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valid for any value of as, including as = ±1. As shown in Fig. 1, as
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Geometric Meaning of the Scattering Length. In the zero-energy
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It is clear that �(r = as) = 0, that is to say, as is the location of
the node of the zero-energy wave function. With this picture, it is
easy to show that, for a square well potential with a depth V0, as V0

increases, as first decreases toward �1, and then jumps from �1 to
+1. Then, it decreases from +1 as finite positive value as V0 further
increases. This simple example shows that as can take any value from
�1 to +1.

Similarly, one can show that for lth partial wave, the correspond-
ing phase shift �k / k2l+1. That means at the lowest energy, the
interaction e↵ect is dominated by s-wave channel, as long as s-wave
scattering is not forbidden by Pauli exclusion principle. However, one
should caution that when discussing high-partial wave interaction, the
finite range approximation V (r) ' 0 for r > r0 will fail at some point
and one should keep in mind that the real van der Walls potential
is an algebraic decay one. Recalled that in the discussion above, the
zero-energy wave function can also be interpreted as follows: in r > r0

regime the Hamiltonian (i.e. eigen-state of kinetic operator) has two
eigen-solutions for  (r) = �(r)/r, i.e. constant and 1/(kr). Constant
solution is regular as r ! 0, which is denoted as regular solution  re.
1/(kr) diverges as r ! 0 and is denoted as irregular solution  ire. A
most general solution is denoted by cos �k re + sin �k ire. Phase shift
�k is introduced to fix the coe�cient between regular and irregular
parts of the wave function, which should be determined by the short-
range physics. This strategy can be generalized straightforwardly to
an algebraic decayed potential. The only di↵erence is that one needs
to find out the regular and irregular zero-energy solution for 1/r↵ po-
tential. With this one can show that for l-partial wave, tan �k / k2l+1

if 2l + 1 6 ↵ � 2 and tan �k / k↵�2 if 2l + 1 > ↵ � 2 [1]. That is
to say, in order for an algebraic decay potential to be considered as
a finite range one, ↵ � 2 has to be smaller than 2l + 1. Thus, for
s-wave, ↵ should be greater than three. While for the realistic van der
Walls potential with ↵ = 6, l = 0, 1 can be treated by the finite range
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While as we will show in this lecture, in the quantum case, it is not
only an interacting one, but also can sometimes become a strongly
interacting one.

The Scattering Length. Let us consider two-body Schrödinger
equation in the relative coordinate


� ~2

2m̄
r2 + V (r)� E

�
 = 0, (1)

where m̄ is the reduced mass of two-particles, m̄ = m/2 for particles
with equal mass m. We can expand the wave function as

 (r) =
+1X

l=0

�kl(r)
kr

Pl(cos ✓), (2)

and it is easy to show that

d2�kl

dr2
� l(l + 1)

r2
�kl +

m

~2
(E � V (r))�kl = 0. (3)

We first consider the s-wave scattering channel with l = 0. As stated
in (1) above, for r > r0, V (r) = 0 and in this regime a general solution
to Eq. 3 is given by

�k = A sin(kr + �k), (4)

where ~2k2/(2m̄) = E and �k is called the phase shift. Because of
(2) stated above, in the dilute gases we only concern about the wave
function in the regime r > r0. It is clear that all the di↵erence be-
tween an interacting case and a non-interacting case are contained in
the phase shift �k, which is determined by the behavior of the wave
function at short distance, and therefore, is determined by the detail
of the short-range potential.

To determine �k, we need the information in the regime with r <
r0. What we shall do is to march the boundary condition at r = r0,
it gives

�0(r > r0)
�(r > r0)

����
r=r0

=
k cos(kr0 + �k)
sin(kr0 + �k)

' k

tan �k
= � 1

as
(5)

Here for the second equality we have used the statement (3) to ap-
proximate kr0 ⇡ 0. We do not need to know the exact formula for
�(r < r0). But let us consider the situation that when r < r0, the
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Walls potential with ↵ = 6, l = 0, 1 can be treated by the finite range
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approximation and for l > 2, the algebraic decayed tail needs to be
considered more seriously.

Scattering Amplitude. Consider an incoming wave eikz along the ẑ
direction scattered to a outgoing wave along the radial direction, the
total wave function can be written as

 = eikz + f(✓)
eikr

r
, (7)

where f(✓) is called scattering amplitude. To determine f(✓), we need
to first rewrite Eq. 7 as

 =
1

2ikr

"
+1X

l=0

(2l + 1)Pl(cos ✓)(eikr � e�i(kr�⇡l))

#
+ f(✓)

eikr

r
. (8)

And then by comparing this equation with Eq. 2 and Eq. 4, we obtain

f(✓) =
1

2ik

1X

l=0

(2l + 1)Pl(cos ✓)(e2i�l � 1) (9)

For l = 0 we obtain s-wave scattering amplitude as

fs(✓) =
e2i� � 1

2ik
= � 1

ik � k/ tan �
= � 1

1/as + ik
. (10)

If |kas| ⌧ 1, we have f(✓) ⇠ �as and the scattering cross-section is
� = 8⇡a2

s . While if |kas| � 1, f(✓) can be approximated as �1/(ik),
and then the scattering cross section becomes 8⇡/k2. It is interesting
to note that in this regime scattering cross-section strongly depends
on momentum of particles under collision and does not depend on
any other parameters. This is so called “unitary regime”. As already
indicated in this formula of scattering cross-section, the interaction
energy only depends on density and temperature in this regime.

Shallow Bound State. Consider a bound state with negative energy
E < 0, the wave function in the regime r > r0 is given by

 = Ae�r
p

m|E|/~. (11)

Because the wave function at short distance r < r0 is insensitive to
energy (for low-energy states), as far as the low-energy bound state is
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