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Problems for Chapter 18 of Advanced Mathematics for Applications

Matrices and Finite-Dimensional Linear Spaces

by Andrea Prosperetti

1. Show that, if AX = XA for any matrix X , then the matrix A is a multiple of the identity.

2. Show by direct calculation for the 2×2 matrices A and B that M1 = AB and M2 = BA have the same
eigenvalues. Does this result hold for A and B general N × N matrices?

3. Show that if A and B are real symmetric square matrices and if B is positive definite, then the
generalized eigenvalues satisfying

det(A − λB) = 0

are real.

4. Using a scalar product defined by

(a, b) =

N
∑

j=1

aj bj

show that the eigenvalues of a Hermitian matrix (i.e. a matrix A ≡ (aij) such that aji = aij) are real
and that its eigenvectors corresponding to different eigenvalues are orthogonal. These results generalize
the corresponding ones given in class for real symmetric matrices.

5. Show that the eigenvalues of a real skew-symmetric matrix (i.e. a matrix for which ajj = 0, aij =
−aji i 6= j) are either zero or purely imaginary.

6. Show that the eigenvalues of an orthogonal matrix have modulus equal to 1.

7. Find the eigenvalues and eigenvectors xi, i = 1, 2, 3, of the matrix

A =
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.

Find then a vector y1 orthogonal to x2 and x3, a vector y2 orthogonal to x1 and x3 and a vector y3

orthogonal to x1 and x2. Show that these three vectors are eigenvectors of A
∗.

8. Show that a real symmetric matrix A may be written in the form

A =
N

∑

j=1

λj Ej , (∗)

where the Ej ’s are non-negative definite matrices satisfying the conditions

Ei Ej = 0 if i 6= j, E2

i = Ei, (∗∗)

and the λj ’s are the eigenvalues of A. [The notation used here means that, applying both the left-hand
and the right-hand sides of the relations to any vector, one obtains a valid relation]. This representation
is called the spectral decomposition of A and is described for general linear compact operators in section
21.3.2. [ Hint: Since A is real and symmetric, it can be diagonalized. Once you have the diagonal
form, it is obvious how to pick matrices such that (*) and (**) hold. At this point it is just a matter
of going back (“un-diagonalize”) and show that (*) and (**) are still satisfied].
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9. Find the general expression for the n-th power of the matrix

M =
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10. Given the matrices

M1 =
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, M2 =
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calculate in closed form the matrices Ai = exp(θMi), i = 1, 2, where θ is a constant.

11. Given the matrix

M =
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,

calculate M1/2 by diagonalizing etc.

12. Calculate in closed form exp A where the matrix A is given by

A =
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∣

∣

a b

b a
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∣

∣

∣

∣

,

with a, b given parameters.

13. Solve by matrix exponentiation the system

ẋ = y, ẏ = −x ,

subject to the initial conditions x(0) = x0, y(0) = y0.

14. In 0 ≤ x ≤ π consider the system of equations

∂u

∂t
= B

∂2u

∂x2

where u is a vector with components u1(x, t), u2(x, t), . . . uN(x, t) and B is a constant N ×N symmetric
real matrix. The boundary conditions are u(0, t) = u(π, t) = 0 and the initial condition u(x, 0) = f(x),
with f a given N -dimensional vector, f = (f1, f2, . . . , fN ). Solve this problem in general and then
consider the special case in which N = 2, f1(x) = f2(x) and

B = c
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with c a constant. [Hint: Start with a Fourier expansion in x.]

15. A Vandermonde matrix of order N is a square matrix with the structure
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Show that the determinant of such a matrix is given by
∏

i>j(vi − vj), namely by the product of all
the differences vi − vj with i > j.
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