the table’s data to define the IRIO transactions matrix, 
NN NS

SN SS

 
=  
  

Z Z
Z

Z Z
, the total 

regional final demand vector is found as 

1,453,353
   111,595
2,186,205
1,663,741
     76,675
3,612,485

N

S

 
 
 
  

= − = =   
   
 
 
  

f
f x Zi

f
. Hence the matrices of 

regional technical coefficients for the North and South regions, respectively are  

1

0.076     0.005     0.157
ˆ( ) 0.000     0.003     0.055

0.094     0.053     0.619

NN NN N −

 
 = =  
  

A Z x  and 1

0.069     0.005     0.116
ˆ( ) 0.000     0.005     0.046

0.086     0.048     0.580

S S S S S −

 
 = =  
  

A Z x ; 

the matrices of interregional trade coefficients between the two regions are found as 

1

0.002     0.000     0.009
ˆ( ) 0.000     0.000     0.001

0.020     0.011     0.185

SN SN N −

 
 = =  
  

A Z x  and 1

0.002     0.000     0.012
ˆ( ) 0.000     0.000     0.002

0.012     0.005     0.107

NS NS S −

 
 = =  
  

A Z x . 

If we assume that a constrained availability of imported oil (upon which the economy is 
totally dependent) has forced the construction and manufacturing industry (sector 3) to reduce 
total output by 10 percent in the South and 5 percent in the North and, further, that interindustry 
relationships remain the same, i.e., the technical coefficients matrix remains unchanged, the 
corresponding amounts of output available for final demand in the economy are found by first 

assembling the IRIO coefficients matrix as 
NN NS

SN SS

 
=  
  

A A
A

A A
. The new constrained total outputs 

vector can be computed as 

  3,633,382
     743,965
10,384,473

ˆ
  3,697,202
     766,751
13,004,947

new

 
 
 
 

= =  
 
 
 
 

x rx  where the vector r is defined as 

Agric. Mining
Const.& 
Manuf. Agric. Mining

Const.& 
Manuf.

Agriculture 277,757 3,654     1,710,816 8,293     26          179,483    3,633,382   
Mining 319        2,412     598,591    15          112        30,921     743,965      
Construction & Manufacturing 342,956 39,593   6,762,703 45,770   3,499     1,550,298 10,931,024 
Agriculture 7,085     39          98,386     255,023 3,821     1,669,107 3,697,202   
Mining 177        92          15,966     365        3,766     669,710    766,751      
Construction & Manufacturing 71,798   7,957     2,017,905 316,256 36,789   8,386,751 14,449,941 

Total Output

North South
  N

or
th

  S
ou

th
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[ ]1 1 .95 1 1 .9=r , reflecting the specified reduced total outputs for construction and 
manufacturing in the two regions. The corresponding new vector of final demands is found by 

1,556,842
   144,617
2,132,819
1,835,571
   144,444
3,107,061

new new new

 
 
 
 

= − =  
 
 
 
 

f x Ax . 

 If we assume that tough import quotas imposed in Western Europe and the US on this 
country’s goods have reduced the final demand for output from the country’s construction and 
manufacturing industries by 15 percent in the North, the impact on the output vector for the 
North region (as an example) is computed by first expressing the modified final demand vector 

as 

1,453,353
   111,595
1,858,274

ˆ
1,663,741
     76,675
3,612,485

new

 
 
 
 

= =  
 
 
 
 

f rf  where [ ]1 1 .85 1 1 1=r , which reflects the specified reduction 

in final demand for construction and from the North region.  The corresponding impact on total 
outputs is found as  

( )new new−

= −
1

x I A f

 1.145     0.038     0.567  0.028     0.012     0.188
 0.020     1.014     0.180  0.007     0.004     0.054
 0.348     0.183     3.218  0.124     0.058     0.875
0.033     0.016     0.219
0.011     0.006  

=

1,453,353
   111,595
1,858,274

1.111     0.024     0.365 1,663,741
   0.075 0.014     1.012     0.135      76,675

0.215     0.112     1.500 0.284     0.147     2.868 3,612,485

   
   
   
   
  
  
  
  
     

 3,447,445
    684,913
 9,875,755
 3,625,440
    742,265
13,957,983

=

 
 
 
 

  
  
  
  
   

  

and for the North region, in particular, ,

 3,447,445
    684,913
 9,875,755

N new

 
 =  
  

x .  

 If, for comparison, we ignore interregional linkages by using the Leontief inverse for the 

North region only, i.e., using only NNA , we find 1

1.131     0.031     0.468
( ) 0.016     1.011     0.152

0.282     0.149     2.760

NN −

 
 − =  
  

I A . In 

conjunction with ,

1,453,353
   111,595
1,858,274

N new

 
 =  
  

f , we find , 1 ,

2,517,159
( )    417,336

5,554,462

N new NN N new−

 
 = − =  
  

x I A f . 

Compared with the IRIO results we can conclude that interregional linkages are important in this 
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economy since the outputs found for the three industries using the North region alone are 27, 39, 
and 44 percent below their corresponding values for each industry respectively using the full 
two-region IRIO model. 
Problem 3.6  
This problem illustrates some key features of the interregional linkage using data from a highly 
aggregated version of the 2000 China MRIO table. Consider the following three-region, three-
sector interregional transactions table:  

 
 
If we denote the interindustry tractions matrix in this table by Z and the vector of total outputs by 
x, the corresponding direct and total requirements matrices, are found by 1ˆ −=A Zx  and 

1( )−= −L I A , respectively. Suppose, however, for this economy all the inputs to the North 
region from the South region were replaced with corresponding industry production from the 
Rest of China (ROC) region. We would reflect this change in the transactions table by removing 
the transactions from the 3 3×  matrix partition showing transactions from South to North (i.e., 
each element in that partition becomes zero) and add those transactions, element-by-element, to 
the partition showing transactions from ROC to the North (lower left 3 3× partition) with the rest 
of the table unchanged. This change corresponds to the situation where all inputs to the North 
from the South came instead from the Rest of China, and the resulting transactions table would 
be:  

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 1,724 6,312 406 188 1,206 86 14 49 4
Manuf. & Const. 2,381 18,458 2,987 301 3,331 460 39 234 57
Services 709 3,883 1,811 64 432 138 5 23 5
Natural Resources 0 0 0 3,564 8,828 806 103 178 15
Manuf. & Const. 0 0 0 3,757 34,931 5,186 202 1,140 268
Services 0 0 0 1,099 6,613 2,969 31 163 62
Natural Resources 158 707 46 33 254 18 1,581 3,154 293
Manuf. & Const. 494 4,106 613 123 1,062 170 1,225 6,704 1,733
Services 53 321 105 25 168 47 425 2,145 1,000

16,651 49,563 15,011 27,866 81,253 23,667 11,661 21,107 8,910

Rest of China

N
or

th
So

ut
h

R
O

C

Total Output

China 2000
North South

 

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 1,724 6,312 406 188 1,206 86 14 49 4
Manuf. & Const. 2,381 18,458 2,987 301 3,331 460 39 234 57
Services 709 3,883 1,811 64 432 138 5 23 5
Natural Resources 149 656 42 3,564 8,828 806 103 178 15
Manuf. & Const. 463 3,834 571 3,757 34,931 5,186 202 1,140 268
Services 49 297 99 1,099 6,613 2,969 31 163 62
Natural Resources 9 51 3 33 254 18 1,581 3,154 293
Manuf. & Const. 32 272 41 123 1,062 170 1,225 6,704 1,733
Services 4 25 7 25 168 47 425 2,145 1,000

16,651 49,563 15,011 27,866 81,253 23,667 11,661 21,107 8,910Total Output

So
ut

h
R

O
C

N
or

th

China 2000
North South Rest of China
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Note that we have not changed the vector of total outputs, x. We can denote the revised 
transactions matrix as Z  and the revised direct and total requirements table then become 

1ˆ −=A Zx and 1( )−= −L I A are the following: 

Revised direct requirements: 

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 0.1035 0.1273 0.0270 0.0067 0.0148 0.0036 0.0012 0.0023 0.0005
Manuf. & Const. 0.1430 0.3724 0.1990 0.0108 0.0410 0.0194 0.0034 0.0111 0.0064
Services 0.0426 0.0783 0.1206 0.0023 0.0053 0.0058 0.0004 0.0011 0.0006
Natural Resources 0.0000 0.0000 0.0000 0.1279 0.1087 0.0340 0.0089 0.0084 0.0017
Manuf. & Const. 0.0000 0.0000 0.0000 0.1348 0.4299 0.2191 0.0173 0.0540 0.0301
Services 0.0000 0.0000 0.0000 0.0394 0.0814 0.1255 0.0026 0.0077 0.0070
Natural Resources 0.0095 0.0143 0.0030 0.0012 0.0031 0.0008 0.1356 0.1494 0.0329
Manuf. & Const. 0.0297 0.0828 0.0408 0.0044 0.0131 0.0072 0.1050 0.3176 0.1945
Services 0.0032 0.0065 0.0070 0.0009 0.0021 0.0020 0.0364 0.1016 0.1122

South Rest of China

N
or

th
So

ut
h

R
O

C

China 2000
North

 
 
Revised total requirements: 

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 1.1603 0.2494 0.0929 0.0225 0.0575 0.0264 0.0064 0.0159 0.0084
Manuf. & Const. 0.2938 1.7104 0.3988 0.0530 0.1579 0.0840 0.0189 0.0523 0.0311
Services 0.0826 0.1651 1.1775 0.0114 0.0303 0.0200 0.0034 0.0092 0.0054
Natural Resources 0.0032 0.0077 0.0041 1.1897 0.2441 0.1081 0.0237 0.0438 0.0220
Manuf. & Const. 0.0137 0.0332 0.0180 0.3165 1.8924 0.4892 0.0710 0.1923 0.1136
Services 0.0026 0.0063 0.0034 0.0834 0.1879 1.1943 0.0137 0.0362 0.0244
Natural Resources 0.0365 0.0775 0.0367 0.0087 0.0236 0.0120 1.1966 0.2816 0.1075
Manuf. & Const. 0.1028 0.2545 0.1374 0.0258 0.0714 0.0399 0.2096 1.5757 0.3577
Services 0.0202 0.0471 0.0298 0.0060 0.0158 0.0098 0.0735 0.1930 1.1724

China 2003
North South Rest of China

N
or

th
So

ut
h

R
O

C

 
 

To illustrate the impact on total outputs of all regions and sectors for a final demand of 
¥100,000 on export demand for manufactured goods produced in the North, we first specify the 
change in final demand as [ ]( ) 0 100 0 0 0 0 0 0 0N ′∆ =f . The corresponding vector 

of total outputs is then [ ]( ) ( ) 24.9 171.0 16.5 0.8 3.3 0.6 7.7 25.4 4.7N′ ′∆ = ∆ =x L f . 
If we recast ∆x  in the format of Table 3.10 we have the following table which shows the 
changes in production by region and sector generated by the shift in the location of inputs to 
production from the South to the Rest of China: 
 

Sector North   South  ROC North  South ROC
Nat. Res. 25.6 6.8 0.8 24.9 0.8 7.7
Mfg. &Const. 172.8 29.4 2.5 171 3.3 25.4
Services 16.9 4.5 0.5 16.5 0.6 4.7
Total 215.3 40.7 3.8 212.4 4.7 37.8

   Produced in the North 
(revised)

  Produced in the North 
(original)
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Problem 3.7 
This exercise problem illustrates application of a multiregional input-output (MRIO) model, 
using a three-region, five-sector version of the U.S. multiregional input-output economy (shown 
below and in Table A4.1-3 of Appendix S4.1 in the text).  
 
Five-Sector, Three-Region Multiregional Input–Output Tables for the United States (1963) 

Regional Transactions (millions of dollars)  Commodity Trade Flows and Total 
Outputs (millions of dollars) 

  Agric Mining Const & 
Manuf Services Transport 

& Utilities 
   East  West  Central 

East            Agriculture       
Agriculture 2,013 0 7,863 44 0  East 6,007  2,124  208  
Mining 35 335 3,432 44 843  West 3,845  28,885  2,521  
Const & Manuf 2,029 400 78,164 11,561 2,333  Central 403  2,922  7,028  
Services 1,289 294 19,699 26,574 2,301  Mining       
Transport & Util 225 384 7,232 4,026 3,534  East 2,904  415  53  

Central            West 1,108  10,942  271  
Agriculture 10,303 0 13,218 97 0  Central 71  772  3,996  
Mining 82 472 8,686 15 1,271  Const & Manuf     
Const & Manuf 4,422 1,132 93,816 10,155 2,401  East 158,679  42,150  8,368  
Services 4,952 2,378 21,974 22,358 2,473  West 44,589  201,025  11,778  
Transport & Util 667 406 9,296 3,468 4,513  Central 4,702  6,726  61,385  

West            Services       
Agriculture 2,915 0 3,452 65 0  East 146,336  16,116  2,955  
Mining 4 292 2,503 0 353  West 9,328  121,079  3,185  
Const & Manuf 1,214 466 27,681 4,925 1,015  Central 1,939  3,643  58,663  
Services 1,307 721 8,336 10,809 991  Transp & Util       
Transport & Util 338 160 2,936 1,659 1,576  East 21,434  4,974  263  

       West 4,396  23,811  1,948  
       Central 1,009  1,334  9,635  
       Total Output     
       Agriculture 10,259  33,939  9,753  
       Mining 4,084  12,129  4,319  
       Const & Manuf 207,948  249,840  81,512  
       Services 157,468  140,850  64,803  
       Transport & Util 26,847  30,130  11,841  

Suppose that a new government military project is initiated in the western United States, 
stimulating new final demand in that region of (in millions of dollars) which we can express as 

[ ]0 0 100 50 25W ′∆ =f . The impact on total production of all sectors in all three regions of 
the United States economy stimulated by this new final demand in the West, can be found by 
first defining the new final demand for the entire economy as 

[ ] [ ]( ) ( ) ( ) 0   0   0   0   0 0   0   0   0   0 0   0   100   50   25E C W′ ′ ′ ′ ∆ = ∆ ∆ ∆ = f f f f . 

Finally, we find the vector of changes in total output as ∆ = ∆x L f : 
[ ] [ ]0.75 1.125 23.3 13.2 8.225 3.525 5.375 38.175 20.475 13.4 4.825 4.65 96.45 68.125 25.6′∆ =x . 
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Problem 3.8 
This problem explores the use of an interregional input-output (IRIO) model for impact analysis 
using the three-region, five-sector version of an interregional input-output economy of Japan for 
1965 given in Table A4.1-1 of Appendix S4.1. For the final demand vector  

[ ] [ ]( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0 0 100 50 25C N S′ ′ ′ ′∆ = ∆ ∆ ∆ =  f f f f  

This is the same vector as that used in problem 3.6, but it is used in this case for the 
Japanese IRIO economy where the regions are Central, North, and South. Using the vector, ∆f , 
we find the corresponding vector of total outputs, ∆ = ∆x L f , for this very interconnected 
interregional economy: 

[ ]′∆ =x [.386  .024  13.061  0.892  3.024   ⁞  .145  .021  3.669  1.376  .339   ⁞  3.634  .475  181.630  56.029  42.904] 
 
Problem 3.9 
This problem explores IRIO analysis using the 4 region, three sector IRIO model for China, 
Japan, the United States, and an aggregation of other Asian nations including Indonesia, 
Malaysia, the Philippines, Singapore, and Thailand for the year 2000. The interindustry 
transactions and total outputs are specified in the following table.  

 
The table of direct requirements, 1ˆ −=A Zx , is the following: 
 

 
 

Nat Res
Manuf & 

Const Services Nat Res
Manuf & 

Const Services Nat Res
Manuf & 

Const Services Nat Res
Manuf & 

Const Services

Nat Res 75,382    296,016      17,829        351        4,764         473           174        403           17            103        2,740       83            
Manuf & Const 68,424    1,667,042   960,671      160        21,902        3,775        587        8,863        1,710       383        45,066     4,391       
Services 95,115    1,148,999   3,094,357    118        6,695         807           160        1,466        296          197        7,393       953          

Nat Res 7            52              53               8,721     78,936        11,206       13         66             2              14          180          27            
Manuf & Const 859        41,484        11,337        28,088   1,414,078   484,802     764        20,145      2,809       462        72,258     4,108       
Services 97          4,390         1,424          24,901   662,488      1,001,832  107        2,763        335          270        7,816       1,189       

Nat Res 72          343            147             50          2,316         229           49,496   183,509     15,138     102        2,430       99            
Manuf & Const 331        15,657        6,442          93          10,199        1,989        89,384   892,227     181,932    157        15,093     1,237       
Services 38          2,218         1,099          17          1,780         280           25,391   210,469     136,961    23          2,078       132          

Nat Res 322        1,068         203             64          11,906        266           64         1,475        14            12,153    92,647     6,402       
Manuf & Const 503        56,287        18,129        278        35,418        3,562        1,141     41,496      4,685       23,022    566,274    144,417    
Services 152        4,578         1,921          41          3,982         447           138        3,669        422          15,163    213,470    239,053    

Total Output 468,403  5,866,935   11,609,307  140,622 3,883,455   4,658,191  408,153 2,000,741  702,248    173,080  1,727,367 1,225,460 

Ja
pa

n
C

hi
na

R
O

A

2000
United States Japan China Rest of Asia

U
S

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services

Nat. Res. 0.1609 0.0505 0.0015 0.0025 0.0012 0.0001 0.0004 0.0002 0.0000 0.0006 0.0016 0.0001
Manuf. & Const. 0.1461 0.2841 0.0828 0.0011 0.0056 0.0008 0.0014 0.0044 0.0024 0.0022 0.0261 0.0036
Services 0.2031 0.1958 0.2665 0.0008 0.0017 0.0002 0.0004 0.0007 0.0004 0.0011 0.0043 0.0008
Nat. Res. 0.0000 0.0000 0.0000 0.0620 0.0203 0.0024 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000
Manuf. & Const. 0.0018 0.0071 0.0010 0.1997 0.3641 0.1041 0.0019 0.0101 0.0040 0.0027 0.0418 0.0034
Services 0.0002 0.0007 0.0001 0.1771 0.1706 0.2151 0.0003 0.0014 0.0005 0.0016 0.0045 0.0010
Nat. Res. 0.0002 0.0001 0.0000 0.0004 0.0006 0.0000 0.1213 0.0917 0.0216 0.0006 0.0014 0.0001
Manuf. & Const. 0.0007 0.0027 0.0006 0.0007 0.0026 0.0004 0.2190 0.4459 0.2591 0.0009 0.0087 0.0010
Services 0.0001 0.0004 0.0001 0.0001 0.0005 0.0001 0.0622 0.1052 0.1950 0.0001 0.0012 0.0001
Nat. Res. 0.0007 0.0002 0.0000 0.0005 0.0031 0.0001 0.0002 0.0007 0.0000 0.0702 0.0536 0.0052
Manuf. & Const. 0.0011 0.0096 0.0016 0.0020 0.0091 0.0008 0.0028 0.0207 0.0067 0.1330 0.3278 0.1178
Services 0.0003 0.0008 0.0002 0.0003 0.0010 0.0001 0.0003 0.0018 0.0006 0.0876 0.1236 0.1951

U
.S

.
Ja

pa
n

C
hi

na
R

O
A

2000
United States Japan China Rest of Asia
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The table of total requirements, 1( )−= −L I A , is: 
 

Nat. Res. Manuf. & 
Const. Services Nat. Res. Manuf. & 

Const. Services Nat. Res. Manuf. & 
Const. Services Nat. Res. Manuf. & 

Const. Services

Nat. Res. 1.2103 0.0889 0.0126 0.0043 0.0036 0.0008 0.0013 0.0019 0.0010 0.0022 0.0071 0.0016
Manuf. & Const. 0.2953 1.4643 0.1660 0.0071 0.0164 0.0039 0.0082 0.0183 0.0113 0.0147 0.0641 0.0163
Services 0.4140 0.4158 1.4113 0.0054 0.0096 0.0021 0.0040 0.0083 0.0051 0.0079 0.0289 0.0076
Nat. Res. 0.0002 0.0005 0.0001 1.0755 0.0366 0.0082 0.0004 0.0010 0.0006 0.0007 0.0027 0.0006
Manuf. & Const. 0.0085 0.0201 0.0048 0.3924 1.6463 0.2196 0.0161 0.0420 0.0233 0.0235 0.1117 0.0238
Services 0.0026 0.0061 0.0015 0.3280 0.3663 1.3236 0.0052 0.0136 0.0074 0.0090 0.0345 0.0083
Nat. Res. 0.0007 0.0012 0.0004 0.0013 0.0024 0.0005 1.1997 0.2184 0.1025 0.0020 0.0061 0.0013
Manuf. & Const. 0.0043 0.0096 0.0028 0.0046 0.0108 0.0027 0.5518 2.0243 0.6666 0.0077 0.0317 0.0075
Services 0.0009 0.0021 0.0007 0.0011 0.0026 0.0006 0.1649 0.2816 1.3374 0.0018 0.0071 0.0016
Nat. Res. 0.0015 0.0018 0.0005 0.0024 0.0070 0.0011 0.0022 0.0060 0.0028 1.0906 0.0914 0.0205
Manuf. & Const. 0.0081 0.0239 0.0062 0.0101 0.0261 0.0051 0.0255 0.0711 0.0368 0.2440 1.5530 0.2293
Services 0.0023 0.0055 0.0015 0.0028 0.0070 0.0014 0.0061 0.0166 0.0086 0.1562 0.2487 1.2798

U
.S

.
Ja

pa
n

C
hi

na
R

O
A

2000
United States Japan China Rest of Asia

 
 
If we assume that annual final demand growth in China is 8 percent, growth in the U.S. and 
Japan is 4 percent, and that of other Asian nations is 3 percent, we can compute the original and 
projected final demand vectors as the following. The original vector of final demands is 
computed by = −f x Zi , so 

70,067  3,083,962  7,252,751 41,344  1,802,261  2,950,579 154,222  786,002  321,762 46,495  832,154  742,423  ′ =f  
For a level of growth in China at 8 percent, in the U.S. and Japan at 4 percent, and in the 

rest of Asia at 3 percent, the final demand in the next year is found by multiplying the first three 
elements of f (U.S. final demand) by 1.04, the next three (Japanese final demand) by 1.04, the 
next three (Chinese final demand) by 1.08, and the last three (final demand for the other nations 
in Asia) by 1.03, to yield 

[ ]( ) 72,869  3,207,321  7,542,861 42,998  1,874,352  3,068,602 166,560  848,883  347,503 47,890  857,119  764,696new ′ =f  

The corresponding vector of total outputs is then found as new new=x Lf : 

[ ]( ) 487,149  6,101,723  12,073,729 146,262  4,039,397  4,844,723 440,002  2,156,077  757,348 178,822  1,784,590  1,263,502new ′ =x  

Finally, the vector of the percentage growth in total output for each and all regions and 
sectors is then found as 

 

4.002   4.002   4.000 4.011   4.016   4.004 7.803   7.764   7.846 3.317   3.313   3.104
( )100

new −
 × =  

x x
x

 

 
Problem 3.10 
This problem illustrates recursive use expressing the Leontief inverse of a matrix in terms of 
partitions of the original matrix, sometimes necessary for very large matrices (thousands of 
sectors). Assume that a limited computer that can directly determine the inverse of matrices no 
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larger than of dimension 2 2×  (in practice this might be more like 5,000 5,000× ). For 
0 0.1 0.3 0.2 0.2

0.1 0.1 0.1 0 0
0.2 0 0.1 0.3 0.1
0.3 0 0 0.1 0.3
0.3 0.2 0.1 0.1 0.2

=

 
 
 
 
 
 
  

A , we first partition the matrix ( )−I A  as  

  1.0   -0.1   -0.3   -0.2   -0.2
 -0.1    0.9 -0.1    0.0    0.0
-0.2    0.0  0.9   -0.3   -0.1( )
-0.3    0.0  0.0    0.9   -0.3
-0.3   -0.2 -0.1   -0.1    0.8

 
 
   
 − = =  
   
 
 
 

E F
I A G H

  and then further partition the matrix H by 

1 2

3 4

0.9 0.3 0.1
0 0.9 0.3
0.1 0.1 0.8

 − −
  = − =     − − 

H H
H H H . We then can define 1( )−  − =   

S T
I A U V where partitions 

in similar positions in ( )−I A  and 1( )−−I A  have the same dimensions.  From the results on the 
inverse of a partitioned inverse (Appendix A), we find that we need 1−E  and 1−H , the inverses of 
a 2 2×  and a 3 3×  matrix. Therefore, to find 1−H  we again use the results on the inverse of a 
partitioned matrix, where H is partitioned as above. This requires that 1−H and 1

4
−H  be found; 

since these are 2 2×  and 1 1×  matrices, respectively, this is easily accomplished. Hence, we have 

1

1.144     0.415 0.299
0.050     1.177 0.448
0.149     0.199 1.343

−

 
 =  
  

H . This in conjunction with 1−E , F and G allows us to find S, T, U 

and V which comprise 1( )−−I A : 
1.566     0.332
0.253     1.172
 

=  
 

S , 
0.638     0.640     0.711
0.231     0.150     0.148
 

=  
 

T , 

0.708     0.217 
0.802     0.270
0.839     0.478 

 
 =  
  

U , and 
1.441     0.707     0.622
0.388     1.509     0.815
0.525     0.554     1.733

 
 =  
  

V . Therefore 

1

1.566     0.332 0.638     0.640     0.711
0.253     1.172 0.231     0.150     0.148
0.708     0.217 1.441     0.707     0.622( )
0.802     0.270 0.388     1.509     0.815
0.839     0.478 0.525     0.554  

−− =I A

   1.733

 
 
 
 
 
 
 
 

. In this problem we used the method of 

partitioning repeatedly (sometimes called recursive application of the method) on sub-partitions 
of the original four partitions of ( )−I A . We can in theory invert an infinitely large matrix by 
recursively partitioning it into smaller and smaller submatrices. 
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Chapter 4, Organization of Basic Data for Input–Output Models 
Chapter 4 deals with the construction of input–output tables from standardized conventions of 
national economic accounts, such as the widely used System of National Accounts (SNA) 
promoted by the United Nations, including a basic introduction to the so-called commodity-by-
industry or supply-use input–output framework developed in additional detail in Chapter 5. A 
simplified SNA is derived from fundamental economic concepts of the circular flow of income 
and expenditure, that, as additional sectoral details are defined for businesses, households, 
government, foreign trade, and capital formation, ultimately result in the basic commodity-by-
industry formulation of input–output accounts. The process is illustrated with the US input–
output model and some of the key traditional conventions widely applied for such considerations 
as secondary production (multiple products or commodities produced by a business), competitive 
imports (commodities that are also produced domestically) versus non-competitive imports 
(commodities not produced domestically), trade and transportation margins on interindustry 
transactions, or the treatment of scrap and secondhand goods. The exercise problems for this 
chapter illustrate the key features of the SNA and relationships with input-output accounts and 
models. 
 
Problem 4.1 
This problem illustrates the basic concepts of the circular flow of income and expenditure in a 
simple macroeconomy and corresponding set of national accounts. Consider a macroeconomy 
show below where transactions are measured in millions of dollars. 

 

 
The balance equations, found by equating the sum of all flows into an account with the sum of 
all flows leaving the account, are the following: 
 

1,000 900 100 1,000
900 90 1000 10 990
100 10 90

Q C I
C S Q D
I D S

= = + = + =
+ = + = + = − =
+ = − = =

 

 
The corresponding “T” account tables are the following: 
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Debits Credits

Income (Q ) 1000 Sales of consumption goods (C ) 900
Sales of capital goods (I ) 100

Total 1000 Total 1000

Debits Credits

Purchases of consumption  goods (C ) 900 Income (Q ) 1000
Savings (S ) 90 Depreciation (D ) -10

Total 990 Total 990

Debits Credits

Purchase of capital goods (I ) 100 Savings (S ) 90
Depreciation (D ) -10   
  
Total 90 Total 90

Production (Domestic Product Account)

Consumption (Income and Outlay Account)

Accumulation  (Capital Transactions Account)

 
 
Problem 4.2 
This problem illustrates adding depreciation and rest-of-world accounts to the macroeconomy 
from problem 4.1. We presume new transactions added are a capital consumption allowance to 
account for depreciation of capital investments of 10 percent of total investment (I), international 
trade allowances with a. “rest of world” account to accommodate purchases of imports of $75 
million (M), sales of exports of $50 million (X), and savings made available to capital markets 
from overseas lenders of $25 million (L), resulting in a new total amount of capital available for 
businesses of $125 million.  

1000
Consumers (2)

-10

-25

90
50←

125 ↓
900 75

Rest of World (4)

  

Purchases of 
Imports (M)

Businesses (1)
Sales of  

Exports (X)

Net Lending Overseas (L)Capital Markets (3)

 

→Savings (S)

→

↑
Consumer Expenditures (C)

→Investment (I)

←
←

Income (Q)  

Depreciation (D)
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The modified balance equations for the businesses, consumers, capital, and trade accounts are: 
 

1,000 75 900 125 50 1075Q M C I X+ = + = + + = + + =   
900 90 1,000 10 990C S Q D+ = + = + = − =   

125 10 25 90I D L S+ + = − − = =   
75 25 50X W L= − = − =   

 
and the corresponding set of “T” accounts are the following: 
 

Debits Credits

Income (Q ) 1000 Sales of consumption goods (C ) 900
Imports (W ) 75 Sales of capital goods (I ) 125

Exports (X ) 50

Total 1075 Total 1075

Debits Credits

Purchases of consumption  goods (C ) 900 Income (Q ) 1000
Savings (S ) 90 Depreciation (D ) -10

Total 990 Total 990

Debits Credits

Purchase of capital goods (I ) 125 Savings (S ) 90
Depreciation (D ) -10   
Net Lending Overseas (L ) -25
  
Total 90 Total 90

Debits Credits

Sales of exports (X ) 50 Purchases of Imports (W ) 75
  Net Overseas Lending (L ) -25
  
Total 50 Total 50

Production (Domestic Product Account)

Consumption (Income and Outlay Account)

Accumulation  (Capital Transactions Account)

Rest of World (Balance of Payments Account)

 
 
 
Problem 4.3 
This problem illustrates expressing a national economic balance sheet for an economy as a 
collection of balance equations and as a matrix representation of the consolidated national 
accounts. Consider a national economic balance sheet for an economy is given by the following: 
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Capital Rest of Capital Rest of 
Prod. Cons. Accum. Govt World Prod. Cons. Accum. Govt World

475 Consumption Goods (C) 475
54 Capital Goods (I) 54

46 Exports (X) 46
46 Imports (M) 46
554 Income (Q) 554  

-29 Depreciation (D) -29  
30 Savings (S) 30

25 Govt. Expenditures (G) 25
20 Taxes (T) 20

5 Govt Deficit Spending (B) 5

600 525 30 25 46 Totals 600 525 30 25 46

Debits Credits
Economic Transaction

 
 

The corresponding balance equations are: 
 

Domestic Product Account: Q M C I X G+ = + + +   
Income and Outlay Account: C S T Q D+ + = +   
Capital Transactions Account: I D B S+ + =   
Balance of Payments Account: X M=   
Government Account: G T B= +   
 
The corresponding matrix representation of the consolidated national accounts is the following: 
 

Prod. Cons. Cap. ROW Govt. Total
Production 475 54 46 25 600
Consumption 554  -29  525
Capital Accum.  30  30
Rest of World 46   46
Govt. 20 5 25
Total 600 525 30 46 25  

 
Problem 4.4 
This problem illustrates the application of double deflation to adjusting interindustry transactions 
according the changes in relative prices. Consider the following 4-sector input-output 
transactions table for the year 2015 along with industry prices for 2015 and 2020.  

 

 

Price Price
1 2 3 4 Year 2000 Year 2005

1 24 86 56 64 398 2 5
2 32 15 78 78 314 3 6
3 104 49 62 94 469 5 9
4 14 16 63 78 454 7 12

Total 
Output

Industry Transactions

 
 
To compute the matrices of interindustry transactions and technical coefficients as well as 

the vector of total outputs deflated to year 2015 value terms, first, the vector of price indices is 
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[ ] [ ]2 / 5 3 / 6 5 / 9 7 /12 0.400  0.500  0.556  0.583= =p . This vector is comprised of the 

ratios of the year 2000 prices to the year 2005 prices. Hence, 2000Z  , 2000A  and 2000x    can be 
computed as 

2000 2005

.4 0 0 0   24     86     56     64 9.6 34.4 22.4 25.6
0 .5 0 0   32     15     78     78 16 7.5 39 39

ˆ
0 0 .556 0 104     49     62     94 57.78 27.22 34.4
0 0 0 .583   14     16     63     78

   
   
   = = =
   
   
   

Z pZ
4 52.22

8.17 9.33 36.75 45.5

 
 
 
 
 
 

 , 

2000 2000 2000 1 2005 2005 2005 2005 1 1 2005 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )− − − −= = = = =A Z x pZ px pZ x p pA p         

.0603 .2191 .0860 .0967

.1005 .0478 .1497 .1473

.3629 .1734 .1322 .1972

.0513 .0594 .1410 .1718

 
 
 
 
 
 

, and 2000 2005

159.1
157

ˆ
260.56
264.83

 
 
 = =
 
 
 

x px .  

 
Problem 4.5 
This problem illustrates the impact of sector aggregation on the accounting for production of 
total outputs in an input-output economy using the transactions data given in problem 2.7: 

8,565 8,069 8,843 3,045 1,124 276 230 3, 464
1,505 6,996 6,895 3,530 3,383 365 219 2,946

98 39 5 429 5,694 7 376 327
999 1,048 120 9,143 4, 460 228 210 2, 226

4,373 4, 488 8,325 2,729 2,9671 1,733 5,757 14,756
2,150 36 640 1, 234 165 821 90 6,717

506 7

=Z

180 0 2,352 0 18,091 26,529
5,315 1,895 2,993 1,071 13,941 434 6,096 46,338

 
 
 
 
 
 
 
 
 
 

 

One way of illustrating the effects of aggregation is as follows. Using a final-demand 
vector of all 1's, determine the effect on total of total outputs throughout the entire economy (i.e., 
summed over all the sectors) by successively aggregating transactions from 8 to 7 to 6 sectors 
and so on (also aggregating the corresponding final-demand vector) and evaluating the relative 
impact on vectors of total outputs and the total of total outputs. Consider the following sequence 
of aggregations: 

• Case 1 (8 8× ) No sectoral aggregation 
• Case 2 ( 7 7× ) Combine sector 6 with sector 2 
• Case 3 ( 6 6× ) Also combine sector 5 with sector 1 
• Case 4 ( 5 5× ) Also combine sector 8 with sector 3 
• Case 5 ( 4 4× ) Also combine sector 7 with previously combined 6 and 2 
• Case 6 ( 3 3× ) Also combine sector 4 with previously combined 5 and 1 
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The impact of the sum of total outputs is indicated in the following table at each level of 
aggregation:  

 
 
Problem 4.6 
This problem illustrates the computation of first order and total aggregation bias using the seven-
sector input-output table of technical coefficients for the U.S. economy (1972) given in 
Appendix SD1 (located on the supplemental resources website). Consider the following vector of 

final demands: [ ]100 100 100 100 100 100 100 ′∆ =f . To compute the first order and 
total aggregation bias associated with, as an example, combining agriculture with mining, 
construction with manufacturing, and transportation-utilities with services and other sectors to 
yield a new three-sector model we first compute the interindustry transactions, 

26,370          9          465    41,257         377      2,768       193
     160     1,647     1,511    22,531      6,038         104       322
     579       857           50      3,273      5,

ˆ= =Z Ax
887    13,734    2,676

12,056    2,865    58,464  287,046    15,360    46,582    1,257
  5,172    1,462    17,314    59,830    36,984    23,082    3,256
  7,262    4,470    11,387    44,987    43,664    84,651    1,693
     193       191         697      8,906      4,453      5,013       532

 
 
 
 
 
 
 
 
 
  

  .  

The aggregation matrix for the specified sectoral aggregation is 
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 1

 
 =  
  

S  so we 

compute the aggregated transactions and total outputs as 

*

28,186     65,763       9,804
16,358   348,834     85,496
18,750   143,121   203,328

 
 ′ =  
  

Z = SZS , *

   114,341
   927,192
1,060,811

 
 =  
  

x = Sx   and 

* * * 1

.247   .071   .009
( ) .143   .376   .081

.164   .154   .192

−

 
 =  
  

A = Z x , respectively. We subsequently compute 

1 2 3 4 5 6 7 8
8 16.26 2.31 1.84 1.12 1.6 2.88 1.43 2.26 2.82
7 16.56 2.48 3.33 1.13 1.61 2.87 2.28 2.87
6 15.64 4.85 3.14 1.15 1.58 2.2 2.62
5 15.62 4.78 3.11 3.86 1.58 2.29
4 15.72 4.73 5.51 3.91 1.57
3 15.53 6.15 5.44 3.94

Aggregation 
Level x'i

Aggregated Sector Total Output
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* * 1

1.365  0.163  0.032
( ) 0.358  1.686  0.172

0.345  0.355  1.276

−

 
 = =  
  

L I - A ; *

315.2
460.5
523.0

 
 =  
  

x   and 1

174.5
120.9
116.5

( ) 329.7
184.6
218.3
110.1

−

 
 
 
 
 − ∆ =  
 
 
 
  

x = I A f . The vector 

of first order bias for individual sectors is found by *

17.069
( )   7.726

  5.790

 
 − ∆ =  
  

φ = A S SA f  and the total 

first order bias is 30.585′ =i φ . The vector of the total aggregation bias for individual sectors is 

found by *

19.751
14.326
10.025

 
 = − =  
  

τ x Sx   and the overall total aggregation bias is 44.102′ =i τ . 

 
Problem 4.7 
This problem illustrates construction of a table of consolidated national accounts in matrix form 
from a set of national accounting equations. Consider the following national accounting 
equations: 
 
(1) Q M C I X G+ = + + +   
(2) C S T Q D+ + = +   
(3) L I D B S+ + + =   
(4) X M L= +   
(5) G T B= +   
 
where Q =  total consumer income payments; M =  purchases of imports; C =  total sales of 
consumption goods; S =  total consumer savings; T =  total taxes paid to government; I =  total 
purchases of capital goods; D =  total capital consumption allowance (depreciation); L =  net 
lending from overseas; B =  total government deficit spending; X =  total sales of exports; G =  
total government purchases and the following are known: 500Q = − , 75M = , 60S = , 20T = , 

10D = , 20L = − , and 10B = .  
First, note that there are missing quantities C, I , X and G that are necessary to complete 

the table, which can be found with equations (2), (3), (4), and (5), respectively as: 
410C Q D S T= + − − = ; 80I D S L B= − + − − = ; 55X L M= + = ; and 30G T B= + = . The 

resulting consolidated table of national accounts represented in matrix form is the following: 
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Prod. Cons. Cap. ROW Govt. Total
Prod. C=410 I=80 X=55 G=30 575
Cons. Q=500  D=-10  490
Cap.  S=60  60
ROW M=75  L=-20 55
Govt. T=20 B=10 30
Total 575 490 60 55 30  

 
Problem 4.8 
This problem illustrates conversion of table of national accounts to a consolidated table of supply 
and use input-output accounts. Consider the following table of national accounts (generated in 
problem 4.7). 
  

Prod. Cons. Cap. ROW Govt. Total

Prod. 410 80 55 30 575
Cons. 500  -10  490
Cap.  60  60
ROW 75  -20  55
Govt. 20 10 30
Total 575 490 60 55 30  

 
Suppose the following tables become available providing the interindustry supply and use detail 
for this economy.  

 
Use of commodities by industries: 

Nat. Res. Manuf. Serv.

Agriculture 20 12 18 50
Mining 5 30 12 47
Manufacturing 10 13 11 34
Services 12 17 40 69C

om
m

od
ity

Total 
Intermed. 

Output

Industry

 
 

Final uses of commodity production: 
Households Government Investment Exports

30 6 16 5
60 9 16 17
50 3 40 22
70 12 8 11

210 30 80 55Totals

Agriculture
Mining
Manufacturing
Services
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Supply of commodities by industries: 

Agric. Mining Manuf. Services

Natural Resources 99 10 109

Manufacturing 8 143 137 10 298

Services  6 12 150 168
Total Commodity 
Output 107 149 149 170 575

Commodity Total 
Industry 
Output

In
du

str
y

 
 

The corresponding consolidated set of supply and use accounts including the sector detail for 
interindustry transactions becomes the following: 
 

Agric. Mining Manuf. Serv. Nat. Res. Manuf. Serv.
Agriculture 20 12 18 57 107
Mining 5 30 12 102 149
Manufacturing 10 13 11 115 149
Services 12 17 40 101 170

Natural Resources 99 10 109
Manufacturing 8 143 137 10 298
Services  6 12 150 168

Value Added 62 226 87 375
Total Output 107 149 149 170 109 298 168 575

In
d.

Total 
Output 

Commodities Industries

C
om

m
.

 

Final 
Demand

 
 
Problem 4.9 
This problem illustrates a process of “scrubbing” a U.S. style input-output transactions table of 
competitive imports to yield a domestic transactions table. We define an input-output economy 

with 
500 0 0
50 300 150
200 150 550

 
 =  
  

Z  and 
1,000
750

1,000

 
 =  
  

x . We also know the vector of the total value of 

competitive imports, 
150
105
210

 
 =  
  

m . Knowing m, we can define [ ]650 355 310 ′= + =g f m , 

which is the vector of total final demands, including imports.  In some cases, the accounting is 
such that m is recorded as a negative final demand so that the vector of total outputs, = +x Zi f , 
reflects total domestic output, which is the convention used for the US input-output tables. Using 
the assumption of import similarity, we can compute the domestic transactions matrix where 
competitive imports are removed from interindustry transactions by the following steps. First, we 
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compute the vectors of total final demand and intermediate outputs, 
500
250
100

 
 = − =  
  

f x Zi  and 

500
500
900

 
 =  
  

u , respectively. The import similarity scaling factors are found for each commodity as 

the ratio of the value of total interindustry imports of that commodity divided by the total output 

(including imports), i
i

i i

mr
u f

=
+

, or [ ].15 .24 .21 ′=r  .  

We can then compute the scaled quantities 
425 0 0

ˆ 43 258 129
158 118.5 434.5

 
 =  
  

D = Z - rZ , 

75 0 0
ˆ 7 42 21

42 31.5 115.5

 
 =  
  

M = rZ , 
75

ˆ 35
21

 
 =  
  

h = rf , and 
575

ˆ 320
289

 
 = − =  
  

g g rf .  Note that the identity 

= +x Di g  (analogous to = +x Zi f ) still holds, but this balance equation now accounts for only 
domestic transactions with interindustry imports reassigned to total value added. The new total 
value-added vector is [ ]374 373.5 436.5′ ′ ′− =v = x i D , which inflates the original vector of 

total valued added, [ ]250 300 300′ =v  by interindustry imports to each industry, i.e., 

[ ]124  73.5  136.5′ =m , excluding the value of imports consumed directly in final demand.  

 If we subsequently learn that 
150 0 0
25 50 30
35 75 100

 
 =  
  

M , i.e., we know precisely the 

competitive imports associated with interindustry transactions, we can compute the domestic 
transactions matrix (rather than approximate it with import similarity scaling factors) by 

350 0 0
25 250 120

165 75 450

 
 − =  
  

D = Z M  and compute 
150
105
210

 
 =  
  

m = Mi , and 
650
355
310

 
 + =  
  

g = f m  where 

500
250
100

 
 = − =  
  

f x Zi . Note that the balance equation = +x Di g  holds here as well. Then the new 

total value added vector, [ ]460 425 430′ ′ ′= − =v x i D , inflates the original vector of total 

valued added, [ ]250 300 300′ ′ ′= − =v x i Z , by the total value of all imports to each industry, 

[ ]210 125 130′ =m , i.e. ′ ′ ′ ′= = −m i M v v  .    
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 We compute the Leontief inverse for the first case as 

1

1.739 0 0
( ) .222 1.613 .368

.548 .451 1.871

I I −

 
 = − =  
  

L I A  for 1

.425 0 0
ˆ .043 .344 .129

.158 .158 .435

I −

 
 = =  
  

A Dx   and for the 

second case as 1

1.538 0 0
( ) .146 1.551 .338

.488 .282 1.88

II II −

 
 = − =  
  

L I A   for 1

.35 0 0
ˆ .025 .333 .12

.165 .1 .45

II −

 
 = =  
  

A Dx . 

The mean absolute deviation (mad) between IA  and IIA is 
3 3

1 1
( ) (1/ 9) .0215I II

ij ij
i j

mad a a
= =

= − =∑∑A  and the mad between IL  and IIL  is found to be 

3 3

1 1
( ) (1/ 9) .0673I II

ij ij
i j

mad l l
= =

= − =∑∑L . 

Problem 4.10 
This problem illustrates the calculation of spatial aggregation bias using the three-region, three-
sector Chinese interregional model (for the year 2000) specified in problem 3.6. Using that table 
as a point of departure, we aggregate regions 1 and 2 and leave region 3 unaggregated to yield a 
two-region model.  

To aggregate the North and South regions and leave the Rest of China region 

unaggregated, we construct the aggregation matrix 

1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 
 
 =  
 
  

S  and 

compute the aggregated matrix of interindustry transactions, ( )a ′=Z SZS , and the aggregated 
vector of total outputs, ( )a =x Sx , which are shown in the following table: 

 

 

The corresponding technical coefficients matrix and Leontief inverse, respectively, are 

Nat. Res.
Manuf & 

Const. Services Nat. Res.
Manuf & 

Const. Services
Nat. Resources 5,625       17,001     1,339       117          227          19            
Manuf. & Const. 6,902       60,554     9,203       241          1,374       325          
Services 1,920       11,225     5,017       35            186          68            
Nat. Resources 43            305          22            1,581       3,154       293          
Manuf. & Const. 155          1,334       212          1,225       6,704       1,733       
Services 29            193          53            425          2,145       1,000       

44,517     130,816   38,678     11,661     21,107     8,910       

North & 
South

North and South

Rest of 
China

Rest of China
China 2000

Total Chinese Output
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( ) ( ) ( ) 1

.126 .13 .035 .01 .011 .002

.155 .463 .238 .021 .065 .037

.043 .086 .13 .003 .009 .008
ˆ( )

.001 .002 .001 .136 .149 .033

.003 .01 .005 .105 .318 .194

.001 .001 .001 .036 .102 .112

a a a −

 
 
 
 

= =  
 
 
 
 

A Z x  and  

( ) ( ) 1

1.207 .315 .135 .031 .062 .032
.395 2.055 .580 .093 .252 .149
.099 .219 1.213 .018 .046 .03

( )
.005 .013 .006 1.196 .279 .106
.015 .039 .022 .207 1.567 .353
.004 .009 .006 .073 .191 1.171

a a −

 
 
 
 

= − =  
 
 
 
 

L I A .  

To calculate the aggregation bias measured as a percent of gross outputs with a reference 

vector of final demands given by [ ]100 100 100 ′=f   for the unaggregated model, we can 

specify [ ]100 100 100 100 100 100 100 100 100 ′=f  for the unaggregated case and 

we can write [ ]( ) 200 200 200 100 100 100a ′= =f Sf   for the aggregated case. We can 

now compute [ ]165 284 151 178 371 164 163 227 147 ′= =x Lf  and 

[ ]( ) ( ) ( ) 344 655 316 163 228 147a a a ′= =x L f  from which we can compute the aggregation 

bias as 
( )

100 100 (2.115 /1,850.718) 0.114
a−

× = × =
Sx x i

Sxi

 



 percent. 

Problem 4.11 
This exercise applies the same procedure for removing competitive imports from the 
interindustry transactions table utilized in problem 4.9, but this time applied to real-world data 
for a six-sector input-output table for Nepal for the year 2013, defined by the matrix of 
interindustry transactions, Z, and vector of total outputs, x, in the following: 

 

 
 

Interindustry 
Transactions

Agric. Mining Manuf. Const. Utilities Services Total 
Output

Agriculture 774       0           1,149    45         0           719       9,766    
Mining 0           0           87         0           119       1           252       
Manufacturing 1,037    22         2,029    166       1,654    1,743    13,015  
Construction 47         5           109       47         79         376       834       
Utilities 11         1           13         6           2           394       3,963    
Services 780       22         781       201       377       3,443    20,446  
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This table includes both domestic transactions, D, and competitive imports, M, such that 
= +Z D M .  However, for the present, we presume we do not know the detailed transactions 

reported as M and, instead, know only [ ]68 48  3,227 65  1  457 ′= =m Mi , the value of all 
imports of each commodity to the economy. To estimate the interindustry import transactions we 
assume import similarity, i.e., the imports as a fraction of interindustry activity are the same as 
that of the entire economy.  To do this, first, we compute the vectors of intermediate outputs and 

total final demand, respectively, as [ ]2,686 206  6,651  663  427 5,603 ′= =u Zi  and 

[ ]7,080 45  6,363 171  3,536  14,843 ′= − =f x u . 

 Knowing m, we can define [ ]7,147 94 9,591 236 3,537 15,300 ′= + =g f m , which is 
the vector of total final demands, including imports.  Note that in some cases the accounting is 
such that m is recorded as a negative final demand so that = +x Zi f  reflects total domestic 
output, which is the convention used for the US input-output tables.  Using the assumption of 
import similarity, we can estimate the domestic transactions matrix where competitive imports 
are removed from interindustry transactions by the following steps.   

We can develop import similarity scaling factors for each commodity as the ratio of the 
value of total interindustry imports of that commodity divided by the total output (including 

imports), i
i

i i

mr
u f

=
+

, or [ ]0.007  0.193  0.248 0.078  0.000  0.022 ′=r . We can then compute 

the scaled quantities for imports, domestic transactions, and final demands as 
          5           0           8           0           0           5
          0           0        1  7           0         23           0
      257           6       503         41       410       432
       ˆ  =M = rZ    4           0           8           4           6         29
          0           0           0           0           0           0
       1  7           0        1  7           4           8         77

 
 
 
 
 
 

, 

 

 

      769           0   1  ,141         45           0       714
          0           0         70           0         96           0
      780        1  7   1  ,526      1  25   1  , 244   1  ,311
        43           =D = Z - M 5      1  00         43         73       347
       1  1          1         1  3           6           2       394
      762         22       763      1  96       368    3,366

 
 
 
 
 
  

, 

[ ]49  9  1,578  13 1ˆ  332 ′=h = rf , and [ ]7,098  85  8,013  223  3,536 14,968 ′= − =g g h .   

Note that with these scaled quantities the identity = +x Di g  (analogous to = +x Zi f ) still 
holds., but this balance equation now accounts for only domestic transactions with interindustry 
imports reassigned to total value added. The new total value-added vector is 

[ ]7,401 208  9,402 419  2,180 14,314′ ′ ′ =v = x - i D , which inflates the original vector of 

total valued added, [ ]7,118  201  8,848  369 1,732  13,770′ =v  by interindustry imports to each 

industry, i.e., [ ]283 6  554 50  448  544′ ′= =m i M , excluding the value of imports consumed 
directly in final demand.  
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 If we subsequently learn that 
       1  8           0         30          1            0        1  8
          0           0         20           0         28           0
      406        1  6       793      1  24       672   1  , 216
          5       =M     0        1  2           5        1  0         33
          0           0           0           0           0           0
       1  9           2         54        1  0         22       350

 
 
 
 
 
  

, i.e., we know precisely the 

competitive imports associated with interindustry transactions, we can compute the domestic 

transactions matrix by 

      756          0   1  ,118         44           0       701
          0           0         67           0         91           0
      631           7   1  , 236         42       982       527
        42        − =D = Z M    5         97         42         69       344
       1  1          1         1  3           6           2       393
      760         20       727      1  90       355    3,093

 
 
 
 
 
  

  

(rather than approximate it with import similarity scaling factors) and compute 

[ ]68 48  3,227 65  1  457 ′= =m Mi  and [ ]7,012 3 3,136  106 3,535  14,386 ′= − = −g f m  

where [ ]7,080 45  6,363 171  3,536  14,843 ′= − =f x u , as earlier. Note that the balance 
equation = +x Di g  holds here as well. Then the new total value-added vector, 

[ ]7,565  219  9,757  510  2,465  15,388′ ′ ′= =v x - i D , inflates the original vector of total 

valued added, [ ]7,118  201  8,848  369 1,732  13,770′ ′ ′= − =v x i Z , by the total value of all 

imports to each industry, [ ]447  18  909  141  733  1,618′ =m , i.e., ′ ′ ′ ′= = −m i M v v  .    
We compute the Leontief inverse for the first case as  

1

1.1007 0.0145 0.1141 0.0947 0.0433 0.0577
0.0007 1.0006 0.0063 0.0015 0.0264 0.0012
0.1105 0.0909 1.1537 0.2180 0.3784 0.1063
0.0081 0.0234 0.0118 1.0632 0.0260 0.0234
0.0036 0.0047 0.0033 0.0146 1.0041 0.0238
0.1134 0

(

.

)I I −= − =L I A

1175 0.0960 0.3253 0.1524 1.2193

 
 
 
 
 
 
 
 

 for 

1

 0.0787  0.0001  0.0876  0.0534  0.0000  0.0349
 0.0000  0.0000  0.0054  0.0000  0.0243  0.0000
 0.0798  0.0665  0.1172  0.1499  0.3139  0.0641
 0.0044  0.0193  0.0077  0.0520  0.0184  0.0170
 0.0011  0.0021  0

ˆ

.0010  0

I −= =A Dx

.0075  0.0005  0.0193
 0.0780  0.0857  0.0587  0.2352  0.0930  0.1646

 
 
 
 
 
 
 
 

  and for the second case 

as 

1.0961 0.0084 0.1079 0.0786 0.0328 0.0498
0.0005 1.0003 0.0058 0.0007 0.0245 0.0008
0.0828 0.0346 1.1167 0.0771 0.2829 0.0452
0.0076 0.0228 0.0110 1.0590 0.0236 0.0221
0.0035 0.0042 0.0030 0.0137 1.0036 0.0

( )

233
0.1085 0.

II II= − =L I A

1051 0.0872 0.2984 0.1362 1.1943

 
 
 
 
 
 
 
 

  for  
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1

0.0774 0.0000 0.0859 0.0526 0.0000 0.0343
0.0000 0.0000 0.0051 0.0000 0.0230 0.0000
0.0646 0.0259 0.0949 0.0506 0.2477 0.0258
0.0043 0.0195 0.0075 0.0499 0.0174 0.0168
0.0011 0.0020 0.0010 0.0074 0.0004 0.0192
0.

ˆ

0779 0.08

II −= =A Dx

10 0.0559 0.2281 0.0896 0.1513

 
 
 
 
 
 
 
 

.  

The mean absolute deviations between IL  and IIL  and between IA  and IIA are found to be 
6 6

1 1
( ) (1/ 36) .016I II

ij ij
i j

mad l l
= =

= − =∑∑L  and 
6 6

1 1
( ) (1/ 36) .009I II

ij ij
i j

mad a a
= =

= − =∑∑A , respectively. 

.    



2021 August 3 
 
 

P-46 
 

Chapter 5, The Commodity-by-Industry Approach in Input–Output Models  
Chapter 5 explores variations to the commodity-by-industry input–output framework introduced 
in Chapter 4, expanding the basic input–output framework to include distinguishing between 
commodities and industries, i.e., the supply of specific commodities in the economy and the use 
of those commodities by collections of businesses defined as industries. The chapter introduces 
the fundamental commodity-by-industry accounting relationships and how they relate to the 
basic input–output framework. Alternative assumptions are defined for handling the common 
accounting issue of secondary production, and economic interpretations of those alternative 
assumptions are presented. The formulations of commodity-driven and industry-driven models 
are also presented along with illustrations of variants on combining alternative assumptions for 
secondary production. Finally, the chapter illustrates the problems encountered with commodity-
by-industry models, such as nonsquare commodity–industry systems, mixed technology options 
or the interpretation of negative elements. The exercise problems for this chapter illustrate key 
features of commodity-by-industry accounts and their applications. 
 
Problem 5.1 
This problem illustrates the basic configuration a commodity by industry model using make and 
use matrices. For a system of commodity-by-industry accounts, suppose we have defined three 
commodities and two industries.  

The use matrix, U, and the make matrix, V, and are the following: 

3 5
15 5 10

2 7 ,   
5 25 0

2 3
= =
 

  
      

U V  

From these matrices we can compute the vector of commodity final demands, e, the vector of 
industry value added inputs, ′v , the vector of total commodity outputs, q, and the vector of total 
industry outputs, x, as the following: 

20 12
30

,   ( ) 30 ,   23 15 ,  and  21
30

10 5

   
                    

′ ′ ′ ′ ′= = = = = − = = − =x Vi q i V v x i U e x Ui  

The matrix of commodity-by-industry direct requirements is 1

.1 .167
ˆ .067 .233

.067 .1

−

 
 = =  
  

B Ux  and the 

matrix of commodity output proportions is 1 .75 0.167 1
ˆ

.25 0.833 0
−  

= =  
 

D Vq .  

Among the various configurations for total requirements matrices, as an example, if we 
assume a fixed commodity sales structure, the industry-by-industry total requirements matrix is 

found by 1 1.021 .555 1.22
( )

.435 1.149 0.129
−  

− =  
 

I DB D . 
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Problem 5.2 
This problem illustrates commodity-by-industry total requirements matrices under alternative 
assumptions of industry-based and commodity-based technology. Consider the following system 
of commodity and industry accounts for a region: 
 

1 2 1 2
1 1 2 7 10
2 3 4 3 10
1 10 2 12
2 0 8 8

8 2 10
10 10 12 8

 

Total 
Output

Commodities

Commodities Industries Final 
Demand

Total Inputs
Value Added

Industries

 
 

From this table, the use matrix is 1 2
3 4
 =   

U ; the make matrix is 10 2
0 8

 =   
V ; the vector 

of commodity final demands is 7
3
 =   

e ; the vector of total commodity output is 10
10
 =   

q ; the 

vector of total industry output is 12
8

 =   
x ; and the vector of industry value added is [ ]8 2′ =v . 

We these definitions we can compute the commodity-by-industry matrix of direct requirements 

as 1 .083 .25
ˆ

.25 .5
−  

= =  
 

B Ux ; the commodity output proportions matrix as 1 1.0 .2
ˆ

0 .8
−  

= =  
 

D Vq ; 

and the industry output proportions matrix as 1 .833 0
ˆ

.167 1
−  ′= =  

 
C V x .  

 As one common variant, the industry-based technology, industry-demand-driven, 

commodity-by-industry total requirements matrix is 1 1.333 0.889
( )

.444 1.63
−  

− =  
 

I DB D . As another 

variant, the commodity-based technology, industry-demand drive, commodity-by-industry total 

requirements matrix is 1 1 1 1.412 .706
( )

.235 2.118
− − −  

− =  
 

I C B C  under the fixed industry sale structure 

assumption, 
14.11
10.95
 

∆ =  
 

x , and under a commodity-based technology assumption, 
12
12
 

∆ =  
 

x . 

These are different because the accounting of secondary production is different in the two 
assumptions. 
  
Problem 5.3 
This problem illustrates the adoption of mixed technology assumptions in construction 
commodity by industry models. Consider again the system of accounts given in problem 5.1: 
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3 5
2 7
2 3

 
 =
 
 

U  and 
15 5 10
5 25 0

 
=  
 

V  so that 
30
30
 = =   

x Vi  v and we can compute the industry 

input requirements matrix as 1

3 5
2 7
2 3

.1 .167
1/ 30 0

ˆ .067 .233
0 1/ 30

.067 .1

−

  
    = = =            

B Ux .  

Suppose we can split the make matrix,
15 5 10
5 25 0

=
 
 
 

V into two components, 

1

5 5 5
5 5 0
 

=  
 

V  and 2

10 0 5
0 20 0

 
=  
 

V  such that 1 2= +V V V . This means that 1 1
15
10
 = =   

x V i       

and 1

10
10
5

 
 = =
 
 

q iV .  

We might be interested in comparing the two “mixed technology” assumptions that were 
covered in sections 5.7.1 and 5.7.2 in computing the industry-by-commodity total requirements 
matrix for this system of accounts. However, since V is nonsquare, the matrix of industry output 
proportions, C, will be nonsquare and hence no unique 1−C exists.  

Since no unique 1−C exists we cannot use the mixed-technology assumption requiring 
computation of 1−C ; that is, we cannot determine either 1 1 1( )− − −−I C B C  or 1( )−−R I BR  where 

1
1 2 2[ ( ) ]− ′= − +R C I D D .  Nonetheless, we can use the industry-based technology assumption 

with 1
1 2 2 1[(     ) ]−= + −T I D C i'C D  where 1

1 1 1

.5 .5 1
ˆ

.5 .5 0
−  

= =  
 

D V q and 

1
2 2

.333 0
ˆ 0 .667

.137 0

−

 
 ′= =  
  

C V x , which in this case is 
.333 .333 1.333
.667 .667 .333
 

=  − 
T  and then we compute 

the matrix of total requirements as 1 .685 .685 1.476
( )

.949 .949 .264
−  

− =  − 
T I BT . Note the negative 

element in this matrix of total requirements, the implications of which are discussed in Section 
5.5 of the text. 
 
Problem 5.4 
This problem explores further the use mixed technology assumptions in deriving industry-by-
commodity total requirements matrices, this time for the system of accounts given in problem 
5.2. In this case the make matrix, V, is a square matrix so it is possible to compute the inverse of 

matrix of industry output proportions, C. First, we split 10 2
0 8

 =   
V  into two components, 
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1

10 0
0 2

 
=  
 

V  and 2

0 2
0 6
 

=  
 

V such that 1 2= +V V V . The vectors of industry and commodity 

outputs are then found by 1 1

10
2

 
= =  

 
x V i , 1 1

10
2

 ′= =  
 

q i V , respectively. 

With this configuration, we can compute 1
1 1 1

1 0
ˆ( )

0 1
−  ′= =  

 
C V x , 1

2 2

0 .2
ˆ( )

0 .6
−  

= =  
 

D V q

, and, subsequently, 1
1

1 0
 

0 1
−  
=  
 

C . From V, we can compute 
10

( )
10
 ′ ′= =  
 

q i V and 

12
8

 
= =  

 
x Vi , and, subsequently, one variant of direct requirements using mixed technology 

assumptions as 1
1 2 2

1 0.2
( )

0 0.8
−  ′= − 〈 〉 + =  

 
R C I D i D and 1 1.333 .889

( )
.444 1.630

−  
− =  

 
R I BR . As 

another variant of direct requirements using mixed technology assumptions, T, we first compute 
1

1 1 1

1 0
ˆ( )

0 1
−  

= =  
 

D V q and 1
2 2

0 0
ˆ( )

0.167 0.750
−  ′= =  

 
C V x , so we can compute 

1
1 2 2 1

1.2 0
( )  

0.2 1
−  ′= + − 〈 〉 =  − 

T I D C C i D and 1 1.412 .706
( ) .

.235 2.118
−  

− =  
 

T I BT   

Of course, there are alternative partitions of the V matrix into its 1V  and 2V  components 
with the requirement that 1 2= +V V V , depending upon the suitable assumptions for industries 
and commodities in the economy. 
 
Problem 5.5 
In this problem we explore further the characteristics technology assumptions of commodity-by-
industry models.  In a system of commodity-by-industry accounts, suppose we have defined four 
commodities and three industries. The make matrix, V, and the use matrix, U, are given as 

20  12 18
5    30 12
10  13 11
12  17 40

=

 
 
 
 
 
 

U  and 
99    0      0    10
8   143  137   10
0      6    12   150

=
 
 
 
  

V . We can compute vectors of total commodity 

outputs and total industry outputs, respectively, as 

107
149
149
170

 
 
 ′= =
 
 
 

q V i and 
109
298
168

 
 = =  
  

x Vi . 

Recall that the commodity-by-industry total requirements matrix with the assumption of 
industry-based technology is 1 1( )− −−D I BD . In this case since there are more commodities than 
industries, the matrix D is non-square, hence, 1−D  does not exist so it is impossible to compute 

1 1( )− −−D I BD . 
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 For industry-by-commodity total requirements using the assumption of industry-based 
technology for commodity-driven final demand, we can compute: 

1

1.164 .077 .082 .25
( ) .321 1.159 1.122 .321

.182 .148 .197 .1.187

−

 
 − =  
  

D I BD  . 

To illustrate mixed technology assumptions, we aggregate the first two commodities to 

one in the make and use matrices. Hence, we have 
25 42 30
10 13 11
12 17 40

 
 =  
  

U  and 

99 0 10
151 137 10

6 12 150

 
 =  
  

V . We can compute vectors of total commodity outputs and total industry 

outputs, respectively, as 
256
149
170

 
 ′= =  
  

q V i and 
109
298
168

 
 = =  
  

x Vi .  We assume that V can be 

decomposed into 1V  and 2V  where 1

99   0     0
0    10    0
0     0    30

 
 =  
  

V , so we can compute 

2 1

0 0 10
151 127 10

6 12 120

 
 = − =  
  

V V V .  With these definitions we can compute the commodity-by-

industry matrix of direct requirements as 1

.229 .141 .179
ˆ .092 .044 .066

.110 .057 .238

−

 
 = =  
  

B Ux and the commodity 

output proportions matrix as 1

.387 0 .059
ˆ .590 .919 .059

.023 .081 .882

−

 
 = =  
  

D Vq . If we assume a commodity-based 

technology for 1V  and an industry-based technology for 2V , the four total requirements matrices 
(i.e., commodity-by-commodity, industry-by-commodity, commodity-by-industry and industry-
by-industry) to be used with commodity-driven demand calculations are found by first 



2021 August 3 
 
 

P-51 
 

computing 1 1

99
10
30

 
 = =  
  

x V i . Also, in this case, since 1V  is diagonal, we can easily find 

1 1 1 1

99
10
30

 
 ′= = = =  
  

x V i q V i . 

From these quantities we can compute 1 1
1 1 1 1

1 0 0
ˆ 0 1 0

0 0 1

− −

 
 ′= = =  
  

C V x C  and, subsequently, 

1
2 2

0 0 .059
ˆ( ) .59 .852 .059

.023 .081 .706

−

 
 = =  
  

D V q  so that 1
1 2 2

.387      0      .059
 .59    .925    .059
.023   .081    .882

−

 
 ′=  −  + =   
  

R C I D i D  and 

1

2.573 .015 .173
1.656 1.084 .038
.083 .099 1.134

−

− 
 = − 
 − 

R . (Note the negative elements in 1−R ). We can now compute the 

family of total requirements matrices as 
 

1

1.260 .213 .308
( ) .093 1.070 .111

.141 .121 1.324

−

 
 − =  
  

I BR , 1 1

2.916 .22 .14
( ) 1.524 1.15 .15

.272 .001 1.483

− −

 
 − = − 
  

I BR R ,  

1

.496 .09 .197
( ) .837 1.117 .362

.161 .198 1.185

−

 
 − =  
  

R I BR   and  1

1.144 .085 .141
( ) .334 1.187 .309

.186 .099 1.324

−

 
 − =  
  

I RB . 

Problem 5.6 
This problem explores further the properties of mixed technology assumptions for commodity-
by-industry total requirements matrices. Recall first from the numerical results in section 5.7.3 
for the examples provided that the column sums of both the mixed technology direct 
requirements matrices, R and T, are one, i.e., ′ ′=i R i T  . We can show that such is generally the 
case for C, D, R, and T.  

We start with the matrix of industry output proportions, 1ˆ −′=C V x . The column sums of 
C are found by premultiplying C by ′i ,  so 1ˆ −′ ′ ′=i C i V x . Since for any pair of matrices, A and B, 
( )′ ′ ′=AB B A , we rewrite this as 1 1ˆ ˆ( )− −′ ′ ′ ′= =i C i V x Vi x , and substituting =x Vi   yields 

1ˆ −′ ′ ′= =i C x x i  which proves the case generally for C.  
Similarly, if we start with the matrix of commodity output proportions, 1ˆ −=D Vq , the 

column sums of D are found with 1ˆ −′ ′ ′=i D i V q , using the same property of the transpose of a 
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product of matrices as in the previous case, yields 1ˆ( ) −′ ′=i D Vi q  and substituting =q Vi  yields 
1ˆ −′ ′ ′= =i D q q i  which proves the case generally for D. 

 One variant of mixed technology began with the identity, 1
1 2 1 1 2

−= + = +x x x C q D q    

developed in section 5.7.1 but expressing 1q  as a function of q to yield 
1

1 2 2[ ( ) ]− ′= = − +x Rq C I D i D q . Another variant, derived in section 5.7.2, again expressing x as 

a function of q was 1
1 2 2 1[(     ) ]−= + −x = Tq I D C i'C D q . Applying property of the transpose of a 

product of matrices once again, this time on the term, 2′D i , yields 1 1
1 1 2 2
− −′ ′ ′ ′ ′= − +i R i C i C i D i D  . 

Finally, substituting 1
1 1 1ˆ( )( )−′=C V x  or 1 1

1 1 1ˆ ( )− −′=C x V  and 1
2 2 ˆ −=D V q  yields 

1 1 1 1
1 1 1 1 2 2 2 2ˆ ˆˆ ˆ( ) ( )− − − −′ ′ ′ ′ ′ ′ ′= − +i R i x V i x V i V q i V q  and it follows directly that 1′ ′=i C i , ′ ′=i R i , 1′ ′=i D i , 

and ′ ′=i T i . 
 
Problem 5.7 
This problem explores the use of total industry-by-commodity requirements under an assumption 
of industry-based technology for impact analysis. Consider the following make and use matrices. 

20 12 18
5 30 12

10 13 11
12 17 40

 
 

=  
 
  

U  and 
99 0 0 10
8 143 137 10
0 6 12 150

 
 =
 
 

V  . We compute 

107
149
149
170

 
 
 ′= =
 
 
 

q V i and 

109
298
168

 
 = =  
  

x Vi  so 1

.183 .040 .107

.046 .101 .071
ˆ

.092 .044 .065

.110 .057 .238

−

 
 
 = =
 
 
 

B Ux  and 1

.925 0 0 .059
ˆ .075 .960 .919 .059

0 .040 .081 .882

−

 
 = =  
  

D Vq . 

We assume that the three industries are: Agriculture, Oil Production, and Manufacturing 
and the four commodities are Agricultural Products, Crude Oil, Natural Gas, and Manufactured 
Products. We can interpret this as meaning in this case that natural gas is considered a secondary 
product of the oil industry.  

To compute the levels of oil and natural gas industry production necessary to support a 
final demand of 100 manufactured products, first generate the total industry-by-commodity 

requirements using an industry-based technology: 1

1.164 .078 .082 .25
( ) .321 1.160 1.122 .321

.182 .148 .197 1.187

−

 
 − =  
  

D I BD . 

For the final demand of 100 for manufactured products, [ ]0 0 0 100 ′∆ =f , we have 

1

25.02
( ) 32.08

118.65

−

 
 ∆ = − ∆ =  
  

x D I BD f . 
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Problem 5.8 
This problem explores the issues of using commodity-by-commodity models with commodity-

based technology. Consider the following make and use matrices: 
20 15 18
5 30 12

10 16 11

 
 =
 
 

U  and 

30 0 0
10 50 35
0 25 150

 
 =
 
 

V . First, we compute 
40
75

185

 
 ′= =  
  

q i V  and then 

1

.75 0 0
ˆ .25 .667 .189 .

0 .333 .811

−

 
 = =  
  

D Vq  

A standard calculation for producing the commodity-by-commodity transactions matrix 
with commodity-base technology begins with the matrix of technical requirements,

1 1 1 1 1 1 1

( )
ˆ ˆ ˆ ˆ[ ][ ] [ ][ ] ( )C

c c

− − − − − − −

×

′ ′ ′= =A = BC = Ux V x Ux x(V ) U V . To express in terms of inter-

commodity transactions, we postmultiply through by q̂  to obtain 1ˆ ˆ[( ) ]C C
−′= =Z A q U V q . 

Recall that the definition of D is 1ˆ −=D Vq . Since the transpose of a product of matrices is 
the reverse product of the transposes of each matrix and that the transpose of a diagonal matrix is 
the original matrix itself, we can rewrite this definition as 1ˆ − ′ ′=q V D . Further, since the inverse 
of a product of matrices is the reverse product of the inverses of each matrix, this equation 
becomes 1 1ˆ( ) ( )− −′ ′=V q D   which we can substitute in the equation defining CZ   above so that 

1 1ˆ ˆ[( ) ] ( )C C
− −′ ′= = =Z A q U V q U D .  

For this case, the commodity-by-commodity matrix of interindustry transactions is

1

26.667 7.019 19.315
( ) 6.667 43.359 3.025

13.333 17.151 6.516
C

−

 
 ′= = − 
  

Z U D . Note that there is a negative element. So, we can 

apply the Almon purifying algorithm (Appendix 5.2 in the text) which iteratively distributes 
negative elements across positive elements to remove them while preserving the essential 
accounting identities. The result is a “purified” non-negative transactions matrix: 

1

26.667 7.019 19.315
( ) 6.667 40.334 0

13.333 17.151 6.516
C

−

 
 ′= =  
  

Z U D . 

Problem 5.9 
This problem explores application of an industry-based technology commodity-by-industry 
model using the use and make matrices for highly aggregated U.S. input-output tables for 2003. 
The following are the use and make tables: 
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Below is a table providing the detail of the components of total commodity final demand. 

Note that the total final demand entry for mining is negative due to a negative trade balance, i.e., 
the value of net exports (exports minus imports) is negative and is sufficiently large to offset 
other components of final demand to render total final demand negative.  
 
Commodity Final Demands for U.S. 2003 Input-Output Tables 

Commodity\Final Demand Personal 
consumption 
expenditures

Private 
fixed 

investment

Change in 
private 

inventories

Exports of 
goods and 
services

Imports of 
goods and 
services

Government 
consumption 
expenditures 

and gross 
investment

Total Final 
Demand

Agriculture 47,922         -                175            24,859       (26,769)      (1,136)         45,050        
Mining 72                35,698       1,912         4,739         (125,508)    702              (82,384)       
Construction -                  704,792     -                71              -                 224,468       929,331      
Manufacturing 1,301,616    573,197     8,983         506,780     (1,075,128) 94,705         1,410,152   
Trade, Transportation & Utilit 1,549,792    125,271     2,994         131,884     8,065          10,289         1,828,294   
Services 4,780,516    303,426     461            175,546     (44,060)      30,256         5,246,145   
Other 80,963         (75,404)     (15,748)     98,989       (177,578)    1,716,238    1,627,459   
Total 7,760,881    1,666,980  (1,224)       942,868     (1,440,979) 2,075,522    11,004,047  
 

Suppose that the value for total imports of manufactured goods is projected to increase by 
$1 trillion from its 2003 value with, for simplicity, all other elements of total final demand 
remaining identical to those for 2003. To compute the impact on gross national product and on 
total output of all sectors of the economy, we first observe that if net exports are reduced by a 
rise in imports of $1 trillion, then final demand is reduced by the same amount and, all other 
values remaining constant, so GDP is also reduced by the same amount.  

To estimate the vector total outputs, we must first determine the commodity-by-industry 
input matrix, B, and the commodity output proportions matrix, D, to specify the industry-based 
technology, commodity-by-industry total requirements matrix, 1( )−−D I BD : 

US Use Table for 2003 1 2 3 4 5 6 7
1. Agriculture 61,946   1             1,270        147,559    231           18,453      2,093        
2. Mining 441        33,299    6,927        174,235    89,246      1,058        11,507      
3. Construction 942        47           1,278        8,128        10,047      65,053      48,460      
4. Manufacturing 47,511   22,931    265,115    1,249,629 132,673    516,730    226,689    
5. Trade, Transport & Utils 24,325   13,211    100,510    382,630    190,185    297,537    123,523    
6. Services 25,765   42,276    147,876    509,084    490,982    2,587,543 442,674    
7. Other 239        1,349      2,039        48,835      35,110      83,322      36,277      

US Make Table for 2003 1 2 3 4 5 6 7
1. Agriculture 273,244 -              -                67             -                1,748        -                
2. Mining -             232,387  -                10,843      -                -                -                
3. Construction -             -              1,063,285 -                -                -                -                
4. Manufacturing -             -              -                3,856,583 -                30,555      3,278        
5. Trade, Transport & Utils -             570         -                -                2,855,126 41             957           
6. Services -             475         -                -                133           9,136,001 3,278        
7. Other 3,359     896         -                3,936        104,957    323,996    1,827,119 
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0.225 0.000 0.001 0.038 0.000 0.002 0.001
0.002 0.137 0.007 0.045 0.031 0.000 0.005
0.003 0.000 0.001 0.002 0.004 0.007 0.021
0.173 0.094 0.249 0.321 0.046 0.057 0.100
0.088 0.054 0.095 0.098 0.067 0.033 0.055
0.094 0.174 0.139 0.131 0.1

=B

72 0.283 0.196
0.001 0.006 0.002 0.013 0.012 0.009 0.016

 
 
 
 
 
 
 
 
 
  

  

 
0.988 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.992 0.000 0.003 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.996 0.000 0.003 0.002
0.000 0.002 0.000 0.000 0.964 0.000 0.001
0.000 0.002 0.000 0.000 0.0

=D

00 0.962 0.002
0.012 0.004 0.000 0.001 0.035 0.034 0.996

 
 
 
 
 
 
 
 
 
  

  

 

1

1.290 0.011 0.023 0.076 0.007 0.011 0.012
0.029 1.163 0.036 0.092 0.045 0.011 0.021
0.009 0.004 1.006 0.008 0.008 0.012 0.025
0.377 0.207 0.421 1.551 0.118 0.145 0.206
0.170 0.104 0.157 0.185 1.060 0.068 0.096
0.284 0.341 0.313

( )−− =D I BD

0.355 0.292 1.387 0.339
0.044 0.035 0.030 0.048 0.068 0.068 1.035

 
 
 
 
 
 
 
 
 
  

  

The revised vector of total final demands is specified by simply reducing the value for total 
imports of manufactured goods by $1 trillion, so computing the corresponding change in total 
outputs is found by  

[ ]1( ) 75,840 91,880 7,742 1,550,525 184,877 355,257 48,461− ′∆ = − ∆ = −x D I BD f  
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Chapter 6, Multipliers in the Input–Output Model  
Chapter 6 examines key summary analytical measures known as multipliers that can be derived 
from input–output models to estimate the effects of exogenous changes on (1) new outputs of 
economic sectors, (2) income earned by households resulting from new outputs, and (3) 
employment generated from new outputs or (4) value-added generated by production or (5) 
energy and environmental effects.  

The chapter develops the general structure of multiplier analysis and special 
considerations associated with regional, IRIO, and MRIO models. Extensions to capture the 
effects of income generation for various household groups are then explored, as well as 
additional multiplier variants. Chapter appendices expand on mathematical formulations of 
household and income multipliers.  

The exercise problems for this chapter illustrate various types of input-output multipliers 
and their applications. 
 
Problem 6.1 
This problem explores the use of total output multipliers as an indicator of relative importance to 
the economy using the input-output tables utilized in the exercise problems 2.1 through 2.10. The 
output multipliers, the column sums of the Leontief inverse in each case (with the largest 
multiplier in each case highlighted in boldface), are the following: 
       Problem Output Multipliers 

2.1   6.444   6.944 
2.2    2.970   4.167   3.611 

 2.3     6.444   6.944 
2.4    2.006   2.428   1.307 
2.5     1.412   1.588 
2.6     1.839   1.437 
2.7    2.301   2.031   2.209   2.035   1.551   1.616   2.156   2.364 
2.8     1.716   1.814 
2.9   1.919   1.605   1.722   1.925   1.487   1.608   1.599 
2.10    4.000   5.000   1.000 

 
Problem 6.2 
This problem explores the use of output multipliers to derive the total value of output (across all 
sectors) associated with the new final demands, again using the exercise problems in Chapter 2. 
We have already calculated the multipliers in problem 6.1, so in conjunction with the new final 
demands in the problems in Chapter 2, we can derive the total value of output (across all sectors) 
associated with the new final demands.  

Using problem 2.2 as an example, the row vector of output multipliers is  
m(o) = [2.970   4.167   3.611]. In conjunction with the final-demand vector used in that problem, 

namely 1

1,300
100
200

t+

 
 =  
  

f , we find 1( ) 5,000to + =m . In the solution to problem 2.2, we found that 
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1

2,000
1,000
2,000

t+

 
 =  
  

x , and the sum of these elements is 5,000; that is, 1 5,000t+′ =i x . In matrix notation, 

this is comparing ( )o ∆m f  with ′ ′∆ = ∆i x i L f ; we know that they must be equal, since output 
multipliers are the column sums of the Leontief inverse— ( )o ′=m i L . 

Problem 6.3 
This problem explores type I and type II income multipliers in addition to total output 
multipliers, using the data in problem 2.3 of a model closed to households, which included the 

matrix of interindustry transactions, 
500   350   90
320   360   50
100     60   40

c

 
 =  
  

Z , and vector of total outputs, 

1,000
800
300

c

 
 =  
  

x , from which we could compute the matrices of direct and total requirements, 

respectively, as 1

.5 .438 .3
ˆ( ) .32 .45 .167

.1 .075 .133

c c c −

 
 = =  
  

A Z x  and 1

5.820  5.036  2.983
( ) 3.686  5.057  2.248

0.990  1.019  1.693

c c −

 
 = − =  
  

L I A   

 
The output multipliers for the three-sector model, closed with respect to households, are 

m(o) = [10.496   11.112   6.924]. The type I income multipliers require that we have the labor-
input coefficients, which are a31 = 0.100 and a32 = 0.075, along with the Leontief inverse of the 

model that is open with respect to households (from problem 2.3), 1 4.074 3.241
( )

2.370 3.704
−  

− =  
 

I A . 

Then 1( )m h =  (0.1)(4.074)+(0.075)(2.370) = 0.5852 and 2( )m h =  (0.1)(3.241) + (0.075)(3.704) 

= 0.6019; 1( )Im h = 0.5852/0.1 = 5.852 and 2( )Im h =0.6019/0.075 =  8.025.   
The total household income multipliers can be found as the first two elements in the 

bottom row of the Leontief inverse of the model closed with respect to households, 
1( )c c −= −L I A , which are 1( )m h =  0.990 and 2( )m h =  1.019, so the type II income multipliers 

are therefore 1( ) 0.990 / 0.1 9.90IIm h = =  and 2( ) 1.019 / 0.075 13.59IIm h = = . Note that, for both 
sectors, the ratio of the type II to the type I income multiplier is 1.69.  
Problem 6.4 
This problem configures a typical policy question that can be addressed with input-output 
multipliers. Suppose we assemble the following facts about the two sectors that make up the 
economy of a small country under study where the available data pertain to the most recent 
quarter. Total interindustry inputs were $50 and $100, respectively, for Sectors 1 and 2. Sector 
1’s sales to final demand were $60 and Sector 1’s total output was $100. Sector 2’s sales to 
Sector 1 were $30 and this represented 10 percent of Sector 2’s total output.  If we define the 
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matrix of interindustry transactions as 11 12

21 22

z z
z z
 

=  
 

Z  and the vectors of final demands, 

interindustry inputs, and total outputs, respectively, as 1

2

f
f

 
=  
 

f  , [ ]1 2v v=v , and 1

2

x
x
 

=  
 

x  , we 

can summarize the known values as 21 30z = , 1 10f = , 1 50v = , 2 100v = , and 1 100x = .  The 
value of 2x   is easily found from 2 21 / 0.1 120x z= =  and the unavailable data for 

11 12 22 2, , , andz z z f can be computed from the basic accounting identities, + =Zi f x  and 

′ + =i Z v x   so that  Z, v, f, and x are, respectively, 
20 20
30 80
 

=  
 

Z  , [ ]50 100=v , 
60
10
 

=  
 

f . 

and 
100
120
 

=  
 

x , from which we can then calculate the direct requirements and total requirements 

matrices, respectively, as 1 .2 .067
ˆ

.3 .267
−  

= =  
 

A Zx and 1 1.294 .118
( )

.529 1.412
−  

= − =  
 

L I A .  

 If we project that, after national elections are held, it may turn out that different 
government policy will be forthcoming during the first quarter of the coming year. For example, 
if there is an increase of $100 in government purchases of sector 1’s output, we specify the 

projected change in total final demand as 1 160
190
 

∆ =  
 

f , while if the same increase is of sector 2’s 

output, we specify the change in final demand as 2 60
290
 

∆ =  
 

f .  

We can compare the stimulative effect of the two scenarios by calculating the sum of 
total outputs for each that would be necessary to support the changed final demands, i.e., 

1 1 582.35′∆ = ∆ =x i L f  and 2 2 552.94′∆ = ∆ =x i L f . The first option generates the larger 
stimulative effect by 1 2 582.35 552.94 29.41.∆ −∆ = − =x x  

Problem 6.5 
This problem explores a typical economic planning question. Consider an input output economy 

defined by 
140 350
800 50
 

=  
 

Z and 
1,000
1,000
 

=  
 

x . Suppose economic planners are asked to design an 

advertising campaign to stimulate export sales of one of the goods produced in the country and 
need to determine which of the two sectors on which to concentrate their efforts or perhaps if 
some combination would be more effective. The answer rests on the relative size of the output 
multipliers, which will indicate the relative stimulative effect of focusing on one sector or the 
other (or a combination).  

The output multipliers are found by first computing the technical coefficients matrix, 
1 .14 .35

ˆ
.8 .05

−  
= =  

 
A Zx , and the total requirements matrix, 1 1.769 .652

( )
1.490 1.601

−  
= − =  

 
L I A , so the 

vector of output multipliers is [ ]( ) 3.259 2.253o ′= =m i L . So, in terms of relative stimulative 
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effect, it is more effective to concentrate on stimulating export demand for the product of sector 
1; since it has a considerably larger output multiplier. 

 If we determine labor income coefficients for the two sectors in the region to be 31 0.1a =   

and 32 0.18a = , and the focus is on job creation, it is possible the priorities may change. In this 

case, knowing 31 0.1a =   and 32 0.18a = , we can find 1 0.4451H =   and 2 0.3534H =   by

[ ].4451 .3534= =H lL  where the vector of labor coefficients is [ ].1 .18=l . Thus, converting 
output effects to income earned per dollar of new final demand for each of the sectors does not 
change the ranking, so, in this case, stimulation of export demand for the output of sector 1 is 
still more beneficial. 
Problem 6.6 
This problem explores interregional input-output multipliers using the elements in the full two-
region interregional Leontief inverse from problem 3.2. First, recall the interregional Leontief 

inverse from that problem: 11 121

21 22

1.205 .202 .115 .123
.263 1.116 .189 .131

( )
.273 .262 1.177 .2
.33 .289 .179 1.156

−

 
    = − = =    
 
 

L L
L I A

L L
.  

We can first calculate the vectors of simple intraregional output multipliers for sectors 1 
and 2 as [ ]11( ) 1.468 1.318rro ′= =m i L  and 22 [1.356 1.356]sso ′= =m( ) i [L ] . The vectors of 
simple national (total) output multipliers for sectors 1 and 2 are 

[ ]11

21
( ) 2.070 1.869ro  ′= =  

Lm i L  and [ ]12

22
( ) 1.660 1.610so  ′= =  

Lm i L .  

Finally, the sector-specific simple national output multipliers for sectors 1 and 2 in 
regions r and s. show the impact on sector i throughout the entire country, because of a dollar’s 
worth of final demand for sector j in either region.  In this case it means finding the four 
multipliers for each region as:

11 21 12 22 1.478 0.593 0.464 1.405( ) ( ) ( ) ( ) ( )r r r r ro m o m o m o m o     = =m       and 

11 21 12 22 1.292 0.368 0.323 1.287( ) ( ) ( ) ( ) ( )s s s s so m o m o m o m o     = =m      . 

 
Problem 6.7 
This problem further explores the characteristics of interregional input-output multipliers using 
the results of problem 6.6.  

To determine which sector’s output increases the most for an arbitrary new final demand 
in the two regions, we simply compare the intraregional multipliers for each sector in each 
region, 11[ ] [1.468 1.318]rro = ′ =m( ) i L  and 22 [1.356 1.356]sso ′= =m( ) i [L ] . In region r sector 
1’s multiplier is larger than sector 2’s (1.468>1.318) and in region s the multipliers are equal for 
the two sectors. 

To determine which sector in which region produces the largest national (two-region) 
impact for an arbitrary increase in final demand we compare the sector-specific simple national 
output multipliers: 

11 21 12 22( ) ( ) ( ) ( ) ( ) 1.478 0.593 0.464 1.405r r r r ro m o m o m o m o     = =m          and 
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11 21 12 22( ) ( ) ( ) ( ) ( ) 1.292 0.368 0.323 1.287s s s s so m o m o m o m o     = =m      , the largest 

of which is 1.478 for sector 1 in region r.  
To determine whether it would be better to institute policies that would increase 

household demand in region r or in region s, increasing the output of sector 1 nationally (i.e., in 
both regions), we compare the total interregional output multipliers 

[ ]11

21

( ) =  = 2.070 1.869ro ′
 
 
 

L
m i

L
  and [ ]12

22

( ) =  = 1.660 1.610so ′
 
 
 

L
m i

L
. The multiplier for 

sector 1 in region r  is larger than the corresponding multiplier in region s (2.07>1.66) so 
increasing household demand in region r  is more beneficial. The same is true for sector 2 
(1.869>1.610). 
Problem 6.8 
This problem explores the same characteristics of multipliers as problems 6.6 and 6.7 but in the 
multiregional rather than interregional case using the elements in 1( )−−I CA C   from problem 3.3: 

1

0.971     0.556 1.024     0.524
0.882     1.197 0.889     1.251

( ) 1.297     0.714 1.264     0.677
0.663     1.010 0.673     0.8 54

−

 
 
 − =  
 
  

I CA C   

To determine which sector’s output increases the most for an arbitrary new final demand 
in the two regions, we simply compare the intraregional multipliers for each sector in each 
region, 11[ ] [1.853 1.753]rro = ′ =m( ) i L  and 22 [1.937 1.530]sso ′= =m( ) i [L ] . In region r sector 
1’s multiplier is greater than sector 2’s (1.853>1.753) and in region s  the same is true 
(1.937>1.530). 

To determine which sector in which region produces the largest national (two-region) 
impact for an arbitrary increase in final demand we compare the sector-specific simple national 
output multipliers: 

11 21 12 22( ) ( ) ( ) ( ) ( ) 2.269 1.545 1.270 2.207r r r r ro m o m o m o m o     = =m       and 

11 21 12 22( ) ( ) ( ) ( ) ( ) 2.288 1.562 1.201 2.105s s s s so m o m o m o m o     = =m      , the largest 

of which is 2.288 for sector 1 in region s.  
To determine whether it would be better to institute policies that would increase 

household demand in region r or in region s so as to increase the output of sector 1 nationally 
(i.e., in both regions), we compare the total interregional output multipliers 

[ ]11

21

( ) =  = 3.813 3.477ro ′
 
 
 

L
m i

L
 and [ ]12

22

( ) =  = 3.849 3.306so ′
 
 
 

L
m i

L
. The multiplier for 

sector 1 in region s is larger than the corresponding multiplier in region r (3.849>3.813) so 
increasing household demand in region s is more beneficial. The opposite is true for sector 2, i.e., 
The multiplier for sector 1 in region r is larger than the corresponding multiplier in region s 
(3.477>3.306) so increasing household demand in region r is more beneficial. 
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Problem 6.9 
This problem explores the use of regional output multipliers in analysis of a typical policy 
problem using the basic data introduced in problem 3.4. Suppose the government is interested in 
starting an overseas advertising and promotion campaign aimed at increasing export sales of the 
products of the country. There is specialization of production in the regions of the country; in 
particular, the products are shown in the table below: 
 

 Region A Region B Region C 
Manufacturing Scissors Cloth Pottery 

Agriculture Oranges Walnuts None 
 

To determine the product for which an increase in export sales would produce the 
greatest stimulation of the national economy, we calculate the total regional output multipliers 
for each region: 

[ ] [ ]1 1.714 0.857
( ) ( ) 1 1 2.143 2.571

0.429 1.714
A Ao −  ′= − = = 

 
m i I A  

[ ] [ ]1 2.857 2.286
( ) ( ) 1 1 3.190 3.952

0.333 1.667
B Bo −  ′= − = = 

 
m i I A  

[ ] [ ]1 2.0 0
( ) ( ) 1 1 2.5 1.0

0.5 1.0
C Co −  ′= − = = 

 
m i I A  

The largest total output multiplier is associated with sector 2 in region B (3.952); that is, 
with walnuts (this of course ignores and interregional multiplier effects that might be found with 
an IRIO or MRIO model). 
 
Problem 6.10 
This problem explores the relationships between Type I and Type II income multipliers. We use 
the example provided in section 6.2.1 (revisited from section 2.5), which began with the matrix 

of interindustry transactions, 150 500
200 100
 =   

Z  and the vector of total outputs, 1,000
2,000
 =   

x   from 

which we can derive the matrix of technical coefficients, 1 .15 .25
ˆ

.20 .05
−=

 
=  
 

A Zx  and 

corresponding matrix of total requirements, 
1.254 .330
.264 1.122

 
 
 

L = .  

We developed this model closed to households as 
.15 .25 .05
.20 .05 .40
.30 .25 .05

 
 

=  
 
 

A  with the corresponding 

matrix of total requirements computed as 1

1.365 .425 .251
( ) .527 1.348 .595

.570 .489 1.289

−

 
 

= − =  
 
 

L I A .   

 



2021 August 3 
 
 

P-62 
 

Here, ( ) 0.7575− =I A and ( ) 0.587875− =I A , giving ( ) / ( ) 1.289− − =I A I A , which is the 

same as 33l  in L .  
In (A6.2.2) from Appendix 6.2 we showed in general for L , partitioned as

1 11 12

21 22

( )−
 

= − =  
 

L L
L I A

L L
, that 1

21 21 22( ) (  and  c
− ′=− =− =−L L GE L GL) h L GL  where E, F, and 

G are defined by ( )  
− =  

 

E F
I A

G H
 and 1( )−= −L I A . Finally, 1ˆc

−′ = ′h h x , where h is household 

employment in units such as person-years, h. Then it was shown that the row vector of the ratios 
of the Type II to Type I income multipliers, ( ) / ( )II I

j j jR m h m h= ,  is  
1

22 22 22(1 ) ( ) (1 )(1 1) (1 1)
( )[ ] [1, ,1]

n n n n

−

× × ×× ×

′= − 〈− 〉 = =R L GL GL L L i
; that is, the ratios are all the same and are equal to 

the element in the lower-right of the closed model inverse.  Here 22 33 1.289l= =L . 
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Chapter 7, Supply-Side Models, Linkages, and Important Coefficients 
Chapter 7 presents the supply side input–output model. It is discussed both as a quantity model 
(the early interpretation) and as a price model (the more modern interpretation). Relationships to 
the standard Leontief quantity and price models are also explored. In addition, the fast-growing 
literature on quantification of economic linkages and analysis of the overall structure of 
economies using input–output data is examined. Finally, approaches for identifying key or 
important coefficients in input–output models and alternative measures of coefficient importance 
are presented.  

The exercise problems for this chapter illustrate the configuration of supply side input-
models and measures of forward and backward economic linkages in both demand and supply 
models.  
 
Problem 7.1 
This problem explores the properties of the output inverse in a supply side input output model. 
Consider the centrally planned economy of Czaria, which is involved in its planning for the next 
fiscal year. The matrix of technical coefficients, A, and vector of total industry outputs, x, for 
Czaria are given as the following: 
 

 1 2 3 4 Total Output 
1. Agriculture 0.168 0.155 0.213 0.212 12,000 
2. Mining 0.194 0.193 0.168 0.115 15,000 
3. Military Manufacturing 0.105 0.025 0.126 0.124 12,000 
4. Civilian Manufacturing 0.178 0.101 0.219 0.186 16,000 

 

From the table we define 1

.168   .194   .213   .283

.155   .193   .134   .123
ˆ

.105   .031   .126   .165

.134   .095   .164   .186

−

 
 
 = =
 
 
 

B x Z for ˆ=Z Ax . The output inverse 

for this economy is then 1

1.468    .455    .558    .692
 .376    1.393   .384    .418

( )
 .253     .155   1.300   .375
 .336     .268    .399   1.466

−

 
 
 = − =
 
 
 

G I B . The next year’s value-

added inputs for agriculture, mining, military manufacturing products and civilian manufacturing 
in Czaria are projected to be $4,558 million, $5,665 million, $2,050 million and $5,079 million, 
respectively. The nation’s projected GDP, since it is the sum of either all final demands or value 
added, i.e., GDP ′ ′= =i f v i , can be computed very simply for the projected new final demands, 

[ ]( ) 4,558 5,665 2,050 5,079new ′ =v , as ( ) 17,352newGDP ′= =v i , the sum of all new value-
added inputs. The corresponding vector of new total gross production is 

[ ]13,928.5   12,518.4    6,606.6   11,313.2new ′=x , found by 1( )new new−′= −x I B v , the supply side 
model. Note that this is the “old view” of the Ghosh model as described in section 7.1.1.  
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Problem 7.2 
This problem illustrates the use of mean absolute percentage difference (MAPD) as a measure 
for comparing output coefficients in supply-side input-output models. Consider a case where 

13 75 45
53 21 48
67 68 93

=
 
 
 
 

Z  and 
130
150
220

=
 
 
 
  

f  for a base year.  If final demands for the next year are projected 

to be 
200
300
500

new =
 
 
 
  

f  and the change in interindustry transactions is expected to be 

0 5 0
10 0 0
0 0 15

∆ =
 
 
 
  

Z  the MAPD between the direct output coefficients for the base year and next 

year is found by first computing the output coefficients for the two years. First, 

1

.049   .285   .171
ˆ .195   .077   .176

.150   .152   .208

−

 
 = =  
  

B x Z , and, since 
 13    80    45
 63    21    48
 67    68   108

new

 
 = + ∆ =  
  

Z Z Z  and 

338
432
743

new new new

 
 = + =  
  

x f Z i , newB   is found as 1

.038   .123   .133
ˆ( ) .146   .049   .111

.090   .092   .145

new new new−

 
 = =  
  

B x Z .  

The MAPD between B and newB  is found by 
2

1 1
(1/ ) [ / ] 100 29.1

n n
new

ij ij ij
i j

MAPD n b b b
= =

= − × =∑∑ . For the total output coefficients or output 

inverses, 1

1.195   .427   .353
( )  .307   1.235  .341

 .284   .317   1.394

−

 
 = − =  
  

G I B  and 1

1.104   .295     .210
( )  .185   1.114    .174

 .136   .150     1.211

new new −

 
 = − =  
  

G I B , 

the MAPD between G and newG  is 32.806. 
 
Problem 7.3  
This problem explores the calculation of relative price changes using the Ghosh price model. For 

an input-output transactions matrix of 
384 520 831
35 54 530
672 8 380

=
 
 
 
  

Z  and total outputs of 
2,500
1, 200
3,000

=
 
 
 
  

x  

given for a base year, if additional growth in value added for the next year is projected to result 

in 
2,000
1,000
1,500

new =
 
 
 
  

v , the corresponding price changes of output for the three industries for the new 
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year relative to the base year are found by first calculating 1

.154 .208 .332
ˆ( ) .029 .045 .442

.224 .003 .127

−

 
 = =  
  

B x Z and 

1

1.37      .3      .673
( ) .205   1.093   .631

.352    .080   1.320

−

 
 = − =  
  

G I B . Using the Ghosh price model, the new total outputs are 

found as 
3, 472.7
1,814.5
3,956.9

new new

 
 ′= =  
  

x G v and the relative price changes between the two years are 

[ ]1ˆ 1.389   1.512   1.319new−= =π x x .  
 
Problem 7.4 
This problem explores the calculation of relative price changes using the Leontief price model 
and demonstrates that the Leontief price model produces the same relative price changes of 
industrial output for the new year relative to the base year as found in problem 7.3, thus showing 
that the Ghosh and Leontief price models produce the same result. Using the basic data in 

Problem 7.3, first recall that 
384 520 831
35 54 530
672 8 380

=
 
 
 
  

Z and 
2,500
1, 200
3,000

=
 
 
 
  

x  produces 

1

.154 .433 .277
ˆ .014 .045 .177

.269 .007 .127

−

 
 = =  
  

A Zx  and 1

1.37 .626 .561
( ) .098 1.093 .252

.422 .201 1.32

−

 
 = − =  
  

L I A . Also, with the new 

year’s value added defined in problem 7.3 as 
2,000
1,000
1,500

new

 
 =  
  

v , we calculate the vector of the new 

value added as a fraction of the base year total outputs, [ ]1ˆ .8   .833   .5new new
c

− ′= =v x v .  
The vector of relative price changes using the Leontief price model as 

[ ]1( ) 1.389   1.512   1.319new new
c c

− ′′ ′= − = =p I A v L v which are identical to the Ghosh model price 
changes, i.e., =p π from problem 7.3. 
 
Problem 7.5 
This problem explores the basic concepts of forward and backward linkages in input-output 

models.  Consider the case of a matrix of transactions, 

418 687 589 931
847 527 92 654
416 702 911 763
263 48 737 329

=

 
 
 
 
  

Z , and vector of 
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total final demands, 

2,000
3,000
2,500
1,500

 
 
 =
 
 
 

f . With 

4,625
5,120
5,292
2,877

 
 
 = + =
 
 
 

x f Zi  we compute the matrix of direct 

requirements, 1

.090  .134  .111  .324

.183  .103  .017  .227
ˆ

.090  .137  .172  .265

.057  .009  .139  .114

−

 
 
 = =
 
 
 

A Zx  , and 

1

1.207   .227    .264    .579
 .280   1.182   .138    .447

( )
 .214    .241   1.332   .539
 .114    .065    .228   1.256

−

 
 
 = − =
 
 
 

L I A , for the demand-driven model. We next compute 

1

.090  .149  .127  .201

.165  .103  .018  .128
ˆ

.079  .133  .172  .144

.091  .017  .256  .114

−

 
 
 = =
 
 
 

B x Z , the matrix of direct requirements, and 

1

1.207   .251    .303    .360
 .253   1.182   .142    .251

( )
 .187    .233   1.332   .293
 .183    .116    .419   1.256

−

 
 
 = − =
 
 
 

G I B , the matrix of total requirements for supply driven 

input-output models.  

The vectors of direct and total backward linkages are found as 
[ ].420   .384   .440   .930′ =i A  and [ ]1.815   1.716   1.962   2.820′ =i L , respectively, from the 

demand-driven model. The vectors of direct and total forward linkages are found as 

[ ]0.568   0.414   0.528   0.479 ′=Bi  and [ ]2.121   1.828   2.046   1.974 ′=Gi , respectively, from 
the supply-driven model. 
Problem 7.6 
This problem explores spatial forward and backward linkages in an interregional input-output 
(IRIO) model using the three region IRIO table for Japan given in problem in Table A4.1.1 of 
Appendix S4.1.  

First define ( ) (1/ )rr rrB d n ′= i A i  for regions, 1, 2, and 3r =  designating the average 
direct spatial linkage of a region to itself as the average of the intraregional technical 
coefficients. Also designate ( ) (1/ )sr srB d n ′= i A i  for regions 1, 2, and 3r =  and 1, 2, and 3s =  
but for r s≠  to designate the average direct interregional spatial linkage of a region to other 
regions as the average of the interregional technical coefficients relating the regions. Similarly, 
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( ) (1/ )rr rrB t n ′= i L i  and ( ) (1/ )sr srB t n ′= i L i  designate the total spatial linkage of a region to itself 
and the total spatial linkage between regions, respectively.  

For the Japanese IRIO model provided, 5n =  industry sectors, and , , andr c n s=  for the 
Japanese central, north, and south regions, the specific direct backward linkage measures are 

( ) ( ) ( ) ( )c cc cn csB d B d B d B d= + + , ( ) ( ) ( ) ( )n nn nc nsB d B d B d B d= + +  and 
( ) ( ) ( ) ( )s ss sn scB d B d B d B d= + + . These are the direct backward linkages for the central, north, 

and south regions, respectively. Analogous notation applies for the total backward linkages and 
the direct and total forward linkages which use B and G instead of A and L.   

The results of these calculations are the following: 
        r = Central r =  North r = South          

 ( )rb d     .865     .741     .939 

  ( )rb t      3.177    2.731    3.434 

( )rf d     .579     .453     .597 

 ( )rf t     2.615    2.483    2.595 
From the table of results, we can observe that the North region is both the least backward-linked 
and forward-linked among the 3 regions.  
Problem 7.7 
This problem explores the concept of hypothetically extracting an industry sector from the 
economy and calculating the decrease in total output of the economy resulting from the 
hypothetical extraction using a highly aggregated version of the 2005 U.S. input-output table: 
 

 
 

To hypothetically extract the agriculture sector (sector 1), we set the first row and first 
column of the matrix A to zero, the result of which we define as (1)A  and set the first element of 
the vector f to zero which we define as (1)f . Then we compute (1) (1) 1( )−= −L I A   and 
subsequently (1) (1)

1 54,744,946t ′ ′= − =i x i L f , which would be the reduction in total output of the 
economy if the agriculture sector were extracted.  

If we now define ( ) ( )100 ( ) /i i
ip ′ ′ ′= × −i x i L f i x   as the percentage reduction in total output 

by extracting industry i, we can compute the vector of all the seven 'sip  for this economy as 

[ ]2.4   2.6  11.5  29.8  22.0  54.8  18.8 ′=p , which indicates that the services sector (sector 6) 
would yield the highest reduction in output from a hypothetical extraction with a 54.8 percent 
reduction in total output.  

1 2 3 4 5 6 7 Tot. Output
1 Agriculture 0.2258 0.0000 0.0015 0.0384 0.0001 0.0017 0.0007 312,754
2 Mining 0.0027 0.1432 0.0075 0.0675 0.0367 0.0004 0.0070 396,563
3 Construction 0.0051 0.0002 0.0010 0.0018 0.0037 0.0071 0.0215 1,302,388
4 Manufacturing 0.1955 0.0877 0.2591 0.3222 0.0547 0.0566 0.1010 4,485,529
5 Trade, Transport & Utilities 0.0819 0.0422 0.1011 0.0994 0.0704 0.0334 0.0487 3,355,944
6 Services 0.0843 0.1276 0.1225 0.1172 0.1760 0.2783 0.2026 10,477,640
7 Other 0.0099 0.0095 0.0093 0.0219 0.0215 0.0188 0.0240 2,526,325

US Technical Coefficients 2005
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Problem 7.8 
This problem explores the concept of “inverse important” coefficients in a Leontief model. 

Consider an economy with 
8 64 89
28 44 77
48 24 28

=
 
 
 
 

Z  and 

300
250
200

=
 
 
 
  

x . Using the element 13a  as an 

example, we define the criteria for a sector designated as “inverse important” as the following. 
 We define parameters 30α =  and 5β =  as specifying that a 30 percent change in 13a  

generates a 5 percent change in one or more elements in the associated Leontief inverse. We can 
explore the sensitivity of the results to the values of and  α β  as a relative indication of inverse 
importance. First, compute the matrix of technical coefficients, 

1

0.0267    0.2560    0.4450
ˆ 0.0933    0.1760    0.3850

0.1600    0.0960    0.1400

−

 
 = =  
  

A Zx , and the matrix of total requirements, 

1

1.2107    0.4738    0.8386
( ) 0.2557    1.3805    0.7503

0.2538    0.2423    1.4026

−

 
 = − =  
  

L I A .  

If 13a  is increased to 0.5785 ( 30)α = we find *
(13)

1.2531    0.5144    1.0732
0.2647    1.3890    0.7999
0.2627    0.2507    1.4517

 
 =  
  

L  and 

consequently *
(13) (13)

3.5069    8.5531   27.9806
100{[ ] } 3.5069    0.6201    6.6051

3.5069    3.5069    3.5069

 
 = − =  
  

P L L L , which is the element by 

element normalized percentage difference between elements in *
(13)L  and L. In this case, 13a  is 

identified as inverse important because a 30 percent change in its value causes a greater than 5 
percent change in three inverse elements— 12 13 23, , andl l l . Notice that, as expected, the largest 

impact of a change in 13a  is on the corresponding element in L, namely 13l .  
If we change the parameters to 20α =  and 10β = then, 

*
(13)

1.2387    0.5005    0.9932
0.2616    1.3861    0.7830
0.2597    0.2478    1.4350

 
 =  
  

L and (13)

2.3109    5.6362   18.4382
2.3109    0.4086    4.3525
2.3109    2.3109    2.3109

 
 =  
  

P , so 13a  would still be 

classified as inverse important, since there is (now only) one element, 13l , that is changed by 
more than 10β =  percent. Finally, as another illustration, with 10α =  and 10β = , we find 

*
(13)

1.2245    0.4870    0.9150
0.2586    1.3832    0.7664
0.2567    0.2450    1.4186

 
 =  
  

L and (13)

1.1423    2.7859    9.1138
1.1423    0.2020    2.1514
1.1423    1.1423    1.1423

 
 =  
  

P . In this case, 13a  
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would not be labeled inverse important since the largest percentage change in an element of the 
Leontief inverse is less than the threshold of 10β =  percent. 
 
Problem 7.9 
This problem explores the use of a supply-driven model to determine the sensitivity of an 
economy to an interruption in availability of a scarce-factor input—for example, a strike—in one 
of the sectors using the U.S. economy for 2005 (using the data presented in problem 7.7).  

For this economy, from problem 7.7, specified are A and x from which we can compute 
the interindustry transaction matrix, 

 

70,629 10 1,973 172,428 435 18,296 1,739
832 56,798 9,707 302,783 123,117 4,273 17,745

1,597 74 1,329 7,886 12,449 74,678 54,282
61,158 34,779 3,37,412 1,445,451 183,602 593,372 255,282
25,620 16,748 131,675 445,685 236,30

ˆ
9 350

= =Z Ax
,316 123,084

26352 50611 159600 525827 590537 2915594 511919
3091 3773 12087 98416 72256 197062 60628

 
 
 
 
 
 
 
 
 
  

.  

With Z specified we can now find the direct and total supply coefficients, 1ˆ −=B x Z  and 
1( )−= −G I B , respectively as:  

0.2258 0.0000 0.0063 0.5513 0.0014 0.0585 0.0056
0.0021 0.1432 0.0245 0.7635 0.3105 0.0108 0.0447
0.0012 0.0001 0.0010 0.0061 0.0096 0.0573 0.0417
0.0136 0.0078 0.0752 0.3222 0.0409 0.1323 0.0569
0.0076 0.0050 0.0392 0.1328 0.0704

=B
0.1044 0.0367

0.0025 0.0048 0.0152 0.0502 0.0564 0.2783 0.0489
0.0012 0.0015 0.0048 0.0390 0.0286 0.0780 0.0240

 
 
 
 
 
 
 
 
 

 

1.3139 0.0129 0.1027 1.1313 0.0811 0.3446 0.0987
0.0365 1.1863 0.1691 1.5050 0.4944 0.4018 0.1883
0.0026 0.0010 1.0054 0.0257 0.0190 0.0930 0.0499
0.0301 0.0169 0.1284 1.5707 0.0997 0.3280 0.1182
0.0165 0.0102 0.0674 0.2631 1.1072

=G
0.2229 0.0716

0.0085 0.0102 0.0379 0.1502 0.1005 1.4409 0.0868
0.0041 0.0036 0.0154 0.0863 0.0454 0.1363 1.0390

 
 
 
 
 
 
 
 
 

  

We can also determine the corresponding vector of total value added as: 
123,475  233,770  648,605  1, 487,054  2,137,239  6,324,050  1,501[ ,645]′ ′ ′= − =v x i Z   

 As an example, a 10 percent reduction in construction primary inputs (sector 3) would 
reduce 3v  to 583,745 from 648,605.   

If we define the new v incorporating the reduced manufacturing labor input as v , then we 
can compute  
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312,584  396,496  1, 237,177  4, 483,860  3,354,712  10,471,611  2,52 1][ 3,09′ ′= =x v G , 

which represents a 0.33 percent reduction in total output ( ′i x  compared with ′i x ). For 
comparison, a 10 percent reduction in the services sector (sector 6) generates a 5.08 percent 
reduction in total output.  
Problem 7.10  
This problem explores the direct and the direct and indirect forward and backward linkages for 
the sectors in the U.S. economy and examine how these linkages have changed over time, using 
the seven-sector input-output data for the United States presented in the Supplemental Resources 
to this text (Appendix SD1, described in Appendix B).  

The following shows, for the seven industry sectors for the years 1919-2018, the 
backward direct linkages, ( )d ′=b i Α  [denoted as B(d) in the table, found as the column sums of 
A for each year along with the average across the 7 sectors, b(d)], the backward total linkages, 

( )t ′=b i L  [denoted as B(t) in the table found by the column sums of L along with the average 
across the 7 sectors; b(t)];the forward direct linkages ( )d =f Bi  [denoted by F(d) in the table, 
found as the row sums of B along with the average across the 7 sectors, f(d)]; and the forward 
total linkages, ( )t =f Gi  [denoted by F(t) in the table, found by the row sums of G, along with 
the average across the 7 sectors, f(t)].  
 

 
 

B(d) 1 2 3 4 5 6 7 b(d)
1919 0.556 0.748 0.729 0.722 0.57 0.546 0.524 0.628
1929 0.57 0.653 0.59 0.706 0.53 0.638 0.444 0.59
1938 0.624 0.724 0.517 0.807 0.639 0.449 0.626 0.627
1947 0.38 0.467 0.58 0.657 0.348 0.358 0.161 0.422
1958 0.462 0.472 0.609 0.633 0.35 0.333 0.266 0.446
1963 0.528 0.459 0.586 0.62 0.346 0.326 0.238 0.443
1967 0.548 0.492 0.553 0.611 0.334 0.335 0.265 0.448
1972 0.541 0.488 0.596 0.619 0.302 0.335 0.239 0.446
1977 0.572 0.479 0.559 0.656 0.357 0.332 0.263 0.46
1982 0.581 0.447 0.557 0.665 0.379 0.325 0.302 0.465
1987 0.547 0.454 0.573 0.636 0.347 0.351 0.308 0.459
1992 0.546 0.494 0.544 0.629 0.344 0.347 0.294 0.457
1997 0.579 0.463 0.521 0.645 0.351 0.372 0.312 0.463
2002 0.604 0.425 0.491 0.63 0.36 0.374 0.334 0.46
2007 0.585 0.34 0.466 0.659 0.395 0.393 0.357 0.456
2012 0.603 0.415 0.485 0.666 0.412 0.374 0.363 0.474
2018 0.627 0.444 0.478 0.627 0.415 0.389 0.358 0.477
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B(t) 1 2 3 4 5 6 7 b(t)
1919 2.366 2.922 3.01 2.879 2.547 2.354 2.47 2.65
1929 2.359 2.5 2.475 2.701 2.292 2.415 2.141 2.412
1938 2.915 3.245 2.702 3.525 2.988 2.401 2.978 2.965
1947 1.742 1.916 2.219 2.359 1.648 1.703 1.296 1.84
1958 1.899 1.913 2.262 2.304 1.636 1.634 1.528 1.882
1963 2.066 1.843 2.219 2.291 1.623 1.6 1.467 1.873
1967 2.1 1.92 2.133 2.259 1.596 1.613 1.509 1.876
1972 2.071 1.886 2.2 2.263 1.524 1.602 1.454 1.857
1977 2.218 1.944 2.215 2.42 1.662 1.622 1.522 1.943
1982 2.23 1.862 2.179 2.41 1.707 1.604 1.595 1.941
1987 2.088 1.838 2.142 2.302 1.616 1.63 1.59 1.887
1992 2.078 1.892 2.071 2.266 1.602 1.607 1.543 1.865
1997 2.178 1.872 2.068 2.374 1.617 1.658 1.599 1.909
2002 2.211 1.772 1.974 2.294 1.622 1.649 1.62 1.877
2007 2.214 1.634 1.967 2.38 1.716 1.707 1.692 1.901
2012 2.271 1.797 2.011 2.415 1.752 1.667 1.704 1.945
2018 2.299 1.837 1.964 2.297 1.739 1.687 1.684 1.929

F(d) 1 2 3 4 5 6 7 f(d)
1919 0.821 0.806 0.671 0.531 0.679 0.307 0.631 0.635
1929 0.743 0.835 0.624 0.554 0.691 0.412 0.52 0.625
1938 0.717 0.871 0.732 0.571 0.959 0.18 0.879 0.701
1947 0.866 0.812 0.161 0.555 0.406 0.41 0.123 0.476
1958 0.808 0.917 0.151 0.598 0.448 0.39 0.137 0.493
1963 0.847 0.947 0.114 0.607 0.412 0.373 0.138 0.491
1967 0.844 0.915 0.139 0.6 0.416 0.386 0.128 0.49
1972 0.846 0.976 0.162 0.601 0.42 0.383 0.12 0.501
1977 0.793 0.252 0.133 0.619 0.442 0.378 0.128 0.535
1982 0.786 0.957 0.122 0.62 0.448 0.384 0.144 0.494
1987 0.888 0.096 0.146 0.619 0.417 0.404 0.151 0.532
1992 0.8 0.115 0.173 0.6 0.412 0.39 0.163 0.522
1997 0.812 0.14 0.127 0.627 0.4 0.418 0.171 0.528
2002 0.812 0.244 0.134 0.628 0.391 0.425 0.16 0.542
2007 0.811 0.294 0.155 0.657 0.403 0.43 0.159 0.558
2012 0.848 0.197 0.218 0.643 0.404 0.416 0.159 0.555
2018 0.84 0.879 0.179 0.659 0.403 0.43 0.164 0.508
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F(t) 1 2 3 4 5 6 7 f(t)
1919 3.357 3.081 2.725 2.36 2.902 1.8 2.571 2.685
1929 2.941 3.038 2.444 2.316 2.75 1.947 2.269 2.529
1938 3.153 4.006 3.379 2.789 3.981 1.579 3.702 3.227
1947 2.885 2.744 1.271 2.122 1.813 1.782 1.208 1.975
1958 2.802 3.016 1.251 2.194 1.895 1.747 1.237 2.02
1963 2.97 3.041 1.185 2.22 1.81 1.693 1.252 2.024
1967 2.989 2.949 1.229 2.197 1.809 1.712 1.226 2.016
1972 2.974 3.089 1.258 2.184 1.812 1.691 1.216 2.032
1977 2.872 3.858 1.222 2.293 1.902 1.715 1.244 2.158
1982 2.851 3.125 1.199 2.266 1.905 1.72 1.271 2.048
1987 3.105 3.388 1.231 2.224 1.812 1.725 1.276 2.109
1992 2.819 3.355 1.27 2.168 1.785 1.686 1.29 2.053
1997 2.952 3.511 1.22 2.283 1.766 1.752 1.31 2.113
2002 2.917 3.675 1.228 2.234 1.724 1.748 1.285 2.116
2007 2.976 3.966 1.268 2.334 1.77 1.772 1.29 2.197
2012 3.073 3.784 1.369 2.309 1.783 1.74 1.29 2.193
2018 3.04 2.96 1.298 2.306 1.761 1.763 1.297 2.061
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Chapter 8, Decomposition Approaches 
Chapter 8 introduces and illustrates the basic concepts of structural decomposition analysis 
(SDA) within an input–output framework, in related additive and multiplicative formulations. 
The application of SDA to MRIO is developed to introduce a spatial context. Appendices to this 
chapter develop extended presentations of additional decomposition results as well as an 
overview of early applied studies and some further mathematical results. The exercise problems 
for this chapter illustrate various analytical features of SDA. 
 
Problem 8.1 
This problem explores the basic principles of SDA. Consider an input-output economy specified 
at two points in time, 0 1 and t t by matrices of interindustry transactions and final demand vectors: 

0 0 1 1

10 20 30 60 15 25 40 75
5 2 25 ,  40 ,  12 7.5 30 ,  and  55
20 40 60 55 10 30 40 40

= = = =
       
       
       
              

Z f Z f . To measure how the 

economy has changed in structure over the period, we can compute for each sector the change in 
total output between the two years that was attributable to changing final demand or to changing 
technology by the following.  

First, we compute 0 0 0 1

.083   .260   .176
ˆ( ) .042   .026   .147

.167   .519   .353

−

 
 = =  
  

A Z x and 

1 1 1 1

.097   .239   .333
ˆ( ) .077   .072   .250

.065   .287   .333

−

 
 = =  
  

A Z x . Next, 0 0 1

1.199 .562 .455
( ) .111 1.221 .308

.398 1.125 1.910

−

 
 = − =  
  

L I A and 

1 1 1

1.214 .566 .82
( ) .15 1.289 .558

.182 1.61 1.82

−

 
 = − =  
  

L I A . Then 1 0

15
10
10

 
 ∆ = − =  
 − 

f f f  and 

1 0

.015 .004 .365

.039 .068 .251
.216 .515 .09

 
 ∆ = − =  
 − − − 

L L L .  

We can find 0 0 0 1 1 1
120 155
77  and 104.5

170 120

   
   = = = =
   
   

x L f x Lf  so 
35

27.5
50

 
 ∆ =  
 − 

x . Then, using the 

basic structural decomposition relationship, 0 1 0 1

Technology change effect Final-demand change effect

(1/ 2)( )( ) (1/ 2)( )( )∆ = ∆ + + + ∆x L f f L L f
 

,  we 

have the results in the following table (figures in parentheses are percentages of the total output 
change in each row). 
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 Output Change Technology Change 
Contribution 

Final-Demand 
Change Contribution 

Sector 1 35 17.65 (50) 17.35 (50) 
Sector 2 27.5 17.3 (63) 10.2 (37) 
Sector 3 -50 -44.4 (89) -5.6 (11) 
Economy-wide Total 12.5 -9.45 (-75) 21.95 (175) 

 
 

Problem 8.2 
This problem illustrates the basic principles of SDA using input-output data for the U.S. 
economy for the years 1972 and 2002 aggregated to 7 industry sectors.  
 

 
 

To compute the changes in total output between 1972 and 2002 for all sectors attributed 
to changes in final demand and to changes in technology, we employ the basic SDA relationship, 

0 1 0 1

Technology change effect Final demand change effect

(1/ 2)( )( ) (1/ 2)( )( )∆ = ∆ + + + ∆x L f f L L f
 

, to yield: 

 

 
 

A and x for US, 2002 1 2 3 4 5 6 7 Tot. Output
1  Agriculture 0.2637 0.0020 0.0028 0.0374 0.0007 0.0008 0.0008 270,514
2  Mining 0.0032 0.0467 0.0097 0.0377 0.0226 0.0005 0.0040 184,516
3  Construction 0.0040 0.0336 0.0007 0.0030 0.0053 0.0078 0.0186 967,568
4  Manufacturing 0.1502 0.0942 0.2399 0.3464 0.0645 0.0464 0.0939 3,850,417
5  Trade, Transport & Utils 0.0868 0.0676 0.0960 0.0920 0.0816 0.0302 0.0475 2,811,865
6  Services 0.1310 0.2416 0.1436 0.1349 0.1813 0.2640 0.1954 8,948,582
7  Other 0.0098 0.0159 0.0083 0.0160 0.0276 0.0179 0.0203 2,146,282

A and x for US, 1972 1 2 3 4 5 6 7 Tot. Output
1  Agriculture 0.3141 0.0003 0.0028 0.0542 0.0010 0.0053 0.0012 83,955
2  Mining 0.0019 0.0542 0.0091 0.0296 0.0160 0.0002 0.0020 30,386
3  Construction 0.0069 0.0282 0.0003 0.0043 0.0156 0.0263 0.0166 165,998
4  Manufacturing 0.1436 0.0943 0.3522 0.3771 0.0407 0.0892 0.0078 761,194
5  Trade, Transport & Utils 0.0616 0.0481 0.1043 0.0786 0.0980 0.0442 0.0202 377,389
6  Services 0.0865 0.1471 0.0686 0.0591 0.1157 0.1621 0.0105 522,215
7  Other 0.0023 0.0063 0.0042 0.0117 0.0118 0.0096 0.0033 161,207

Sector       Technology Final Demand
1 186,559 -107,931 294,490
2 154,131 27,372 126,758
3 801,570 -73,551 875,121
4 3,089,223 -209,242 3,298,465
5 2,434,476 -3,750 2,438,225
6 8,426,367 1,224,317 7,202,050
7 1,985,075 109,282 1,875,793

∆x
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Problem 8.3 
This problem illustrates a special case of SDA. Consider an input-output economy specified by 
transactions matrices and final demand vectors for periods 0 and 1. 

0 0 1 1

10 20 25 45 15 30 37.5 67.5
15 5 30 ,  30 ,  22.5 7.5 45 ,  and  45
30 40 5 25 45 60 7.5 37.5

= = = =
       
       
       
              

Z f Z f  

If we apply the basic SDA formulation in this case, we find that the changes represent uniform 
growth, i.e., both transactions and final demand grow uniformly by 50 percent between periods 0 
and 1 as will the resulting total outputs (perhaps obvious in retrospect). 
 
Problem 8.4 
This problem explores a more complex form of SDA involving changes in technology and final 
demand as well as interactions between technology and final demand. Again, consider two 
observations on an input-output economy specified by matrices of interindustry transactions and 
vectors of total outputs for two years, designate 0 and 1: 

0 0 1 1

20 30 45 55
,  ,  35 23 50 ,  50

50 65 24 60

12 15 35 50
24 11 30 35
36 50 8 26

= = = =

       
       
       
             

Z f Z f .  

From these basic data we can compute the vectors of total outputs and the matrices of 

technical requirements and total requirements for both years: 0 0 0

112
100
120

 
 = + =  
  

x f Z i , 

1 1 1

150
158
199

 
 = + =  
  

x f Z i , 0 0 0 1

.107 .150 .292
ˆ( ) .214 .110 .25

.321 .5 .067

−

 
 = =  
  

A Z x , 1 1 1 1

.133 .19 .226
ˆ( ) .233 .146 .251

.333 .411 .121

−

 
 = =  
  

A Z x , 

0 1

1.491 .604 .628
( ) .592 1.563 .604

.831 1.045 1.611

−

 
 = − =  
  

L I A , and 1 1

1.541 .618 .573
( ) .687 1.633 .643

.905 .998 1.655

−

 
 = − =  
  

L I A .  

The changes in total outputs, final demands, and elements of the total requirements 

matrices are the 1 0

38
58
79

 
 = − =  
  

Δx x x , 1 0

5
15
34

 
 = − =  
  

Δf f f , and 

1 0

.05 .014 .055
.095 .07 .039
.075 .047 .044

− 
 = − =  
 − 

ΔL L L , respectively. Now we can compute a variety of 

alternative structural decompositions accounting for the interaction term as summarized in 
equations (8.3) through (8.7): 
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(8.3) ( )1 0 1 0 0 1 –   ( ) ( ) ( ) = + + = ∆ +Δx L f Δf L ΔL f L f L Δf   
(8.4) 0 1 0 1 1 0( ) (  – – ) ( ) ( ) = + = ∆ +Δx L ΔL f L f Δf L f L Δf   
(8.5) 0 0 0 0 0 0  ( ) ( ) ( ) ( )(( ) )= + + ∆ − = ∆ + ∆ + ∆ ∆Δx L ΔL f f L f L f L f L f   
(8.6) 1 1 1 1 1 1– –( )( ) ( ) ( ) ( )(– )–= = ∆ + ∆ ∆Δx Lf L ΔL f Δf L f L Δf L f   
(8.7) 0 1 0 1

Technology change Final-demand change

(1/ 2) ( )( ) (1/ 2) ( )( )= ∆ + + + ∆Δx L f f L L f
 

  

The following are the results from applying these equations:  
 

 
 
Problem 8.5 
This problem explores further sector-specific and economy-wide structural decomposition with 
additional details for sectoral technology and final-demand decomposition of level, mix, and 
distribution using the input-output economy specified in problem 8.4. First, we assume that the 

Output Percent Output Percent Output Percent Output Percent
Sector 1 38 100 1.55 4.09 36.45 95.91 0.00 0.00
Sector 2 58 100 8.21 14.15 49.79 85.85 0.00 0.00
Sector 3 79 100 3.23 4.09 75.77 95.91 0.00 0.00
Total 175 100 12.99 7.42 162.01 92.58 0.00 0.00
Sector 1 38 100 0.15 0.39 37.85 99.61 0.00 0.00
Sector 2 58 100 11.08 19.10 46.92 80.90 0.00 0.00
Sector 3 79 100 4.40 5.57 74.60 94.43 0.00 0.00
Total 175 100 15.62 8.93 159.38 91.07 0.00 0.00
Sector 1 38 100 1.55 4.09 37.85 99.61 -1.41 -3.70
Sector 2 58 100 8.21 14.15 46.92 80.90 2.87 4.94
Sector 3 79 100 3.23 4.09 74.60 94.43 1.17 1.48
Total 175 100 12.99 7.42 159.38 91.07 2.63 1.50
Sector 1 38 100 0.15 0.39 36.45 95.91 1.41 3.70
Sector 2 58 100 11.08 19.10 49.79 85.85 -2.87 -4.94
Sector 3 79 100 4.40 5.57 75.77 95.91 -1.17 -1.48
Total 175 100 15.62 8.93 162.01 92.58 -2.63 -1.50
Sector 1 38 100 0.85 2.24 37.15 97.76 0.00 0.00
Sector 2 58 100 9.64 16.63 48.36 83.37 0.00 0.00
Sector 3 79 100 3.81 4.83 75.19 95.17 0.00 0.00
Total 175 100 14.31 8.17 160.69 91.83 0.00 0.00

Equation (8.3)

Equation (8.4)

Equation (8.5)

Interaction TermTotal Output Change
Technology Change 

Contribution
Final-Demand 

Change Contribution

Equation (8.6)

Equation (8.7)
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final demand vectors can be specified with two components: 0 0 0
1 2

20 30
15 20  
12 14

 
  = =   
  

F f f and 

1 1 1
1 2

25 30
30 20
35 25

 
  = =   
  

F f f (in both cases =f Fi ).  

The quantities 0x ,  1x , 0A , 1A , 0L , 1L , ∆f , ∆x  and ∆L  were computed in problem 8.4. 
From F we can now compute distribution across final demand categories [from (8.13)]: 

0 147 /111 0.4234 58 /111 0.5455
and

64 /111 0.5766 53 /111 0.4545
       

= = = =       
       

d d  

The bridge matrices [from (8.14)] are found as 

0

20 30 0.4255 0.4545
1/ 47 0

15 20 0.3191 0.3636  and
0 1/ 64

12 14 0.2553 0.1818

   
    = =           

B  

1

25 30 0.2778 0.4000
1/ 90 0

30 20 0.3333 0.2667
0 1/ 75

35 25 0.3889 0.3333

   
    = =           

B  

And changes are computed as   

.1478 .0687
.1220

,   .0142 .0458 and 54
.1220

.1336 .1146
f

− − 
   ∆ = ∆ = − ∆ =   −    

d B  

Equation (8.31) defines, for Δx, both the final-demand decomposition (including 
distribution across final-demand categories) and the technology change decomposition in the 
same expression, now including all six of the change components, i.e., the three-sector specific 
technology change components, the final demand level component, the final demand mix 
component, and the final demand distribution component: 

( )

0 1 0 1

11 0 0 1 1 (2) 0 0 1

Effect of technology change in sector 1 Effect of technology change in sector 2

1

(1/ 2)( )( ) (1/ 2)( )( )

(1/ 2)[ ( ) ]( ) (1/ 2)[ ( ) ]( )

(1/ 2)[ (

∆ = ∆ + + + ∆

= ∆ + + ∆ +

+ ∆

x L f f L L f

L A L f f L A L f f

L A

 

(3) 0 0 1 0 1 0 0 1 1

Effect of technology change in sector 3 Effect of change in final-demand level

0 1 0 1 1 0

Effect of change in fina

) ]( ) (1/ 4)( )( )( )

(1/ 4)( )[ ( ) ( ) ]

f

f f

+ + + ∆ +

+ + ∆ + ∆

L f f L L B d B d

L L B d P d

 

0 1 0 0 1 1

l-demand mix Effect of change in final-demand distribution

(1/ 4)( )( )( )f f+ + + ∆L L B B d
 
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Application of equation (8.31) yields the various change contributions given in the table 
below. 
 

 
 
 

Sector 1 Sector 2 Sector 3 Total Level Mix Dist. Total
Output 7.72 4.03 -10.90 0.85 51.97 -13.43 -1.39 37.15

Percentage 20 11 -29 2 137 -35 -4 98

Output 7.43 3.52 -1.30 9.64 50.27 -2.59 0.67 48.36
Percentage 13 6 -2 17 87 -4 1 83

Output 8.17 -9.27 4.91 3.81 61.79 12.67 0.73 75.19

Percentage 10 -12 6 5 78 16 1 95

Output 23.32 -1.72 -7.30 14.31 164.02 -3.34 0.01 160.69
Percentage 13 -1 -4 8 94 -2 0 92

Sector 2 58

Output 
Change

Technology Change Contribution Final Demand Change Contribution

Sector 1 38

Sector 3 79

Total 175
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Chapter 9, Nonsurvey and Partial-Survey Methods: Fundamentals  
Chapter 9 introduces approaches designed to deal with a major challenge in input–output 
analysis that the kinds of information-gathering surveys needed to collect input–output data for 
an economy can be expensive and very time consuming, resulting in tables of input–output 
coefficients that are outdated before they are produced. These techniques, known as partial 
survey and nonsurvey approaches to input–output table construction, are central to modern 
applications of input–output analysis.  
 The chapter begins by reviewing the basic factors contributing to the stability of input– 
output data over time, such as changing technology, prices, and the scale and scope of business 
enterprises. Several techniques for updating input–output data are developed and the economic 
implications of each described. The bulk of the chapter is concerned with the widely utilized 
biproportional scaling (or RAS) technique and some related “hybrid model” variants. The 
exercise problems for this chapter explore various nonsurvey approaches to assembling input-
output tables and measures for the accuracy of such tables. 
 
Problem 9.1 
This exercise explores the adjustment of input-output tables to express input-output relationships 
in constant value terms in prices of another point in time using highly aggregated U.S. input-
output tables for 19971, 2003 and 2005. The following are the make and use tables for these 
years all expressed in current year dollars. 
 

 
  

 
1 These tables differ from those provided in the supplemental resources for this text (described in 
Appendix B in the text) in that they reflect data assembled “before redefinitions” as discussed in 
Chapter 4. 

US Use Matrix 1997 1 2 3 4 5 6 7 Imports
1 Agriculture 74,938      15             1,121        150,341    2,752        13,400        11             (23,123)       
2 Mining 370           19,461      4,281        112,513    53,778      5,189          30             (64,216)       
3 Construction 1,122        29             832           7,499        11,758      50,631        27             -                  
4 Manufacturing 49,806      19,275      178,903    1,362,660 169,915    418,412      1,914        (765,454)     
5 Trade, Transport & Utilities 21,650      11,125      76,056      380,272    199,004    224,271      612           6,337          
6 Services 32,941      45,234      107,723    483,686    545,779    1,592,426   3,801        (16,942)       
7 Other 63             781           422           33,905      19,771      26,730        -               (126,350)     

US Make Matrix 1997 1 2 3 4 5 6 7 Ind. Output
1 Agriculture 284,511    -               65             356           455           1,152          -               286,539      
2 Mining -               158,239    109           9,752        295           258             -               168,653      
3 Construction -               -               670,210    -               -               -                 -               670,210      
4 Manufacturing -               727           1,258        3,703,275 39,720      36,034        3,669        3,784,683   
5 Trade, Transport & Utilities 556           381           21,393      15,239      2,201,532 141,674      -               2,380,776   
6 Services -               410           54,850      1,306        109,292    6,444,098   1,821        6,611,778   
7 Other -               -               6,206        -               -               7,010          947,023    960,238      
Total Commodity Output 285,067    159,757    754,091    3,729,928 2,351,295 6,630,226   952,513    14,862,876 
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First, as one variant, we produce industry-by-industry transactions tables using the 
assumption of industry-based technology for these three years. That is, for each year from the 
corresponding table if the make and use matrices are V and U, respectively, and the total industry 
and commodity outputs are x and g, respectively, we construct transactions tables in current 
dollar terms by computing ˆ=Z DBx  where 1ˆ −=D Vq  and 1ˆ −=B Ux : 

  

US Use Matrix 2003 1 2 3 4 5 6 7 Imports
1 Agriculture 61,946      1               1,270        147,559    231           18,453        2,093        (26,769)       
2 Mining 441           33,299      6,927        174,235    89,246      1,058          11,507      (125,508)     
3 Construction 942           47             1,278        8,128        10,047      65,053        48,460      -                  
4 Manufacturing 47,511      22,931      265,115    1,249,629 132,673    516,730      226,689    (1,075,128)  
5 Trade, Transport & Utilities 24,325      13,211      100,510    382,630    190,185    297,537      123,523    8,065          
6 Services 25,765      42,276      147,876    509,084    490,982    2,587,543   442,674    (44,060)       
7 Other 239           1,349        2,039        48,835      35,110      83,322        36,277      (177,578)     

US Make Matrix 2003 1 2 3 4 5 6 7 Ind. Output
1 Agriculture 273,244    -               -               67             -               1,748          -               275,058      
2 Mining -               232,387    -               10,843      -               -                 -               243,231      
3 Construction -               -               1,063,285 -               -               -                 -               1,063,285   
4 Manufacturing -               -               -               3,856,583 -               30,555        3,278        3,890,416   
5 Trade, Transport & Utilities -               570           -               -               2,855,126 41               957           2,856,693   
6 Services -               475           -               -               133           9,136,001   3,278        9,139,886   
7 Other 3,359        896           -               3,936        104,957    323,996      1,827,119 2,264,263   
Total Commodity Output 276,602    234,328    1,063,285 3,871,429 2,960,216 9,492,341   1,834,631 19,732,832 

US Use Matrix 2005 1 2 3 4 5 6 7 Imports
1 Agriculture 71,682      1               1,969        174,897    335           18,047        1,671        (31,248)       
2 Mining 524           57,042      8,045        297,601    123,095    1,290          16,570      (226,059)     
3 Construction 1,597        74             1,329        7,886        12,449      74,678        54,282      -                  
4 Manufacturing 61,461      34,860      339,047    1,452,738 183,135    589,452      255,456    (1,372,424)  
5 Trade, Transport & Utilities 26,501      17,197      136,193    460,348    244,153    362,324      127,266    6,790          
6 Services 27,274      52,297      165,179    543,690    610,978    3,017,728   529,779    (50,588)       
7 Other 240           1,323        2,021        61,316      44,561      90,071        39,656      (208,971)     

US Make Matrix 2005 1 2 3 4 5 6 7 Ind. Output
1 Agriculture 310,868    -               -               65             -               1,821          -               312,754      
2 Mining -               373,811    -               22,752      -               -                 -               396,563      
3 Construction -               -               1,302,388 -               -               -                 -               1,302,388   
4 Manufacturing -               -               -               4,454,957 -               26,106        4,467        4,485,529   
5 Trade, Transport & Utilities -               808           -               -               3,354,043 47               1,046        3,355,944   
6 Services -               556           -               -               152           10,473,161 3,771        10,477,640 
7 Other 4,657        1,410        -               4,111        115,428    339,582      2,061,136 2,526,325   
Total Commodity Output 315,525    376,586    1,302,388 4,481,885 3,469,622 10,840,717 2,070,419 22,857,143 
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Suppose historical price indices for these tables are given in the following table (price 
indices in percent relative to some arbitrary earlier year): 

1997 2003 2005
Agriculture 100 113.5 122.7
Mining 96.6 131.3 201
Construction 181.6 188.9 209.9
Manufactuirng 133.7 150.8 156.9
Trade, Transport & Utilities 200.4 205.7 217.1
Services 129.3 151.6 219.8
Other 140 144.7 161.4  

To generate price indices relative to the year 2005, the elements in each row of the historical 
price indices are divided by the last element in that row to yield the following table of relative 
price indices: 

Z(1997) 1 2 3 4 5 6 7
1 74,807     27            1,170       150,337    2,897       13,738      12            
2 501          19,330     4,722       115,074    53,759     6,331        35            
3 997          26            739          6,665        10,450     44,999      24            
4 49,998     19,663     179,517   1,362,631 175,369   428,076    1,932       
5 21,358     11,509     74,280     372,728    199,152   247,197    663          
6 33,123     44,541     108,369   489,159    540,798   1,562,040 3,725       
7 106          825          540          34,282      20,330     28,677      4              

Z(2003) 1 2 3 4 5 6 7
1 61,199     9              1,286       145,882    321          18,714      2,153       
2 570          33,088     7,612       176,292    88,879     2,496        12,046     
3 942          47            1,278       8,128        10,047     65,053      48,460     
4 47,412     22,981     264,578   1,246,562 133,807   523,227    227,310   
5 23,463     12,824     96,960     369,498    183,671   287,032    119,187   
6 24,800     40,759     142,346   490,430    472,802   2,490,571 426,150   
7 2,782       3,406       10,953     83,306      58,947     182,603    55,918     

Z(2005) 1 2 3 4 5 6 7
1 70,629     10            1,973       172,428    435          18,296      1,739       
2 832          56,798     9,707       302,783    123,117   4,273        17,745     
3 1,597       74            1,329       7,886        12,449     74,678      54,282     
4 61,158     34,779     337,412   1,445,451 183,602   593,372    255,282   
5 25,620     16,748     131,675   445,685    236,309   350,316    123,084   
6 26,352     50,611     159,600   525,827    590,537   2,915,594 511,919   
7 3,091       3,773       12,087     98,416      72,256     197,062    60,628     
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The constant price transactions tables expressed relative to 2005 dollars are then found as 
(2005) (2005)

1997ˆ(1997) (1997)=Z p Z  where (2005)
1997p̂  is a matrix with the first column of the relative price 

table placed along the diagonal and zeros elsewhere.  The matrix (2003)(2003)Z   is computed in 
the same manner, i.e., (2005) (2005)

2003ˆ(2003) (2003)=Z p Z   where (2005)
2003p̂  is matrix of price indices 

converting 2003 to 2005 year prices, but (2005) (2005)
2005ˆ(2005) (2005)=Z p Z   is, of course, identical to 

the Z(2005) since 2005 is the base year of the price indices, i.e., (2005)
2005ˆ =p I : 

 

 

 
Problem 9.2 
This exercise explores measurement of year-to-year changes in technical coefficients of an input-
output model as the average of the absolute value of differences between the column sums of A 
for the same industry sectors in two different years using the series of transactions tables 
developed in exercise problem 9.1.  

We arbitrarily pick the years 1997 and 2005 with 2005 assumed to be the base year. First, 
we must compute the technical coefficients matrices for 2005 and 1997 expressed in current year 
prices, 1ˆ(2005) (2005) (2005)−=A Z x  and 1ˆ(1997) (1997) (1997)−=A Z x , as well as the technical 

1997 2003 2005
1 Agriculture 0.815 0.925 1
2 Mining 0.481 0.653 1
3 Construction 0.865 0.900 1
4 Manufacturing 0.852 0.961 1
5 Trade, Transport & Utilities 0.923 0.947 1
6 Services 0.588 0.690 1
7 Other 0.867 0.897 1

Z(1997)2005 1 2 3 4 5 6 7
1 60,967     22            953          122,524     2,361       11,197        10            
2 241          9,290       2,269       55,304       25,837     3,043          17            
3 863          22            640          5,766         9,041       38,932        21            
4 42,605     16,755     152,973   1,161,145  149,438   364,778      1,646       
5 19,715     10,624     68,566     344,057     183,832   228,182      612          
6 19,485     26,202     63,749     287,754     318,131   918,889      2,191       
7 92            715          469          29,737       17,635     24,874        4              

Z(2003)2005 1 2 3 4 5 6 7
1 56,611     8              1,190       134,944     297          17,311        1,991       
2 372          21,614     4,973       115,160     58,059     1,631          7,869       
3 847          42            1,150       7,315         9,042       58,544        43,612     
4 45,568     22,088     254,292   1,198,098  128,605   502,885      218,472   
5 22,231     12,150     91,869     350,096     174,027   271,960      112,928   
6 17,105     28,112     98,179     338,258     326,100   1,717,792   293,923   
7 2,494       3,053       9,820       74,687       52,848     163,709      50,132     



2021 August 3 
 
 

P-83 
 

coefficient matrix for 1997 expressed in 2005 (the base year) prices: 
1(2005) (2005) (2005)ˆ(1997) (1997) (1997)
−

 =  A Z x : 

 
 

 
 

 
 
Then, using the constant price technical coefficient tables, i.e., 

(2005)(2005) and (1997)A A , we compute the average of the absolute value of differences between 
the column sums of A for each industry:  

[ ](2005)1 [ (2005) (1997) ] .009 .062 .007 .02 .014 .017 .057
7

′ − =i A A . 

The most changed sectors in decreasing order are 2, 7 and 4.  If we, instead, compare the current 
price tables, (2005) and (1997)A A , these values are: 

[ ]1 [ (2005) (1997) ] .015 .032 .01 .015 .016 .01 .057
7

′ − =i A A . 

A (1997) 1 2 3 4 5 6 7
1               0.2611 0.0002 0.0017 0.0397 0.0012 0.0021 0.0000
2               0.0017 0.1146 0.0070 0.0304 0.0226 0.0010 0.0000
3               0.0035 0.0002 0.0011 0.0018 0.0044 0.0068 0.0000
4               0.1745 0.1166 0.2679 0.3600 0.0737 0.0647 0.0020
5               0.0745 0.0682 0.1108 0.0985 0.0836 0.0374 0.0007
6               0.1156 0.2641 0.1617 0.1292 0.2272 0.2363 0.0039
7               0.0004 0.0049 0.0008 0.0091 0.0085 0.0043 0.0000

A(2005) 1 2 3 4 5 6 7
1               0.2258 0.0000 0.0015 0.0384 0.0001 0.0017 0.0007
2               0.0027 0.1432 0.0075 0.0675 0.0367 0.0004 0.0070
3               0.0051 0.0002 0.0010 0.0018 0.0037 0.0071 0.0215
4               0.1955 0.0877 0.2591 0.3222 0.0547 0.0566 0.1010
5               0.0819 0.0422 0.1011 0.0994 0.0704 0.0334 0.0487
6               0.0843 0.1276 0.1225 0.1172 0.1760 0.2783 0.2026
7               0.0099 0.0095 0.0093 0.0219 0.0215 0.0188 0.0240

A(1997)(2005) 1 2 3 4 5 6 7
1               0.2611 0.0003 0.0016 0.0380 0.0011 0.0029 0.0000
2               0.0010 0.1146 0.0039 0.0171 0.0118 0.0008 0.0000
3               0.0037 0.0003 0.0011 0.0018 0.0041 0.0100 0.0000
4               0.1824 0.2067 0.2638 0.3600 0.0680 0.0938 0.0020
5               0.0844 0.1311 0.1182 0.1067 0.0836 0.0587 0.0007
6               0.0834 0.3233 0.1099 0.0892 0.1448 0.2363 0.0026
7               0.0004 0.0088 0.0008 0.0092 0.0080 0.0064 0.0000
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In this case, the most changed sectors in decreasing order are 7, 2 and 5. The differences in rates 
of inflation explain the difference between the comparisons in constant and current year prices. 
Problem 9.3 
This exercise problem illustrates the computation of marginal technical coefficients, using the 
current price transactions tables developed in problem 9.1 between the years 1997 and 2005. The 
matrix of marginal input coefficients, computed as [ ] 1

(2005) (1997) (2005) (1997)
−

−  −  Z Z x x , 
is: 
 

 
 

Note that these marginal coefficients deal with changes, so negative entries can appear and do in 
this case in industries 1, 2, 5, and 6.  
 
Problem 9.4 
This exercise problem illustrates use of the so-called RAS technique of biproportional scaling to 
generate an estimate of a future technical coefficients table for an economy based on a previous 
year’s table and future estimates of the vectors for total final demand, total value-added, and total 
output.  

Consider the following interindustry transactions and total outputs two-sector input-output 
economy for the year 2020: 

 

 
 
Estimates for the year 2030 for the vectors of total final demand, total value-added, and total 
output are the following: 
 

 

1 2 3 4 5 6 7
1            -0.1594 -0.0001 0.0013 0.0315 -0.0025 0.0012 0.0011
2            0.0126 0.1644 0.0079 0.2678 0.0711 -0.0005 0.0113
3            0.0229 0.0002 0.0009 0.0017 0.0020 0.0077 0.0346
4            0.4257 0.0663 0.2498 0.1182 0.0084 0.0428 0.1618
5            0.1626 0.0230 0.0908 0.1041 0.0381 0.0267 0.0782
6            -0.2583 0.0266 0.0810 0.0523 0.0510 0.3501 0.3245
7            0.1139 0.0129 0.0183 0.0915 0.0532 0.0436 0.0387

2020 A B Total 
Output

A 1 2 10

B 3 4 10

2030 Final 
Demand

Value 
Added 

Total 
Output

A 12 10 25

B 6 8 20
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To use the 2020 table as a base and the 2030 projections for final demand, value-added and 
total output in computing an estimate of the 2030 technical coefficients table first, from the 

matrix of transactions, 
1 2

(0)
3 4
 

=  
 

Z , and vector of total outputs, 
10

(0)
10
 

=  
 

x , we can compute

1 .1 .2
ˆ(0) (0) (0)

.3 .4
−  

= =  
 

A Z x . We can compute 
25 12 13

(1) (1) (1)
20 6 14
     

= − = − =     
     

u x f  and 

25 10 15
(1) (1) (1)

20 8 12
     

= − = − =     
     

v x va . [Here we use va(1) for the value added vector in 2030 

to differentiate it from v(1), the total intermediate inputs vector in 2030.] Performing the RAS 
procedure using A(0), u(1), v(1) and x(1) converges to the 2030 matrix in 6 iterations. That is, 

the result is 
.262 .323

(1)
.338 .277
 

=  
 

A , such that (1) (1) (1)=u A x  and ˆ(1) (1) (1)′=v i A x  within .0001 for 

each element of the intermediate inputs and outputs vectors, u(1) and v(1), respectively. 
 
Problem 9.5 
This exercise explores measurement of error between an RAS-estimated table of technical 
coefficients and a “real” table with the mean absolute percentage error (MAPE) of the element-
by-element comparison of the two tables as the error metric. In this problem we use the 1997 
input-output table expressed in 1997 dollars constructed in problem 9.1 and the vectors of 
intermediate inputs, intermediate outputs, and total outputs from the corresponding input-output 
table for 2005.  
 First, the 1997 input-output table, 1(1997) (1997) (1997)−=A Z x  was computed in exercise 
problem 9.2. We can retrieve the year 2005 total outputs, x(2005), from exercise problem 9.1 and 
compute the year 2005 intermediate outputs, (2005) (2005)=u Z i , and intermediate inputs, 

(2005) (2005)′=v i Z , all given in the following table: 

 
 
 Performing the RAS procedure using A(1997), u(2005), v(2005) and x(2005), yields the 
RAS-estimate of A(2005), which we designate as (2005)A , given in the following table: 

 

1 2 3 4 5 6 7
u(2005)' 265,510 515,254 152,295    2,911,056 1,329,436 4,780,440   447,314    
v(2005)' 189,279 162,793 653,783    2,998,476 1,218,705 4,153,590   1,024,680 
x(2005) 312,754 396,563 1,302,388 4,485,529 3,355,944 10,477,640 2,526,325 

Ã(2005) 1 2 3 4 5 6 7
1 0.2448   0.0001   0.0015   0.0357   0.0009   0.0021   0.0007   
2 0.0037   0.1423   0.0140   0.0622   0.0373   0.0022   0.0048   
3 0.0052   0.0001   0.0015   0.0025   0.0050   0.0109   0.0023   
4 0.1592   0.0618   0.2274   0.3148   0.0519   0.0638   0.1129   
5 0.0737   0.0392   0.1020   0.0933   0.0639   0.0400   0.0420   
6 0.1172   0.1557   0.1525   0.1256   0.1780   0.2588   0.2419   
7 0.0015   0.0112   0.0030   0.0343   0.0261   0.0185   0.0011   
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For the 2005 “real” input-output table, 1(2005) (2005) (2005)−=A Z x  (also derived in exercise 
problem 9.2), since there are a total of 7 7 49× =  elements to compare, the MAPE is computed 

as 
7 7

1 1

(2005) (2005)1( ) 100 49.028
49 (2005)

ij ij

i j ij

a a
a= =

 −
× = 
  

∑∑


 [for (2005) 0ija ≠  and 0 otherwise].  

Note that in this case the RAS estimate is very weak since the average error is nearly 50 percent. 
Problem 9.6 
This exercise demonstrates an example of the equivalence of performing an RAS-estimate using 
either interindustry transactions or technical coefficients. Suppose we have a baseline 

transactions matrix defined as 
100 55 5

(0) 50 75 45
25 10 110

 
=  
  

Z . We are provided with estimates of 

intermediate inputs and outputs, 
265
225
325

(1)
 
 =
 
  

v  and 
325
235
255

(1)
 
 =
 
  

u , respectively.  

To compute an estimate of the transactions table for the next year, (1)ZZ , if Z(0), v(1) and 
u(1) are known, we use the RAS technique to biproportionately scale Z(0) iteratively to 
convergence of (1)(1) Z= Z iu    and (1)(1) Z′= Zv i   within .0001 for each element of u(1) and v(1) 

to yield: 
167.5 104.5 53

(1) 61.2 104.1 69.7
36.3 16.5 202.2

Z

 
 =  
  

Z .  

Alternatively, suppose we know the vector of total outputs, 
750

(0) 500
1,000

=
 
 
 
  

x , corresponding 

to (0)Z , and we also have an estimate of total outputs for next year, 
1, 000

(1) 750
1,500

=
 
 
 
  

x . Compute 

.133 .11 .025
ˆ(0) (0) (0) .067 .15 .045

.033 .02 .11
= =

 
 
 
  

A Z x and use it [rather than Z(0)] along with (1)v  and (1)u  to 

generate an estimate of the technical coefficients matrix for next year using the RAS technique, 

we find (1)
.168 .139 .035
.061 .139 .047
.036 .022 .135

A

 
 =  
  

A . If we also compute the matrix of technical coefficients 

matrix from the (1)ZZ  and 1ˆ (1)−x , we find that 1ˆ(1) (1) (1)
.168 .139 .035
.061 .139 .047
.036 .022 .135

Z Z −=

 
 =  
  

A Z x  , which is 



2021 August 3 
 
 

P-87 
 

identical to (1)ZA . The explanation for why this is true generally is discussed in section 9.4.3 of 
the text. 

 
Problem 9.7 
This exercise problem explores the prospects using of partial information about a target technical 
coefficients matrix to improve an RAS-estimated technical coefficients table compared with 
estimation absent such information. For the economy in problem 9.6, suppose we acquire a 

survey-based table of technical coefficients for next year of (1)
.2 .1 .033

.035 .167 .05
.03 .033 .133

 
 =  
  

A  , which 

we consider to be the “real” target technical coefficients matrix since it is based on more 
comprehensive information.  

At the beginning of the survey, however, suppose we know only 32(1) .033a =  of the nine 
survey-based coefficients and we use that value along with (0)A , (1)v  and (1)u  to generate an 

intermediate estimate of the entire matrix of coefficients, (1)A


. To so this we first define the 

matrix of known coefficients for the target table as 
0 0 0
0 0 0
0 .033 0

=
 
 
 
  

K  and the reference table, 

.133 .11 .025
(0) .067 .15 .047

.033 0 .110
=

 
 
 
  

A , where 32(0)a  (the location of the known coefficient) is set to 0. We 

must also revise u(1) and v(1) to reflect removal of the interindustry transaction associated with 
the know information, which we can compute as 

325 0 325
(1) (1) (1) 235 0 235

255 24.75 230.25

     
     = − = − =     
          

u u Kx  and 

265 0 265
ˆ(1) (1) (1) 225 24.75 200.25

325 0 325

     
     = − = − =     
          

v v iKx .  

The “intermediate estimate,” (1)A


, for this case, is then found by adding K to the result 
of applying the RAS procedure using (1), (1), (1), and (1)A u v x , to yield 

.169 .134 .037
(1) .062 .133 .049

.034 .033 .131

 
 =  
  

A


, including the known value for 32(1)a . The MAPE for the RAS 

estimate, (1)A , which excludes the additional information about 32(1)a , compared with the 

known A(1) is 24.05. The MAPE for the modified RAS estimate, (1)A  (including the known 
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coefficient), is 19.5, which we record for this case as ( 1)(1) 19.5case =A


. The MAPE value is lower 
so the estimate with the additional information is better.  

For a second case, we assume instead that we know only 33(1) 0.133a = , i.e., instead of 

32(1) 0.033a = . If we apply the same procedure to determine (1)A , we find that the MAPE for the 
modified RAS estimate, (1)A



, including the alternative known coefficient, is ( 2)(1) 24.18case =A


. 
Recall that the MAPE of the estimate without additional information is 24.05, which is lower 
than that of the modified estimate in this case, so the estimate without additional information is 
better in this case. In general, introduction of more accurate exogenous information in applying 
RAS improves the resulting estimates, but it is not always the case as discussed in section 9.4.6 
of the text. 
Problem 9.8 
This problem illustrates two degenerate cases that occur in applying RAS. First, consider the 

transactions matrix 
100 55 25

(0) 0 75 25
25 10 110

 
 =  
  

Z  and projected vectors of intermediate inputs and 

outputs, 
125

(1) 140
160

 
 =  
  

v  and 
180

(1) 100
145

 
 =  
  

u , respectively. In this case u(1) and v(1) are identical to 

u(0) and v(0), respectively, so an RAS procedure attempting to produce (1)Z  will converge 
immediately and is, of course, unnecessary.  

If we project 1(1) 100v =  instead of 125, By reducing 1(1)v  to substantially below the 
existing value, without any other changes, then (1) (1)′ ′≠i u i v .  Successive RAS adjustments in 
this case fail to converge since both row and column constraints in the RAS procedure cannot be 
satisfied simultaneously. 
 
Problem 9.9 
The exercise explores the degree to which the accuracy of RAS estimates of technical 
coefficients relate to that of the total requirements matrices. We use the U.S. input-output tables 
for 1997 and 2005 (from problem 9.1, expressed in current dollars rather than constant dollars). 

The matrices A(1997), A(2005) and (2005)A  [produced by using RAS with A(1997)], u(2005), 
v(2005) and x(2005), were all computed in problems 7.1 and 7.5. The MAPE for (2005)A   
compared with A(2005) is 49.03. The MAPE for 1(2005) [ (2005)]−= −L I A  compared with 
L(2005) is 12.33, where the matrices L(2005) and (2005)L  are computed as: 
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L(2005) 1 2 3 4 5 6 7
1 1.3139 0.0102 0.0247 0.0789 0.0076 0.0103 0.0122
2 0.0462 1.1863 0.0515 0.1331 0.0584 0.0152 0.0296
3 0.0109 0.0034 1.0054 0.0075 0.0074 0.0116 0.0257
4 0.4324 0.1907 0.4421 1.5707 0.1332 0.1404 0.2098
5 0.1773 0.0865 0.1737 0.1969 1.1072 0.0714 0.0950
6 0.2861 0.2701 0.3053 0.3508 0.3136 1.4409 0.3600
7 0.0330 0.0231 0.0300 0.0486 0.0342 0.0329 1.0390

L̃(2005) 1 2 3 4 5 6 7
1 1.3426 0.0081 0.0218 0.0746 0.0084 0.0114 0.0126
2 0.0407 1.1812 0.0534 0.1223 0.0585 0.0188 0.0266
3 0.0124 0.0044 1.0073 0.0094 0.0095 0.0164 0.0078
4 0.3670 0.1485 0.3931 1.5503 0.1297 0.1533 0.2197
5 0.1607 0.0795 0.1686 0.1853 1.1006 0.0807 0.0876
6 0.3324 0.3030 0.3381 0.3682 0.3148 1.4147 0.3999
7 0.0254 0.0261 0.0278 0.0665 0.0398 0.0339 1.0187



2021 August 3 
 
 

P-90 
 

Chapter 10, Nonsurvey and Partial-Survey Methods: Extensions 
Chapter 10 surveys a range of partial survey and nonsurvey estimation approaches for creating 
input–output tables at the regional level. Variants of the commonly used class of estimating 
procedures using location quotients are reviewed; these presume a regional estimate of input–
output data can be derived using some information about a target region. Cross-hauling is 
discussed and approaches to address it are presented.  

The RAS technique developed in Chapter 9 is applied using a base national table or a 
table for another region and some available data for the target region.  Techniques for partial 
survey estimation of commodity flows between regions are also presented along with discussions 
of several real-world multinational applications, including the China–Japan Transnational 
Interregional Model and Leontief’s World Model. The exercise problems for this chapter explore 
application of nonsurvey techniques for generating regional input-output models. 
 
Problem 10.1 
The exercise explores the use of the RAS technique to develop and use input-output tables for 
target economies with similar basic structural characteristics. Consider three different nations. 
The first, the economy of the Land of Lilliput, is described by the following input-output table: 

 
The Land of Brobdingnag is described by another input-output table: 

 
And finally, the economy of the distant land of the Houyhnhnms is described by yet another 
input-output table: 

 
 

First, we compute the vectors of value-added, intermediate inputs, final-demand, and 
intermediate outputs for each economy, shown in the following table: 
 
 
 
 

A B
A 1 6 20
B 4 2 15

Interindustry 
Transactions Total 

Outputs

A B
A 7 4 35
B 1 5 15

Interindustry 
Transactions Total 

Outputs

A B
A 20 30.67 100
B 2.86 38.3 115

Interindustry 
Transactions Total 

Outputs
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 Lilliput (L) Brobdingnag (B) Houyhnhnm (H) 
Value Added  [15   7] [27   6] [77.14   46.03] 
Intermediate Inputs ( ′=v i Z )  [5   8] [8   9] [22.86   68.97] 

Final Demands  
13
9

 
 
 

 
24
9

 
 
 

 
49.33
73.84
 
 
 

 

Intermediate Outputs ( =u Zi ) 
7
6
 
 
 

 
11
6

 
 
 

 
50.67
41.16
 
 
 

 

 
A Lilliputian economist is interested in examining the structure of the Brobdingnagian 

economy. Likewise, a Brobdingnagian economist is interested in examining the structure of the 
Lilliputian economy. However, each economist only has available to him the value-added, final-
demand, and total-output vectors for the foreign economy. Each economist knows the RAS 
modification procedure and uses it with the technical coefficients matrix of her own economy 
serving as the base A matrix. To determine which of the two economists calculates a better 
estimate of the foreign economy's technical coefficients matrix in terms of mean absolute 
deviation (all elements of A), first we compute the true technical coefficients matrices for each 

economy:
.050 .400
.200 .133

L  
=  
 

A  and 
.200 .267
.029 .333

B  
=  
 

A . We denote the L estimate of the BA

matrix as 
.088 .529

;
.141 .071

L B  
=  
 

A  we use the metric of mean absolute deviation (MAD) to measure 

the relative accuracy of between LAB
 as an estimate of BA , which is 0.187.  The B estimate of 

LA  is 
.207 .190

,
.043 .343

B L  
=  
 

A  with a MAD comparing of B LA as an estimate of LA found as 

0.183. Therefore, the Brobdingnagian economist does slightly better. 
 Suppose now that an economist in the distant land of the Houyhnhnms learned of the two 
other economies from a world traveler. She becomes interested in the economic structures of 
these foreign lands but is only able to obtain the final-demand, value-added, and total-output 
vectors for each economy from the world traveler. The economist uses RAS with her own 
country’s A matrix as a base to estimate the interindustry structure of the two distant lands. The 

two Houyhnhnm estimates are 
.207 .190
.043 .343

H L  
=  
 

A and 
.200 .267
.029 .333

H B  
=  
 

A , respectively (note 

that  
.200 .267
.029 .333

H B H B  
= = =  

 
A A A ).  The error, as measured by MAD, is 0.183 in the first case 

and, of course, zero in the second case since H B=A A , i.e., the Houyhnhnm and Brobdingnagian 
economies are identical. 
 Suppose now that the Land of Lilliput plans to build a new power plant which will 
require the following value of output (in millions of dollars) from each of the economy’s 
industries (directly, so it can be thought of as a final demand presented to the Lilliputian 

economy) of [ ]100 150 ′=f . To measure the accuracy of the Houyhnhnms’ estimate of the total 
industrial activity (output) in the Lilliputian economy required to construct this power plant, 
measured as an average mean absolute deviation, we first compute the true impact as 
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197.3
218.6

L L  
∆ = ∆ =  

 
x L f  for 

100
150
 

∆ =  
 

f  and 1 1.166 .538
( )

.269 1.278
L L −  
= − =  

 
L I A . Using the same 

final demand vector with 1 1.281 .371
( )

.083 1.546
H L −  

− =  
 

I A  yields 
183.8

[ ]
240.3

H L  
∆ =  

 
x . The mean 

absolute deviation between these two vectors is 17.6. 
 
Problem 10.2 
This exercise expands the economies given in problem 10.1 to three economic sectors in each 
economy. The Land of Lilliput is described by the following input-output table: 

 Interindustry Transactions Total Outputs  A B C 
A 1 6 6 20 
B 4 2 1 15 
C 4 1 1 12 

The economy of the neighboring land of Brobdingnag is described by another input-output table: 

 Interindustry Transactions Total Outputs  A B C 
A 7 4 8 35 
B 1 5 1 15 
C 6 2 7 30 

The economy of the distant land of Houyhnhnms is described by yet another input-output table: 

 Interindustry Transactions Total Outputs  A B C 
A 5.5 33 33 110 
B 22 11 5.5 82.5 
C 22 5.5 5.5 66 

 

First, we find 
.050 .400 .500
.200 .133 .083
.200 .067 .083

L

 
 =  
  

A  and 
.200 .267 .267
.029 .333 .033
.171 .133 .233

B

 
 =  
  

A . The RAS estimates are 

.264 .199 .395

.052 .343 .068

.134 .059 .204

B L

 
 =  
  

A  and 
.033 .460 .365
.106 .123 .049
.261 .151 .120

L B

 
 =  
  

A . The table of value added, 

intermediate inputs, final demands, and intermediate outputs of the economies are given in the 
following table: 
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 Lilliput (L) Brobdingnag (B) Houyhnhnm (H) 
Value Added 

( ′v ) [11   6   4] [21   4   14] [60.5   33.0   22.0] 

Intermediate 
Inputs ( ′i Z ) [9   9   8] [14   11   16] [49.5   49.5   44.0] 

Final 
Demands (f) 

7
8
6

 
 
 
  

 
16
8

15

 
 
 
  

 
38.5
44.0
33.0

 
 
 
  

 

Intermediate 
Outputs (u) 

13
7
6

 
 
 
  

 
19
7

15

 
 
 
  

 
71.5
38.5
33.0

 
 
 
  

 

The mean absolute deviation (MAD) for the L estimate of B is 0.109, while the MAD for 
the B estimate of L is 0.121.  

The Houyhnhnm estimates of L and B, respectively are 
.050 .400 .500
.200 .133 .083
.200 .067 .083

H L

 
 =  
  

A and 

.033 .460 .365

.106 .123 .049

.261 .151 .120

H B

 
 =  
  

A . Note that in this case that H L=A A , i.e., it is the Houyhnhnm and 

Lilliputian economies that are identical, so the error of the Houyhnhnm estimate of the 
Lilliputian economy, H LA , compared with the true Lilliputian economy, LA  , as measured by the 
MAD, is 0.0.  The MAD for the Houyhnhnm estimate of the Brobdingnagian economy, H BA , 
compared with the true Brobdingnagian economy, BA , is 0.109. 
 
Problem 10.3 
This exercise illustrates the considerations of analysis costs in estimation and impact analysis. 
Consider the following input-output transactions and total outputs table for Region 1: 

A B Total 
Output

A 1 2 10
B 3 4 10  

We are interested in determining the impact of a particular final demand in another region 
(Region 2). Suppose we have the following data concerning Region 2. 

Value 
Added

Final 
Demand

Total 
Outputs

A 10 11 15
 B 13 12 20  

The cost of computing an RAS estimate of Region 2’s input-output table using Region 1’s A 
matrix as a base table is given by nc1, where n is the number of RAS iterations, where for 
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purposes here one iteration is defined by one row and one column adjustment, that is,
1ˆ ˆk k −=A rA s  (a row adjustment alone as the last iteration would also be counted as an iteration). 

We ultimately wish to compute the impact of a new final demand in Region 2. This 
impact (the total outputs required to support the new final demand) can be computed exactly or 
by using the round-by-round approximation of the inverse. We know that: (1) The cost of 
computing the inverse exactly on a computer is c1 and the cost of using this inverse in impact 
analysis is 2c  (let us assume that 2 110c c= , i.e., the cost of computing the inverse is ten times the 
cost of using it in impact analysis). (2) The cost of a round-by-round approximation of impact 
analysis is mc1, where m is the order of the round-by-round approximation, that is, 

2 m+ + + +f Af A f A f . 

If we assume that a fourth-order round-by-round approximation is sufficiently accurate 
(m = 4), to determine whether the first or second method of impact analysis would minimize 
cost, we observe that the cost of using the first method, i.e., computing the exact inverse, is c1 + 
c2; with c2 = 10c1, and the total cost is 11c1. With m = 4, the cost of using the second method, 
i.e., round-by-round approximation in impact analysis, 4c1, so it is the least cost method in this 
case. 
 To determine the total cost of performing impact analysis, including the cost of the RAS 
approximation (tolerance of 0.01) and of the impact analysis scheme, we first note that, since the 
RAS procedure converges to within a tolerance of 0.01 in 2 iterations, the cost of the RAS 
estimate of region 2’s coefficients matrix is 5c1. Then utilizing the result in a round-by-round 
application, with m = 4, gives a total cost of 6c1. 
 Finally, if we presume the budget for the entire impact-analysis calculation is 7c1, the 
level of tolerance that is affordable, among the options of 0.01, 0.001, 0.0001, 0.00001, or 
0.000001, is found by in the following table of cost calculations: 
                                                                                  Impact    
                        Number of           Analysis 
    RAS Tolerance Iterations RAS Cost Cost    Total Cost 
 .01       3        3c1    4c1           7c1 
  .001       4        4c1     4c1           8c1 

.0001       5        5c1               4c1           9c1 

.00001           6        6c1      4c1               10c1 

.000001      7        7c1    4c1           11c1 
Therefore, the maximum affordable tolerance is .01. 
 
Problem 10.4  
This exercise explores the behavior of the adjustment term that converts location-quotient Flagg 
Location quotient approach (FLQ) to an “augmented” FLQ, designated AFLQ, which adjusts for 
a measure of regional size. First, recall that the FLQ is defined as an adjustment to the cross-

industry quotient, CIQ, defined by ( )r r
ij ijFLQ CIQλ=  where { }2log [1 ( )] , 0 1r nx x

δ
λ δ= + ≤ < , 

and the modified technical coefficients are defined by 
( ) if 1

if 1

r n r
ij ij ijrr

ij n r
ij ij

FLQ a FLQ
a

a FLQ
 < =  ≥  

.  The 
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AFLQ is defined by 
2log (1 ) if 1

if 1

r r r
j ij jr

ij r r
ij j

LQ FLQ LQ
AFLQ

FLQ LQ

  + >  =  
≤  

 and the modified technical 

coefficients by 
( ) if 1
( ) if 1

r n r
ij ij jrr

ij r n r
ij ij j

AFLQ a LQ
a

FLQ a LQ
 > =  ≤  

. The adjustment term for AFLQ,

22 {log [1 ( / )]}log (1 ) r nr
j x xLQ δλ = ++ = , varies with the degree of specialization in a region, i.e., 

when 1r
jLQ > , then 2log (1 ) 1r

jLQ + >  , as discussed in section 10.2.5.  

The following table shows 22 {log [1 ( / )]}log (1 ) r nr
j x xLQ δλ = ++ =  for values of /r nx x =

.01, .1, .25, .5, .75 and 1 cross tabulated with values of δ =  0, .1, .3, .5 and 1.  
 
 
 

/r nx x   0.01 0.1 0.25 0.5 0.75 1.0 

2log [1 ( / )]r nx x+   0.0144 0.1375 0.3219 0.5850 0.8074 1 
0

2{log [1 ( / )]}r nx x+   1 1 1 1 1 1 
0.1

2{log [1 ( / )]}r nx x+   0.6542 0.8200 0.8928 0.9478 0.9788 1 
0.3

2{log [1 ( / )]}r nx x+   0.2800 0.5514 0.7118 0.8514 0.9378 1 
0.5

2{log [1 ( / )]}r nx x+   0.1198 0.3708 0.5647 0.7648 0.8985 1 
1

2{log [1 ( / )]}r nx x+   0.0144 0.1375 0.32 0.5850 0.8074 1 

 
Problem 10.5 
This exercise illustrates the use of simple location quotients (SLQ) to estimate the matrix of 
regional technical coefficients. First, we define the matrix of technical coefficients for a national 
economy, NA , and the vector of total outputs, Nx ,  as  

.1830 .0668 .0087 518, 288.6

.1377 .3070 .0707 4,953,700.6

.2084 .2409 .2999 14, 260,843.0

N N= =
   
   
   
      

A x   

as well as the corresponding values for a target region, RA and Rx , as  

.1092 .0324 .0036 8, 262.7

.0899 .0849 .0412   95, 450.8

.1603 .1170 .2349 170,690.3

R R= =
   
   
   
      

A x . 

We calculate the simple location quotients by 
r r

r i
i n n

i

x xLQ
x x

 
=  
 

, but set equal to 1 when 

the calculation of r
iLQ  exceeds 1. In this case, the matrix of simple location quotients is 
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1 1 1
1 1 1

.8607 .8607 .8607

 
 =  
  

SLQ . The corresponding estimate of the matrix of regional technical 

coefficients, found by element-by-element multiplication of NA  by SLQ, is 

( )

.1830    .0668    .0087

.1377    .3070    .0707

.1794    .2074    .2581

SLQ

 
 =  
  

A . 

Problem 10.6 
This exercise illustrates the calculation of Cross-Industry Quotients (CIQ) using the national and 
regional data specified in problem 10.5. We calculate the cross industry quotients by 

r n
r i i
ij r n

j j

x xCIQ
x x

 
=   
 

, but again set equal to 1 when the calculation of r
ijCIQ exceeds 1, or, in matrix 

terms, the matrix of cross industry quotients in this case is 
1 .8274 1
1 1 1

.7508 .6212 1

 
 =  
  

CIQ . 

The corresponding estimate of the matrix of regional technical coefficients using SLQ, 

found by element-by-element multiplication of NA by CIQ is ( )

.1830    .0553    .0087

.1377    .3070    .0707

.1565    .1497    .2999

CIQ

 
 =  
  

A . 

Problem 10.7 
The exercise uses the RAS technique to generate a regional estimate using the national and 
regional data specified in problem 10.5 (and used in problem 10.6). The intermediate outputs 

vector for the regional economy is given by [ ]( ) ( ) ( ) 4,615.3   15,877.7   52,584.2 andR R R ′= =u A x  

the vector of intermediate inputs is given [ ]( ) ( ) ( )ˆ( ) 2,969.5   22,368.8   47,738.9R R R ′′ ′= =v i A x .  

Applying the RAS technique using NA , ( )Ru , ( )Rv , and ( )Rx , resulting estimate of the 

matrix of regional technical coefficients is ( )

.1241    .0270    .0059

.0712    .0945    .0367

.1640    .1129    .2370

RAS

 
 =  
  

A   

Problem 10.8 
This exercise compares the estimates of regional technical coefficients from a matrix of national 
technical coefficients generated by simple location quotients (SLQ), cross industry quotients 
(CIQ), and RAS, respectively in problems 10.5, 10.6 and 10.7 in terms of mean absolute 
deviation from the actual regional technical coefficients. The mean absolute deviation (MAD) 

calculations for the three methods are:  
7 7

( ) ( ) ( )

1 1

1( ) .0606
49

SLQ SLQ R
ij ij

i j
MAD a a

= =

= − =∑∑ ; 

7 7
( ) ( ) ( )

1 1

1( ) .0558
49

CIQ CIQ R
ij ij

i j
MAD a a

= =

= − =∑∑ ; and 
7 7

( ) ( ) ( )

1 1

1( ) .0073
49

RAS RAS R
ij ij

i j
MAD a a

= =

= − =∑∑ . The 
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RAS technique produces the most accurate estimate in these examples since it shows the lowest 
value for MAD from the actual regional table. 
 
Problem 10.9 
This exercise compares the performance of estimates of a variety of nonsurvey estimation 
techniques in estimating the technical coefficients and associate Leontief inverse coefficients for 
a known region from a table of national coefficients. We use the three-sector, three-region 
Chinese MRIO data for 2000 specified in problem 3.6 to estimate regions 2 (South China) and 3 
(Rest of China) from the national data.  

If we adopt the same error metrics used in Table 10.2 and using LQ, CIQ, FLQ, AFLQ, 
RPC, and RAS techniques to estimate 2A (for region 2) and 3A (for region 3) from nA  (the 
national table), the results are the following. 

    Results for Region 2 (South China) using 2000 Chinese IRIO data. 
 Intraregional Input Coefficients Leontief Inverse 

Survey 
0.1279    0.1086    0.0340
0.1348    0.4299    0.2191
0.0394    0.0814    0.1255

 
 
 
  

 
1.1889    0.2418    0.1069
0.3130    1.8828    0.4839
0.0827    0.1861    1.1933

 
 
 
  

 

Using nA   

LQ 
0.1252    0.1301    0.0336
0.1517    0.4605    0.2411
0.0411    0.0867    0.1235

 
 
 
  

 
1.2033    0.3113    0.1317
0.3804    2.0378    0.5751
0.0940    0.2161    1.2039

 
 
 
  

 

CIQ 
0.1252    0.1263    0.0351
0.1517    0.4605    0.2411
0.0429    0.0842    0.1235

 
 
 
  

 
1.2019    0.3018    0.1311
0.3806    2.0324    0.5743
0.0953    0.2099    1.2024

 
 
 
  

 

FLQ 
0.1076    0.1085    0.0301
0.1406    0.4076    0.2228
0.0369    0.0723    0.1061

 
 
 
  

 
1.1598    0.2241    0.0950
0.3025    1.7994    0.4587
0.0724    0.1548    1.1598

 
 
 
  

 

FLQA 
0.1076    0.1109    0.0301
0.1406    0.4163    0.2228
0.0369    0.0739    0.1061

 
 
 
  

 
1.1613    0.2328    0.0972
0.3077    1.8307    0.4667
0.0734    0.1609    1.1613

 
 
 
  

 

RPC 
0.1155    0.1199    0.0310
0.1350    0.4097    0.2145
0.0396    0.0837    0.1192

 
 
 
  

 
1.1738    0.2531    0.1029
0.2978    1.8187    0.4533
0.0811    0.1841    1.1830

 
 
 
  

 

Using Round’s ˆr n rρ=A A   

LQ 
0.1263    0.1324    0.0346
0.1530    0.4687    0.2483
0.0414    0.0882    0.1272

 
 
 
  

 
1.2080    0.3242    0.1401
0.3933    2.0810    0.6077
0.0971    0.2257    1.2138

 
 
 
  

 

CIQ 
0.1263    0.1285    0.0361 
0.1530    0.4687    0.2483
0.0433    0.0856    0.1272

 
 
 
  

 
1.2066    0.3143    0.1394
0.3935    2.0751    0.6068
0.0984    0.2192    1.2122

 
 
 
  
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FLQ 
0.1086    0.1105    0.0310
0.1418    0.4148    0.2295
0.0373    0.0736    0.1093

 
 
 
  

 
1.1629    0.2321    0.1003
0.3110    1.8281    0.4819
0.0744    0.1608    1.1668

 
 
 
  

 

FLQA 
0.1086    0.1128    0.0310
0.1418    0.4237    0.2295
0.0373    0.0752    0.1093

 
 
 
  

 
1.1645    0.2413    0.1028
0.3166    1.8611    0.4906
0.0754    0.1672    1.1685

 
 
 
  

 

RPC 
0.1165    0.1221    0.0319
0.1361    0.4169    0.2209
0.0400    0.0851    0.1228

 
 
 
  

 
1.1772    0.2623    0.1089
0.3064    1.8488    0.4768
0.0834    0.1914    1.1912

 
 
 
  

 

 
 

 Total Intraregional 
Intermediate Inputs Percentage Differencesa 

Average 
Percentage 
Differenceb 

Survey 0.3022  0.6199  0.3786   
Using nA   

   LQ 0.3180  0.6773  0.3982 5.24  9.25  5.17 6.55 
   CIQ 0.3198  0.6710  0.3997 5.84  8.23  5.56 6.55 

   FLQ 0.2852  0.5884  0.3591 -5.63  -5.08  -5.15 -5.29 
   FLQA 0.2852  0.6010  0.3591 -5.62  -3.05  -5.15 -4.61 
   RPC 0.2901  0.6133  0.3646 -4.00  -1.08  -3.69 -2.92 

Using Round’s ˆr n rρ=A A   
   LQ 0.3208  0.6892  0.4102         6.15  11.18  8.34 8.56 
   CIQ 0.3226  0.6829  0.4117         6.76  10.15  8.74 8.55 
   FLQ 0.2876  0.5989  0.3699 -4.81  -3.40  -2.30 -3.50 
   FLQA 0.2876  0.6117  0.3699 -4.81  -1.34  -2.30 -2.82 
   RPC 0.2926  0.6241  0.3756 -3.17  0.67  -0.79 1.54c 

 
 

 Intraregional Output 
Multipliers Percentage Differencesd 

Average 
Percentage 
Difference 

Survey 1.5846  2.3108  1.7841   
Using nA   

   LQ 1.6778  2.5651  1.9108 5.88  11.01  7.10 8.00 
   CIQ 1.6779  2.5441  1.9078 5.89  10.10  6.94 7.64 
   FLQ 1.5347  2.1784  1.7135       -3.15  -5.73  -3.96 -4.28 
   FLQA 1.5425  2.2245  1.7252 -2.66  -3.73  -3.30 -3.23 
   RPC 1.5527  2.2559  1.7392 -2.01  -2.37  -2.51 -2.30 

Using Round’s ˆr n rρ=A A       
   LQ 1.6584  2.6309  1.9617 7.18  13.85  9.96 10.33 
   CIQ 1.6985  2.6087  1.9584 7.18  12.89  9.77 9.95 
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   FLQ 1.5482  2.2210  1.7419 -2.30  -3.88  -1.96 -2.71 
   FLQA 1.5565  2.2696  1.7619 -1.78  -1.78  -1.24 -1.60 
   RPC 1.5670  2.3025  1.7769 -1.11  -0.36  -0.40 -0.62 

  
a This is {[( ) ] 100}′ ′ ′− ×i A i A i A  , where “ ”  indicates element-by-element division. 
b This is a simple, unweighted average. Various kinds of weightings (e.g., using some measure of the size of each 
sector) are frequently used. 
c This is the average of the absolute values of the differences, so that the negatives and positives do not cancel out. 
 dCalculated as {[( ) ] 100}′ ′ ′− ×i L i L i L  . 
 
 
 

    Results for Region 3 (Rest of China) using 2003 Chinese IRIO data. 
 Intraregional Input Coefficients Leontief Inverse 

Survey 
0.1356    0.1494    0.0329
0.1050    0.3176    0.1945
0.0364    0.1016    0.1122

 
 
 
  

 
1.1950    0.2773    0.1050
0.2046    1.5624    0.3498
0.0725    0.1902    1.1707

 
 
 
  

 

Using nA   

LQ 
0.1311    0.1362    0.0352
0.1293    0.3925    0.2055
0.0429    0.0905    0.1290

 
 
 
  

 
1.1992    0.2861    0.1159
0.2853    1.7742    0.4301
0.0887    0.1984    1.1984

 
 
 
  

 

CIQ 
0.1311    0.1362    0.0352
0.1015    0.3925    0.1789
0.0387    0.0905    0.1290

 
 
 
  

 
1.1886    0.2822    0.1059
0.2210    1.7506    0.3684
0.0757    0.1944    1.1910

 
 
 
  

 

FLQ 
0.1057    0.1288    0.0247
0.0643    0.2485    0.1133
0.0245    0.0772    0.0938

 
 
 
  

 
1.1341    0.2001    0.0559
0.1030    1.3661    0.1735
0.0394    0.1218    1.1198

 
 
 
  

 

FLQA 
0.1252    0.1288    0.0272
0.0762    0.2485    0.1250
0.0290    0.0772    0.1035

 
 
 
  

 
1.1632    0.2059    0.0640
0.1260    1.3723    0.1951 
0.0485    0.1248    1.1343

 
 
 
  

 

RPC 
0.1223    0.1270    0.0328
0.1263    0.3835    0.2008
0.0397    0.0837    0.1193

 
 
 
  

 
1.1810    0.2572    0.1026
0.2676    1.7322    0.4048
0.0786    0.1762    1.1786

 
 
 
  

 

Using Round’s ˆr n rρ=A A   

LQ 
0.1251    0.1295    0.0335
0.1234    0.3732    0.1957
0.0409    0.0860    0.1228

 
 
 
  

 
1.1844    0.2587    0.1029
0.2583    1.7022    0.3895
0.0806    0.1790    1.1830

 
 
 
  

 

CIQ 
0.1251    0.1295    0.0335
0.0969    0.3732    0.1703
0.0369    0.0860    0.1228

 
 
 
  

 
1.1754    0.2557    0.0945
0.2005    1.6827    0.3344
0.0691    0.1758    1.1768

 
 
 
  
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FLQ 
0.1009    0.1224    0.0235
0.0614    0.2363    0.1078
0.0234    0.0734    0.0893

 
 
 
  

 
1.1262    0.1855    0.0510
0.0956    1.3402    0.1612
0.0366    0.1128    1.1123

 
 
 
  

 

FLQA 
0.1195    0.1224    0.0259
0.0727    0.2363    0.1190
0.0277    0.0734    0.0985

 
 
 
  

 
1.1533    0.1905    0.0583
0.1168    1.3455    0.1809
0.0449    0.1154    1.1258

 
 
 
  

 

RPC 
0.1167    0.1207    0.0312
0.1206    0.3646    0.1912
0.0379    0.0796    0.1136

 
 
 
  

 
1.1679    0.2334    0.0915
0.2432    1.6661    0.3679
0.0717    0.1596    1.1651

 
 
 
  

 

 
 Total Intraregional 

Intermediate Inputs Percentage Differencesa 
Average 

Percentage 
Differenceb 

Survey 0.2771  0.5687  0.3396   
Using nA   

   LQ 0.3033  0.6192  0.3696  9.47        8.88       8.85 9.07 
   CIQ 0.2713  0.6192  0.3430 -2.07        8.88      1.02 3.99c 

   FLQ 0.1945  0.4545  0.2317 -29.81   -20.08   -31.76 -27.22 
   FLQA 0.2304  0.4545  0.2557 -16.84   -20.08   -24.70 -20.54 
   RPC 0.2883  0.5942  0.3529  4.05         4.49      3.92 4.15 

Using Round’s ˆr n rρ=A A   
   LQ 0.2895  0.5887  0.3519  4.47        3.52      3.64 3.88 
   CIQ 0.2590  0.5887  0.3266 -6.54        3.52     -3.81 4.62 
   FLQ 0.1856  0.4321  0.2206 -33.02    -24.02  -35.03 -30.69 
   FLQA 0.2199  0.4321  0.2434 -20.63    -24.02  -28.31 -24.32 
   RPC 0.2751  0.5649  0.3360  -0.70      -0.66    -1.05 -0.81 

 
 Intraregional Output 

Multipliers Percentage Differencesd 
Average 

Percentage 
Difference 

Survey 1.4721  2.0299  1.6256   
Using nA   

   LQ 1.5732  2.2587  1.7444   6.87      11.27      7.31 8.48 
   CIQ 1.4853  2.2272  1.6654   0.90       9.72       2.45 4.36 
   FLQ 1.2765  1.6880  1.3492 -13.29   -16.84    -17.00 -15.71 
   FLQA 1.3377  1.7031  1.3934  -9.13    -16.10    -14.28 -13.17 
   RPC 1.5272  2.1656  1.6860   3.75       6.68       3.72 4.72 

Using Round’s ˆr n rρ=A A       
   LQ 1.5233  2.1400  1.6754  3.48         5.42      3.07 3.99 
   CIQ 1.4450  2.1142  1.6057 -1.84        4.15     -1.22 2.41c 

   FLQ 1.2584  1.6384  1.3245 -14.51    -19.29   -18.52 -17.44 
   FLQA 1.3150  1.6514  1.3651 -10.67    -18.65   -16.02 -15.11 
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   RPC 1.4828  2.0591  1.6244  0.73         1.44     -0.07 0.75c 
a This is{[( ) ] 100}′ ′ ′− ×i A i A i A  , where “ ”  indicates element-by-element division. 
b This is a simple, unweighted average. Various kinds of weightings (e.g., using some measure of the size of each 
sector) are frequently used. 
c This is the average of the absolute values of the differences, so that the negatives and positives do not cancel out. 
d Calculated as {[( ) ] 100}′ ′ ′− ×i L i L i L  . 
 
Problem 10.10 
This exercise problem applies the RAS technique to generate a matrix of technical coefficients 
for the state of Washington using the U.S. matrix of technical coefficients as a starting point. The 
following are the 1997 matrix of technical coefficients and vector of total outputs for the State of 
Washington as well as the 2003 matrix of technical coefficients for the United States, where the 
sectors are defined as (1) agriculture, (2) mining, (3) construction, (4) manufacturing, (5) trade, 
transportation and utilities, (6) services, and (7) other: 

.1154    .0012    .0082    .0353    .0019    .0033    .0016

.0008    .0160    .0057    .0014    .0022    .0002    .0001

.0072    .0084    .0066    .0043    .0074    .0196    .0133

.0868    .0287    .0W =A 958    .0766    .0289    .0244    .0205

.0625    .0278    .0540    .0525    .0616    .0317    .0480

.0964    .1207    .0704    .0596    .1637    .1991    .2224

.0020    .0031    .0056    .0019    .0045  

    7,681.0
       581.7
  17,967.1
  77,483.7
  56,967.2
109,557.6

  .0051    .0066     4,165.5

W =

   
   
   
   
   
   
   
   
   
      

x  

.2225    .0000    .0012    .0375    .0001    .0020    .0010

.0021    .1360    .0072    .0453    .0311    .0003    .0053

.0034    .0002    .0012    .0021    .0035    .0071    .0214

.1724    .0945    .US =A 2488    .3204    .0468    .0572    .1004

.0853    .0527    .0912    .0950    .0643    .0314    .0526

.0902    .1676    .1339    .1261    .1655    .2725    .1882

.0101    .0140    .0103    .0214    .0206    .0200    .0247

 
 
 
 
 
 
 
 
 
  

 

To examine application of the RAS technique to estimate the Washington State table 
using the U.S. matrix of technical coefficients as a starting point, we first compute ˆW W W=Z A x  
and then the vectors of total intermediate inputs and outputs for the real Washington State table: 
 

[ ]

[ ]

(1) 4,245.9   369.4   3,140.1   12,737.6   12,718   38,753.8   1,112.4

(1) ( ) 2,849.7   119.8   4,423   17,945.8   15,384.7   31,052.5   1,301.7

W

W

′= =

′′ ′= =

u Z i

v i Z
  

 
Applying RAS using USA , u(1), v(1), and Wx , the estimated matrix of technical coefficients for  
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Washington State is 

.2078   .0000   .0013   .0299   .0002   .0027   .0013

.0001   .0099   .0005   .0022   .0031   .0000   .0005

.0061   .0004   .0025   .0032   .0109   .0177   .0571

.0526   .0362   .0883   .0836   .024US W =A 6   .0243   .0456

.0534   .0415   .0664   .0508   .0694   .0273   .0490

.0493   .1151   .0852   .0589   .1561   .2070   .1531

.0016   .0028   .0019   .0029   .0057   .0044   .0059

 
 
 
 
 
 
 
 
 
  

.The mean 

absolute deviation between the estimated and actual Washington State matrices of technical 

coefficients is 
7 7

1 1

1( ) 0.0098
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ . 

 
Problem 10.11 
This exercise extends the estimation considered in exercise problem 10.10, presuming that while 
we do not know all the technical coefficients for the Washington State economy, WA , we do 
know several, namely 11 62 65, and W W Wa a a . To use the RAS technique incorporating that we know 
these coefficients, we begin with defining a matrix of the exogenously specified technical 

coefficients: 

.1154 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 .1207 0 0 .1637 0 0
0 0 0 0 0 0 0

 
 
 
 
 =  
 
 
 
  

K . The corresponding modified vectors of 

total intermediate inputs and outputs for the real Washington State table are found as: 

(1) W W W= − − =u x Z i Kx  [ ]3,359.7   369.4   3,140.1   12,737.6   12,718   29,359.6   1,112.4 ′  and 

ˆ(1) W W W′ ′= − − =v x i Z i Kx [ ]1,963.5   49.6   4,423   17,945.8   6,060.7   31,052.5   1,301.7 ′ .  
Applying RAS using ( )USA , u(1), v(1),  and Wx , and, this time, K, the new estimated 

matrix of technical coefficients for Washington State is 
.1154   .0001   .0017   .0377   .0002   .0035   .0017
.0002   .0096   .0005   .0023   .0030   .0000   .0005
.0096   .0004   .0025   .0031   .0100   .0180   .0576
.0830   .0337   .0890   .0809   .022US W =A 9   .0248   .0463
.0850   .0389   .0675   .0496   .0649   .0281   .0502
.0752   .1207   .0830   .0551   .1637   .2044   .1502
.0026   .0026   .0020   .0029   .0053   .0046   .0060

 
 
 
 
 
 
 
 
 
  

. The mean absolute deviation 

between the estimated and actual Washington State matrices of technical coefficients is 
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7 7

1 1

1( ) 0.0066
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ . In this case the constrained RAS procedure 

incorporating exogenous information improves the estimate considerably over the unconstrained 
case in problem 10.10. 
 
Problem 10.12 
This exercise further explores use of constrained RAS estimation developed in problem 10.11, 
this time assuming there is information from exogenous sources providing some alternative 
technical coefficients, namely 67 42 54, and W W Wa a a  to those in problem 10.11. The procedure is the 
same, i.e., the new exogenously specified technical coefficients are given by 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 .0287 0 0 0 0 0
0 0 0 .0525 0 0 0
0 0 0 0 0 0 .2224
0 0 0 0 0 0 0

 
 
 
 
 =  
 
 
 
  

K . The revised vectors of total intermediate inputs and 

outputs for the real Washington State table are: 
[ ]

[ ]

(1)

ˆ(1)

4,245.9   369.4   3,140.1   12,720.9   8,649.3   37,827.6   1,112.4

2,849.7   103.1   4,423   13,877.1   15,384.7   31,052.5   375.5

W W W

W W W

′= − − =

′ ′= − − = ′

u x Z i Kx

v x i Z i Kx
  

Applying RAS using USA , u(1), v(1), Wx , and K yields the new estimated matrix of 
technical coefficients for Washington State:

.2088   .0000   .0013   .0298   .0002   .0027   .0007

.0001   .0104   .0005   .0022   .0031   .0000   .0003

.0063   .0005   .0026   .0033   .0113   .0184   .0329

.0530   .0287   .0895   .0834   .025US W =A 1   .0247   .0258

.0527   .0433   .0659   .0525   .0692   .0272   .0271

.0485   .1200   .0844   .0575   .1554   .2059   .2224

.0016   .0030   .0019   .0029   .0058   .0045   .0033

 
 
 
 
 
 
 
 
 
  

. The mean absolute deviation 

between the estimated and actual Washington State matrices of technical coefficients is 
7 7

1 1

1( ) 0.0077
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ —not as good an estimate as that obtained in problem 

10.11, which resulted in 0.0066MAD = .  
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Finally, we can presume we can employ the exogenous information used in both problems 10.10 
and 10.11 in a combined case. For this combined case, the new exogenously specified technical 

coefficients are given by 

.1154 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 .0287 0 0 0 0 0
0 0 0 .0525 0 0 0
0 .1207 0 0 .1637 0 .2224
0 0 0 0 0 0 0

 
 
 
 

=  
 
 
 
 

K . 

We once again compute the vectors of total intermediate inputs and outputs for the real 
Washington State table: 

[ ]

[ ]

(1)

ˆ(1)

3,359.7   369.4   3,140.1   12,720.9   8,649.3   28,433.4   1,112.4

1,963.5   32.9   4,423   13,877.1   6,060.7   31,052.5   375.5

W W W

W W W

′= − − =

′ ′= − − = ′

u x Z i Kx

v x i Z i Kx
  

Applying RAS using USA , u(1), v(1), Wx , and K , the new estimated matrix of technical 
coefficients for Washington State using both sets of exogenous information is 

.1154   .0001   .0018   .0376   .0002   .0036   .0010

.0002   .0108   .0005   .0022   .0031   .0000   .0003

.0100   .0005   .0026   .0031   .0104   .0187   .0327

.0847   .0287   .0908   .0802   .023US W =A 4   .0254   .0259

.0835   .0423   .0663   .0525   .0639   .0277   .0270

.0746   .1207   .0822   .0531   .1637   .2033   .2224

.0026   .0030   .0020   .0028   .0054   .0047   .0034

 
 
 
 
 
 
 
 
 
  

. The mean absolute deviation 

between the estimated and actual Washington State matrices of technical coefficients is 
7 7

1 1

1( ) 0.0044
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ —perhaps not surprisingly better than either of the 

previous cases. 
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Chapter 11, Social Accounting Matrices 
Chapter 11 expands the input–output framework to a broader class of economic analysis tools 
known as social accounting matrices (SAM) and other so-called “extended” input–output models 
to capture activities of income distribution in the economy in a more comprehensive and 
integrated way, including especially employment and social welfare features of an economy. The 
basic concepts of SAMs are explored and derived from the SNA introduced in Chapters 4 and 5, 
and the relationships between SAMs and input–output accounts are presented. The concept of 
SAM multipliers as well as the decomposition of SAM multipliers into components with specific 
economic interpretations are introduced and illustrated. Finally, techniques for balancing SAM 
accounts for internal accounting consistency are discussed and several illustrative applications of 
the use of SAMs are presented. The exercise problems for this chapter explore the construction 
of SAM accounts and models. 
 
Problem 11.1 
This exercise illustrates the relationships between a map of the circular flow of income and 
expenditure and a corresponding “macro-SAM.” Consider a macro economy depicted in the 
figure below. Note the missing value, X, showing the exports from the Producers sector to the 
Rest of World sector. We can verify that this value is 45 from either the Producers balance 
equation, (60 600) (400 150 65) 45X = + − + + = , or the Balance of Payment Account’s Rest of 
World balance equation, 25 (10 60) 45X = − + = −  .  

 
 
 

We can express the chart as a basic macro-SAM, where a sector defined as consumption 
combines both intermediate and final consumption as a single sector by the following: 

 →
65 →
150 →
400 →

 ↓ 400  
↑ 60 ↑ 600  

 
←

  ↓ 150
25 10 -25 40  150  

↓ ↑ ↓ ↑ ↑
←  

↓ 65   
40
←
-25
→ ↓ X  

  
← 10
→ 25
← 60

Rest of World (5)

Producers (1)

600 Consumers (2)

150 Final Consumers  (3)

Capital Markets (4)
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  Prod Cons Cap ROW   
Producers   550 65 45 660 
Consumers 600 150 -25 25 750 
Capital Markets   40    40 
Rest of World 60 10     70 
  660 750 40 70   

 
If we express consumption as in the figure, i.e., with consumption separated into 

intermediate consumers (2) and final consumers (3), the SAM becomes: 
  Prod Cons Fin Con Cap ROW  
Producers   400 150 65 45 660 
Consumers 600   -25 25 600 
Final Consumers   150     150 
Capital Markets   40     40 
Rest of World 60 10       70 
  660 600 150 40 70   

 
 
Problem 11.2 
This exercise illustrates construction of a “fully articulated” SAM, i.e., including the 
interindustry detail provided by input-output accounts. For the economy depicted in problem 
11.1, suppose the following input-output accounts are collected: 
 

  
Commodities Industries Final 

Demand Totals Grand 
Total 

Manuf. Services Manuf. Services 

Commodities 
Manuf.    94 96 110 300 

660 
Services     94 117 148 360 

Industries 
Manuf. 295 0       295 

660 
Services 5 360       365 

Value Added     106 152 260     

Totals  300 360 295 365       

Grand Total 660 660       

 
 To construct a “fully articulated” SAM, i.e., incorporating the interindustry detail 
provided by these input-output accounts, final demand must be allocated as part of consumer 
demand and commodity imports allocated to value added. There is no unique solution, but one 
such balanced fully articulated SAM is the following. 
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Problem 11.3 
This exercise problem expands SAM accounts to include sectors defined for consumer demand 
and exports, using SAM developed in problem 11.2. Again, there is no unique solution, but the 
SAM must be balanced, i.e., row and column sums equal. One such SAM is the following: 
 

Manuf. Services Manuf. Services PCE Cap. Exports
Manuf. 0 0 94 96 64 28 18 300
Services 0 0 94 117 86 37 25 360
Manuf. 284 0 0 0 0 -12 13 285
Services 5 319 0 0 0 -13 4 315

Consumer 0 0 73 77 0 0 0 150
Capital 0 0 20 20 0 0 0 40
Imports 10 41 4 5 0 0 0 60

300 360 285 315 150 40 60

Commodities Industries Total Final Demand
Total

Commodities 660

600

Value Added 250

Total 
660 600 250

Industrieis

 
  
Problem 11.4 
This problem explores construction of a SAM matrix of total expenditure shares, S , and 
partitioning of S  to specify the SAM coefficient matrix, S, and the “direct effect” multipliers 
using the table of SAM transactions developed in problem 11.3. First, we define the table of 
SAM transactions as Z  and the row or column totals of all transactions as x . Then we compute 
the matrix of total expenditure shares as 

1

0 0 .331 .305 .427 .7 .3
0 0 .331 .371 .573 .925 .417

.95 0 0 0 0 .3 .217
ˆ .017 .884 0 0 0 .325 .067

0 0 .257 .244 0 0 0
0 0 .07 .063 0 0 0

.033 .116 .011 .016 0 0 0

−

 
 
 
 −
 = = − 
 
 
 
  

S Zx .  

  

Production Consumption 
Cap. ROW Total 

Manuf. Services Manuf. Services 

Production 
Manuf. 0 0 158 96 28 18 300 

660 
Services 0 0 94 203 37 25 360 

Consumption 
Manuf. 284 0 0 0 -12 13 285 

600 
Services 5 319 0 0 -13 4 315 

Capital 0 0 20 20 0 0 40 
ROW 10 41 3 5 0 0 60 

Total  300 360 276 324 40 60   
660 600 
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Notice that S is partitioned into interindustry sectors (commodities and industries) and 
sectors exogenous to interindustry activity (final demand and value added). If we assume final 
demand and value-added sectors are considered exogenous transactions to this economy, the 

SAM coefficient matrix, S, is the upper left partition of S , i.e., 

0 0 .331 .305
0 0 .331 .371

.95 0 0 0
.017 .884 0 0

 
 
 =
 
 
 

S . 

The matrix of “direct effect” multipliers is then 1

1.812   .726    .840    .822
 .865   1.835   .894    .945

( )
1.721   .690   1.798   .781
 .794   1.634   .804   1.849

−

 
 
 = − =
 
 
 

M I S . 

 
Problem 11.5 
The exercise illustrates the construction of direct, indirect, cross, and total SAM multipliers in 
the additive form using a highly aggregated SAM for the developing nation of Sri Lanka:2 The 
basic SAM accounts are reflected in the following: 
 

 
 

We define the full table of SAM transactions as Z  and the row and/or column totals as x . 
If we consider the sectors, Surplus/Deficit and Rest of World, as external to the SAM, we first 
reorder the table so that the Surplus/Deficit and Rest of World sectors become sectors 5 and 6 in 
the table by ′=Z RZR  and =x Rx  where 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 
 
 =  
 
  

R .  

With the reordered sectors, we calculate 1ˆ −=S Zx   and create partitions separating sectors 5 and 6 
as the exogenous sectors. We can use the formulas developed in section 11.10.4 to compute the 
direct, indirect, cross, and total multipliers, respectively, as the following: 
 

 
2 Adapted from Pyatt and Round (1979), pp. 852-853. 

Sri Lanka    
SAM 1970

Value 
Added

Insti-
tutions

Indirect 
Taxes

Surplus/ 
Deficit

Pro-
duction

Rest of 
World Total

Value Added -            -            -            11,473   -            -            11,473   
Institutions 11,360   2,052     1,368     -            -            3           14,783   
Indirect Taxes -            389        -            885        -            94         1,368     
Production -            11,312   -            4,660     -            2,113     18,085   
Surplus/Deficit -            (425)      -            -            -            425        -            
Rest of World 113        1,455     -            1,067     -            -            2,635     
Total 11,473   14,783   1,368     18,085   -            2,635     



2021 August 3 
 
 

P-109 
 

 1

5.7286 4.7756 4.7756 5.2105 0 0
7.2309 7.3209 7.3209 6.6610 0 0
0.5550 0.5605 1.5605 0.5772 0 0
7.4538 7.5279 7.5279 8.2133 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 
 
 
 

=  
 
 
 
 

N     

 

2

0 0 0 0 26.9953 5.9390
0 0 0 0 34.7835 7.2176
0 0 0 0 3.2188 0.5400
0 0 0 0 42.5529 9.6888

0.2506 0.2511 0.2511 0.2472 0 0
1.5382 1.5302 1.5302 1.6014 0 0

 
 
 
 

=  
 
 − − − −
 
 

N   

 

3

1.5617 1.5182 1.5182 1.9068 0 0
1.4871 1.4301 1.4301 1.9388 0 0
0.0168 0.0224 0.0224 0.0271 0 0

2.8569 2.7889 2.7889 3.3954 0 0
0 0 0 0 1 0.2075
0 0 0 0 6.2 1.3405

 
 
 
 − − −

=  
 
 − −
 
 

N  

 
7.2903 6.2938 6.2938 7.1173 26.9953 5.9390
8.7180 8.7329 8.7329 8.5997 34.7835 7.2176
0.5382 0.5382 1.5382 0.6043 3.2188 0.5400

10.3106 10.3168 10.3168 11.6087 42.5529 9.6888
0.2506 0.2511 0.2511 0.2472 0 0.2075

1.5382 1.53

T =

− − − − −

N

02 1.5302 1.6014 6.2 2.3405

 
 
 
 
 
 
 
 
 

. 

 
Problem 11.6 
This problem illustrates use of the RAS technique to balance a SAM, i.e., to iteratively adjust the 
SAM transactions so that the row and column sums of the SAM are the same. Consider the 
unbalanced SAM given in the table below.  

Suppose independent analysis indicates the total output of each sector; these are given in 
the additional column specified in the table. 
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If we use the RAS technique to produce a balanced SAM with rows and columns both summing 
to the independent sector output estimates, the result is the following: 

 
 
Problem 11.7 
This problem explores the use of the RAS technique including additional exogenously specified 
information to balance a SAM using the unbalanced SAM given in problem 11.6.  If, in addition 
to the estimated totals provided in the unbalanced table, we become aware that the elements 

23 24 4225, 15, and 10z z z= − = =  in the balanced SAM are fixed, we can use the RAS procedure 
incorporating some fixed exogenous data for these elements (developed in chapter 10) to 
produce a balanced SAM: 
 

 
 
Problem 11.8 
The problem explores development of direct, indirect, cross, and total SAM multipliers in their 
multiplicative form using a “macro-SAM” for the U.S. economy for 1988. The US SAM (as 
reported in Reinert and Roland-Holst, 1992, pp. 173-187) is the following:  
 

Prod. Cons. Capital ROW Totals
 Estimated 

Totals 
Producers 0 600 65 45 710 660
Consumers 700 0 -25 15 690 600
Capital 0 40 0 0 40 40
Rest of World 50 10 0 0 60 60
Totals 750 650 40 60 1,500 1,360

Prod. Cons. Capital ROW Totals
Producers -            560        40         60         660        
Consumers 600        -            -            0           600        
Capital -            40         -            -            40         
Rest of World 60         0           -            -            60         
Totals 660        600        40         60         1,360     

Prod. Cons. Capital ROW Totals
Producers 0 550 65 45 660
Consumers 610 0 -25 15 600
Capital 0 40 0 0 40
Rest of Wo 50 10 0 0 60
Totals 660 600 40 60 1,360
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 If we consider the first five sectors as the endogenous sectors, the direct, indirect, 
cross, and total multipliers in their multiplicative form, respectively, are given by: 
 

1

1 .897 0 0 0
0 1 0 0 0

.602 .54 1 0 0

.322 .289 0 1 0

.306 .274 0 .95 1

 
 
 
 =
 
 
 
 

0
M

0 I

, 

2

.714 .524 .795 .581 0 0

.796 .584 .887 .648 0 0
.43 .315 .479 .35 0 0
.23 .169 .256 .363 0 0
.24 .216 .243 .345 0 0

0 0 .847 0 .588 0
.078 0 .153 0 .078 0

0 0 0 0 .334 0
0 .10 0 .05 0 0
0 .003 0 0 0 0

.002 0 0 0 0 0

 
 
 
 
 
 
 =  
 
 
 
 
 
−  

I

M

I

, 

US SAM 1988 Prod. Comm. Labor Prop.
Enter-
prises

House-
holds Govt. Capital ROW Taxes Errors Total

Production  4831          4831
Commodities      3235 970 750 431   5386
Labor 2908           2908
Property 1556        117   1673
Enterprises    1589  95 93     1777
Households   2463  1045  556     4064
Government 377  445  138 587  96  18  1661
Capital     594 145   117  -10 846
Rest of World  537  84  2 42     665
Taxes  18          18
Errors & Omissions -10           -10
Total 4831 5386 2908 1673 1777 4064 1661 846 665 18 -10
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3

1.206 .331 3.296 .167 3.455
.23 1.369 3.675 .186 3.851

.124 .199 2.984 .1 2.079

.071 .132 1.136 1.066 1.191

.078 .135 1.2 .068 2.246
3.469 1.931 2.669 2.488 0 0
.677 1.526 .734 .67 0 0
.413 .333 1.441 .452 0 0
.439 .339 .477 1.436 0 0
.013 .01 .0

=

0

M

0

14 .012 1 0
.007 .005 .008 .007 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

− − − −  

 and  

 
 4.301  4.189   3.296   3.448  3.455 3.415    2.640
 3.68    4.67     3.675   3.844  3.851
 2.589  2.521   2.984   2.075  2.079
 1.463  1.444   1.136   2.197  1.191
 1.509  1.488   1.2       2.201  2.246

=M

    3.713    3.321    0   0
3.807    2.943     4.14     3.703    0   0
2.056    1.589    2.235    1.999    0   0   
1.177     .91        1.28     1.322    0   0
1.237    .995      1.319    1.352    0   0

 3.080  3.011   3.233   3.052   3.082
  .849    .828     .807     .758     .762
  .504    .497     .401     .736     .751
    .44    .538     .423     .494     .444
  .012    .016     .012     .013     .01

3.469    1.931    2.669    2.488    0   0   
 .677     1.526     .734      .67       0   0
 .413     .333      1.441    .452      0   0
 .439     .339       .477  

3
 -.009   -.009   -.007    -.007   -.007

  1.436     0   0
 .013      .01        .014     .012      1   0
-0.007  -0.005  -0.008  -0.007     0   1

 
 
 
 
 
 
 
 
 
 
 
  

 

 
Problem 11.9 
This exercise expands the development of SAM multipliers to the multiplicative form using once 
again the macro-SAM specified in problem 11.8. If we compute the direct multipliers in their 
additive form, we discover that they are the same as those in the multiplicative form, i.e., 

1 1=M N , which turns out to be always the case as discussed in section 11.10.5.  
 
Problem 11.10 
This problem explores development of multipliers for a SAM expanded with interindustry detail 
using the SAM for the U.S. (1988) introduced in problem 11.8, which is expanded with the 
interindustry detail shown in Table P11.10. If we consider the first nine sectors as the 
endogenous sectors, the resulting total multipliers are the following:  
 

[3.245 3.053 3.380 3.647 3.581 2.949 2.769 2.588 2.645 1.000 1.000 1.000 3.302 2.691 4.000 3.160 1.000 1.000]′ =i M   
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Table P11.10 
SAM with Expanded Interindustry Detail for United States, 19883 

 

 
 
 
 

 
 

3 As reported in Reinert and Rolad-Holst (1992).   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Agric. Mining Const.

Nondur.  
Manuf

Durable 
Manuf.

Transp. & 
Util Trade Finance Services Labor Propty

Enter- 
prises

House- 
holds Govt. Capital

Rest of 
World Tariffs Errors

1 Agriculture 42 0 2 98 8 0 3 8 7 0 0 0 18 7 1 22 0 0 214
2 Mining 0 10 2 82 8 35 0 0 0 0 0 0 1 0 2 8 0 0 148
3 Construction 2 12 1 7 9 21 6 36 18 0 0 0 0 134 358 0 0 0 602
4 Nondurable Manuf. 30 1 35 370 83 37 24 14 149 0 0 0 453 38 4 93 0 0 1332
5 Durable Manuf. 4 3 175 55 480 19 7 4 81 0 0 0 236 97 296 187 0 0 1643
6 Transport & Utilities 5 1 17 66 65 78 46 31 84 0 0 0 310 34 13 26 0 0 774
7 Trade 8 1 72 57 73 11 14 7 50 0 0 0 529 11 56 43 0 0 932
8 Finance 10 3 10 18 25 14 52 20 79 0 0 0 771 16 22 25 0 0 1065
9 Services 5 1 53 68 74 31 124 93 214 0 0 0 917 632 0 27 0 0 2240

10 Labor 33 18 197 218 430 212 385 217 1198 0 0 0 0 0 0 0 0 0 2908
11 Property 60 56 32 142 69 207 147 511 332 0 0 0 0 0 0 117 0 0 1673
12 Enterprise 0 0 0 0 0 0 0 0 0 0 1589 0 96 92 0 0 0 0 1778
13 Households 0 0 0 0 0 0 0 0 0 2463 0 1046 0 556 0 0 0 0 4064
14 Government 8 12 7 28 18 35 127 113 30 445 0 138 587 0 96 0 16 0 1659
15 Capital 0 0 0 0 0 0 0 0 0 0 0 594 145 0 0 117 0 -10 846
16 Rest of World 8 31 0 115 295 75 0 12 2 0 83 0 2 42 0 0 0 0 665
17 Tariffs 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 16
18 Errors & Omissions 0 0 -1 -1 -1 -1 -1 -2 -2 0 0 0 0 0 0 0 0 0 -10

214 148 602 1332 1643 774 932 1065 2240 2908 1673 1778 4064 1659 846 665 16 -10  

US SAM 1988   ($ billions) Total

Total
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Chapter 12, Energy Input-Output Analysis 
Chapter 12 explores the extension of the input–output framework to more detailed analysis of 
energy consumption associated with industrial production, including some of the complications 
that can arise when measuring input–output transactions in physical units of production rather 
than in monetary terms of the value of production.  

The chapter reviews early efforts to develop energy input–output analysis and compares 
them with contemporary approaches and examines the strengths and limitations of the 
alternatives commonly used today. Special methodological considerations such as adjusting for 
energy conversion efficiencies are developed along with several illustrative applications, 
including estimation of the energy costs of goods and services, impacts of new energy 
technologies, and energy taxes.  

Energy input-output analysis is increasingly being applied to global scale issues, such as 
the energy embodied in international trade of goods and services. Finally, the role of structural 
change of an input–output economy associated with changing patterns of energy use is 
illustrated, building on the more general approaches developed in Chapter 8.  

The exercise problems for this chapter explore the use of input-output analysis to analyze 
the special case of energy production and use. 
 
Problem12.1  
This exercise problem develops two formulations of the energy input-output model from basic 
economic input-output accounts and supplemental information for tracking the flow of energy 
throughout an economy measured in physical units. Consider the following three-sector input-
output economy; two sectors are energy sectors (oil is the primary energy sector and refined 
petroleum is the secondary energy sector): 

 
Interindustry 
Transactions 

($106) 
Oil Refined 

Petroleum Manuf. Final 
Demand 

Total 
Output 

Crude Oil 0 20 0 0 20 
Refined Petroleum 2 2 2 24 30 
Manufacturing 0 0 0 20 20 

The energy sector transactions are also measured in quadrillions of Btus in the following table: 

Energy Sector 
Transactions 
(1015 Btus) 

Oil Refined 
Petroleum Manuf. Final 

Demand 
Total 

Output 

Crude Oil 0 20 0 0 20 
Refined Petroleum 1 1 1 17 20 

 
To formulate an energy input-output model from these data, we first define the customary 

Leontief economic transactions matrix, vector of final demands, and vector of total outputs, 



2021 August 3 
 
 

P-115 
 

respectively, all measured in millions of dollars as: 
0 20 0
2 2 2
0 0 0

 
 =  
  

Z  ,
0
24
20

 
 =  
  

f  
20
30
20

 
 =  
  

x . We 

can now compute the economic matrix of technical coefficients as 1

0 .667 0
ˆ .10 .067 .1

0 0 0

−

 
 = =  
  

A Zx  

and the corresponding matrix of total requirements as 1

1.077  .769    .077
( ) .115   1.154   .115

   0         0         1

−

 
 = − ==  
  

L I A .  

The matrix of energy transactions in physical units (quadrillions of Btus) is 
0 20 0
1 1 1
 

=  
 

E ; the vector of energy consumption in final demand, 
0

17
 

=  
 

q , and total energy 

consumption, 
20
20
 

=  
 

g , are also measured in quadrillions of Btus (often referred to as Quads). 

The matrix of implied energy prices, defined as the element-by-element division of E by the 
corresponding elements in the energy rows of Z where transactions are nonzero and zero 

otherwise, is 
0 1 0
2 2 2
 

=  
 

P .  

The traditional energy input-output formulation specifies the direct energy requirements 

as 1( )−= − +ε D I A Q  where 1 0 .667 0
ˆ

.05 .033 .05
−  

= =  
 

D Ex   and the elements of Q  are defined as 

/k kq f  for energy sectors and zero otherwise. In this case, 
0 0 0
0 .708 0
 

=  
 

Q , so we find 

1 .077  .769  .077
( )

.058  .785  .058
−  

= − + =  
 

ε D I A Q . Note that this suggests a million dollars’ worth of final 

demand for manufacturing in this economy would require production of 0.785 Quads of refined 
petroleum but only 0.769 Quads of crude oil, which is not sensible since the structure of this 
economy is that refined petroleum is a secondary energy sector receiving all its energy input 
from the primary energy sector, Crude Oil, so the primary and secondary energy consumption 
(aside from any energy conversion efficiencies) should be the same, often referred to as an 
energy conservation condition. 

To formulate these data instead as a hybrid units energy input output model, we first 
define the matrix of transactions in hybrid units, the vector of final demands, and the vector of 

total outputs, respectively, as *

0  20  0
1   1   1
0   0   0

 
 =  
  

Z , *

0
17
20

 
 =  
  

f , and *

20
20
20

 
 =  
  

x  where energy rows are 

measured in Quads and nonenergy rows are measured in millions of dollars. We can now 
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compute *

0 1 0
.05 .05 .05
0 0 0

 
 =  
  

A  and * * 1

1.056  1.111  0.056
( ) 0.056  1.111  0.056

    0         0        1 

=

 
 = − ==  
  

L I A which is easy to see 

conforms to the energy conservation condition. 
 
Problem 12.2 
The problem illustrates the typical use of the traditional energy input-output model in public 
policy analysis. Consider the following input-output transactions table in value terms (millions of 
dollars) for two industries—A and B: 
 

 A B Total Output 
A 2 4 100 
B 6 8 100 

 
Suppose we have a direct energy requirements matrix for this economy that is given by: 

15

15

.2 .3 10  Btus of oil per million dollars of output
 

.1 .4 10  Btus of coal per million dollars of output
=
 
  

D   

If for simplicity we ignore energy consumption by final demand, we compute the total energy 

requirements matrix, 
.225   .336
.129   .440
 

= =  
 

ε DL where the matrices of technical requirements and 

total requirements are, respectively, 
.02   .04
.06   .08
 

=  
 

A  and 1 1.023   .044
( )

 .067    1.09
−  

= − =  
 

L I A . 

Suppose further that the final demands for industries A and B are projected to be $200 
million and $100 million respectively for the next year. The net increase in energy (both oil and 
gas) required to support this new final demand (again, neglecting energy consumed directly by 

final demand) is found by 
28.5
19.8
 

∆ = ∆ =  
 

g DL f . We can determine how much of the total energy 

produced to supply this net increase final demand is direct energy consumption
25.4
16.2

direct  
∆ = ∆ =  

 
g D f  where 

200 94 106
100 86 14

new      
∆ = − = − =     

     
f f f . The amount of indirect 

energy consumption can be found as 
3.1
3.6

indirect direct  
∆ = ∆ −∆ =  

 
g g g .  

Finally, suppose an energy conservation measure in industry B causes the direct energy 
requirement of that industry for coal to be reduced from 0.4 to 0.3 (1015 Btus of coal per dollar of 
output of industry B). The resulting changes in direct and total energy requirements matrices are 

.2 .3

.1 .3
 

=  
 

D and 
.225   .336
.122   .331
 

=  
 

DL , respectively. Hence the new change in total energy to 
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support final demand, ∆f , is 
28.5
17.6
 

∆ = ∆ =  
 

g DL f . The direct portion is, once again, 

25.4
14.8

direct  
∆ = ∆ =  

 
g D f  so the indirect portion is 

3.1
2.8

indirect direct  
∆ = ∆ −∆ =  

 
g g g .  

Hence, the differences in total energy consumption before and after the energy 

conservation measure are given by
28.5 28.5 0
19.8 17.6 2.2
     

− =     
     

; the differences in direct energy 

consumption are given by 
25.4 25.4 0
16.2 14.8 1.4
     

− =     
     

; and the differences in indirect energy 

consumption are given by 
3.1 3.1 0
3.6 2.8 0.8
     

− =     
     

. 

 
Problem 12.3 
This problem uses the energy input-output formulation to illustrate computation of the total 
energy impacts of a change in nonenergy final demand. Consider the following input-output 
table ($106): 

 Transactions Total Output Autos Oil Electricity 
Autos 2 6 1 10 

Oil 0 0 20 20 
Electricity 3 2 1 30 

Assume that there is a matrix of implied inverse energy prices for this economy given by the 
following (inverse because the measure is millions of dollars per billion Btu rather than vice 
versa): 

 Autos Oil Electricity Final 
Demand 

Oil 0 0 0.4082 0 
Electricity 0.3333 0.2857 0.5 1.2912 

 
We define the basic economic data of the matrix transactions and vectors of total outputs 

and final demands, respectively, as 
2 6 1
0 0 20
3 2 1

 
 =  
  

Z , 
10
20
30

 
 =  
  

x , and

10 9 1
20 20 0
30 6 24

     
     = − = − =     
          

f x Zi . 
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We can compute the energy transactions physical units (billions of Btus) by, first, defining the 

matrix of implied inverse energy prices from the table as 
0 0 0.408

0.333 0.286 0.5
 

=  
 

Q . If we 

multiply, element by element, Q and the energy rows of Z, the energy transactions matrix 

measured in physical units is 
0 0 49
9 7 2
 

=  
 

E .  

Using the energy sector elements of the computed economic final demands, 
0
24
 
 
 

, 

multiplied, element by element, by the inverse energy prices for final demand from the table, 
0

1.2912
 
 
 

, yields the vector of energy consumption in final demand measured in physical units, 

0
31
 

=  
 

q , from which we can now compute the total energy consumption as 
49
49
 

= + =  
 

g Ei q . 

We can express the energy flows as the energy rows in a hybrid units transactions matrix and 
corresponding vectors of final demands and total outputs: 

* * *

2 6 1 1 10
0 0 49  , 0  and 49
9 7 2 31 49

     
     = = =     
          

Z f x and * * * 1

.2 .122 .02
ˆ( ) 0 0 1

.9 .143 .041

−

 
 = =  
  

A Z x . The direct 

energy requirements matrix is then defined as the energy rows of *A . For this economy 
0 49 0
0 0 49
 

=  
 

G  so the direct energy coefficients can be found as 

* 1 * 0 0 1
ˆ( )

.9 .143 .041
−  

=  
 

G x A   

  
If a final demand vector of $2 million worth of autos and 18 quadrillion Btus of 

electricity is presented to this economy, the total amount of energy (of each type) required to 
support this final demand is found by first retrieving the energy rows of *L  for

* * 1

1.556  0.229  0.272
( ) 1.716  1.428  1.525

1.716  0.428  1.525

−

 
 = − =  
  

L I A which defines the total energy requirements matrix, 

* 1 * 1.716  1.428  1.526
ˆ( )

1.716  0.428  1.526
−  

= =  
 

α G x L . Then, for *

2
0

18

 
 ∆ =  
  

f  we compute the total energy 

consumption as *  30.887
 30.887
 

∆ = ∆ =  
 

g α f . 
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If we alternatively use the traditional energy input-output formulation, using the energy 

prices defined above for final demand we can first compute 
   2
   0
23.2

 
 ∆ =  
  

f  and then 

48.2
450.9
 

∆ = ∆ =  
 

g ε f  for 
.2 .3 .033
0 0 .667
.3 .1 .033

 
 =  
  

A , 
1.385   .451     .359
.308    1.174    .821
.462     .262    1.231

 
 =  
  

L  and 

.754    .427   2.010
1.385  .835   19.280
 

= + =  
 

ε DL Q  where 
0 0 0
0 0 18.587
 

=  
 

Q is the matrix of implied inverse 

energy prices for final demand. The elements of [ ]kq=Q  are defined by
when energy sector  and industry sector are the same sec1 ,

0,
tor

otherwise
kf

k

k jp
q 

= 


  

 
Problem 12.4 
This problem explores the conditions for energy conservation in an input-output model. These 
conditions can be expressed as ˆ = +αx αZ G  where α  is the matrix of total energy coefficients, Z 
is the matrix of interindustry transactions, x is the vector of total outputs, and G is the matrix of 
primary energy outputs.  

We can show that the hybrid-units formulation of the energy input-output model—that is, 
where x is replaced by *x and Z is replaced by *Z —satisfies these conditions in general: 

* * * * * * * *ˆ ˆ ˆ ˆ and ,  so  = + = = +αx αZ G Z A x αx αA x G .  Rearranging, this becomes * *ˆ( )− =α I A x G    
or * 1 * 1ˆ( ) ( )− −= −α G x I A , which is the definition of the total energy requirements matrix in the 
hybrid units energy input-output formulation.  
 Given the following two tables of total energy coefficients, we adopt the convention that 
crude oil is a primary energy sector while refined petroleum and electricity are both secondary 
energy sectors. 

 
Case 1 Crude Oil Refined Petroleum Electricity Autos 

Crude Oil 0 .6 .5 .3 
Refined Petroleum 0 .4 .5 .2 

Electricity 0 .2 0 .1 
 

Case 2 Crude Oil Refined Petroleum Electricity Autos 
Crude Oil 0 .6 .5 .3 

Refined Petroleum 0 .4 .2 .1 
Electricity 0 .2 0 .1 

 
Case 1 satisfies the energy conservation conditions, since [ ]. . .6 .5 .3ref pet elec crude+ = =α α α   i.e., 
the sum of all secondary energy consumed for energy type in the economy equals the total 
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primary energy consumed by each energy sector.  Case 2 fails to satisfy the energy conservation 
conditions, since [ ]. . .6 .2 .2 [.6 .5 .3]ref pet elec crude+ = ≠ =α α α . 
 
Problem 12.5 
This problem compares the total energy requirements matrices for the traditional and 
contemporary energy input-output formulations Consider an input-output economy defined (in 

$106 units) by 
0 10 0
5 5 5 ,
0 0 0

=
 
 
 
  

Z
0
25
20

=
 
 
 
  

f , and 
10
40
20

=
 
 
 
  

x . The first two of the three industries are 

energy industries with patterns of output allocation expressed in energy terms (1015 Btus) for 

interindustry transactions, 
0 40 0
5 5 15

=
 
  

E , and for final demand, 
0

15
=
 
  

g . First, we compute 

the direct and total requirements as 
0 .25 0 1.17 .33 .08
.5 .13 .25  and .67 1.33 .33 .
0 0 0 0 0 1

   
   = =   
      

A L   

 With the traditional energy input-output analysis formulation we have  
 

.67 1.33 .33

.67 .94 .83
 

= + =  
 

ε DL Q  where 1 0 1 0
ˆ

.5 .13 .75
−  

= =  
 

D Ex  and 
0 0 0
0 0.6 0
 

=  
 

Q . 

 

 With the hybrid unites formulation we have *

0 40 0
5 5 15
0 0 0

 
 =  
  

Z , *

40
40
20

 
 =  
  

x , 

40 0 0
0 40 0

 
=  
 

G  and *

0 1 0
.13 .13 .75
0 0 0

 
 =  
  

A , so * 1 * 1 1.167 1.333 1.0
ˆ( ) ( )

.167 1.333 1.0
− −  

= − =  
 

α G x I A . 

 
Problem 12.6 
This problem illustrates use of the hybrid units energy input-output model in impact analysis. 
Consider the following hybrid units transactions matrix and vector of total outputs, i.e., the first 
three rows of the energy sectors (oil, coal, and electricity) are measured in millions of Btu and 

the last row, manufacturing, is measured in millions of dollars: *

0 0 40 0
0 0 60 0
2 3 12 48

15 20 30 40

=

 
 
 
 
  

Z  and 
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*

40
60

100
200

=

 
 
 
 
  

x . Using * * * 1ˆ( )−=A Z x  we can compute *

0 0 .4 0
0 0 .6 0

.05 .05 .12 .24
.375 .333 .3 .24

 
 
 =
 
 
 

A  and 

* * 1

1.1024    .0945     .6299      .1890
 .1535    1.1417    .9449      .2835

( )
 .2559     .2362    1.5748     .4724
 .6767     .6086    1.2795    1.6339

−

 
 
 = − =
 
 
 

L I A .  

If we project a final demand for manufactured goods will increase by $200 billion, the 
change in final demand can be written as [ ]*( ) 0 0 0 200′∆ =f  so the corresponding change 

in total energy consumption can be expressed as * 1 * 1 *

18.2677
ˆ( ) ( ) 27.4016

0

− −

 
 ∆ = − ∆ =  
  

g G x I A f  where 

* 1

1 0 0 0
ˆ( ) 0 1 0 0

0 0 0 0

−

 
 =  
  

G x .  The total primary energy intensity is 94.4882′ =i Δg . 

Problem 12.7 
This problem illustrates the use of energy input-output analysis to evaluate the relative impact of 
alternative energy technologies on total energy consumption. For the economy specified in 
problem 12.6, two alternative technologies are proposed for generating electric power, which 
involve alternative new specifications for the matrix of technical coefficients depicting different 
“recipes” for electric power production in the economy, *( )IA and *( )IIA . For the original electric 
power generation column of the technical coefficients matrix is given by *A , suppose the two 
alternative changed columns of the technical coefficients matrix corresponding to the alternative 

technologies are given by *( )
3

.2

.7

.1

.4

I
• =

 
 
 
 
  

A  and *( )
3

.5

.4
.12
.4

II
• =

 
 
 
 
  

A  and a vector of new final demands of 

*

0
0
20
30

∆ =

 
 
 
 
  

f  is presented to the economy.  

To determine which economy [matrix incorporating the specifications *A , *( )IA  or *( )IIA
] reflects the most energy intensive manufacturing, i.e., which one of the two new technologies 
consumes the least primary energy per unit of final demand of manufacturing and how much less 
primary energy does that technology consume than the other to support final demand *∆f , first 
using * * * 1ˆ( )−=A Z x  for the alternative power generation technologies, I and II, we can specify 
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the corresponding matrices of technical coefficients and total requirements as 

*( )

0 0 .2 0
0 0 .7 0

.05 .05 .1 .24
.375 .333 .4 .20

I

 
 
 =
 
 
 

A , *( ) 1

1.0506    .0467      .3113      .0934
 .1770    1.1634    1.0895     .3268

( )
 .2529     .2335     1.5564     .4669
 .6927     .6234     1.3781    1.6634

I −

 
 
 − =
 
 
 

I A , 

*( )

0 0 .5 0
0 0 .4 0

.05 .05 .12 .24
.375 .333 .4 .2

II

 
 
 =
 
 
 

A  and *( ) 1

1.1313    .1212     .8081      .2424
 .1051    1.0970    .6465      .1939

( )
 .2626     .2424    1.6162     .4848
 .7054     .6351    1.4562    1.6869

II −

 
 
 − =
 
 
 

I A . 

If we designate the technical coefficients of original economy by *(0)A , the total energy 
consumption associate with the new final demand, *∆f , is (0) * 1 *(0) 1ˆ( ) ( )− −= −Δg G x I A Δf  and for 
the technical coefficients modified by the two alternative technologies, 

( ) * 1 *( ) 1ˆ( ) ( )I I− −= −Δg G x I A Δf  and ( ) * 1 *( ) 1ˆ( ) ( )II II− −= −Δg G x I A Δf , respectively where 

* 1

1 0 0 0
ˆ( ) 0 1 0 0

0 0 0 0

−

 
 =  
  

G x  and *

0
0
20
30

 
 
 ∆ =
 
 
 

f , we can write 

(0) ( ) ( )

18.2677   9.0272 23.4343
27.4016 31.5953 18.7475
      0      0      0

I II

 
  ∆ = ∆ ∆ ∆ =   
  

g g g g  which provides the total energy of 

each fuel type to support *∆f .  
The total primary energy intensity is given by [ ]( ) 45.6693   40.6226   42.1818′ ∆ =i g , so 

employment of technology I consumes 1.5592 less primary energy than employment of 
technology II.  Both new technologies I and II are more efficient than the base technology. 
 
Problem 12.8 
This problem explores calculation of the total energy consumption in an economy associated 
with an energy saving manufacturing process technology, using the original energy-economy 
defined in problem 12.6. For the direct requirements matrix, *A , suppose an energy conserving 
manufacturing process is developed that can be depicted as a new column of the matrix of 

technical coefficients for manufacturing, given by *( )
4

0
0

.12

.20

new =

 
 
 
 
  

A


. The technical coefficient 

matrix incorporating the new manufacturing technology is *( )

0 0 .2 0
0 0 .7 0

.05 .05 .1 .12
.375 .333 .4 .2

new

 
 
 =
 
 
 

A  and 
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*( )

1.0580     .0546    .5461      .0819
 .0870    1.0819    .8191      .1229
 .1451     .1365    1.3652     .2048
 .5866     .5276    1.1092    1.4164

new

 
 
 =
 
 
 

L . So, for (0) * 1 *(0) 1ˆ( ) ( )− −= −Δg G x I A Δf  and 

( ) * 1 *( ) 1ˆ( ) ( )new new− −= −Δg G x I A Δf  we can write 

[ ](0 ( )

18.2677  13.3788
1

( ) 27.4016  20.0683 45.6693   33.4471
1

  0.0000    0.0000

new

 
  ′ ′  ∆ = ∆ ∆ = =        

i g i g g .  Hence the primary 

energy saved by adopting the new technology is 45.6693 33.4471−  = 12.2222. 
 
Problem 12.9 
This problem explores the use of an energy input-output model in analyzing the implications of 
an oil supply reduction, again using the original energy economy introduced in problem 12.6 but 

with the added information that the energy prices to final demand are given by 
2

[ ] 1
3

f kfp= =
 
 
 
  

p . 

From the original matrix of technical coefficients, *(0)A , we can compute  

*(0)

1 0 .4 0
0 1 .6 0

( )
.05 .05 .88 .24

.375 .333 .3 .8

− 
 − − =
 − − −
 − − − 

I A .  The GDP for the original economy can be found by 

* *(0) *( ) 105GDP ′ ′= = − =i Qf i Q I A x   where 
2 0 0 0
0 1 0 0
0 0 3 0

 
 =  
  

Q and  

[ ]*( ) 40 60 100 200′ =x .  
For a 10 percent reduction in availability of oil supply, the vector of total outputs 

becomes [ ]*( ) 36 60 100 200′ =x .  Hence, we can compute the GDP as the sum of the 
corresponding final demand (measured in dollars) which we determine once again by 

* *(0) *( ) 90.1GDP ′ ′= = − =i Qf i Q I A x  .  The reduction in GDP due to the oil shortage is 
105 90.2 14.9− = .  When the new technologies are incorporated into the technical coefficients 

matrix it becomes *( )

0 0 .2 0
0 0 .7 0

.05 .05 .1 .12
.375 .333 .4 .2

new

 
 
 =
 
 
 

A  and  
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*( )

1 0 .2 0
0 1 .7 0

( )
.05 .05 .9 .12
.375 .333 .4 .8

new

− 
 − − =
 − − −
 − − − 

I A  and, as before, we compute GDP by 

* *( ) *( ) 205.6newGDP ′ ′= = − =i Qf i Q I A x  . This turns out to be not a reduction at all but an 
increase in GDP of 100.6. 
 
Problem 12.10 
This problem uses energy input-output analysis to examine structural change using US input-
output tables for two years.  Below are 9-sector 1963 and 1980 input-output tables for the United 
States expressed in hybrid units (quadrillions of Btus for energy sectors and millions of dollars 
for non-energy sectors). The first five sectors are energy sectors: (1) coal, (2) oil, (3) refined 
petroleum products, (4) electricity, and (5) natural gas. The remaining four sectors are non-
energy sectors: (6) natural resources, (7) manufacturing, (8) transportation, and (9) services.  
  

1980 1 2 3 4 5 6 7 8 9
Total 

Output
1 0.0012 0.0000 0.0007 1.5464 0.0000 0.0000 0.0002 0.0000 0.0000 18,597
2 0.0001 0.0319 0.8960 0.0001 0.8707 0.0000 0.0001 0.0000 0.0000 36,842
3 0.0063 0.0024 0.0612 0.3344 0.0008 0.0005 0.0002 0.0023 0.0002 31,215
4 0.0026 0.0021 0.0035 0.0822 0.0020 0.0000 0.0001 0.0000 0.0001 7,827
5 0.0006 0.0461 0.0301 0.4856 0.0720 0.0001 0.0003 0.0000 0.0001 19,244
6 0.2092 1.4027 0.5040 7.8254 0.4350 0.0896 0.0628 0.0355 0.0289 6,194,571
7 2.6323 0.8480 2.4090 3.5155 0.1804 0.2672 0.3780 0.0493 0.0626 18,081,173
8 0.1773 0.0806 2.1831 4.8195 0.0794 0.0199 0.0251 0.1289 0.0141 2,240,904
9 1.8576 2.6159 2.7945 8.5173 1.2302 0.1831 0.1238 0.1224 0.2027 23,803,723

1963 1 2 3 4 5 6 7 8 9
Total 

Output
1 0.0019 0.0000 0.0008 1.7415 0.0010 0.0000 0.0004 0.0001 0.0000 12,476
2 0.0000 0.0423 0.7996 0.0007 0.9308 0.0000 0.0003 0.0000 0.0000 30,384
3 0.0015 0.0011 0.0600 0.1973 0.0031 0.0004 0.0003 0.0021 0.0002 19,878
4 0.0015 0.0007 0.0018 0.0963 0.0002 0.0000 0.0001 0.0000 0.0000 3,128
5 0.0001 0.0035 0.0330 0.7046 0.0919 0.0000 0.0003 0.0001 0.0001 13,194
6 0.0456 0.4582 0.5926 7.9623 0.6565 0.1111 0.0835 0.0415 0.0426 4,865,092
7 0.8684 0.4081 1.1700 1.0933 0.0937 0.2340 0.4035 0.0498 0.0496 11,333,710
8 0.1105 0.0655 1.1964 4.5632 0.3965 0.0231 0.0256 0.0863 0.0121 1,131,226
9 0.4794 2.2388 1.9461 8.0643 1.1016 0.1121 0.0881 0.1203 0.1721 10,588,385  

 
 To determine the amounts of the change in total energy use of each energy type between 
1963 and 1980 and the components of that change that are attributable to change in production 
functions, to change in final demand, and to the interaction between the changes in production 
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functions and final demand between the two years, we begin by calculating the total 
requirements matrices *(80) *(80) 1( )−= −L I A  and *(63) *(63) 1( )−= −L I A . From the available data we 
must calculate final demands as *(80) *(80) * *(80)= −f x A x  and *(63) *(63) * *(63)= −f x A x . The total 
requirements matrices and vectors of final demand are the following: 
 

1980 1 2 3 4 5 6 7 8 9
Final 

Demand
1 1.0081 0.0059 0.016 1.718 0.0099 0.0003 0.0007 0.0002 0.0002 3,258
2 0.0164 1.0923 1.0933 1.0115 1.0301 0.0014 0.0015 0.0032 0.0006 -10,684
3 0.0115 0.0076 1.0851 0.4513 0.0106 0.001 0.0007 0.003 0.0004 10,461
4 0.0038 0.0035 0.0089 1.1062 0.006 0.0002 0.0003 0.0001 0.0001 3,155
5 0.0058 0.0578 0.098 0.6569 1.1341 0.0005 0.0008 0.0004 0.0003 4,066
6 0.7803 2.1173 3.4665 15.249 2.6707 1.154 0.1361 0.0722 0.0559 3,596,887
7 5.0854 2.9969 8.6363 27.246 3.696 0.5453 1.7127 0.1654 0.1614 7,804,130
8 0.479 0.3575 3.3772 9.3886 0.5332 0.0517 0.0613 1.1667 0.0288 925,557
9 3.5349 4.7573 10.33 30.909 6.5227 0.369 0.3197 0.2444 1.3022 15,022,410

1963 1 2 3 4 5 6 7 8 9
Final 

Demand
1 1.0058 0.0026 0.0094 1.9521 0.0049 0.0004 0.0011 0.0002 0.0002 2,199
2 0.0056 1.0532 0.9444 1.0968 1.0861 0.0012 0.0021 0.0026 0.0007 -2,359
3 0.0032 0.0033 1.0732 0.2727 0.0094 0.0008 0.0008 0.0026 0.0004 8,630
4 0.0019 0.0011 0.0037 1.1145 0.0016 0.0001 0.0002 0.0001 0.0001 1,037
5 0.0025 0.0061 0.0483 0.8888 1.1087 0.0004 0.0009 0.0004 0.0003 3,540
6 0.2843 0.8465 2.0483 14.209 1.88 1.1866 0.1853 0.0793 0.0749 2,820,771
7 1.6793 1.3446 4.2429 14.296 2.1657 0.4915 1.7788 0.1478 0.1362 4,989,750
8 0.2025 0.1894 1.7661 7.6651 0.7549 0.0485 0.0604 1.1074 0.0233 456,425
9 0.8733 3.1616 6.1679 21.334 5.0473 0.2267 0.2346 0.202 1.2401 6,933,979  

 
If we denote the energy rows of *(80)L  as 80α , the vector of total energy output as 80g , 

and final demand as 80f  (now in all cases dropping the * for simplicity) with the analogous 
designations for 1963, we can compute the changes in energy consumption as

80 63 63 80 63 80 63 63 80 63 80 63

  6,121.4
  6,457.3

( ) ( ) ( )( ) 11,337.2
  4,698.8
  6,049.6

 
 
 
 − = − + − + − − =
 
 
  

g g α f f α α f α α f f   

where the effect caused by changing final demand is 63 80 63

10,467.2
  9,433.3

( )   9,967.9
  3,738.7
  8,021.1

 
 
 
 − =
 
 
  

α f f ; 
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the effect caused by changes in production functions is 80 63 63

-2460.4
-1257.5

( )   756.8
  613.3
 -502.4

 
 
 
 − =
 
 
  

α α f ;  

and the effect of interaction of final demand and production function changes is 

80 63 80 63

-1885.4
-1718.5

( )( )  612.5
  346.8

-1469.1

 
 
 
 − − =
 
 
  

α α f f . 
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Chapter 13, Environmental Input–Output Analysis 
Chapter 13 reviews the extension of the input–output framework to incorporate activities of 
environmental pollution generation and elimination associated with economic activities as well 
as the linkages of input–output to models of ecosystems. The chapter begins with the augmented 
Leontief model for incorporating pollution generation and elimination, from which many 
subsequent approaches have been developed.  

The chapter then describes the now widespread application of input-output analysis to 
environmental life cycle assessment and establishing a “pollution footprint” for industrial 
activity. Environmental input-output is also now widely used to evaluate global environmental 
issues. The special case of a analyzing the relationship between global climate change and 
industrial activity with a carbon footprint is then explored along with using input-output to 
attribute pollution generation to the demands driving consumption compared with the more 
traditional attribution of pollution generation to the sectors of industrial production necessary to 
meet that demand.  

The exercise problems for this chapter explore the features of environmentally extended 
input-output models and their applications. 
 
Problem 13.1 
This problem explores the basic features of a generalized input-output model configuration 
applied to assessing energy, pollution, and employment associated with industrial activity.  
Assume that we have the following direct coefficient matrices for energy, air pollution, and 

employment ( eD , vD  and lD , respectively) for two industries, 1 and 2: 
0.1 0.2
0.2 0.3

e =
 
  

D  , 

0.2 0.5
0.2 0.3

v =
 
  

D and [ ]0.2 0.5l =D . Notice that industry 2 is both a high-polluting and high-

employment industry.  
Suppose that the local government has an opportunity to spend a total of $10 million on a 

regional development project. Two projects are candidates: (1) Project 1 would spend 
appropriated dollars in the ratio of 60 percent to industry 1 and 40 percent to industry 2; the 
minimum size of this project is $4 million; (2) Project 2 would spend appropriated dollars in the 
ratio of 30 percent to industry 1 and 70 percent to industry 2; the minimum size of this project is 
$2 million. The government can adopt either project or a combination of the two projects (as 
long as the minimum size of each project is at least maintained and that the total budget is not 
overrun). In other words, we might describe the options available to the government as: 

1 2
0.6 0.3
0.4 0.7

a

b

β
α α

β
= +

     
         

 

where 1 2 and α α  are budgets allocated to projects 1 and 2, respectively. aβ  and bβ  are the 
total final demands presented to the regional economy by the combination of projects for 
industries A and B, respectively.  

Suppose that four alternative compositions of these projects are being considered 
1 1 1 1

2 2 2 2

4 5 10 0
(1) , (2) , (3) and (4) 

2 5 0 10
   

α α α α

α α α α

= = = =

= = = =

   
   
   

 . The following table of constraints 

describes the local regulation on energy consumption and environmental pollution in the region: 
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 Maximum Allowable Changes 
Collectively by All Industries 

Oil Consumption (1015 Btus) 3.0 
Coal Consumption (1015 Btus) no limit 

SO2 Emissions (tons) 14.5 
NOx Emissions (tons) 10 

 
Finally, suppose that the regional economy is currently described by the following input-

output transactions table (in millions of dollars): 

 A B Total Output 
A 1 3 10 
B 5 1 10 

If we are interested in determining which of the proposed combinations of projects (1), (2), (3) or 
(4) permit the region to operate within the above constraints on energy consumption and air 
pollution emission and within the established budget constraint, we begin by retrieving the 

matrix of economic transactions, 
1 3
5 1
 

=  
 

Z , and the vector of total outputs, 
10
10
 

=  
 

x ,  from the 

table to calculate the economic direct and total requirements matrices: 1 .1 .3
ˆ  

.5 .1
−  

= =  
 

A Zx and

1 1.364 .455
 ( )

.758 1.364
−  

= − =  
 

L I A .  

Then we define the direct impact matrix as a concatenation of the three individual impact 

matrices, eD , vD  and lD , as: 

.1 .2

.2 .3

.2 .5

.2 .3

.2 .5

 

e

v

l

=

 
  
  =   
     
  

D
D
D

D  from which we can compute the total impact 

coefficients matrix, 

.288 .318
.5 .5

.652 .773

.500 .500

.652 .773

 
 
 
 =
 
 
 
 

DL . We can represent the four candidate projects by the 

following matrix, the columns of which are the final demand change vectors: 

3 4.5 6 3
3 5.5 4 7

Projects

 
∆ =  

 
F



.  
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Total allocated budgets can be represented by the column sums of ∆F , found as  
[ ][ ] 6 10 10 10 ;′ ∆ =i F  that is, all four candidate projects satisfy the budget constraint of $10 

million. We can compute matrix of total impacts as 

1 2 3 4

1.8 3.0 3.0 3.1
3.0 5.0 5.0 5.0
4.3 7.2 7.0 7.4
3.0 5.0 5.0 5.0
4.3 7.2 7.0 7.4

 
 
 

   ∆ = = =   
 
  

X DLΔF x x x x  where the columns are the vectors of 

total impacts for each scenario 1, 2, 3, and 4, respectively. Note that Project 4, using 3.1 ×  1015 
Btus of oil, exceeds the established consumption limit of 3.0 ×  1015 Btus.  

If our goal is to maximize employment, Project 2 should be chosen since it produces the 
highest level of employment among the three feasible projects, i.e., from among the first three 
scenarios that comply with established energy or environmental constraints (from the bottom row 
of ∆X ). 
Problem 13.2 
This problem illustrates construction of a generalized impact assessment model from available 
data. Consider a regional economy that has two primary industries, A and B. In producing these 
two products it was observed that in the previous year air pollution emissions associated with 
this industrial activity included 3 pounds of SO2 and 1 pound of NOx emitted per dollars’ worth 
of output of industry A, and 5 pounds of SO2 and 2 pounds of NOx emitted per dollars’ worth of 
output of industry B.  

 It was also observed that industries A and B consumed 61 10×  tons and 66 10×  tons of 
coal, respectively, during that year. Industry A also consumed 62 10×  barrels of oil. Total 
employment in the region was 100,000 (40 percent of which were employed by industry A and 
the rest by industry B) and the regional planning agency constructed the following input-output 
table of interindustry activity and total output in the region (in $106): 

 A B Total Output 
A 2 6 20 
B 6 12 30 

If the projected vector of final demands for the next year is 
15
25

new  
=  
 

f  , we can estimate 

for the next year the total consumption of each energy type (coal and oil), the total pollution 
emission (of each type), and the level of total employment by first by retrieving the matrix of 

economic transactions, 
2 6
6 12
 

=  
 

Z , and the vector of total outputs, 
20
30
 

=  
 

x ,  from the table to 

calculate the economic direct and total requirements matrices: 1 .1 .2
ˆ  

.3 .4
−  

= =  
 

A Zx and

1 1.250 .417
 ( )

.625 1.875
−  

= − =  
 

L I A . From the available data we assemble the direct impact 
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coefficient matrices for energy, emissions, and employment impact and concatenate them to 

yield an overall matrix of direct impact coefficients, 

1 0
.05 .2
3 5
1 2

.002 .002

 
 
 
 ==
 
 
 
 

D .   

Now we can compute the total impacts as 

*

* *

*

29.167
12.708
368.75

141.667
.171

e

new v

l

 
       = = =       
 
 

x
x DLf x

x
. That is, 

* 29.167
12.708

e  
=  
 

x  shows 29,167,000 tons of coal and 12,708,000 barrels of oil will be consumed in 

production next year; * 368.75
141.667

V  
=  
 

x  shows that 368,750,000 pounds of SO2 and 141,667,000 

pounds of NOx will be emitted in the course of that industrial production; and * [0.171]l =x   
shows that 171,000 workers will be employed. Total economic output is found as 

29.167
56.25

new new  
= =  

 
x Lf ; that is, 1 $29,167,000newx =  and 2 $56,250,000.newx =   

Problem 13.3 
This problem explores typical regional planning consideration in application of a generalized 
input-output impact model. Suppose a regional planning agency initiates a regional development 
planning effort. Four projects are being considered that would represent government purchases 
of regionally produced products of the output of three industries, A, B, and C, which would 
appear as final demands presented to the regional economy, as depicted in the following table. 
 

Regional Industry 
Project Expenditure (millions of dollars) 

Project 1 Project 2 Project 3 Project 4 
A 2 4 2 2 
B 2 0 0 2 
C 2 2 4 3 

Additional information is available, including the matrix of technical coefficients, 
0.04 0.23 0.38
0.33 0.52 0.47

0 0 0.1
=
 
 
 
  

A , and relationships between the following quantities and total output 

given by the following:  
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Industry 

A B C 
Pollution emission (grams/$ output) 4.2 7 9.1 
Energy Consumption (bbls oil/$ output) 7.6 2.6 0.5 
Employment (workers/ $ output) 0.73 0.33 0.63 

 
To determine which of the four projects contributes most to gross regional output, we 

begin by computing the total economic requirements matrix, 
1.247 .598 .839
.857 2.494 1.665

0 0 1.111

 
 =  
  

L , and 

from the table we can assemble the direct impact matrix as 
4.2 7 9.1

 7.6 2.6 .5
.73 .33 .63

 
 =  
  

D . The table of 

prospective project expenditures retrieved directly from the table is 
2 4 2 2
2 0 0 2
2 2 4 3

 
 ∆ =  
  

F  from 

which we can compute *

112.986 95.527 123.618 138.27
67.98 69.341 68.44 79.236
8.628 8.496 9.832 10.49

 
 ∆ = ∆ =  
  

X DL F , the 

corresponding total impacts where each column shows the total impacts of the corresponding 
column in ΔF  for each project. Since the sum of final demands equals the contribution to GRP, 
we can also note that Project 4 contributes most to gross regional product (GRP), i.e., that project 
shows the largest column sum of ΔF , [ ][ ] 6 6 6 7 .′ ∆ =i F  Project 4 also consumes the most 
energy (79.236 ×  106 bbls of oil) and contributes the most to regional employment (10.490 ×  
106 workers). 
 
Problem 13.4 
This problem explores the potential tradeoffs between environmental and employment 
considerations using input-output analysis. Consider an input-output economy defined by 

interindustry transactions and total outputs, 
140 350
800 50
 

=  
 

Z and 
1,000
1,000
 

=  
 

x .  

Suppose this is an economy in deep economic trouble. The federal government has at its 
disposal policy tools that can be implemented to stimulate demand for goods from one sector or 
the other. Also suppose that the plants in sector 1 discharge 0.3 lbs. of airborne particulate 
substances for every dollar of output (0.3 lbs/$ output), while sector 2 pollutes at 0.5 lbs/$ 
output. Finally, let labor input coefficients be 0.005 and 0.07 for sectors 1 and 2, respectively.  

To assess whether or not a conflict of interest would arise between unions and 
environmentalists in determining the sector toward which the government should direct its policy 
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effort, first, from Z and x we compute 1 .14 .35
ˆ

.8 .05
−  

= =  
 

A Zx and 
1.769 .652
1.49 1.601

 
=  
 

L . Since 

from the data provided,
.3 .5

.005 .07
 

=  
 

D  we can compute 1 1.276 .996
( ) .

.113 .115
−  

− =  
 

D I A  

Therefore, for *
1.2761

,  .1130
new   

= =   
   

f x , meaning that for each new dollar's worth of final 

demand for the output of sector 1, there will be 1.276 pounds of pollutant emitted and 0.113 new 

workers. Similarly, with 
0

,  
1

new  
=  
 

f we find *
.996
.115
 

=  
 

x , meaning that for each new dollar's 

worth of final demand for the output of sector 2, there will be 0.996 pounds of pollutant emitted 
and 0.115 new workers. Thus, there would not be a conflict between unions and 
environmentalists in this case; each dollar’s worth of new demand for sector 2 generates less 
pollution and also generates more employment (notice that this is true despite the fact that sector 
2’s direct-pollution coefficient per dollar of output is larger than sector 1’s direct-pollution 
coefficient). 
 
Problem 13.5 
This problem explores the basic features of the pollution-activity augmented Leontief input-
output formulation. Consider the following table of interindustry transactions and total industry 
outputs (the same transactions as in problem 13.4 but with different total outputs): 
 

  Purchasing Sector Total 
Output 1 2 

Selling 
Sector 

1 140 350 2,000 
2 800 50 1,850 

 
An amount of pollution generated by sector 1 is 10 units and by sector 2 is 25 units. 

Pollution abatement reduced pollution by 5 units in sector 1 and 12 units in sector 2. Total 
pollution permitted by local regulation is 12 units. if final demands for both sectors increase by 
100, we can use the pollution-activity-augmented Leontief formulation to determine is the level 
of output for each industry by first augmenting the basic economic transactions matrix, 

140 350
800 50
 

=  
 

Z   with the pollution abatement and elimination data to yield 

140 350 5
800 50 12
10 25 0

 
 =  
  

Z .   

Total pollution output is found by adding pollution generation in the interindustry matrix 
to the pollution tolerated (reflected as a negative value in final demand), i.e., we define 

10 25 12 23px = + − = , which we can augment to the total industry outputs vector to yield 
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[ ]2,000 1,850 23 ′=x .  The vector of final demands is [ ]1,505 988 12 ′= − = −f x Zi  and 

the matrix of technical coefficients is 1
.07 .189 .217

ˆ .4 .027 .522
.005 .014 0

−
 
 = =
 
 

A Zx , from which we can 

compute 1
1.178 .234 .378

( ) .491 1.133 .698
.013 .016 1.011

−
 
 = − =
 
 

L I A .  

For an increase in final demand of both sectors by 100, [ ]100 100 0 ′∆ =f , the 

changes in total outputs and pollution are found as [ ]141.2 162.4 2.9 ′∆ =x . Hence, the new 

levels of outputs and pollution are [ ]2,141.2 2,012.4 25.9new ′=x . 
Problem 13.6 
This problem compares regional and national pollution, energy consumption, and employment 
impacts of a public works initiative. In problems 10.5 and 10.6 national and regional input-
output tables are defined with three sectors (natural resources, manufacturing, and services) with 
the following matrices of technical coefficients and vectors of total outputs, respectively,  

 
.1830 .0668 .0087
.1377 .3070 .0707
.1603 .2409 .2999

N =
 
 
 
  

A , 
518, 288.6

4,953,700.6
14, 260,843.0

N =
 
 
 
  

x , 
.1092 .0324 .0036
.0899 .0849 .0412
.1603 .1170 .2349

R =
 
 
 
  

A  and

8, 262.7
95, 450.8

170,690.3

R =
 
 
 
  

x . We define the energy use, pollution, and employment coefficients that apply to 

both the regional and national economies in the following table: 

           Environmental, Energy, and Employment Impact Coefficients 

  
Industry 

Nat. Res. Manuf. Services 
Pollution emission (grams/$ output) 4.2 7 9.1 
Energy Consumption (bbls oil/$ output) 7.6 2.6 0.5 
Employment (workers/ $ output) 7.3 3.3 6.3 

 
Suppose a major new public works initiative by the federal government is characterized 

by the following vector of increases in federal spending: [ ]250 3,000 7,000′∆ =f , of which 20 
percent will be spent in the region (assume the 20 percent applies linearly to all expenditures). 
We can determine the percentage changes in total impacts on pollution, energy use, employment, 
and total industrial output of each industry sector for the region compared with those of the 
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nation as a whole by first defining, from the table, the common direct impact coefficients as 
4.2   7    9.1
7.6  2.6   .5
7.3  3.3  6.3

 
 =  
  

D .  

The baseline environmental, energy, and employment impacts for the nation and the 

region, respectively, are found by [ ]* 166,626,387.6   23,949,036.4  109,974,029.7 N N ′= =x Dx  

and [ ]* 2,256,140.7     396,313.8    1,450,654.2 R R ′= =x Dx . Then the total impacts, including 
the economic impacts of the new public works project for the nation and the region, respectively, 
are 
 

*

1

10.7832   16.2768   14.7759
10.4543    5.2368    1.3729
12.5176    9.4836   10.1120
1.2516    0.1306    0.0287( )
0.2881    1.5256    0.1576
0.3857    0.5549    1.4892

N
N N

N −

 
 
 
 

∆ = ∆ =  −   


 

D
x f

I A

154,957.3
27,934.5

250 102,364.1
3,000  906.1
7,000  5,752.2

 12,185.3

 
 
      =         

  
   

 

 

*

1

  7.9150    9.5207  12.4438
9.0188    3.2720    0.8721

10.2453    5.0627    8.5550
 1.1281    0.0409    0.0075( )
 0.1223    1.1048    0.0601
 0.2550    0.1775    1.3178

R
R R

R −

 


 

∆ = ∆ =  −   


 

D
x f

I A

23,529.5
3,635.2

   50 15,527.0
  600  91.5

 1,400  753.1
 1,964.2

 
  
       =         
  
   

 

where .2R N=Δf Δf . Hence, the comparative percentage changes from *( ) *( )andN Rx x  are: 
 

  Nation Region 
Nat. Res. 0.09 1.04 
Manuf. 0.12 0.92 
Services 0.09 1.07 
Pollution 0.17 1.11 
Energy 0.12 0.79 
Employ. 0.09 1.15 

 
Problem 13.7 
This problem explores the implications of an energy shortage on economic performance using 
the regional economy specified in problem 13.6 prior to the projected final demand for that 
problem.  Recall for that economy, the matrix of technical coefficients and vector of total 
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outputs, respectively, were 
.1092 .0324 .0036
.0899 .0849 .0412
.1603 .1170 .2349

R =
 
 
 
  

A  and 
8, 262.7

95, 450.8
170,690.3

R =
 
 
 
  

x . The matrix of 

direct impact coefficients was specified as 
4.2   7    9.1
7.6  2.6   .5
7.3  3.3  6.3

 
 =  
  

D .  

The levels of pollution, energy consumption, and employment accompanying the baseline 

levels of total industry output are found by 

*

4.2 7 9.1     8,262.7 2,256,140.7
7.6 2.6 .5  95,450.8   396,313.8
7.3 3.3 6.3 170,690.3 1,450,654.2

R R

     
     = = =     
          

x Dx . We can show a ten percent reduction 

in energy availability defined by *

1 0 0  2,256,140.7  2,256,140.7
0 .9 0   396,313.8   356,682.4
0 0 1  1,450,654.2  1,450,654.2

new

     
     = =     
          

x .  

The corresponding limits on total industry output can be found conveniently as 

1 *

-0.0766    0.0732    0.1049 2,256,140.7  5,362.0
0.2301    0.2079   -0.3488   356,682.4  87,210.5

-0.0317   -0.1937    0.2199 1,450,654.2 178,367.8

new new−

     
     = = =     
          

x D x , which in turn means 

 0.8908   -0.0324   -0.0036  5,362.0 1,308.7
( ) -0.0899    0.9151   -0.0412 87,210.5 71,975.5

-0.1603   -0.1170    0.7651 178,367.8 125,406.0

new new

     
     = − = =     
          

f I A x .   

Finally, the change in GDP is 2,637.7new′ ′− = −i f i f  or a 1.31 percent reduction in GDP, 

where the original final demand is 
  3,653.3

 79,571.8
118,102.9

 
 = − =  
  

f x Ax .  

Problem 13.8 
This problem explores input-output analysis configured as a linear programming (LP) problem 
using alternative objective functions. Consider a traditional input-output economy is specified by 

the technical requirements matrix and vector of final demands, respectively, as 
.3 .1
.2 .5

=
 
  

A and 
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4
5

=
 
  

f , for which the vector of total outputs is found by 1 7.575
( )

10.03
−  

= − =  
 

x I A f . The vector of 

value-added coefficients for this economy are found as 
.5
.4
 ′= − =  
 

v x i A .  

To specify this model as an equivalent LP formulation, we can write 
1 2

1 2

1 2

1 2

.5 .4
.7 .1 4
.2 .5 5

, 0

Min x x
x x
x x
x x

+
− ≥

− + ≥
≥

 

which we can interpret as minimizing the gross domestic product (the sum of all value added) 
subject to total industry production that at least satisfies all industry final demands. In matrix 
terms this is expressed as 

( )
0

Min ′

− ≥
≥

v x
I A x f

x

 

The graphical solution is  

 
 
Note that it turns out that the solution to this LP problem has a “dual” formulation (discussed in 
Chapter 13) of maximizing the value of total final demand (or maximizing gross domestic 
product) subject to the technical coefficients and supply availability of value-added factors, 
which may seem more intuitive. These dual LP problems have the same result such that 
maximized value of final demand equals the minimized cost of value-added factors and that 
value is the gross domestic product, or the familiar equality of national product to national 
income.   

Now, suppose that for this economy pollution is generated at a rate of 2.5 units per dollar 
of output of industry 1 and 2 units per dollar of output of industry 2 for this economy. If we 
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replace the objective function for the LP problem with minimizing pollution emissions instead of 
maximizing GDP, we can express this as  
 

1 2

1 2

1 2

1 2

2.5 2
.7 .1 4
.2 .5 5

, 0

Min x x
x x
x x
x x

+
− ≥

− + ≥
≥

 

 
Note that the solution to this LP problem is the same as with the original objective function, 
which should not be surprising, in this particular case, since the minimum production levels 
defined in the constraint equations are already determined uniquely by the input-output 
relationships ( )− ≥I A f . 

Problem 13.9 
This problem expands the LP formulation for the economy specified in problem 13.8 to a goal 
programming (GP) formulation which can accommodate multiple objective functions.  Suppose 
that, in addition to the environmental criteria specified in problem 13.8, we also know that 
employment is generated at a rate of 6 and 3 units per dollars’ worth of output for industries 1 
and 2, respectively, and that there is high priority employment target of 7.5 units for industry 2. 

To formulate this situation as finding the vector of total outputs that meets the 
employment target for industry 2 as the highest priority, then meets final demand requirements 
for both industries as the next highest priority, and minimizes total pollution generation to the 
extent possible as the next priority, and, if possible, limiting pollution to a total level of 10 units 
between the two industries, we specify the following GP problem: 

1 3 2 1 2 3 4( ) ( ) ( )Min P d P d d P d− − − ++ + +   

1 2 1 1.7 .1 4x x d d+ −− + + =   

1 2 2 2.2 .5 5x x d d+ −− − + + =   

2 3 3.5 7.5x d d+ −+ + =   

1 2 4 42.5 2 10x x d d+ −− + + =   

The graphical solution to this GP problem is shown below with the preferred vector of 
total outputs computed as * (7.857,15)=x . 
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Problem 13.10 
This problem illustrates the estimation of the change in U.S. carbon dioxide emissions between 
two reference years. We use highly aggregated (seven industry sectors) versions of the 1997 and 
2007 U.S. input-output tables (industry-by-industry and assume industry-based technology, after 
redefinitions) provided in Appendix SD1.  

First, we retrieve the supply and use matrices and, recalling that the supply matrix is the 
transpose of the use matrix, we can specify: 

 

1997

258,234 0 0 45 0 796 0
0 162,842 0 9,119 0 0 0
0 0 762,267 0 0 0 0
0 1,007 0 3,752,428 0 28,347 3,789

126 381 0 0 2,262,980 259 742
0 240 0 0 11 6,577,434 1,866

1,002 0 0 0 76,744 165,709 1,326,951

 
 
 
 

=  
 
 
 
 

V   

2007

347,665 0 0 12 0 1,559 0
0 437065 0 24,850 0 0 0
0 0 1,436,071 0 0 0 0
0 828 0 5,176,967 0 33,134 5,050

439 15 0 0 3,784,910 2,194 1,382
0 149 0 0 10 12,218,068 1,377

1,413 0 0 0 120,309 296,914 2,348,118

 
 
 
 

=  
 
 
 
 

V   
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1997

48,986 86 1,067 155,059 1,282 3,447 1,306
1,195 17,051 7,663 126,256 32, 295 1,439 10,910

879 1,958 189 15,114 6,110 38,589 33,763
44,105 19,986 205,959 1,532,339 97,639 333,465 165,270
25,240 12,589 85,547 335,127 210,522 198,2

=U
33 61,843

28,584 29,237 68,715 320,296 413,007 1,774,829 203,053
720 808 4,873 25,755 43,718 52,333 17,330

 
 
 
 
 
 
 
 
 

  

 

2007

64,432 127 1,841 206,823 1,524 5,602 3,832
1,995 41,923 13,422 428,689 83,277 4,020 24,343
1,764 3,806 188 16,102 12,568 129,186 58,171

62,374 40,138 343,216 1,954,459 210,331 542, 427 327,316
37,563 18,993 150,821 489,276 393,

=U
027 363,846 112,297

34,714 54,852 118,577 386,380 745,794 3,643,107 433,804
823 1,401 1,611 38,698 59,939 90,726 26,504

 
 
 
 
 
 
 
 
 

  

We can compute the vectors of total industry outputs, =x Vi , total commodity outputs, 
′=q i V for both years as: 

[ ]1997 1997 259,362 164,470 762,267 3,761,592 2,339,735 6,772,545 1,333,348= =x V i  

[ ]1997 1997 259,075 171,961 762,267 3,785,571 2,264,488 6,579,551 1,570,406 ′′=q i V  
 

[ ]2007 2007 349,517 438,057 1,436,071 5,201,829 3,905,229 12,551,869 2,355,927 ′= =x V i   
[ ]2007 2007 349,236 461,915  1,436,071  5,215,979  3,788,940  12,219,604 2,766,754′= =q i V   

We can the compute the matrix of industry commodity requirements, B, and the matrix of 
commodity output proportions, D, for both years and under the assumption of an industry-by-
industry model assuming industry-based technology we can specify the direct requirements 
matrix as =A DB  for each of the two years as:  

1997

0.188273 0.000544 0.001409 0.041103 0.000568 0.000540 0.000996
0.004773 0.098467 0.010171 0.032766 0.013171 0.000320 0.008047
0.003389 0.011905 0.000248 0.004018 0.002611 0.005698 0.025322
0.169072 0.121839 0.268290 0.=A 404378 0.042252 0.049956 0.123601
0.097359 0.076731 0.112182 0.089133 0.089964 0.029265 0.046382
0.110184 0.177859 0.090139 0.085177 0.176504 0.261988 0.152266
0.009150 0.011224 0.011481 0.011109 0.023286 0.014123 0.016394






 
 
 
 
 
 
 


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2007

0.183530 0.000305 0.001287 0.039591 0.000413 0.000481 0.001643
0.006251 0.090990 0.009982 0.079768 0.020434 0.000509 0.010439
0.005047 0.008688 0.000131 0.003095 0.003218 0.010292 0.024691
0.177407 0.091459 0.237452 0.=A 373278 0.054040 0.043692 0.138432
0.107608 0.043339 0.104929 0.094028 0.100577 0.029013 0.047656
0.099311 0.125233 0.082564 0.074299 0.190964 0.290211 0.184119
0.008570 0.007135 0.006298 0.011266 0.020864 0.014109 0.015542






 
 
 
 
 
 
 



 

The corresponding matrices of total requirements, 1( )−= −L I A , for the two years are: 

1997 1997 1

1.252977 0.015617 0.027750 0.089978 0.007161 0.007798 0.014963
0.024627 1.122265 0.032976 0.068182 0.021330 0.006615 0.020653
0.008970 0.017526 1.005313 0.011175 0.006220 0.009337 0.029176
0.4077( ) 44 0.2858−= − =L I A 96 0.506676 1.768336 0.120680 0.133877 0.264423
0.187822 0.138849 0.188470 0.200829 1.125215 0.061665 0.094020
0.291291 0.346223 0.243804 0.289671 0.296740 1.393885 0.275576
0.025275 0.024644 0.026054 0.030630 0.032644 0.023243 1.026551

 
 
 
 
 
 
 
 
 

 

 

2007 2007 1

1.244908 0.010357 0.022731 0.082327 0.007667 0.006880 0.015992
0.049530 1.120132 0.053254 0.154067 0.038688 0.013456 0.039350
0.012215 0.013642 1.005408 0.011260 0.008746 0.016252 0.030428
0.4075( ) 43 0.1999−= − =L I A 23 0.430289 1.689458 0.140185 0.121968 0.280757
0.205969 0.086585 0.175881 0.205806 1.142868 0.064162 0.101938
0.288758 0.249039 0.226796 0.279912 0.339136 1.450302 0.335832
0.024442 0.015987 0.018918 0.029612 0.031088 0.023802 1.026593

 
 
 
 
 
 
 
 
 

 

Finally, we specify the vector of units of carbon dioxide emissions generated per dollar of 
total output in 1997 as 1997 3 7 10 5[2 4 4]′=d . If we presume that the availability of new 
technology reduces the emissions per dollar of output in the year 2007 for the manufacturing 
sector by 10 percent and the construction sector by 15 percent, then we can specify the new 
emissions coefficients for 2007 as 2007 3 3.4 6.3 10 5[2 4]′=d . Hence the total pollution 
impacts are  2007 2007 19997 1997][ ] 57,916,899p ′∆ = − =i T f T f  where 2007 2007 2007[ ]′=T d L  and 

1997 1997 1997[ ]′=T d L  or equivalently 2007 2007 1997 1997[ ] [ ]′ ′−d x d x . In this case the improvement in 
pollution coefficients (reduction pollution generation per dollar of total output) was offset by 
growth in output levels so the net result was an increase in pollution impacts.   
 
Problem 13.11 
This problem illustrates the attribution of pollution emissions, in this case CO2 emissions, to 
either consumption or production using an interregional input-output (IRIO) model. Consider the 
3 region 2 sector IRIO interindustry technical coefficients matrix defined by 
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.222 .121 .027 .023 .007 .014

.217 .028 .014 .015 .021 .012
.02 .025 .126 .088 .019 .019
.002 .025 .06 .141 .002 .019
.012 .02 .019 .005 .192 .179
.022 .017 .005 .013 .195 .164

 
 
 
 =
 
 
 
 

A .  The corresponding Leontief inverse is then 

1

1.335 .17 .048 .045 .025 .033
.3 .1069 .029 .031 .039 .03

.043 .04 1.155 .125 .038 .039( ) .018 .037 .085 1.217 .015 .034
.04 .038 .033 .018 1.308 .282
.051 .036 .019 .025 .307 1.265

−

 
 
 
 = − =
 
 
 
 

L I A . We define a vector of CO2 

emission coefficients as [ ].9 .4 .3 1.0 .2 .7′ =g .  
For a new vector of final demands presented to this IRIO economy, defined by 
1500
2000
55
40
5
3

new

 
 
 
 =
 
 
 
 

f , we can calculate the vector of the total CO2 emissions associated with the total 

economic production for each sector in each region attributed to where the pollution is generated 

as 

2112.0
1036.7

63.9ˆ
153.9
29.1

109.1

D new

 
 
 
 = =
 
 
 
 

e gLf . To attribute the emissions to consumption rather than production, i.e., 

where the consumption occurs that generates the demand for the production that generates the 

emissions, we specify the impacts as 

2091.7
1320.2
27.64ˆ
51.33
2.7
3.1

C new

 
 
 
 = =
 
 
 
 

e gLf .  

Note that both vectors sum to the same level of total CO2 emissions, i.e., 34,967D C′ ′= =i e i e , 
but De attributes the pollution generated to the sectors where the emissions were generated 
during production while Ce attributes the emissions to final consumers, i.e., final demand sectors 
that generated the demand for that industrial production and associate emissions.  Since this 
economy is dominated by region 1, as is evident by total GDP in regions 1, 2, and 3 of 3500, 95, 
and 8, respectively (the sum of final demands in each region), the total emissions when 
attributable to final demand are 9 percent higher for region 1 and 63 and 96 percent lower in 
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regions 2 and 3, respectively, when emissions are attributed to final consumption rather than the 
source of production. 

 
Problem 13.12 
This problem explores the same issues regarding attribution of CO2 emissions attributed to 
consumption versus production as in Problem 13.11, but for a 3-region, 3-sector global IRIO 
model. Consider the Global IRIO transactions tables aggregated to 3 regions (the US, China, and 
Rest of World) and 3-Sector industry sectors (Agriculture and Mining, Manufacturing, and 
Services & Utilities) for the years 2005 and 2015 given in Appendix SD2.  

First, we retrieve the matrices of IRIO transactions, Z, and total outputs, x, and specify 
for the two years: 

2005

355 247 155 2 1 0 18 11 7
114 1,173 1,199 1 17 3 19 195 80
263 810 4,985 1 5 4 21 87 159

1 1 0 237 208 71 7 8 4
2 42 35 85 1,149 388 9 158 71
0 3 4 57 236 368 2 13 14

42 197 32 10 59 4 1,800 1,352 702
18 264 190 10 213 42 573 6123 3,449
12 60 132 7 45 31 1,052 3,100 10,903



=Z


 
 
 
 
 
 
 
 
 
  

 2005

1,346
4,568

17,168
846

2,675
1,867
6,760

16,816
37,192

 
 
 
 
 
 =
 
 
 
 
  

x   

2015

503 269 224 10 5 2 35 20 13
108 1,180 1,228 3 57 14 27 250 122
374 974 7,023 6 22 19 39 133 304

2 0 1 1,336 905 325 18 5 9
6 108 121 423 5,879 2,001 39 502 283
1 9 12 413 1,563 2,519 6 43 42

39 148 33 52 254 16 3,415 1,968 1,096
19 280 225 25 533 119 868 7,857 4,71

=Z

4
15 63 196 18 111 69 1,635 3,981 15,278

,

 
 
 
 
 
 
 
 
 
 
  

2015

1,838
5,284

23,699
3,937

12,429
10,818
11,465
22,489
52,297

 
 
 
 
 
 =
 
 
 
 
  

x  

From 2005Z , 2005x , 2015Z , and 2015x , we can calculate the associated vectors of final 
demand: 

2005 2005 2005 551   1,768   10,835  |  310   736   1,171  |  2,563   5,934   2 1][ 1,85= − =f x Z i   
2015 2015 2015 757   2, 296   14,805  |  1,335   3,069   6, 211  |  4, 446   7,849   3 1][ 0,93= − =f x Z i . 

Also, we can compute the matrices of technical coefficients, 1ˆ −=A Zx , and total 
requirements, 1( )−= −L I A  for each year as:  
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2005

0.2634 0.0541 0.0090 0.0025 0.0003 0.0002 0.0026 0.0006 0.0002
0.0849 0.2567 0.0698 0.0011 0.0062 0.0018 0.0027 0.0116 0.0021
0.1953 0.1772 0.2903 0.0014 0.0020 0.0019 0.0031 0.0051 0.0043
0.0006 0.0001 0.0000 0.2796 0.0778 0.

=A
0379 0.0010 0.0005 0.0001

0.0018 0.0093 0.0020 0.1006 0.4294 0.2078 0.0013 0.0094 0.0019
0.0002 0.0007 0.0002 0.0668 0.0881 0.1973 0.0003 0.0008 0.0004
0.0308 0.0432 0.0018 0.0116 0.0221 0.0022 0.2663 0.0804 0.0189
0.0135 0.0578 0.0111 0.0116 0.0796 0.0225 0.0847 0.3641 0.0927
0.0090 0.0131 0.0077 0.0078 0.0168 0.0168 0.1556 0.1844 0.2931

 
 
 
 
 
 
 
 
 
 
  

 

2015

0.2736 0.0510 0.0094 0.0026 0.0004 0.0002 0.0030 0.0009 0.0002
0.0586 0.2232 0.0518 0.0008 0.0046 0.0013 0.0023 0.0111 0.0023
0.2034 0.1842 0.2964 0.0015 0.0017 0.0018 0.0034 0.0059 0.0058
0.0013 0.0000 0.0001 0.3394 0.0728 0.

=A
0301 0.0016 0.0002 0.0002

0.0034 0.0203 0.0051 0.1074 0.4730 0.1849 0.0034 0.0223 0.0054
0.0004 0.0017 0.0005 0.1048 0.1257 0.2329 0.0005 0.0019 0.0008
0.0210 0.0280 0.0014 0.0132 0.0204 0.0014 0.2978 0.0875 0.0209
0.0102 0.0529 0.0095 0.0063 0.0429 0.0110 0.0757 0.3494 0.0901
0.0082 0.0119 0.0083 0.0045 0.0089 0.0064 0.1426 0.1770 0.2921

 
 
 
 
 
 
 
 
 
 
  

 

 

2005

1.3780 0.1078 0.0282 0.0059 0.0041 0.0022 0.0064 0.0050 0.0017
0.1996 1.3971 0.1407 0.0083 0.0239 0.0113 0.0123 0.0316 0.0097
0.4304 0.3810 1.4527 0.0090 0.0167 0.0103 0.0149 0.0253 0.0138
0.0027 0.0042 0.0013 1.4298 0.2151 0.

=L
1233 0.0035 0.0054 0.0017

0.0120 0.0305 0.0093 0.3099 1.8781 0.5020 0.0101 0.0335 0.0102
0.0023 0.0053 0.0017 0.1532 0.2245 1.3114 0.0023 0.0061 0.0022
0.0812 0.1098 0.0196 0.0441 0.0971 0.0383 1.4006 0.1995 0.0643
0.0767 0.1692 0.0478 0.0858 0.2842 0.1306 0.2440 1.6776 0.2283
0.0642 0.1005 0.0358 0.0591 0.1484 0.0873 0.3728 0.4834 1.4891

 
 
 
 
 
 
 
 
 
 
  

 

2015

1.3923 0.0984 0.0261 0.0069 0.0041 0.0019 0.0075 0.0055 0.0020
0.1357 1.3229 0.0999 0.0070 0.0176 0.0076 0.0105 0.0282 0.0093
0.4393 0.3773 1.4556 0.0100 0.0151 0.0087 0.0169 0.0279 0.0175
0.0060 0.0090 0.0030 1.5737 0.2478 0.

=L
1216 0.0070 0.0116 0.0041

0.0252 0.0702 0.0226 0.4243 2.0900 0.5222 0.0270 0.0863 0.0289
0.0065 0.0164 0.0055 0.2847 0.3770 1.4060 0.0073 0.0205 0.0075
0.0571 0.0785 0.0140 0.0519 0.0912 0.0308 1.4639 0.2215 0.0727
0.0545 0.1398 0.0374 0.0610 0.1719 0.0699 0.2221 1.6349 0.2169
0.0491 0.0796 0.0315 0.0440 0.0933 0.0440 0.3513 0.4557 1.4824

 
 
 
 
 
 
 
 
 
 
  

 

 
If we estimate CO2 emission indices as  [.2 .3 .1 .3 .5 .2 .1 .2 .1]=g  per 

million US dollars and, for simplicity, we assume these indices do not change between 2005 and 
2015, we have all we need to compute the vectors of generated emissions from producing sectors 
as  
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2005 2005 2005 269   1,370   1,717  |    254    1,337      373  |    676    3,363 ˆ   3[ ,719]p = =e gL f    
2015 2015 2015 368   1,585   2,370  |  1,181   6, 214   2,164  |  1,147   4, 498 ˆ   5[ , 230]p = =e gL f . 

The corresponding vectors of generated emissions attributed to consuming sectors are  
2005 2005 2005 229     974   2,314  |     200      838      695  |    613   2,590   4,626ˆ ][c = =e gL f     
2015 2015 2015 303   1, 238   3,050  |  1,025   3,852   3,750  |  1,108   3,593   6,836ˆ ][c = =e gL f .  

For convenience we compute the sums of emissions for all sectors in each region, 
defining the vectors of total regional emissions (from producing sectors) for the two years as 

2005 [3,356 1,965 7,758]rp =e  and 2015 [4,323 9,558 10,874]rp =e .  
The vectors of total regional emissions (attributed to consuming sectors) for the two years are 

2005 [3,518 1,733 7,828]rc =e  and 2015 [4,591 8,627 11,538]rc =e . The percentage shifts for 
each region for attributing emissions to consumption rather than production are, for 2005 a 5 and 
1 percent increase in the US and ROW, respectively, and a 12 percent decrease in China. For 
2015 there is a 6 percent increase in both the US and ROW and a 10 percent decrease in China. 
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Chapter 14, Mixed and Dynamic Models  
Chapter 14 describes so called mixed input-output models that are driven by a mix of output and 
final demand specifications rather than driven either solely by specification by final demand or 
total output. This chapter also introduces dynamic input–output models that more explicitly 
capture the role of capital investment and utilization in the production process. The exercise 
problems for this chapter illustrate key features of several mixed and dynamic model 
configurations. 

Dynamic Models 

Problem 14.1 
This problem illustrates the basic structure of a dynamic input-output model. Consider an input-

output economy with technical coefficients defined as 
0.3 0.1
0.2 0.5

=
 
  

A  and capital coefficients 

defined as 
.01 .003

.005 .020
=
 
 
 

B . Current final demand is 0 100
100

=
 
 
 

f  and the projections for the next 

three years for final demand are given by 1 125
160

=
 
 
 

f , 2 150
175

=
 
 
 

f  and 3 185
200

=
 
 
 

f .  

For A and B as defined we specify the dynamic model as 1 ( –)–t t t+ = +Bx I A B x f   or 
–1 1( ) ( )–t t t+= + +x I A B Bx f , which we can write as –1 1( )t t t+= +x G Bx f  where ( )= − +G I A B . 

For this case we compute 
.69 .103

( )
.205 .48

− 
= − + =  − 

G I A B  and 1 1.548   .332
 .661   2.225

−  
=  
 

G . The 

“dynamic multipliers” are defined as 1 .017   .011
.018   .046

−  
= =  

 
R G B , 2 1 .001   .002

.003   .006
−  
=  
 

R G  and 

3 1 .00006   .00009
.00018   .00029

−  
=  
 

R G .   

Then we can construct the difference equations in matrix terms as 
1 1 1 2 1 3 1

1 1 2 1

1 1

1

− − − − −

− − −

− −

−

−   
  −   = =
  −
  

   

G B 0 0 G RG R G R G
0 G B 0 0 G RG R G

D
0 0 G B 0 0 G RG
0 0 0 G 0 0 0 G

so that 

0 0

1 1

2 2

3 3

   
   
   =   
   
      

x f
x f

D
x f
x f

 or, for the 

base year and the three projected years, 0 197.7
315

 
=  
 

x , 1 257.7
468.3
 

=  
 

x , 2 302.8
521.2
 

=  
 

x and 

3 352.8
567.3
 

=  
 

x . 

 
 

Problem 14.2 
This problem illustrates the basic concepts of turnpike growth in a dynamic input-output model.  
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Consider the following closed dynamic input-output model, ( )t+ − =Ax B x x x  where 
tx  and x are the vectors of future total outputs and current total outputs, respectively 

0.5 0.1
0.1 0.5

=
 
  

A  and 
0 0.1

0.1 0
=
 
  

B are the matrices of technical and capital coefficients, 

respectively.  
Assume that t λ=x x , where λ is some scalar (called the turnpike growth rate), the 

dynamic input-output model is expressed as (λ )+ − =Ax B x x x . Rearranging terms, this 
becomes λ ( )= − +B x I A B x  or 1( ) λ− − + =B I A B x x , which we write more succinctly as 

λt t=Qx x  where –1( )–= +Q B I A B .  

In this case we compute 1 0 10
10 0

−  
=  
 

B and then 
0 5
5 0
 

=  
 

Q . To calculate the turnpike 

growth, we solve the characteristic equation 0− =Q I , and we find max 5λ = . 
 
Problem 14.3 
This problem illustrates the implications of changes in capital coefficients on the turnpike growth 
formulation of a dynamic input-output model.  Consider the closed dynamic input-output model 

( )t+ − =Ax B x x x , where 
0.1 0

 and 
0 0.1

0.1 0.2
0.3 0.4

=
   =      

BA . Under the assumption of turnpike 

growth, we calculate –1 10
( )

7
–

2
3

− 
=  − 

+


=Q B I A B  and solving the characteristic question 

0− =Q I find that the turnpike growth rate is max 11.37λ = .  
If both the capital coefficients for the first industry (the first column of B) are changed to 

0.1, then 
.1 0
.1 .1
 

=  
 

B . Hence, we find 
10 2
12 9

− 
=  − 

Q  and max 14.42λ = , which is an increase 

associated with the change in capital coefficients and indicates an improvement in the apparent 
overall “health” of the economy.  
 
Problem 14.4 
This problem illustrates the basic concepts of dynamic multipliers in dynamic input-output 

models. Consider an input-output economy with technical coefficients defined as 

0.2 0.1
0.3 0.5
 

=  
 

A  and capital coefficients defined as .02 .002
.003 .01

=
 
 
 

B .  

As in earlier problems, for A and B we specify the dynamic model as 
1 ( –)–t t t+ = +Bx I A B x f  or –1 1( ) ( )–t t t+= + +x I A B Bx f , which we can write as 

–1 1( )t t t+= +x G Bx f   where ( )= − +G I A B . For this case, we compute 
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.78 .102
( )

.303 .49
− 

= − + =  − 
G I A B  and 1 1.395 .29

.863 2.220
−  
=  
 

G , so the “dynamic multipliers” are 

1 .029 .006
.024 .024

−  
= =  

 
R G B , 2 1 .002 .001

.002 .002
−  
=  
 

R G  and 3 1 .00006    .00004
.00010    .00007

−  
=  
 

R G  such that 

3 3 1 0 2 2 1 0,  − − − −∆ = ∆ ∆ = ∆x R G f x R G f , and 1 1 0− −∆ = ∆x RG f  or, in expanded matrix terms, 

3 1 1 2 1 3 1 3

2 1 1 2 1 2

1 1 1 1

0 1 0

− − − − − −

− − − − −

− − − −

−

     
     
     =
     
     
     

x G RG R G R G f
x 0 G RG R G f
x 0 0 G RG f
x 0 0 0 G f

.    

If we assume the current vector of final demands is 0 185
200

=
 
 
 

f  and the vectors for final 

demand for the previous three years are given by 1 150
175

− =
 
 
 

f , 2 125
160

− =
 
 
 

f , and 3 100
100

− =
 
 
 

f , we 

can specify [ ]100 100 125 160 150 175 185 200 ′=Δf  and compute  

[ ]177.9 325.4 231.7 482.5 272.6 539.9 316.1 603.6 ′=Δx . 

Mixed Models 
Problem 14.5 
This exercise problem illustrates the basic characteristics of a mixed input-output model. 
Consider an input-output economy specified by an interindustry transactions matrix, 

14 76 46
54 22 5
68 71 94

 
 =  
  

Z  and vector of final demands, 
100
200
175

 
 =  
  

f  where the three industrial sectors are 

manufacturing, oil, and electricity.  
Suppose the economic forecasts determine that total domestic output for oil and 

electricity will remain unchanged in the next year and final demand for manufactured goods will 
increase by 30 percent. That is, the projection is a mixture of total outputs and final demands 
rather than only final demands (or total outputs). In such a situation, we can construct a mixed 

input-output model by first determining the economy’s total outputs as 
236
281
408

 
 = + =  
  

x f Zi  so 

that we can compute the matrix of technical coefficients, 1

.059   .270   .113
ˆ( ) .229   .078   .012

.288   .253   .230

−

 
 = =  
  

A Z x . For 
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sector 1 (manufactured goods), the level of final demand is exogenously specified and for sectors 
2 and 3 (oil and electricity), levels of total output are specified for each sector, so we partition A 

as 11 12

21 22

.059 .27 .113

.229 .078 .012

.288 .253 .23

 
   = =   
    

A A
A A A , and with a vector of exogenously specified values 

 
 
  

f
x

 

and the vector of endogenously determined values designated by 
 
 
 

x
f  we write 

  
=   

    

x f
M Nf x

 

where 11

21

.941 0 0( )
.229 1 0
.288 0 1

 −   = = − −   − −   − − 

I A 0
M A I  and 12

22

1 .270 .113
0 .922 .012( )
0 .253 .770

 
   = = −   − −   − 

I A
N 0 I A . 

It follows that 1

1.063 0 0
.243 1 0
.306 0 1

−

 
 = − − 
 − − 

M .   

  
For the case where the economic forecasts determine that total domestic output for oil 

and electricity will remain unchanged in the next year and final demand for manufactured goods 

will increase by 30 percent, we specify 
130
281
408

    =        

f
x

 and find 1

267.9
192.7
165.8

−

     = =           

x f
M Nf x

. That is, 

total output of manufactured goods will be 267.9, and final demands presented to the economy 
for oil and electricity are 192.7 and 165.8, respectively.  
 If instead the final demand for manufactured goods increased by 50 percent instead of 30 
percent, we find the new projections of final demand for oil and electricity and the total output of 

manufacturing as 
150
281
408

    =        

f
x

 we find 1

289.2
187.8
159.7

−

     = =           

x f
M Nf x

.  

Problem 14.6 
This problem explores modeling establishment of a new economic sector using input-output 
analysis revisiting the economy of problem 2.1. Consider the prospect of adding a new sector, 
finance and insurance (sector 3), to this economy. First, we can recall from problem 2.1 that, for 

this economy, the interindustry transactions matrix,
500 350
320 360

=
 
 
 

Z , and the vector of total 

outputs, 
1, 000
800

=
 
 
 

x , from which we can compute the matrix of technical coefficients,

1 .500 .438
ˆ

.320 .450
−  

= =  
 

A Zx , and the total requirements matrix, 1 4.074 3.241
( )

2.370 3.704
−  

= − =  
 

L I A . 
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Initially we know that the total output of this new sector will be 3 $900x =  during the 
current year (its first year of operation), and that its needs for agricultural and manufactured 
goods are captured by technical coefficients 13 0.001a =  and 23 0.07a = . In the absence of any 
further information, we can estimate to be the impact of this new sector on the economy by first 
constructing a final demand vector by multiplying each of the new technical coefficients by the 

associated known total output to yield 13 3

23 3

(.001)(900) 0.9
(.07)(900) 63.0

a x
a x
     

∆ = = =     
    

f . The impact of the 

new sector is found by 
207.8

235.47
 

∆ = ∆ =  
 

x L f .  

Suppose we learn subsequently that: (1) that the agriculture and manufacturing sectors bought 
$20 and $40 in finance and insurance services last year from foreign firms (i.e., that they 
imported these inputs), and (2) that sector 3 will use $15 of its own product for each $100 worth 
of its output. We now have enough information to endogenize the sector into the interindustry 
transactions matrix, including specifying 33 15 /100 0.15a = = , 

31 120 / 20 /1000 0.02a x= = = , 

and 32 240 / 40 / 800 0.05a x= = =  so the new, expanded technical coefficient matrix becomes 
.500 .438 .001
.320 .450 .070
.020 .050 .150

 
 =  
  

A  so the new total requirements matrix is 
4.130 3.310 .277
2.433 3.782 .314
.240 .300 1.201

 
 =  
  

L .  

Hence, the new, expanded total outputs vector is 
1,000
800
900

 
 =
 
 

x  so the new interindustry 

transactions matrix is found as 
500 350 .9

ˆ 320 360 63
20 40 135

 
 = =
 
 

Z Ax . The third column of Z describes the 

interindustry purchases of the three sectors’ outputs by the new finance and insurances services 
sector, which we can also describe as a new (at least in the first year) final demand to the 

expanded regional economy, 
0.9

63.0
135.0

 
 ∆ =  
  

f . We can now use the new expanded total 

requirements matrix, L, to compute the total output in the economy to support introduction 

of the new economic sector, 
249.7
282.9
181.3

 
 ∆ = ∆ =  
  

x L f . 

 
Problem 14.7 
This problem illustrates use of a mixed input-output model applied to planning with availability 
of variable data, e.g., some estimated final demands for products of some sectors and some 
projected total outputs the balance of sectors in the economy. We revisit the Czaria economy 
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from problem 7.1, for which 

0.168 0.155 0.213 0.212
0.194 0.193 0.168 0.115
0.105 0.025 0.126 0.124
0.178 0.101 0.219 0.186

 
 

=  
 
  

A , 

12,000
15,000
12,000
16,000

 
 

=  
 
  

x . Next year’s 

projected total outputs in millions of dollars for agriculture, mining, and civilian manufacturing 
in Czaria are 4,558, 5,665 and 5,079, respectively, and final demand of military manufactured 
products is projected to be $2,050 million.  

To compute the GDP and total gross production of the economy next year, we can 
fashion a mixed model by first reordering the industry sectors so that those with exogenously 
specified final demands are listed first (in this case only sector 3) and those with exogenously 
specified total outputs are listed second (in this case sectors 1, 2, and 4). With the reordered 

sectors, we can compute 11

21

.832 0 0 0
( ) .194 1 0 0

.105 0 1 0

.178 0 0 1

 
 −  − − = = − −  − −   − − 

I A 0
M A I  and 

12

22

1 .155 .213 .212
0 .807 .168 .115

( ) 0 .025 .874 .124
0 .101 .219 .814

 
   − = = − −  −   − 

I A
N 0 I A , which satisfies the condition 

  
=   

    

x f
M Nf x

 

or 1−
  

=   
    

x f
M Nf x

 where 
 
 
  

f
x

 is the vector of exogenously specified values and 
 
 
 

x
f is the 

vector of endogenously determined values.  
To compute the endogenously determined values we first compute 

1

1.202 0 0 0
.233 1 0 0
.126 0 1 0
.214 0 0 1

−

 
 − − =
 − −
 − − 

M and then 1

1.202 .186 .256 .255
.233 .771 .218 .164
.126 .045 .847 .151
.214 .134 .265 .769

−

 
 − − − =
 − − −
 − − − 

M N  so that 

1

6,058
967

3,572
1,355

−

 
     = =          
 

x f
M Nf x

for 

2,050
4,558
5,665
5,079

 
    =       
 

f
x

 . Total output of sector 3 will be 6055, and 

amounts of sector 1, 2, and 4 production available for final demand are 969, 3573, and 1347, 
respectively.  GDP is the sum of all final demands (7,944) and total gross production is the sum 
of all total outputs (21,360). 
 
Problem 14.8 
This problem illustrates use of a mixed input-output model applied to planning with availability 
of variable data, e.g., some estimated final demands for products of some sectors and some 
projected total outputs the balance of sectors in the economy. To illustrate the process, we use a 
highly aggregated industry by industry, industry technology-based input-output model for the 
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2005 U.S. economy specified a technical coefficients matrix, A, and make matrix, V, given for 7 
industries: (1) agriculture, (2) mining, (3) construction, (4) manufacturing, (5) trade, 
transportation, and utility services, (6) services, and (7) other industries.  

We first compute the baseline vector of total outputs as 

312,754
396,563

1,302,388
4,485,529
3,355,944

10,477,640
2,526,325

 
 
 
 

= =  
 
 
 
 

x Vi  and 

vector of total final demands as 

47,244
118,692

1,150,094
1,574,473
2,026,508
5,697,200
2,079,011

 
 
 
 

= − =  
 
 
 
 

−

f x Ax . Note that the negative final demand 

for mining indicates net importation of products such as petroleum. 
 

 
 
Suppose our economic forecast projects, for 2010, a 10 percent growth in final demand 

for agriculture, mining, and construction, a 5 percent growth in final demand for manufactured 
goods, and a 6 percent growth in total output for the trade, transportation, utilities, services and 

A 1 2 3 4 5 6 7
1 0.2258 0.0000 0.0015 0.0384 0.0001 0.0017 0.0007
2 0.0027 0.1432 0.0075 0.0675 0.0367 0.0004 0.0070
3 0.0051 0.0002 0.0010 0.0018 0.0037 0.0071 0.0215
4 0.1955 0.0877 0.2591 0.3222 0.0547 0.0566 0.1010
5 0.0819 0.0422 0.1011 0.0994 0.0704 0.0334 0.0487
6 0.0843 0.1276 0.1225 0.1172 0.1760 0.2783 0.2026
7 0.0099 0.0095 0.0093 0.0219 0.0215 0.0188 0.0240

V 1 2 3 4 5 6 7
1 310,868 0 0 65 0 1,821 0
2 0 373,811 0 22,752 0 0 0
3 0 0 1,302,388 0 0 0 0
4 0 0 0 4,454,957 0 26,106 4,467
5 0 808 0 0 3,354,043 47 1,046
6 0 556 0 0 152 10,473,161 3,771
7 4,657 1,410 0 4,111 115,428 339,582 2,061,136
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other industries. So, the vector of exogenously specified data is 

51,968
130,561

1,265,103
1,653,196
3,557,300

11,106,299
2,677,904

 
 
 
 

   =   
    

 
 
  

−

f
x

. The sectors 

are already conveniently ordered such that the four sectors with exogenously specified final 
demands are listed first and the remaining three with exogenously specified total outputs follow, 
so we can compute 

11

21

0.7742 0.0000 0.0015 0.0384 0 0 0
0.0027 0.8568 0.0075 0.0675 0 0 0
0.0051 0.0002 0.9990 0.0018 0 0 0
0.1955 0.0877 0.2591 0.6778 0 0 0
0.0819 0.0422 0.1011 0.0994 1 0 0
0.0843 0.1276 0.1225 0.11

( )− 
= =

− −
− − −
− − −
− − −
− −

 − − − −
− − − −

 −

I A 0
M A I

72 0 1 0
0.0099 0.0095 0.0093 0.0219 0 0 1

 
 
 
 
 
 
 
 
 
  

−
− − − − −

 and 

12

22

1 0 0 0 0.0001 0.0017 0.0007
0 1 0 0 0.0367 0.0004 0.0070
0 0 1 0 0.0037 0.0071 0.0215
0 0 0 1 0.0547 0.0566 0.1010
0 0 0 0 0.9296 0.0334 0.0487
0 0 0 0 0.1760 0.7217 0.2026
0 0 0 0 0.0215 0.0188 0.9760

( )

 
 
 
 

   = =   − −   
 
 
 − 

−
−

I A
N 0 I A



, which satisfies the 

condition 
  

=   
    

x f
M Nf x

  or 1−
  

=   
    

x f
M Nf x

 where 
 
 
  

f
x

 and 
 
 
 

x
f are the vectors of exogenously 

specified values and the vector of endogenously determined values, respectively. To compute the 
endogenously determined values we first compute 
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1

1.3109 0.0077 0.0215 0.0752 0 0 0
0.0345 1.1794 0.0398 0.1195 0 0 0
0.0074 0.0005 1.0018 0.0031 0 0 0
0.3855 0.1551 0.3943 1.5138 0 0 0
0.1479 0.0659 0.1439 0.1619 1 0 0
0.1610 0.1694 0.1759 0.1994 0 1 0
0.0218 0.0147 0.0185 0.

−

− − − − −
− − − − −
− − − −

=M

0351 0 0 1

 
 
 
 
 
 


−


 
 
  

and then 

1

1.3109 0.0077 0.0215 0.0752 0.0046 0.0067 0.0090
0.0345 1.1794 0.0398 0.1195 0.0500 0.0076 0.0212
0.0074 0.0005 1.0018 0.0031 0.0039 0.0073 0.0218
0.3855 0.1551 0.3943 1.5138 0.0900 0.0893 0.1628
0.1479 0.0659 0.1439 0.161

−

− −
=

− −
M N

9 0.9178 0.0439 0.0687
0.1610 0.1694 0.1759 0.1994 0.1938 0.7088 0.2279
0.0218 0.0147 0.0185 0.0351 0.0241 0.0210 0.9719

− −
− − − − − −
−

 
 
 
 
 
 
 


− − −


 
  − −

so that 

1

333,767
414,773

1,426,583
4,748,959
2,144,061
6,034,580
2,203,480

−

 
 
 
 

    = =    
      

 
 
  

x f
M Nf x

for 

51,968
130,561

1,265,103
1,653,196
3,557,300

11,106,299
2,677,904

 
 
 
 

   =   
    

 
 
  

−

f
x

, specified above. 

  
 
 



2021 August 3 
 
 

P-154 
 

 
 


	Introduction
	Overview of Input-Output Analysis
	Chapter 2, Foundations of Input–Output Analysis
	Problem 2.1
	Problem 2.2
	Problem 2.3
	Problem 2.4
	Problem 2.5
	Problem 2.6
	Problem 2.7
	Problem 2.8
	Problem 2.9
	Problem 2.10

	Chapter 3, Input–Output Models at the Regional Level
	Problem 3.1
	Problem 3.2
	Problem 3.3
	Problem 3.4
	Problem 3.5
	Problem 3.6
	Problem 3.7
	Problem 3.8
	Problem 3.9
	Problem 3.10

	Chapter 4, Organization of Basic Data for Input–Output Models
	Problem 4.1
	Problem 4.2
	Problem 4.3
	Problem 4.4
	Problem 4.5
	Problem 4.6
	Problem 4.7
	Problem 4.8
	Problem 4.9
	Problem 4.10
	Problem 4.11

	Chapter 5, The Commodity-by-Industry Approach in Input–Output Models
	Problem 5.1
	Problem 5.2
	Problem 5.3
	Problem 5.4
	Problem 5.5
	Problem 5.6
	Problem 5.7
	Problem 5.8
	Problem 5.9

	Chapter 6, Multipliers in the Input–Output Model
	Problem 6.1
	Problem 6.2
	Problem 6.3
	Problem 6.4
	Problem 6.5
	Problem 6.6
	Problem 6.7
	Problem 6.8
	Problem 6.9
	Problem 6.10

	Chapter 7, Supply-Side Models, Linkages, and Important Coefficients
	Problem 7.1
	Problem 7.2
	Problem 7.3
	Problem 7.4
	Problem 7.5
	Problem 7.6
	Problem 7.7
	Problem 7.8
	Problem 7.9
	Problem 7.10

	Chapter 8, Decomposition Approaches
	Problem 8.1
	Problem 8.2
	Problem 8.3
	Problem 8.4
	Problem 8.5

	Chapter 9, Nonsurvey and Partial-Survey Methods: Fundamentals
	Problem 9.1
	Problem 9.2
	Problem 9.3
	Problem 9.4
	Problem 9.5
	Problem 9.6
	Problem 9.7
	Problem 9.8
	Problem 9.9

	Chapter 10, Nonsurvey and Partial-Survey Methods: Extensions
	Problem 10.1
	Problem 10.2
	Problem 10.3
	Problem 10.4
	Problem 10.5
	Problem 10.6
	Problem 10.7
	Problem 10.8
	Problem 10.9
	Problem 10.10
	Problem 10.11
	Problem 10.12

	Chapter 11, Social Accounting Matrices
	Problem 11.1
	Problem 11.2
	Problem 11.3
	Problem 11.4
	Problem 11.5
	Problem 11.6
	Problem 11.7
	Problem 11.8
	Problem 11.9
	Problem 11.10

	Chapter 12, Energy Input-Output Analysis
	Problem12.1
	Problem 12.2
	Problem 12.3
	Problem 12.4
	Problem 12.5
	Problem 12.6
	Problem 12.7
	Problem 12.8
	Problem 12.9
	Problem 12.10

	Chapter 13, Environmental Input–Output Analysis
	Problem 13.1
	Problem 13.2
	Problem 13.3
	Problem 13.4
	Problem 13.5
	Problem 13.6
	Problem 13.7
	Problem 13.8
	Problem 13.9
	Problem 13.10
	Problem 13.11
	Problem 13.12

	Chapter 14, Mixed and Dynamic Models
	Problem 14.1
	Problem 14.2
	Problem 14.3
	Problem 14.4
	Problem 14.5
	Problem 14.6
	Problem 14.7
	Problem 14.8


