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A Student’s Guide to the Navier-Stokes

Equations: A Supplement on the Bernoulli
Equation

The Bernoulli equation is another important equation in fluid mechanics. It
actually predates the Navier-Stokes equations by about a hundred years. It is
very useful for engineering purposes but it does require some fairly significant
assumptions. The most significant assumptions are that the flow is inviscid as
well as something called irrotational.

There are a number of ways to derive Bernoulli’s equation. It can be derived
from energy conservation principles or from Newton’s second law. The energy
conservation approach is usually the easiest to grasp and understand. In partic-
ular, the mechanical energy equation, Equation 5.48 from the textbook, is the
most useful starting point:

ρV⃗ ·
DV⃗
Dt
= V⃗ ·

(
∇⃗ ·
⃗⃗T
)
+ ρV⃗ · g⃗

We can write the left hand side as (from Equation 5.46):

ρ

2

D
(
V⃗ · V⃗

)
Dt︸        ︷︷        ︸

=ρV⃗ · DV⃗
Dt

= V⃗ ·
(
∇⃗ ·
⃗⃗T
)
+ ρV⃗ · g⃗

We can write out the material derivative in the above equation in an Eulerian
description to get:

ρ

2

∂
(
V⃗ · V⃗

)
∂t

+ V⃗ · ∇⃗
(
V⃗ · V⃗

) = V⃗ ·
(
∇⃗ ·
⃗⃗T
)
+ ρV⃗ · g⃗

At steady state the time derivative goes away to give us:
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ρ

2
V⃗ · ∇⃗

(
V⃗ · V⃗

)
= V⃗ ·

(
∇⃗ ·
⃗⃗T
)
+ ρV⃗ · g⃗

We can move every term to the left hand side and factor out the V⃗ · to get:

V⃗ ·
(
ρ

2
∇

(
V⃗ · V⃗

)
− ∇⃗ ·

⃗⃗T − ρg⃗
)
= 0

The expression above holds under two circumstances: if V⃗ = 0 (which is the

trivial case) or if ρ2∇
(
V⃗ · V⃗

)
− ∇⃗ ·

⃗⃗T − ρg⃗ = 0. The interesting case is when:

ρ

2
∇

(
V⃗ · V⃗

)
− ∇⃗ ·

⃗⃗T − ρg⃗ = 0 (1.1)

The stress tensor for an inviscid flow (where µ = 0) just contains the pressure
term, thus:

⃗⃗T = −p⃗⃗I (1.2)

where ⃗⃗I is the identity matrix. Plugging Equation 1.2 into Equation 1.1 leads
to:

ρ

2
∇

(
V⃗ · V⃗

)
− ∇⃗ ·

(
−p⃗⃗I

)
︸     ︷︷     ︸
=−∇⃗p

−ρg⃗ = 0

Recall from the textbook that the ∇⃗·
(
−p⃗⃗I

)
term becomes a gradient of pressure.

Now we have:

ρ

2
∇

(
V⃗ · V⃗

)
+ ∇⃗p − ρg⃗ = 0

For a constant density flow (incompressible), we can sneak the ρ2 in the first
term into the gradient to get:

∇

ρ V⃗ · V⃗
2

 + ∇⃗p − ρg⃗ = 0 (1.3)

The gravity term, i.e. the ρg⃗ term, is usually considered just a constant value.
In addition, the gravity is usually assumed to be in either the z−direction or the
y−direction. As such, we can write the gravity term in the following manner
(with z being the coordinate direction of gravity):
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ρg⃗ = ∇⃗ (−ρgzz) (1.4)

where gz is the magnitude of the gravitational acceleration in the z−direction
and z is the coordinate direction pointing in the opposite direction as gravity
(i.e. pointing up instead of down, hence the negative sign). Writing the force
as a gradient of some function is indicative of what is called a conservative
force and is a requirement for the Bernoulli equation. To see how why this
relationship works out, just perform the gradient operation from the right hand
side of Equation 1.4:

∇⃗ (−ρgzz) =
(
î
∂

∂x
+ ĵ
∂

∂y
+ k̂
∂

∂z

)
(−ρgzz)

=

(
î
∂ (−ρgzz)
∂x

+ ĵ
∂ (−ρgzz)
∂y

+ k̂
∂ (−ρgzz)
∂z

)
= 0î + 0 ĵ − ρgzk̂ = ρg⃗

Note that −ρgz is considered a constant and the g⃗ is defined as g⃗ = −gzk̂.
Plugging Equation 1.4 into Equation 1.3 leads to:

∇

ρ V⃗ · V⃗
2

 + ∇⃗p + ∇⃗ (ρgzz) = 0 (1.5)

Notice every term in Equation 1.5 is a gradient term. We can factor out the
gradient to get:

∇

ρ V⃗ · V⃗
2
+ p + ρgzz

 = 0

Since the gradient is equal to zero, the term inside the gradient must be a
constant, thus we now have the Bernoulli equation:

ρ
V⃗ · V⃗

2
+ p + ρgzz = constant (1.6)

Equation 1.6 is the most common form of the Bernoulli equation (and the
original version). It assumes an inviscid, incompressible flow with a conser-
vative body force. In addition, although this is not obvious, it also assumes
an irrotational flow. An irrotational flow is a flow that has zero vorticity, ω⃗.
Vorticity is defined as the curl of velocity, written as:
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ω⃗ = ∇⃗ × V⃗ (1.7)

To see how the Bernoulli equation also assumes an irrotational flow, consider
Cauchy’s first law:

ρ
DV⃗
Dt
= ∇⃗ ·

⃗⃗T + ρg⃗

We know from earlier that the right hand side can be written as the negative
of the gradient of pressure and the gradient of −ρgzz, thus:

ρ
DV⃗
Dt
= −∇⃗p + ∇⃗ (−ρgzz)

Writing the above equation in non-conservative form by expanding out the
material derivative and assuming a steady state, we get:

ρ

��
��
0

∂V⃗
∂t
+ V⃗ · ∇⃗V⃗

 = −∇⃗p + ∇⃗ (−ρgzz) (1.8)

The advective term (V⃗ · ∇⃗V⃗) can be written using the following vector iden-
tity:

V⃗ · ∇⃗V⃗ =
1
2
∇⃗

(
V⃗ · V⃗

)
−

Lamb vector︷              ︸︸              ︷
V⃗ ×

(
∇⃗ × V⃗

)︸   ︷︷   ︸
=0 if irrotational

(1.9)

The last term on the right is called the Lamb vector, named after Horace
Lamb. The curl of velocity is contained in the last term, if the case of irrota-
tional flow, ∇⃗ × V⃗ = 0. Plugging Equation 1.9 into Equation 1.8 gives us:

ρ

2
∇⃗

(
V⃗ · V⃗

)
= −∇⃗p + ∇⃗ (−ρgzz)

This is essentially the same expression as we had earlier. We can move all
of the terms to the left-hand side and factor out the gradient to get:

∇⃗

ρ V⃗ · V⃗
2
+ p + ρgzz

 = 0

Thus leading to, again, the Bernoulli equation:
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ρ
V⃗ · V⃗

2
+ p + ρgzz = constant (1.10)




