
Appendix Mathematics

In this appendix are the various mathematical concepts and results that are drawn
upon in the body of the text. The intent is not to teach the mathematics but to
define notation, list results that I assume you know, and distinguish between math
and control theory.

To spell the last item out more fully, I want to distinguish between standard math-
ematical identities and ideas that are specific to control theory. Section A.10, on
information theory, is longer than the others because the topic is still rarely taught
in the physics curriculum. We have drawn our material on information theory from
Cover and Thomas (2006), MacKay (2003), Gibson (2014), and Bialek (2012). These
all give a much more complete and balanced description than I can give here.

If you are unfamiliar with a topic, please consult one of the references for the full
story. Many good books cover “mathematics for physicists,” including, at the under-
graduate level, Shankar (1995) and Boas (2005) and, at the graduate level, Stone and
Goldbart (2009). The brief overview of probability theory largely follows Wasserman
(2004). For background on Bayesian inference, see Sivia and Skilling (2006) for an ele-
mentary introduction and von der Linden et al. (2014) for a thorough exposition. The
proof showing that the conditional mean minimizes the mean square estimation error
comes from von der Linden et al. (2014). For decision theory and its implications for
estimating parameters and states, see Van Trees et al. (2013) (especially Chapter 4).

A.1 Linear Algebra and Calculus

A.1.1 Vector and Matrix Notation and Basics

We recall notation and basic facts concerning real vectors and matrices.

1. Transpose:

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=⇒ xT =

(
x1 x2 . . . xn

)
. (A.1)
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For matrices,
(
AT

)
i j
= Aji, or,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 · · · a1n
...
. . .

...

am1 · · · amn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =⇒ AT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 · · · a1m
...
. . .

...

an1 · · · anm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.2)

Note that (ABC)T = CTBT AT.

2. Symmetric matrix: A = AT and must be square. An n×n matrix has n2 components.
If symmetric, it has at most 1

2 n(n + 1) independent coefficients.

3. Antisymmetric matrix:A = −AT and must be square. There are 1
2 n(n − 1)

independent coefficients, and the diagonal elements are zero.

4. Trace:

Tr A = Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 · · · a1n
...
. . .

...

an1 · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
n∑

i=1

aii . (A.3)

• The trace is invariant under cyclic permutation: Tr ABC = Tr CAB = Tr BCA.
• Tr A is coordinate invariant: Tr A = Tr RA′R−1 = Tr A′R−1R = Tr A′.
• If A has n eigenvalues λi, Tr A =

∑n
i=1 λi.

5. Determinant: Let A be an n × n matrix of real elements ai j. The determinant, det
A, is a real number defined as

det A ≡
∑

i1,i2,...,in

εi1,i2,...,in a1,i1 · · · an,in , (A.4)

where the Levi-Civita symbol εi1,i2,...,in is +1 for even permutations of (1, 2, . . . , n)
and −1 for odd permutations. For example, the determinant of a 2 × 2 matrix is

a11a22︸︷︷︸
ε12

− a12a21︸︷︷︸
ε21

(A.5)

and of a 3 × 3 matrix is

a11a22a33︸�����︷︷�����︸
ε123

− a11a23a32︸�����︷︷�����︸
ε132

− a12a21a33︸�����︷︷�����︸
ε213

+ a12a23a31︸�����︷︷�����︸
ε231

+ a13a21a32︸�����︷︷�����︸
ε312

− a13a22a31︸�����︷︷�����︸
ε321

. (A.6)

Some useful properties include

• det (AB) = (det A) (det B). A corollary is that det A−1 = 1
det A .

• det is invariant under coordinate transformation. A = RA′R−1 =⇒ det A =
det A′.
• If A has n eigenvalues λi, det A =

∏n
i=1 λi. (Let A′ = D, the diagonal matrix of

λi.)
• det A is the oriented n-dimensional volume defined by the vector product of the

n eigenvectors (assumed nondegenerate).
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6. Tensor product: The tensor product of two n-element vectors is an n × n matrix:

x ⊗ y ≡ xyT = xiy j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1y1 · · · x1yn
...

. . .
...

xny1 · · · xnyn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.7)

7. Scalar product:

x · y ≡ xTy = yTx = Tr xyT =

n∑
i=1

xiyi . (A.8)

8. Inverse:

AA−1 = I , (A.9)

where I s the identity matrix (zeros, except for ones along the diagonal). The
inverse of an n× n matrix is another n× n matrix. If A is symmetric, then so is A−1

(Problem A.1.14). Also, det A−1 = (det A)−1.

9. Norm: The norm of a vector x that is a member of a vector space V is a measure
of its size. Abstractly, the norm is a function ||x|| : V → R that satisfies

• ||x|| = 0 =⇒ x = 0 (positive definiteness);
• ||ax|| = |a| ||x|| (homogeneity);
• ||x + y|| ≤ ||x|| + ||y|| (triangle inequality).

As a consequence, ||x|| ≥ 0 (positivity). If the vector space is over the field of
complex numbers, then |a| refers to the magnitude of the complex amplitude.

There are many possible functions that serve as norms. Popular ones include

||x||2 =
√√

n∑
i=1

x2
i︸��������������︷︷��������������︸

Euclidean norm

, ||x||1 =
n∑

i=1

|xi|︸�����������︷︷�����������︸
absolute-value norm

, ||x||∞ = sup
1≤i≤n
|xi|︸�������������︷︷�������������︸

sup norm

. (A.10)

The sup norm is the least-upper bound (maximum) of all the elements. All of
these are particular cases of the p-norm

||x||p ≡
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

|xi|p
⎞⎟⎟⎟⎟⎟⎠

1/p

(A.11)

with the sup norm corresponding to p → ∞. We can generalize the notion of
norm to define the size of matrices (Section A.1.7) and functions (Section A.3).

10. Quadratic forms. For the symmetric matrix A, we define the quadratic form xT Ax.
A quadratic form is positive definite if xT Ax > 0 for all ||x|| > 0. The form is positive
definite if and only if the eigenvalues λi of A are positive: λi > 0. The quadratic
form is positive semidefinite if xT Ax ≥ 0 for all ||x|| ≥ 0, which is equivalent to the
statement that the eigenvalues of A satisfy λi ≥ 0.
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11. Real, symmetric, positive-definite matrices. The study of quadratic forms lead us
to consider the properties of real, symmetric, positive-definite n×n matrices A. We
quote several properties (proofs left as an exercise): The eigenvalues are real and
positive, and the eigenvectors can be chosen to be real and to form an orthonormal
basis in Rn. As a result, we can decompose A = UDUT, where D is the diagonal
matrix of eigenvalues and U is a unitary transformation made from the eigenvectors
and satisfies UT = U−1.

A.1.2 Matrix Rank

The notion of rank helps to generalize the idea that a square matrix must have nonzero
determinant to be invertible. For a rectangular matrix, the rank is the size of the largest
nonzero subdeterminant. It equals the dimension of the largest invertible subspace
and also the number of nonzero singular values of the matrix (see Section A.1.7). For
a rectangular m × n matrix, the maximum value of the rank = min(m, n), giving a full
rank matrix.

Example A.1 The 3 × 4 matrix M

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 3 1 2
0 4 1 0
2 2 1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.12)

could have a rank as large as 3. However, all the 3 × 3 subdeterminants are zero. For
example,

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 3 1
0 4 1
2 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 1 · (4 − 2) − 3 · (0 − 2) + 1 · (0 − 8) = 2 + 6 − 8 = 0 . (A.13)

But there are 2 × 2 matrices with nonzero determinant, implying that rank(M) = 2:

det
(
4 1
2 1

)
= 4 − 2 = 2 � 0 . (A.14)

Many analysis programs have a command to compute the rank of a given matrix.

A.1.3 Matrix Inversion

There are a number of helpful formulae for inverting matrices. In the discussion of
recursive least squares (Problem 10.10), we use the Sherman–Morrison formula:

(
A + uvT

)−1
= A−1 − A−1uvT A−1

1 + vT A−1u
, (A.15)

where A is invertible and u, v are vectors. See Problem A.1.15, below.
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A.1.4 Matrix Exponential

In solving linear equations, we often use the matrix exponential, defined as

eAt ≡
(
I + t A +

t2

2
A2 + · · ·

)
. (A.16)

Note that d
dt eAt = A eAt = eAt A.

To compute eAt, we change coordinates by the matrix R (so that x → Rx) to
diagonalize the matrix: A = RDR−1, where D is diagonal with entries equal to the
eigenvalues. (We ignore potential complications due to repeated eigenvalues). Then

An =
(
RDR−1

)n
= RDR−1 · RDR−1 · · ·︸��������������������︷︷��������������������︸

n times

= R Dn R−1 (A.17)

and

eAt = eRDR−1t = RR−1 + tRDR−1 +
t2

2!
(RDR−1)2 + · · · + tn

n!
(RDR−1)n + · · ·

= R
(
I + t D +

t2

2!
D2 + · · · + tn

n!
Dn + · · ·

)
R−1 = R

(
eDt

)
R−1 . (A.18)

The exponential of the diagonal matrix is just

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1 · · · 0
...
. . .

...

0 · · · λn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =⇒ eDt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
eλ1t · · · 0
...
. . .

...

0 · · · eλnt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (A.19)

Further properties of the matrix exponential and of the analogously defined matrix
logarithm are given in the problems at the end of the section.

A.1.5 Matrix Square Root (Cholesky Decomposition)

If a square, symmetric, positive-definite matrix A can be written as A = B BT, then
B is a kind of “matrix square root” of A. The transpose in the second B factor is
motivated by the symmetry of A, as AT = (BT)T BT = A.

But just as a real number has two square roots (4 = 2 × 2 and −2 × −2), so, too, the
matrix B is not unique. One way to specify a unique B is to demand that it be lower tri-
angular – all elements above the diagonal are zero. Then BT is upper triangular, with all
elements below the diagonal equal to zero. B and BT have the same diagonal elements.
This choice of B is known as Cholesky decomposition (Press et al., 2007, Section 2.9).
Lower (or upper) triangular matrices have many attractive features. Their determinant
is just the product of the diagonal elements, and the inverse is correspondingly easy to
compute, as well.
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Example A.2 The Cholesky decomposition of A =
( 2 1

1 2
)

is(
2 1
1 2

)
︸�︷︷�︸

A

=

⎛⎜⎜⎜⎜⎜⎜⎝
√

2 0
1√
2

√
3
2

⎞⎟⎟⎟⎟⎟⎟⎠︸��������︷︷��������︸
B

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

2 1√
2

0
√

3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠︸��������︷︷��������︸
BT

. (A.20)

Note that the diagonal elements of B are not equal to the square root of the eigenvalues
of A, which are (3,1). Notice, too, that det B = detBT =

√
detA =

√
3.

The Cholesky decomposition is used to generate correlated random variables from
independent random variables, essentially by rotating coordinates. It also plays a role
in the Kalman filter and its modifications (UKF, etc.) presented in Chapter 8. Finally,
you can use it to solve linear equations Ax = b when A is symmetric and positive
definite.

A.1.6 Cayley–Hamilton Theorem

The Cayley–Hamilton (C-H) theorem states that a matrix satisfies its own characteris-
tic equation, the polynomial equation that determines the eigenvalues.

Example A.3

A =
(

0 1
−1 0

)
=⇒

∣∣∣∣∣∣λ −1
1 λ

∣∣∣∣∣∣ = λ2 + 1 = 0 (A.21)

has a characteristic equation λ2 + 1 = 0. C-H claims that A also satisfies the equation:

A2 =

(
0 1
−1 0

) (
0 1
−1 0

)
=

(−1 0
0 −1

)
= −I =⇒ A2 + I = 0 . (A.22)

We can prove C-H easily if we assume that A can be diagonalized as R D R−1, with
D the diagonal matrix of eigenvalues. Then we write the characteristic equation as

An + a1 An−1 + a2 An−2 + · · · + anI = 0

R
(
Dn + a1 Dn−1 + a2 Dn−2 + · · · + anI

)
R−1 = 0 . (A.23)

But,

Dn + a1 Dn−1 + a2 Dn−2 + · · · + anI = 0 (A.24)

is just the characteristic equation, copied n times. There are some useful consequences:

• The highest “independent” power of A is An−1. For example, Cayley–Hamilton
states that An = −a1 An−1 − a2 An−2 − · · · − anI. We can reexpress An as a linear
combination of {I, A, A2, · · · , An−1}. Then we do the same for An+1 = AAn and for
higher powers.
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• The matrix exponential eAt = I + tA + 1
2 t2 A2 + · · · can therefore also be written in

terms of {I, A, A2, · · · , An−1}:

eAt =

∞∑
j=0

t j

j!
A j =

n−1∑
j=0

α j(t) A j . (A.25)

Note that the functions α j(t) are not proportional to t j. In expanding the matrix
exponential, it is the matrices A j that are rewritten in terms of lower powers, not the
prefactors.

• The Cayley–Hamilton theorem gives a way to evaluate a matrix exponential that is
useful for small matrices. From Eq. (A.24), the finite expansion, Eq. (A.25), is sat-
isfied by each eigenvalue λ, giving n linear equations for the n functions α j(t). Here,
we illustrate the n = 2 case. Higher orders are perhaps better evaluated numerically
or by a computer-algebra program. For n = 2 and eigenvalues, λ±,

eAt = α0(t)I + α1(t)A =⇒ eλ±t = α0(t) + α1(t)λ± , (A.26)

If the eigenvalues are distinct, there are two independent equations for α0(t) and
α1(t).

• If the eigenvalues are degenerate, we find the second equation by differentiating
both sides of the equation with respect to λ. To see why, consider the three graphs
at left, which plot the left- and right-hand sides of Eq. (A.26) against λ. The heavy
curve is the exponential, the lighter line α0 +α1λ. At top, there are two real, distinct
eigenvalues; at bottom, two complex-conjugate eigenvalues. The middle case corre-
sponds to the degenerate case, where Eq. (A.26) and its derivative with respect to λ
coincide. The second, independent equation is then α1 = t eλt.

Example A.4

A =
(

0 1
−1 0

)
=⇒ eAt = α0(t) I + α1(t) A . (A.27)

This expansion for A is also satisfied by each of its eigenvalues, which here are ±i.
Thus,

eit = α0 + iα1 (A.28a)

e− it = α0 − iα1 . (A.28b)

Adding and subtracting the equations gives α0(t) = cos t and α1(t) = sin t, so that

eAt = cos t I + sin t A =
(

cos t sin t
− sin t cos t

)
. (A.29)
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A.1.7 Singular Value Decomposition

The singular value decomposition (SVD) is introduced in Section 3.8.3, in the discus-
sion of the frequency response of MIMO systems. We recap some of its properties
here:

• Principal gains: σ(A) ||x||2 ≥ ||Ax||2 ≥ σ(A) ||x||2 , ∀x. That is, the operation of A on
any vector x changes its length by a factor that ranges from σ(A) up to σ(A).
• Induced 2-norm: σ(A) ||A||2 = supx

||Ax||2
||x||2 .

• If A−1 exists, σ(A) = 1/σ(A−1).
• Condition number: κ = σ(A)/σ(A). It reduces to |λ|max/|λ|min when A is normal.

The condition number plays an important role in numerical analysis.

Example A.5 (Condition number and numerical precision) Consider

Ax0 = y0 =⇒ y0 = A−1x0 . (A.30)

Assume that the matrix A is known but that there is some uncertainty in the “data” y0,
so that we actually solve for y = y0 + δy. Then, expanding A(x0 + δx) = (y0 + δy) gives

δx = A−1δy =⇒ ||δx|| ≤ ||A−1|| ||δy|| = ||δy||/σ(A) , (A.31)

using the Cauchy-Schwartz inequality and ||A−1|| = σ(A−1) = 1/σ(A). Also, we have,
from Ax0 = y0, that σ(A) ||x0|| ≥ ||y0||. Putting everything together gives

||δx||
||x0|| ≤

( ||δy||
σ(A)

) (
σ(A)
||y0||

)
= κ
||δy||
||y0||

. (A.32)

Thus, the fractional uncertainty in the solution is κ times the fractional uncertainty
in the data. Matrices A with large condition number can magnify the uncertainties
in data so much that the solution becomes unusable. Thus, numerical methods place
a premium on formulating linear equations with reasonable condition numbers. In
particular, unitary matrices have κ = 1, which motivates their use in many algorithms.

A.1.8 Complex Numbers and Linear Algebra

While most of the book uses linear algebra over real numbers, we sometimes consider
complex vectors and matrices. Here are a few extensions that are needed for that case.

1 Scalar product: A · B = ∑
i Ai B∗i .

2 Hermitian transpose: A†i j = A∗ji.
3 Normal matrices: A†A = AA†.
4 Unitary matrices: U−1 = U†, implying that UU† = I.
5 Singular Value Decomposition (SVD): A = UΣV†, where U and V are unitary. When

A is an n × n matrix, Σ is an n × n diagonal matrix of singular values.
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Polar Decomposition

In our discussion of quantum control in Chapter 13, we will need to use the polar
decomposition of a matrix. The decomposition generalizes the polar form of a
complex number:

z = x + iy = r eiθ, r = |z| ; θ = tan−1
(

y
x

)
. (A.33)

The analogous relation for a matrix A with complex elements is

A = U0 P0 , (A.34)

where U is unitary and P is positive semidefinite.
We can use the singular-value decomposition to find this decomposition explicitly:

A = UΣV† = UV†︸︷︷︸
U0

VΣV†︸︷︷︸
P0

(A.35)

We then see immediately that U0 is unitary. Since the elements of Σ are nonnegative, so
must be the matrix P0. Indeed, since the singular values are also the square root of the
eigenvalues of AA†, we can see that they play the role of r in a polar decomposition.
The values σi =

√
λλ∗ = ri. The decomposition in Eq. (A.35) is unique, but there is a

second decomposition of the form

A = UΣU†︸︷︷︸
P1

UV†︸︷︷︸
U1

. (A.36)

Alternatively, the polar-decomposition theorem implies the singular-value-
decomposition theorem for the case of a square matrix:

A = UP = U RΣRT = (UR)Σ (RT) (A.37)

In general, singular-value decomposition works for rectangular as well as square
matrices.

Example A.6 Consider the complex matrix A =
(

1 2 i−2 i 1

)
. It has eigenvalues 3,−1, but its

singular value decomposition is

A =
1√
2

(
i i
1 −1

)
︸���������︷︷���������︸

U

(
3 0
0 1

)
︸�︷︷�︸
Σ

1√
2

(− i 1
i 1

)
︸��������︷︷��������︸

V†

=

(
0 i
− i 1

)
︸���︷︷���︸

U0

(
2 i
− i 2

)
︸���︷︷���︸

P0

. (A.38)

Verify that U0U†0 = I and that P0 has eigenvalues of 3 and 1, making it positive definite.

A.1.9 Matrix Calculus

We review expressions from multivariable calculus that include vectors and matrices
and derive a few identities that are used in the main text. In general, it is better to do
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�Fig. A.1 Scaling increasesΔx but decreases the gradient ∂
∂x and keepsΔ f constant.

such calculations using tensors (or differential forms), particularly if third- and higher-
order tensors are needed. For this book, the matrix-calculus notation is simpler and
suffices.

Let x and y be n-element column vectors, with xT and yT the corresponding row
vectors. Then, if we represent a position x by a column vector, we should represent
the gradient of a scalar ∇ = ∂

∂x by a row vector,
( ∂
∂x1
, ··· , ∂

∂xn

)
. Figure A.1 justifies this

choice by showing the rate of change in a scalar function f (x) in two coordinate sys-
tems, x and x′ = λx, where λ is a scale factor. The guiding principle is that the change
in the physical quantity f due to a displacement should be independent of the units
we use to describe that displacement. Thus, Δ f = ∂ f

∂xΔx = ∂ f
∂x′Δx′. Since Δx′ = λΔx, we

must have ∂
∂x′ =

1
λ
∂
∂x . Generalizing to a scalar function of a vector x, the same logic

gives x′ = Λx implies ∇′ = Λ−1∇, where Λ is a matrix that transforms the x coordi-
nates into x′ coordinates. In the fancier language of tensors, x is a contravariant vector,
whereas ∂

∂x is a covariant vector. Here, they are just column and row vectors, respec-
tively. For the deeper story involving calculus on manifolds, see Stone and Goldbart
(2009).

Example A.7 Let f = xT Ax, with x an n-dimensional vector and A an n × n matrix.

Then
∂ f
∂x
=

(
∂
∂x1
, · · · , ∂

∂xn

) (
A11x2

1 + A12x1x2 + A21x2x1 + · · ·
)

= [2A11x1 + (A12 + A21)x2 + · · · , (A12 + A21)x1 + 2A22x2 + · · · , ]
= xT(A + AT) . (A.39)

Problem A.1.1 Show that if A is symmetric, then so is A−1.

Problem A.1.2 Verify the Sherman–Morrison formula, Eq. (A.15).

Problem A.1.3 Show ∂2

∂xT∂x

(
xT Ax

)
= A + AT; ∂

∂x Tr
(
xxT

)
= 2xT, and ∂

∂x

(
xTy

)
= yT.

Problem A.1.4 Let A and B be n × m matrices. Show ∂A

(
Tr ABT

)
= ∂A

(
Tr BAT

)
=

BT. Hint: Make sure your definition of derivative with respect to a matrix is
consistent with the previously defined limiting case m = 1 for a vector.

Problem A.1.5 Let A be an n × m matrix and let B be an m × m matrix. Show that
∂A

(
Tr ABAT

)
=

(
B + BT

)
AT.
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Problem A.1.6 Show that if AB = BA, then eA+B = eA eB. If you are clever, no
calculations are required! This identity does not hold when A and B do not
commute.

Problem A.1.7 In analogy with the matrix exponential, we can define a matrix loga-
rithm via the identity ln(I + A) = A− 1

2 A2 + 1
3 A3 − · · · . Use the previous problem

to show that if AB = BA, then log AB = ln A + log B.
Problem A.1.8 Show ln det A = Tr ln A, for symmetric, positive-definite matrices A.

The identity holds for more general A using the complex logarithm.

A.2 Complex Analysis

In this section, we collect a few results from complex analysis that we draw on in
the text. Many of the results are stated in terms of a domain in the complex plane.
Domains are open sets that are connected (each pair of points can be joined by a
polygonal path that consists of a finite number of line segments joined end to end). A
region is a domain plus its boundary and is closed if it includes all its boundary points.
By convention, the boundary is oriented counterclockwise. Left, we show a domain
Ω, its oriented boundary Γ = ∂Ω, and an interior oriented path γ.

1. Cauchy-Riemann equations. Let f = u(x, y) + i v(x, y) be a complex-valued function
defined in the xy plane. In general, f = f (x, y), but let us consider the case where
f = f (z) is a function of the single complex variable z = x + iy. We then implicitly
assert that f has no dependence on the complex conjugate z̄ = x − iy. In other
words,

∂ f
∂z̄
=
∂ f
∂x
∂x
∂z̄
+
∂ f
∂y
∂y
∂z̄
=

(
∂u
∂x
+ i
∂v
∂x

)
1
2
+

(
∂u
∂y
+ i
∂v
∂y

)
i
2
= 0 , (A.40)

which implies, after separating real and imaginary parts into two equations, that

∂u
∂x
− ∂v
∂y
= 0 ,

∂v
∂x
+
∂u
∂y
= 0 , (A.41)

which are the Cauchy-Riemann equations. If u and v derivatives exist with respect
to x and y, then a function f (z) that satisfies the Cauchy-Riemann equations is dif-
ferentiable in the sense that the limit [ f (z) − f (z0)]/(z − z0) as z → z0 exists and is
independent of the path used by z to approach z0. Functions that are differentiable
in an open domain Ω are analytic. Analytic functions are infinitely differentiable
and have a power-series expansion about every point in their domain. Taking fur-
ther derivatives of the Cauchy-Riemann equations implies ∇2u = ∇2v = 0, where
∇2 = ∂2

x + ∂
2
y . That is, u and v are harmonic functions of x and y.

2. Cauchy Integral Theorem. Let f (z) be analytic in a domain Ω enclosed by the
oriented boundary curve Γ = ∂Ω. Then∮

Γ

dz f (z) = 0 . (A.42)
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The proof is based on Green’s theorem: Let z = x + iy and f = u + iv. Then∮
Γ

dz f (z) =
∮
Γ

(dx + idy)(u + iv) =
∮
Γ

(dx u − dy v) + i
∮
Γ

(dx v + dy u)

= −
�
Ω

dx dy

(
∂v
∂x
+
∂u
∂y

)
+ i

�
Ω

dx dy

(
∂u
∂x
− ∂v
∂y

)
, (A.43)

which vanishes by the Cauchy-Riemann equations. One application of this theorem
is to deform the path of a contour integration without changing the value of the
integral. Specifically, if two paths γ and γ′ define a region where f (z) is analytic,
then

∮
γ
=

∮
γ′ , as illustrated at right. (The × marks denote poles, where f (z) is not

analytic.)
3. Maximum Modulus Principle. If f (z) is analytic in Ω, then its modulus | f (z)| does

not have a maximum on Ω. More simply, either f (z) is constant or its maximum
is on the boundary Γ = ∂Ω. In lieu of a proof, consider this physical argument:
We have log f (z) = log | f | + iarg f (z). Since f is analytic, so is log f , implying that
log | f | is harmonic. We interpret log | f | as a steady-state solution of a heat flow
obeying the diffusion equation. But if such a flow has a local maximum, then there
would be a heat current away in all directions and the temperature at that point
could not be stationary, since there are no sources (whose singularity would make
f nonanalytic). Since the log function is monotonic, | f (z)| also cannot have a local
maximum.

We will use this principle to calculate sup norms in Chapter 9 (Robust Control).
4. Cauchy’s Integral Formula. The value of an analytic function f (z) at z = a can be

determined by an integral along a closed path γ that encircles a:

f (a) =
1

2π i

∮
γ

dz
f (z)

z − a
. (A.44)

To see this, use the Cauchy Integral theorem to contract the contour γ to a small
circle of radius r about a, as shown at right. Substitute z = a+r eiθ and dz = i r eiθ dθ
and take the limit r → 0:∮

γ

dz
f (z)

z − a
= lim

r→0

∫ 2π

0
dθ

f (a + r eiθ)
r eiθ

i r eiθ = f (a) i2π . (A.45)

5. Residue Theorem. Let f (z) be a complex function that is analytic in the domain
Ω, except at isolated points αk. Let γ be a closed path within this open set that is
traversed counterclockwise. Then,∮

γ

dz f (z) = 2π i
∑

k

Resk , (A.46)

where Resk is the residue of f (z) associated with point αk. The residue is defined to
be the a−1 coefficient of the Laurent expansion. If the function f has a simple pole
at a point z = α and can be expressed as f (z) = g(z)

h(z) ,

Res(z) = lim
z→α (z − α) f (z) =

g(α)
h′(α)

, (A.47)
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which we can see by noting that if f has a simple pole at z = α, then h(z) has a

simple zero and can be Taylor expanded as h(z) =���� 0
h(α) + (z − α) h′(α) + · · · .

6. Principle of the Argument. Let f (z) be a meromorphic function (i.e., analytic except
at isolated points). Then, for a closed contour γ

1
2π i

∮
γ

dz
f ′(z)
f (z)

= Z − P , (A.48)

where Z and P are the number of zeros and poles inside the contour γ. To prove
this relation, we follow Stone and Goldbart (2009) and write f (z) = (z − a)m h(z),
where h(z) is analytic near a and m can be positive or negative (zero or pole of order
m). Then

f ′(z)
f (z)

=
m

z − a
+

h′(z)
h(z)
, (A.49)

which has a simple pole at a with residue m. Summing the contributions from each
singularity then gives the result. To interpret Eq. (A.48), we note that∮

γ

dz
f ′(z)
f (z)

=

∮
γ

dz
d
dz

[ln f (z)] = Δγ ln f = Δγ
[
ln

(
r eiθ

)]
= i Δγθ , (A.50)

where Δγθ is the change in the argument of f (z) along γ.

7. Jensen’s formula. Let f (z) be analytic inside and on the unit circle, except for poles
at p1, p2, . . . , pm and zeros at z1, z2, . . . , zn. The poles and zeros are inside the unit
circle. Then ∫ π

−π
dθ
2π

ln | f (eiθ)| = ln | f (0)| +
m∑

k=1

ln |pk | −
n∑

k=1

ln |zk | . (A.51)

To prove this, we first recall that Re (log z) = log |z| and write

ln | f (eiθ)| = Re [log f (eiθ)| = Re
{

log f (0) +
∫ 1

0
dr

d
dr

[
log f (r eiθ)

]}

= log | f (0)| +Re
∫ 1

0
dr

f ′(r eiθ) eiθ

f (r eiθ)
. (A.52)

We substitute into our integral and interchange the r and θ integrals:∫ π

−π
dθ
2π

ln | f (eiθ)| = log | f (0)| +Re
∫ π

−π
dθ
2π

∫ 1

0
dr

f ′(r eiθ) eiθ

f (r eiθ)

= log | f (0)| +Re
∫ 1

0

dr
2π ir

∫ π

−π
dθ (ir eiθ)

f ′(r eiθ)
f (r eiθ)

= log | f (0)| +Re
∫ 1

0

dr
2π ir

∮
γr

dz
f ′(z)
f (z)

= log | f (0)| +
∫ 1

0
dr

Z(r) − P(r)
r

. (A.53)
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The last step is based on the Principle of the Argument, Eq. (A.48), with Z(r) the
number of zeros within a circle γr of radius r and P(r) the corresponding number
of poles.

We can do the radial integral explicitly. Since the zeros have magnitude |zk |, we
write ∫ 1

0
dr

Z(r)
r
=

∫ |z1 |

0
dr

0
r
+

∫ |z2 |

|z1 |
dr

1
r
+

∫ |z3 |

|z2 |
dr

2
r
+ · · ·

∫ 1

|zn |
dr

n
r

= (ln |z2| − ln |z1|) + 2(ln |z3| − ln |z2|) + · · · n(ln 1 − ln |zn|)

= − ln |z1| − ln |z2| − · · · ln |zn| = −
n∑

k=1

ln |zk | . (A.54)

Repeating the argument for the poles, at magnitude |pk |, leads to Eq. (A.51).
Jensen’s formula is used to derive the discrete version of Bode’s waterbed theorem
(Problem 15.6).

A.3 Functional Analysis

Function spaces can generalize the notion of vector space to infinite dimensions.
Their indices may be countable (one-to-one correspondence with the integers) or
uncountable (one-to-one correspondence with real numbers). Many of the notions
of finite-dimensional spaces have their infinite-dimensional counterparts. The math-
ematics is considerably more subtle because it is harder to prove completeness. For
example, a set of N linearly independent vectors forms a basis for an N-dimensional
space. For an infinite-dimensional space, an infinite set of linearly independent func-
tions may or may not form a complete basis. The idea of expanding a function over an
infinite set of basis functions leads to notions of Fourier series and transforms, which
we explore below in Section A.4.

The notion of a norm, defined for finite-dimensional vector spaces in Section A.1.1,
can be extended to functions. The Lp norm of a function f (t) is

|| f ||p =
[∫ ∞

−∞
dt | f (t)|p

]1/p

. (A.55)

The function space Lp (Lebesgue space) is then the set of functions with || f ||p < ∞.
The norm and functions can also be defined over a restricted range (t0, t1). The p = 2
case gives the square norm. The p → ∞ case picks out the maximum value of f (t) on
the interval and is known as the sup norm (for supremum). Strictly speaking, || · ||p is
not quite a norm, as the integral of | f |p may vanish even if f itself is not everywhere 0.
Stone and Goldbart (2009) discuss how to finesse this complication. (See their Section
2.2.2.)
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For complex, meromorphic functions such as transfer functions, the notion of a
Hardy space and its associated norm is useful, too. For p ≥ 1, theHp norm of f (s) is

|| f ||p =
(∫ ∞

−∞
dω
2π
| f (iω)|p

)1/p

. (A.56)

The square (H2) and sup (H∞) norms play a role in the theory of robust control
(Chapter 9).

A.4 Laplace and Fourier Transforms

Because linear systems obey the law of superposition of solutions, expanding a general
solution as an infinite sum of simple solutions is a useful technique. This motivates
the study of various transform methods. Here, we review some basic properties of the
Fourier series and transform. Then we introduce the Laplace transform, which we use
extensively, as it is the predominant transform tool for control systems.

A.4.1 Fourier Series

Expansion in Sines and Cosines

A periodic function satisfies f (t + T ) = f (t). Under fairly weak constraints on f (t), we
can express a periodic function as a sum of sines and cosines. Explicitly,

f (t) =
a0

2
+

∞∑
n=1

(an cos nωt + bn sin nωt) , (A.57)

where ω = 2π/T and f (t) need only be square integrable over the period T . In partic-
ular, f (t) can be C0, with jump discontinuities. The coefficients {an} and {bn} are given
by

an =
2
T

∫ T/2

−T/2
dt f (t) cos nωt , bn =

2
T

∫ T/2

−T/2
dt f (t) sin nωt , (A.58)

You can verify Eqs. (A.58) by directly substituting the relation for f (t) in Eq. (A.57).
The key idea is that sines and cosines of different frequencies that are rationally related
are orthogonal when integrated over their common period:

2
T

∫ T/2

−T/2
dt cos �ωt cos nωt =

2
T

∫ T/2

−T/2
dt sin �ωt sin nωt = δ �n ,

∫ T/2

−T/2
dt cos �ωt sin nωt = 0 . (A.59)

Using Eqs. (A.58), you can show, for example (Problem A.4.1), that a periodic
square wave that is symmetric about t = 0 can be expanded as

sq(t) =
1
2
+

2
π

(
cosωt − 1

3
cos 3ωt +

1
5

cos 5ωt − . . .
)
, (A.60)
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where sq(t) is defined to be an even function of period T , satisfying f (t) = − f (−t).
Because the function sq(t) is symmetric about t = 0, there are only cosine terms. The
terms decrease as i/n (that is, an ∼ i/n). This turns out to result from the jump disconti-
nuities. If you integrate a square wave, you get a triangle wave, . If you integrate
the terms of the square wave expansion, the new terms of the triangle expansion go
as (i/n)2. Thus, the Fourier series of a triangle wave converges more quickly than that
of a square wave. Note that a triangle wave is a C1 function, with a discontinuity in
its first derivative. Continuing the argument, a Ck function (discontinuity in the nth
derivative) has coefficients that are ∼ (1/n)k – the smoother the function, the faster its
Fourier series converges. Finally, note the absence of even-order terms in Eq. (A.58).
This is not usual and traces back to the 50% “duty cycle” of the square wave (Prob-
lem A.4.1). Any other duty cycle – ratio of the interval where it is 1 to where it is 0 –
would have both odd and even coefficients.

Expansion in Complex Exponentials

In Eq. (A.57), a function f (t) is expanded in terms of sines and cosines. Recalling that

cos ωt = 1
2

(
eiωt + e− iωt

)
sin ωt = 1

2 i

(
eiωt − e− iωt

)
, (A.61)

we can rewrite a Fourier series in terms of complex exponential functions:

f (t) =
∞∑

n=−∞
cn e+ inωt , (A.62)

with Fourier coefficients

cn =
1
T

∫ T/2

−T/2
dt f (t) e− inωt . (A.63)

Note that the coefficients can be simplified in special cases:

cn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c−n if f (t) is even ,

−c−n odd ,

c∗−n real .

(A.64)

Connection with Linear Algebra

As noted above, the key step in deriving the coefficients of a Fourier series expansion
is to use the orthogonality of the trigonometric functions (or complex exponentials).
We can understand better why these expansions exist by recognizing a connection to
the concept of basis expansion of a vector in terms of a basis. Recall that we can write
a vector v that is an element of an N-dimensional vector space as

v =
N∑
�=1

v� ê� , ê� · ên = δ �n , vn = v · ên . (A.65)
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In Eq. (A.65), the set of basis vectors {ê� ; � ∈ {1, . . . ,N}} is orthonormal (middle
relation). We can prove the last relationship by noting

v · ên =

⎛⎜⎜⎜⎜⎜⎝∑
�

v�ê�

⎞⎟⎟⎟⎟⎟⎠ · ên =
∑
�

v� (ê� · ên) =
∑
�

v� δ �n = vn . (A.66)

In a finite-dimensional vector space, the expansion in terms of basis vectors is
familiar. For example, in two dimensions (N = 2),

v =
(
v1

v2

)
= v1

(
1
0

)
+ v2

(
0
1

)
≡ v1ê1 + v2ê2 . (A.67)

In the present case of Fourier series, our vector space is a (countably) infinite-
dimensional function space of square-integrable functions defined on the interval
[0,T ). The scalar (or “dot”) product is defined by generalizing the definition in
Section A.1.8 to

f · g ≡ 1
T

∫ T/2

−T/2
dt f (t) g∗(t) , (A.68)

where g∗(t) denotes the complex conjugate of the function g(t). The basis vectors are

ê� ≡ e+ i�ωt , −∞ < � < ∞ , (A.69)

with orthogonality conditions

ê� · ên =
1
T

∫ T/2

−T/2
dt e+ i�ωt e− inωt =

1
T

∫ T/2

−T/2
dt ei(�−n)ωt = δ �n . (A.70)

Given this notation, the Fourier series is merely a basis expansion:

f =
∑
�

c� ê� =
∑
�

c� e+ i�ωt , cn = f · ên =
1
T

∫ T/2

−T/2
dt f (t) e− inωt . (A.71)

The subtle point is to show that the set {ê� ; � ∈ Z}, with Z the set of all integers, is
complete. In other words, one needs to prove that the set contains all the basis vectors.
Finite-dimensional settings are simple: an N-dimensional vector space is spanned by
N independent basis vectors. Any N linearly independent vectors can form a complete
basis. Here, the set ê� has a countable infinity of elements, as does the dimension of
the function space. But does our set span the function space? Are any basis vectors
missing? See the delightful book by Boyd (2000) for the full story on orthogonal
function expansions.

A.4.2 Fourier Transforms

If we view a general continuous function as a periodic function with T → ∞, then the
Fourier series sum becomes an integral. To see this, let us rewrite the Fourier series
expansion explicitly in terms of T :

f (t) =
∞∑

n=−∞
cn e+2π int/T , cn =

1
T

∫ T/2

−T/2
dt f (t) e−2π int/T . (A.72)
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Then, rewriting in terms of Δω ≡ 2π/T gives

f (t) =
∞∑

n=−∞

Δω

2π
Tcn e+ i(nΔω)t , Tcn =

∫ T/2

−T/2
dt f (t) e− i(nΔω)t . (A.73)

In the limit (n, T )→ ∞, we have Δω→ dω and nΔω→ ω and Tcn → F f (ω). Then,

f (t) =
∫ ∞

−∞
dω
2π

F f (ω) e+ iωt , F f (ω) =
∫ ∞

−∞
dt f (t) e− iωt . (A.74)

Equation (A.74) defines the inverse and forward Fourier transforms, respectively.1

In the main text of the book, we use the notation f (ω) rather than the more explicit
F f (ω).

The connection to linear algebra – expansion of a vector over a complete set of
orthonormal basis vectors – also generalizes, but with subtleties. We define the basis
element

êω ≡ eiωt , f · g ≡
∫ ∞

−∞
dt f (t) g∗(t) , (A.75)

with ω now serving as a continuous index, in contrast to the discrete index � that we
defined for Fourier series. This vector (function) space has a continuous infinity of
dimensions, with orthogonality relations

êω · êω′ =
∫ ∞

−∞
dt ei(ω−ω′)t = 2πδ (ω − ω′) , (A.76)

where δ (ω − ω′) is the Dirac delta function, which is the continuous-space equivalent
of the Kronecker delta δ�n used above. Loosely, the delta function is zero except at the
origin (ω = ω′), where it is infinite, with unit “area.” Interchanging t ↔ ω gives the
time-domain delta function:

δ (t − t′) =
∫ ∞

−∞
dω
2π

eiω(t−t′) = 1 . (A.77)

1 There are many conventions for the Fourier transform. We follow a long tradition in physics (e.g., Stone
and Goldbart [2009]) and write dω

2π = d f to remind us that the expansion is physically over real, and not
angular frequencies. Indeed, some authors write the Fourier integrals in terms of the frequency, including
the exponentials, e±2π i f t. Using ω minimizes factors of 2π and is common in the physics literature. By
contrast, we follow engineering conventions and use e− iωt for the forward and hence e+ iωt for the inverse
transform. In the physics literature, for example, Jackson (1999), Press et al. (2007), and Stone and
Goldbart (2009), the opposite sign convention is more typical. No matter which convention you choose,
be consistent!
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(a) Rectangular “pulse” function; (b) its Fourier transform; (c) its power spectrum. Fig. A.2

The delta “function” is pathological and is more properly specified as a distribution
that is defined by its properties under integration. A better definition is thus∫ ∞

−∞
dt f (t) δ (t − a) = f (a) , (A.78)

for all suitable test functions f (t). Thus, the delta function “picks out” the value of f (t)
at the zero of the argument of the delta function [t = a in Eq. (A.78)].

Example A.8 (Pulse) A standard, important example of Fourier analysis is the trans-
form of a pulse of width a, or rect() function, shown in Figure A.2, below. The
Fourier transform of the time-domain function f (t) is F f (ω) = a sinc(aω/2),
where sinc(x) ≡ sin(x)/x. In Figure A.2, we also show the power spectrum,
given by the magnitude squared of the transform, |F f (ω)|2, which here is just a2

sinc2(ωa/2). The power spectrum gives the power in a signal between frequencies
ω and ω + dω.

Note that the first zero of sinc( 1
2 aω) occurs when the argument = π, which happens

for ω = 2π
a . This means that the power of the signal is contained within a set of

frequencies (“bandwidth”) of roughly 2π
a . Thus, the longer the pulse (the bigger a),

the narrower the range of frequencies in the signal. In the limit a → ∞, the power
spectrum becomes a Dirac delta function, δ (ω).

Example A.9 (Gaussian) Another important example is the Gaussian. In Eq. (A.79) and
at left, we see that a pulse of width τ is another Gaussian, of width 1/τ.

f (t) = e−
1
2 (t/τ)2

=⇒ F f (ω) = τ
√

π e−
1
2 (ωτ)2

. (A.79)

Example A.10 (Convolution) One of the most useful Fourier properties involves the
convolution of two functions f (t) and g(t):

[ f ∗ g](t) ≡
∫ ∞

−∞
dt′ f (t′) g(t − t′) . (A.80)
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The Convolution Theorem then states that

F f [ f ∗ g](ω) = F f (ω) G f (ω) , (A.81)

where F f (ω) and G f (ω) are the Fourier transforms of f (t) and g(t). We show this by
writing

F f [ f ∗ g](ω) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ f (t′) g(t − t′) e− iωt =

∫ ∞

−∞
dt′ f (t′)

∫ ∞

−∞
dt g(t − t′) e− iωt

=

∫ ∞

−∞
dt′ f (t′) e− iωt′ G f (ω) = F f (ω) G f (ω) , (A.82)

where we use the Shift Theorem in evaluating the Fourier transform of g(t). As an
exercise, verify that the Fourier transform of the product f (t) g(t) is given by

F f [ f g](ω) =
1

2π
[F f ∗G f ](ω) . (A.83)

A.4.3 Laplace Transforms

For reasons described in the text (Section 2.3.1), we will mostly use the Laplace trans-
form rather than the Fourier transform to analyze linear dynamical systems. The
Laplace transform of a function f (t) is given by

F(s) =
∫ ∞

0
dt f (t) e−st ≡ L[ f ] . (A.84)

Note that, unlike the main text, we use a different symbol, F(s), to denote the
Laplace transform of f (t), in order to be clear. In the text, it is assumed that you are
comfortable enough with the concept of transforms to use f (s) to denote the Laplace
transform of f (t). But remember that they are different functions! Despite the poten-
tial confusion, it can be simpler to think of one “object” f , which has representations
either in the time domain or the Laplace domain (or the Fourier domain).

We quickly list a few properties of the Laplace transform:

L[a f + bg] = a F(s) + b G(s) linearity

L[eat f (t)] = F(s − a)

L[ f (t − τ)θ(t − τ)] = e−τs F(s) delay

L[ f (t/a)] = a F(as)

L
[
d f
dt

]
= s F(s) − f (0)

L
[
d2 f
dt2

]
= s2 F(s) − s f (0) − d f

dt

∣∣∣∣∣
t=0

(A.85)
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L
[
dn f
dtn

]
= sn F(s) − sn−1 f (0) − sn−2 d f

dt

∣∣∣∣∣
t=0
· · · − dn−1 f

dtn−1

∣∣∣∣∣∣
t=0

L
[∫ t

0
dt′ f (t′)

]
=

1
s

F(s)

L[ f ∗ g] = F(s) G(s) , Convolution Theorem

f (0) = lim
s→∞ [s F(s)] , Initial-Value theorem

f (∞) = lim
s→0

[s F(s)] , Final-Value theorem . (A.86)

In this case, the convolution of two functions (h = f ∗ g) is defined as

h(t) =
∫ ∞

0
dt′ f (t′) g(t − t′) , (A.87)

and θ(t) is the Heaviside step function (zero for t < 0, one for t ≥ 0; see left). Note
that the Laplace transform of a time derivative just multiplies the Laplace transform
of the function by s. Conversely, integration corresponds to multiplying by 1/s. In
the Laplace domain, integration and differentiation are literally inverse operations.
Finally, the last property, the convolution theorem, will be useful in exploring the
dynamics of two systems in series.

There are similar relations for Fourier transforms. One difference is the presence of
initial conditions in the transforms of derivatives. This is a useful feature if one wants
to solve an initial-value problem. If not, they are a nuisance, and one usually assumes
zero-initial conditions.

We can quickly prove the relationships for differentiation and integration, since we
shall use them so often.∫ ∞

0
dt

d f
dt

e−st = f (t) e−st
∣∣∣∞
0
−

∫ ∞

0
dt f (t) (−s) e−st

= 0 − f (0) · 1 + s
∫ ∞

0
dt f (t) e−st = − f (0) + s F(s) . (A.88)

For zero initial conditions, this is just L[ d f
dt ] = s F(s).

To show that L[
∫

dt′ f (t′)] = F(s)/s, we write

L
[∫ t

0
dt′ f (t′)

]
=

∫ ∞

0
dt

(
e−st

∫ t

0
f (t′)dt′

)
=

����������0(
− e−st

s

) ∫ t

0
dt′ f (t′)

∣∣∣∣∣∣
∞

0

+

∫ ∞

0
dt

e−st

s
f (t)

=
1
s

∫ ∞

0
dt e−st f (t) =

F(s)
s
. (A.89)

Let us also prove the initial- and final-value theorems.

s F(s) =
∫ ∞

0
dt f (t)s e−st = −

∫ ∞

0
dt f (t)

d
dt

e−st = − f (t) e−st
∣∣∣∞
0
+

∫ ∞

0
dt

d f
dt

e−st

= f (0) · 1 +
∫ ∞

0
dt

d f
dt

e−st =

⎧⎪⎪⎨⎪⎪⎩ f (0) s→ ∞ ,
f (∞) s→ 0 .

(A.90)
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Example A.11 (Initial- and Final-Value Theorems)

F(s) =
1

s + a
=⇒ f (t) = e−at

s F(s) =
s

s + a
=⇒

⎧⎪⎪⎨⎪⎪⎩1 = f (0) s→ ∞ ,
0 = f (∞) s→ 0 .

The Final-Value Theorem is particularly useful to check whether the function f (t)
whose Laplace transform is F(s) is bounded as t → ∞. For example, if F = 1/s2, then
we immediately see that as s → 0, then f (∞) = sF(s) → ∞. Since f (t) = t in this case,
the conclusion is not surprising. The nice feature of the theorem is that we can know
f (0) and f (∞) even if we cannot transform back from F(s).

One useful application of the Final-Value Theorem is to compute the DC (zero
frequency) gain of a transfer function G(s). The DC gain is the ratio, after transients
have decayed, of the output y(t) to the input u(t). If we let u(t) be a step function, then
u(s) = 1

s and y(t → 0) = lims→0[s G(s) 1
s ]. Thus, DC gain = lims→0 G(s).

One caveat about the Final-Value Theorem is that a final value must be well-defined,
in the sense that the initial value of the signal must decay to zero. That is, the signal
F(s) should have all its poles in the left-hand side of the complex s-plane. Recall that
poles with Re s > 0 imply an exponentially growing amplitude, and poles with Re
s = 0 oscillate without decay. In both cases, we cannot define a meaningful final value.
To see an explicit example of such a failure, consider

F(s) =
1

s − a
=⇒ f (t) = e+at .

The Final-Value theorem predicts f (t → ∞) = lims=0
s

s−a = 0, instead of ∞. The
theorem implicitly depends on having initial values decay to zero, which is not the
case here.

It is also useful to collect a few common transforms:

L [ δ (t)] =
∫ ∞

0
dt δ (t) e−st = 1

L [θ(t)] =
∫ ∞

0
dt 1 · e−st =

1
s

L [t] =
∫ ∞

0
dt t e−st = − d

ds

(
1
s

)
=

1
s2

L [tn] =
∫ ∞

0
dt tn e−st = (−1)n dn

dsn

(
1
s

)
=

n!
sn+1

L [e−at] =
1

s + a
, pole at s = −a

L [sinωt] =
ω

s2 + ω2
, pole at s = ± i ω

L [eiωt] =
1

s − i ω
(A.91)



A.4 Laplace and Fourier Transforms 23

In writing down these identities, we see that it is useful to consider complex values
of s. Of course, when s = iω, we “almost” have a Fourier transform. (The limits are 0
to ∞, not −∞ to +∞.) In many cases, we see that the complex function of s has poles
at specific points in the complex s-plane. For example, L[e−at] = 1/(s + a) has a pole
at s = −a, while L[sinωt] = ω/(s2 + ω2) has poles at s = ± iω on the negative real axis.
Similarly, a transform may vanish at zeros in the complex plane, as well.

A.4.4 Partial-Fraction Decomposition

A commonly used trick that can improve numerical robustness is to replace a rational
polynomial G(s) = N(s)/D(s) by a sum of simple fractions. Although this can be
done for very general kinds of functions, we are interested in cases where N and D are
polynomials over the reals. We start with the case where the poles of G(s) (zeros of
D(s)) are all real and nondegenerate. Then, we seek to write

G(s) =
(s + z1)(s + z2) . . . (s + zm)
(s + p1)(s + p2) . . . (s + pn)

=
a1

s + p1
+

a2

s + p2
+ · · · + an

s + pn
. (A.92)

By substituting into the right-hand side of Eq. (A.92), it is easy to see that we should
write

aj = G(s)(s − p j)
∣∣∣
s=p j
. (A.93)

The basic idea is that all terms in the sum vanish, except the one proportional to
(s − p j)−1.

Example A.12 We seek to write

G(s) =
s + 2

(s + 3)(s + 4)
=

a1

s + 3
+

a2

s + 4
(A.94)

Equation (A.93) then implies

a1 =
(s + 2)(s + 3)
(s + 3)(s + 4)

∣∣∣∣∣
s=−3
=

s + 2
s + 4

∣∣∣∣∣
s=−3
=
−1
1
= −1

a2 =
(s + 2)(s + 4)
(s + 3)(s + 4)

∣∣∣∣∣
s=−4
=

s + 2
s + 3

∣∣∣∣∣
s=−4
=
−2
−1
= 2 , (A.95)

so that

G(s) =
s + 2

(s + 3)(s + 4)
=
−1

s + 3
+

2
s + 4

, (A.96)

which can be verified directly. (Once you get the hang of it, you can write down the
coefficients very quickly; or use a computer-algebra program to help.)

If the denominator has a pair of complex-conjugate poles, the denominator ∼ (s2 +

p2), and the partial-fraction decomposition should include a term of the form

G(s) = · · · + a + bs
s2 + p2

+ · · · , (A.97)
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where a and b can be determined by evaluating G(s)(s2 + p2) at s = p or p∗. (You get
the same result no matter which pole you choose for the evaluation.)

Example A.13 Find the decomposition

G(s) =
s

(s2 + 1)(s + 2)
=

a1 + b1s
s2 + 1

+
a2

s + 2
. (A.98)

Using the above principles, we have

a1 + b1s|s=i = G(s)(s2 + 1)
∣∣∣
s=i
=

s
s + 2

∣∣∣∣∣
s=i
=

i
i+2
=

1 + 2 i
5

a2 = G(s)(s + 2)|s=−2 =
s

s2 + 1

∣∣∣∣∣
s=−2
=
−2
5
, (A.99)

so that

G(s) =
s

(s2 + 1)(s + 2)
=

1
5

(
1 + 2s
s2 + 1

− 2
s + 2

)
. (A.100)

A.4.5 Solving Linear ODEs with Initial Conditions

An important application of Laplace transforms is the solution of linear ordinary
differential equations with constant coefficients. For example, consider

ẍ + 5ẋ + 6x = 0 , x(0) = ẋ(0) = 1 . (A.101)

Take Laplace transforms of each element of the equation:

[s2X(s) − sx(0) − ẋ(0)] + 5[sX(s) − x(0)] + 6X(s) = 0 , (A.102)

where X(s) = L[x(t)]. Then

(s2 + 5s + 6)X(s) = (s + 5)x(0) + ẋ(0) = s + 6 , (A.103)

and

X(s) =
s + 6

(s + 2)(s + 3)
=

4
s + 2

− 3
s + 3

, (A.104)

using the partial-fraction decomposition from Section A.4.4.
We can now refer to our table of Laplace transforms to transform back to x(t):

x(t) = 4 e−2t −3 e−3t . (A.105)

You can verify that x(0) = ẋ(0) = 1.
Notice that we have avoided writing down the explicit expression for the inverse

Laplace transform. If manipulating the transform into a common form that exists in
tables is possible, do it. Otherwise, the general expression is an integral in the complex
s-plane:

L−1[ f (s)] =
1

2π i

∫ σ+i∞

σ−i∞
ds F(s) est , σ > Re of all poles . (A.106)
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If the poles are all in the left-hand side of the complex s-plane, one generally uses
σ = 0. Equation A.106 is generally evaluated using the residue theorem.

Problem A.4.1 Let us calculate some simple Fourier series.

a. Square wave. Verify the coefficients given in Eq. (A.60) of the Fourier series
for the square wave , defining it to be an even function about t = 0.

b. Square wave with variable duty cycle. Find the coefficients of an even, asym-
metric square wave that equals 1 for a quarter period and 0 for the rest,

.
c. An even function satisfies f (t) = − f (−t). Show that if the function also

satisfies f (t) = − f (t + T/2), the even cosine terms will vanish in the Fourier
series.

d. Triangle wave. Find the coefficients of the Fourier series for the even triangle
wave . Show, in particular, that an ∼ O( 1

n2

)
.

Problem A.4.2 Poisson summation formula. Prove the following version of the Poisson
summation formula, which relates Fourier coefficients to Fourier transforms for
a periodic function f (t) = f (t + T ) built out of non-periodic “basis” functions
g(t). Show that f (t) =

∑∞
k=−∞ g(t + kT ) = 1

T

∑∞
n=−∞G(nω) einωt, where ω = 2π

T and
the Fourier transform G(ω) =

∫ ∞
−∞ dt g(t) e− iωt.

Problem A.4.3 Parseval’s theorem. Show that
∫ ∞
−∞ dt

[
f (t)

]2
=

∫ ∞
−∞

dω
2π

∣∣∣F f (ω)
∣∣∣2. Check

the relation explicitly for f (t) = θ(t) e−t, with θ(t) the Heaviside step function.
Problem A.4.4 Fourier transform of a comb function. By applying the Poisson summa-

tion formula to the delta function, g(t) = δ (t), show that the Fourier transform
of the time-domain comb function, f (t) =

∑
k δ (t−kT s), is the frequency-domain

comb function F(ω) = 2π
T s

∑
n δ (ω − nωs).

Problem A.4.5 Laplace transform of integral. Show that L[∫ t

0
dt′ f (t′)

]
= 1

s F(s).

A.5 Optimization

We first encounter the elementary notion of unconstrained optimization and convex
functions. A function is convex if the graph of every line segment drawn between two
points lies above the function itself (Figure A.3a). To find the minimum of a convex
function, take its derivative to find its critical point. For example, it is easy to check
that f (x) = 1

2 x2 is convex. Its critical point is determined by taking a derivative and
setting it to zero:

d f
dx
= 0 =⇒ x = 0 . (A.107)

If a function is convex, there is at most one critical point, and if it exists, it corre-
sponds to a global minimum. If a function is not convex, setting the derivative of a
function equal to zero is a necessary but not sufficient condition to have a minimum.
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�Fig. A.3 Optimization of one-dimensional, continuous functions. (a) A convex function has at most one minimum. (b) A
nonconvex function may have several critical points, which can be local minima, maxima, or saddle points (not
shown).

In particular, functions may have multiple critical points (Figure A.3b). Examining
the second derivative at a critical point, we can determine whether a critical point
is a local minimum ( f ′′ > 0), a local maximum ( f ′′ < 0), or a point of inflection
( f ′′ = 0). If a function has several local minima, we may need to evaluate the function
at each one to determine the global minimum. Note that we can always convert a
maximization problem into a minimization problem, as maximizing f is equivalent to
minimizing − f .

With more variables, the procedure is similar. For example, f (x, y) = 1
2

(
x2 + y2

)
is

also convex, and we can find its critical point by equating its gradient to zero:

∇ f =
(
∂x f ∂y f

)
=

(
x y

)
=

(
0 0

)
=⇒ x = y = 0 , (A.108)

where we use the notation ∂x f ≡ ∂ f
∂x for clarity. The gradient of f is a (row) vector that

points in the direction of increasing f .
As we add variables, the number of local extrema will increase. In general, extrema

include maxima, minima, and saddle points, where the curvature has opposite signs
in different directions. Optimization is much easier if you can make sure that the
function you want to optimize is convex. Then, since there is a unique critical point,
we can usually solve for it directly. For problems with more complicated functions,
we distinguish local algorithms, which try to “walk downhill,” from global algorithms,
which try many different candidate starting points. The former can usually find a local
minimum, whereas the latter have a chance of finding the global minimum.

A.5.1 Constrained Optimization and Lagrange Multipliers

Often, optimization is done under constraints. Instead of optimizing over all possible
values of variables (e.g., x and y in the example above), we wish to find the optimum
when only a subset of x–y combinations is allowed. In Figure A.4, the surface repre-
sents a function f (x, y) and the constraint is a curve defined by g(x, y) = 0. The goal is
to minimize f along the curve defined by g = 0.
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Constrained optimization: We minimize the function f (x, y) subject to the constraint g(x, y) = 0. The
background intensity indicates the value of f (x, y). Light circles and tags indicate contours of f (x, y) at f = 0.5,
f = 1, and f = 2, and the big dot at (x, y) = (0, 0) is the global minimum. Note that both the contours and the
gradients of f (x, y) and g(x, y) are parallel at the constrained minimum at (1, 1).

Fig. A.4

Equality Constraints

If the constraint is simple enough that we can rewrite g(x, y) = 0 as a function y(x),
then a straightforward way of incorporating the constraint into the minimization of
f (x, y) is to substitute for y and write f (x, y) = f [x, y(x)] ≡ f1(x) and then to minimize
f1 with respect to x, as normal. In general, though, it may not be easy to find the
explicit solution for y(x). The method of Lagrange multipliers, described below, works
in all cases.

Figure A.4 illustrates the solution to this problem geometrically. We see that the
critical point occurs where the curve g is tangent to a level-set contour of f . The
algebra is easier if we work with gradients: the critical point occurs where the gradient
of f (which is perpendicular to the contours) is parallel to the gradient of g:

∇ f = −λ∇g , (A.109)

where the proportionality constant is known as a Lagrange multiplier. (The minus sign
is a historical convention.) Intuitively, if we walk along g = 0, then we are at the local
minimum when the gradient of f is perpendicular to the local tangent vector along
g = 0. Otherwise, continuing along g = 0 in the right direction could reduce the value
of f . The local gradient of f is thus perpendicular to the tangent along g = 0. We can
also look at the gradient of the function g(x, y), which is perpendicular to the level sets
defined by g(x, y) = constant, implying that the gradients of the functions f and g are
parallel to each other at the extremum of f constrained to g = 0.

A standard trick is then to define a new variable λ and create a new function,

L(x, y, λ) = f (x, y) + λg(x, y) . (A.110)

The function L is known as the Lagrangian. In applications to classical mechanics and
other physical problems, it often is the Lagrangian function in that context as well, but
it need not have a direct physical interpretation. We then solve for the unconstrained
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critical point of L by imposing that the gradient of L taken with respect to the variables
x and y and the Lagrange multiplier λ be zero:

∂L
∂x
=
∂ f
∂x
+ λ
∂g
∂x
= 0 ,

∂L
∂y
=
∂ f
∂y
+ λ
∂g
∂y
= 0 ,

∂L
∂λ
= g = 0 . (A.111)

The first two equations are the components of ∇ f = −λ∇g, and the last expresses
the constraint. Taking derivatives of L with respect to all the variables, including
the Lagrange multiplier λ, gives the solution to the constrained-optimization prob-
lem. The constrained optimization of f (x, y) goes to an equivalent unconstrained
optimization of L(x, y, λ).

The above picture generalizes easily to more constraints, each with its own Lagrange
multiplier λi:

L = f (x) +
m∑

i=1

λi gi(x) = f + λT g , (A.112)

where λ is now an m-dimensional vector and g is the vector of m constraint functions
gi(x) = 0. (Here, x is a n-dimensional vector that, in this book, will typically be the
state vector of a dynamical system.) If a constraint needs to be enforced at each time,
the Lagrange multiplier vector λ(t) will be a continuous function of time. An example
is treated in Section 7.2 on optimal control, where the dynamics act as the constraint.

Example A.14 As a trivial but instructive example, consider minimizing a one-variable
function U(x) subject to the constraint x = x0. Obviously, the minimum value is U(x0),
but let us see how this works with Lagrange multipliers:

U′(x) = U(x) + λ(x − x0) =⇒ ∂U′

∂x
=
∂U
∂x
+ λ = 0 =⇒ λ = −∂U

∂x
. (A.113)

That x = x0 then follows from taking ∂λU′ = 0. If we interpret U(x) as a potential –
that is, the reason for changing notation – then λ is just the force that the constraint
needs to supply to “counteract” the force that the potential exerts on the “particle” at
position x0.

We illustrate this idea at right, where U(x) = 1
4 x4 and x0 = 1. The Lagrange mul-

tiplier is λ = −1, and the modified potential U′(x) = 1
4 x4 − x + 1 does indeed have a

minimum at x = 1. In effect, the constraint alters the potential so that the new system
has a global minimum at the desired value of x.

Next, we present a more typical example, using a quadratic function of two variables
subject to a linear constraint.

Example A.15 Let f = 1
2 (x2 + y2) and look for the minimum value along the curve

y − 1/x = 0 for x > 0. We define L as

L =
1
2

(
x2 + y2

)
+ λ

(
y − 1

x

)
, (A.114)
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which implies

∂L
∂x
= x +

λ

x2
= 0 ,

∂L
∂y
= y + λ = 0 ,

∂L
∂λ
= y − 1

x
= 0 . (A.115)

Solving the three equations gives x∗ = y∗ = 1, λ = −1, and f (x∗, y∗) = 1 (Figure A.4).
Alternately, we can express the constraint as y = 1

x and write f [x, y(x)] = f1(x)

f1(x) =
1
2

(
x2 +

1
x2

)
=⇒ d f1

dx
= x − 1

x3
= 0 =⇒ x∗ = ±1 . (A.116)

The two methods thus give the same solution, as the constraint curve satisfies x > 0.

Inequality Constraints

In control theory, we will often want to optimize a problem that has an inequality
constraint. A typical goal (Section 7.5) is to maximize the performance (or minimize
a cost function) of a controller while requiring the control inputs u(t) stay within upper
and lower bounds.

To understand the basic idea, consider minimizing f (x) = 1
2 x2 subject to the con-

straint x > x0, represented as the dark shaded area at left. There are two cases: If
x0 < 0, then the minimum occurs at the unconstrained value, x∗ = 0, and the con-
straint is inactive. If x0 > 0, then the minimum is the constraint border, x∗ = x0, and
the constraint is active.

We can connect this simple example to our Lagrange-multiplier formalism by the
following trick: We convert the constraint g(x) ≤ 0 into an equality constraint by intro-
ducing a slack variable s2 such that g(x) + s2 = 0. That is, if the inequality constraint
is satisfied, then there will exist some (real) s that makes g + s2 = 0. If not, there won’t.
We thus write a Lagrangian of the form L = f (x) + λ[g(x) + s2].

We then proceed to take derivatives of L with respect to x, λ, and s:

∇L = ∇ f + λ∇g = 0 ,
∂L
∂λ
= g + s2 = 0 ,

∂L
∂s
= 2λs = 0 . (A.117)

The last relation in Eq. (A.117), λs = 0, implies that either λ = 0 or s = 0. (We
ignore the special case where both are zero.) If λ = 0 and s � 0, then the inequality
constraint is satisfied at an interior point, and the constraint is inactive. We can then
find the critical point as an unconstrained optimization problem, by solving ∇ f = 0.
Alternatively, if s = 0, then the constraint is active: we are at the boundary of the
inequality constraint, which can now be treated as an equality constraint and solved
by the method of Lagrange multipliers.

In the example above in the margin, L = 1
2 x2 + λ(−x + x0 + s2). Taking derivatives,

∂L
∂x
= x − λ = 0 ,

∂L
∂λ
= −x + x0 + s2 = 0 ,

∂L
∂s
= 2λs = 0 ,

x∗ = λ , s2 = x∗ − x0 λ = 0 or s = 0 , (A.118)
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For the two cases, we have

1 λ = 0 (inactive constraint): Then x∗ = 0 and s2 = −x0.
2 s = 0 (active constraint): Then x∗ = x0 and λ = x∗ = x0, as we saw above.

Notice that when the constraint is active, we have x0 > 0 and hence that λ > 0. As
illustrated at right, this last result is no accident. Since the optimization is constrained,
∇ f = −λ∇g at the extremum. For a hard constraint, that is the end of the story. For
an inequality constraint, a move inside the constraint region may lower f . Since g is
zero on the boundary and negative inside it, we know that ∇g points away from the
constraint region. If λ > 0, then ∇ f points into the constraint region, meaning that
any move in that direction increases f . Thus, we add the condition λ > 0.

We can thus summarize the necessary requirements for a point x∗ to be an extremum
in what are known as the Karush-Kuhn-Tucker (KKT) conditions:

∇ f (x∗) = −
m∑

i=1

λi∇gi(x∗) , λi ≥ 0 , gi(x∗) ≤ 0 λigi(x∗) = 0 (A.119)

These requirements cover all combinations of active and inactive constraints and
are necessary but not sufficient: the second derivatives show whether the extremum
corresponds to a local minimum, maximum, or saddle point. Note that for equality
constraints, the Lagrange multipliers λ can have either sign, whereas for inequality
constraints, λ ≥ 0.

Finally, an important corollary to our discussion is that f (x) need not have any criti-
cal points in order for there to be a solution of the constrained-inequality optimization.
At right, f (x) = x is a straight line and never satisfies f ′(x) = 0. However, if we add the
constraint x > 0, then f is minimized at zero, as shown.

A.5.2 Calculus of Variations

So far, we have considered optimization over the variation of a finite number of
variables. In discussing continuous dynamics, we will want to optimize a functional
(function of a function) over a set of possible curves. If we think of each point on a
curve x(t) as a variable to optimize, then we have a continuous infinity of optimization
variables, one for each point in time. The optimization problem is then to minimize a
functional J[x(t)],

J =
∫ τ

0
dt L(x, ẋ, t) . (A.120)

In Eq. (A.120), we choose a function x(t), with fixed endpoints x(0) = x0 and x(τ) = xτ.
The basic strategy is to assume that there is some x∗(t) that minimizes J and to require
that J be stationary with respect to infinitesimal variations of x about x∗. Of course, as
with all the optimization problems discussed in this section, we need to check second
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derivatives to make sure that we have a local minimum, as opposed to a maximum or
saddle point.

The first trick is to realize that we can write an arbitrary x(t) in terms x∗(t) by
defining x(t) = x∗(t) + εδx(t), where δx(t) is an arbitrary function that vanishes at
the boundaries, δx(0) = δx(τ) = 0. We need δx to obey these boundary conditions
to respect the boundary conditions for x(t). Also, we can take a time derivative of x,
which gives ẋ = ẋ∗ + εδẋ. The cost J then becomes an ordinary function of ε:

J(ε) =
∫ τ

0
dt L(x∗ + εδx, ẋ∗ + εδẋ, t) = J(0) + ε

∫ τ

0
dt

(
∂L
∂x

δx +
∂L
∂ẋ

δẋ

)
+ O(ε2) .

(A.121)

In Eq. (A.121), the variations δx and δẋ are not independent. We then use a second
trick, which is to integrate the time-derivative term by parts:∫ τ

0
dt

(
∂L
∂ẋ

δẋ

)
=
∂L
∂ẋ

δx
∣∣∣∣∣τ
0
−

∫ τ

0
dt

(
d
dt
∂L
∂ẋ

δx

)
(A.122)

Substituting Eq. (A.122) back into Eq. (A.121) and requiring dJ
dε = 0 gives∫ τ

0
dt

(
∂L
∂x
− d

dt
∂L
∂ẋ

)
δx(t) = 0 . (A.123)

Since Eq. (A.123) must hold for arbitrary δx(t), we deduce the Euler–Lagrange
equation,

d
dt
∂L
∂ẋ
− ∂L
∂x
= 0 , (A.124)

In our application of Eq. (A.124) to problems in optimal control, we typically need
to generalize in several ways: First, we add more variables. Since each can be varied
independently, we find one Euler–Lagrange equation for each variable. If the variables
are gathered into a state vector x, then the Euler–Lagrange equations are the same as
in Eq. (A.124), with the simple subsitution x → x. Next, the equations of motion
are typically imposed as constraints at each time t via a Lagrange multiplier λ(t), as
explained in Section 7.2.

The last generalization is to allow boundary variations. Thus, instead of requiring
x(τ) = xτ, we let its value be free and then penalize deviations from a preferred state.
Consider a one-dimensional cost function

J = ϕ[x(τ), τ] +
∫ τ

0
dt L(x, ẋ, t) , (A.125)

where the endpoint cost ϕ penalizes, but does not forbid, deviations of the end point
x(τ) from a desired state xτ. As a specific example, we could have ϕ = 1

2 S [x(τ) − xτ]2.
Show that the usual Euler–Lagrange equations apply, but the boundary condition at
t = τ becomes

∂ϕ

∂x
+
∂L
∂ẋ
= 0 . (A.126)
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We have

J(ε) = ϕ[x∗ + εδx, τ] +
∫ τ

0
dt L(x∗ + εδx, ẋ∗ + εδẋ, t)

= J(0) + ε

{
∂ϕ

∂x
δx

∣∣∣∣∣
τ
+

∫ τ

0
dt

(
∂L
∂x

δx +
∂L
∂ẋ

δẋ

)
+ O(ε2)

}
.

Then, we integrate by parts, as above, noting that while δx(0) = 0, the other endpoint,
δx(τ), is free to vary and thus does not vanish. Then, including the boundary term
∂ẋL(τ) δx(τ) from the integration by parts, we have

J(ε) = J(0) + ε

{(
∂ϕ

∂x
+
∂L
∂ẋ

)
δx

∣∣∣∣∣∣
τ

+

∫ τ

0
dt

(
∂L
∂x
− d

dt
∂L
∂ẋ

)
δx(t)

}
.

Taking dJ
dε = 0 and noting that the equation must hold for all suitable functions δx(t)

gives (
∂ϕ

∂x
+
∂L
∂ẋ

)∣∣∣∣∣∣
τ

= 0 ,
∂L
∂x
− d

dt
∂L
∂ẋ
= 0 .

The first of these becomes a boundary condition at t = τ for the differential equation
(Euler–Lagrange) for x(t). Because there is also an initial condition x(0) = x0, we will
have a two-point boundary-value problem on the interval [0, τ].

A.6 Probability Theory

We start by defining some elementary notions and terminology. Let the sample space
Ω be the set of all possible outcomes x (of an experiment, measurement, card hand,
etc.). For example, if a coin is tossed once, the sample space is heads or tails, { H,T
}. If it is tossed N times, Ω is the set of 2N possible outcomes. For two six-sided dice
tossed once, the sample space consists of 36 possible outcomes, { (1,1), (2,1), . . ., (5,6),
(6,6) }.

Subsets E ⊂ Ω are known as events. For a two six-sided dice toss, an event could
be “you rolled a seven” and corresponds to the subset of outcomes that sum to eight
(6+2, 5+3, 4+4, 3+5, 2+6), which has cardinality (size) equal to five. The intersection
of two events x1 ∩ x2 denotes the set of outcomes ω where ω ∈ x1 and ω ∈ x2. Two
events x1 and x2 are disjoint, or mutually exclusive, if their intersection, x1 ∩ x2, is the
empty set, ∅.

A function P(·) that assigns a real number P(x) to each event x is a probability
distribution if it satisfies three simple axioms:2 Let E1, E2, . . . be disjoint events. Then

P(E) ≥ 0 for everyE , P(Ω) = 1 , P
(
∪∞i=1Ei

)
=

∞∑
i=1

P(Ei) . (A.127)

2 One person’s theorem can be another’s axiom. An interesting reformulation of probability theory starts
from axioms about expectation values and then derives the rules of probability as theorems (Whittle,
2000).
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Below, we distinguish cases where Ω is a finite or countable set from cases where it
is not countable.

A.6.1 Interpreting Probability

Although the laws of probability follow from a few simple axioms, we also need to
interpret probability – to assign numerical values to probabilities. While there are at
least half a dozen ways to interpret probability theory (Zalta, 2012), the two most
popular are probabilities as relative frequencies and as degrees of rational belief.

Frequentist Interpretation

Much of probability’s roots lie in sixteenth- and seventeenth-century efforts to under-
stand gambling odds – how much to bet? Major “players” include Gerolamo Cardano,
Pierre de Fermat, Blaise Pascal, and Christiaan Huygens. In this “classical” develop-
ment of probability, the probability of an event was intimately linked to how frequently
it occurs. In the nineteenth and twentieth centuries, mathematicians went further and
tried to define probability via frequency. These developments are associated with John
Venn, Karl Pearson, Jerzy Neyman, and Sir Ronald Fisher. To be more precise, we
can define probability as a limiting relative frequency. For simplicity, we consider only
the case where each outcome x is an “elementary” event E = x. We write x as a vector
to allow for outcomes characterized by multiple numbers. Given n trials, we assign
the number P(x) as, loosely, the number of times x is drawn (number of “successes”)
divided by the number of draws, or trials Nt:

P(x) ≡ lim
Nt→∞

(Number of trials resulting in event x)
Nt

. (A.128)

For example, in flipping a coin, there are two events (outcomes), x = H and x = T .
We then assign

P(H) = lim
Nt→∞

(Number of heads observed in Nt coin flips)
Nt

. (A.129)

Implicit in this notion is that multiple trials are possible. While such an assump-
tion works well for coin flips, it is less easily adapted to phenomena that are hard,
or impossible, to repeat. The frequentist interpretation may not apply as widely as
desired.

Subjective (Bayesian) Interpretation

This alternative view of probability has eighteenth-century origins in the work of
Jakob Bernoulli, the Reverend Thomas Bayes, and Pierre Simon de Laplace. Eclipsed
by the frequentist interpretation during most of the twentieth century, it was repeat-
edly rediscovered, often by people outside of statistics with a tough problem to solve
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that frequentist statistics could not handle. It was the theory that “would not die”
(McGrayne, 2011). Alan Turing famously created Bayesian algorithms for decoding
German submarine communications during World War II, although the methods were
classified until the early 1970s. In the more open literature, the efforts of Harold Jef-
freys and, in physics, E. T. Jaynes were important. In many fields (such as machine
learning, neuroscience, medical diagnosis, cosmology), the Bayesian interpretation
now dominates. In the Bayesian interpretation of probability, we define

P(x|I) = The degree of rational belief that x is true given background information I.

In other words, if you assign P(x) ≈ 1, then you are confident that x is true, while
P(x) ≈ 0 implies the converse. The probabilities are subjective in the sense that they
depend on background information I, which may differ for two different people. The
probabilities are objective in the sense that the rules of probability, developed below,
will oblige two people with identical background information to arrive at the same
value for P(x). This is what we mean by rational belief. In many cases, the number
assigned to P(x) in the Bayesian approach will equal that assigned in the frequentist
approach. But a Bayesian approach can lead to probability assignments in cases where
the frequentist approach does not apply. Another, perhaps less-loaded term for P(x) is
state-of-knowledge: a probability distribution summarizes all that we know about the
quantity x.

Example A.16 Two balls in a bag. Here is a quick example to motivate “subjective”
probability: You have a bag with two balls – one white, one black.

If you pick one, P(W |I) = 1
2 . Here, I = “there are 2 balls; 1 white, 1 black.” Next,

you pick one ball but do not look at it and then pick the second ball and see that
it is black. Now, P(W |I′) = 1, where I′ adds to I that you picked a ball without
looking and then another that was black. Thus, the assignment of P depends on an
event that happened after the draw, showing that the timing of events is not necessarily
important. Probability considers the logical integration of information, not just the
temporal sequence.

A.6.2 Probability with Discrete Event Sets

We first develop the rules of probability for the case where the event set X is countable.
From the axioms given in Eq. (A.127), one can derive many theorems, such as

P(x|I) + P(x|I) = 1 . (A.130)

Here, x means not x, the set of outcomes not contained within x (e.g., its complement).
For example, in a three-element, single-component event space with X = {x1, x2, x3},
the complement x1 = {x2, x3}. The vertical bar | means given, or conditional upon. In
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words, Eq. (A.130) states that the probability that x occurs or does not occur is one.
To prove this statement, note that Ω = x ∪ x and that x ∩ x = ∅. Then, applying the
second and third probability axioms, 1 = P(Ω) = P(x ∪ x) = P(x) + P(x), which is
Eq. (A.130).

Above, in the spirit of the Bayesian interpretation of probability, we explicitly con-
dition all probabilities on the background information I, as there is not a unique
assignment of probability: What you know, what you assume as background infor-
mation I, affects your degree of belief about events.3 For example, if we know that a
coin has two heads, then we expect P(H|I1) = 1. If we know nothing about the coin,
then we should assume P(H|I2) = 1

2 . (Indeed, assigning a probability for heads that
differs from 1

2 is rational only when something particular is known about the coin.)
Thus, in this case,

• I1 = “I know this coin is a fake.”
• I2 = “I just saw this coin for the first time.”

Although we will often write P(x|I) as P(x), we must remember that the assignment
of probabilities is always conditioned on outside information.

Applying Eq. (A.130) to an n-element event set, we can iterate and derive that if
P(xi) = pi, then there is a normalization condition that

n∑
i=1

pi = 1 , (A.131)

Next, we define the notion of conditional probability P(x|y):

P(x, y) = P(x|y)P(y) =⇒ P(x|y) =
P(x, y)
P(y)

. (A.132)

Loosely, P(x|y) is the probability that event x occurs given that event y has occurred.
Note that the temporal sequence is for intuition only. The statement y can be thought
of as a condition rather than an occurrence: if y holds, then what is the probability of
x?

Using the notion of conditional probability, we can derive two essential theorems:

1. Bayes’ theorem 4

P(x|y) =
P(y|x) P(x)

P(y)
. (A.133)

3 Private insurers are big-time Bayesians. The more they know about you, the better they can calculate the
conditional probabilities and risks. Take health insurance: your age, recreational habits, genetic makeup,
family history, state of mind – anything – can allow a better estimate of the probability of your getting
sick and hence a better estimate of the amount of money they stand to gain or lose from you. In this and
many other fields, “Better Bayesians make bigger bucks.” Balancing privacy against efficiency is delicate.

4 Is it Bayes’ theorem or Bayes’s Theorem? Traditional English favors the latter, but modern usage tends to
the former (e.g., McGrayne, 2011). Although I am sympathetic with sticklers, I would argue that since
people tend to pronounce only a single s, we should follow our instincts and drop the possessive s. On
the other hand, when we actually pronounce the s twice – think of Gauss’s Law – follow the sticklers.
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Proof:

P(x, y) = P(x|y) P(y)

P(y, x) = P(y|x) P(x)

but P(x, y) = P(y, x) =⇒ Bayes .

2. Marginalization

P(x) =
∑

i

P(x, yi) . (A.134)

Sketch of proof: To start, assume Y has but two states, y and ȳ.

P(x, y) = P(y, x) = P(y|x) P(x)

P(x, ȳ) = P(ȳ, x) = P(ȳ|x) P(x)

Add: P(x, y) + P(x, ȳ) = [P(y|x) + P(ȳ|x)]︸���������������︷︷���������������︸
1

P(x) = P(x) .

Thus, in this case,

P(x) = P(x, y) + P(x, ȳ) .

The argument is similar when Y has a countable number of elements. Marginal-
ization can also be applied to elements of a vector x = {x(1), · · · , x(N)}. For
example, ∑

x(1)
i

P({x(1), · · · , x(N)}) = P({x(2), · · · , x(N)}) , (A.135)

where the sum is over all possible (countable) values of x(1). Any other component
x(i) (or several) can equally well be chosen.

A.6.3 Probability with Continuous Event Sets

We can generalize the formalism of probability to handle a continuous set of outcomes,
which corresponds to an uncountable event set X (or X, if each event x is represented
by an N-component vector). The probability to find a value x that is between a and b
is given by an integral illustrated by the shaded value at right:

P(a ≤ x ≤ b) ≡
∫ b

a
dx p(x) , (A.136)

where p(x) is a probability density function (PDF). Since the probability to find x some-
where (that is, for the random variable x to take on a value between −∞ and +∞)
should be one, we normalize p(x) by requiring∫ +∞

−∞
dx p(x) = 1 . (A.137)



A.6 Probability Theory 37

Notice that whereas probabilities are numbers and have no dimensions, probability
distribution functions have units that are inverse to the units of x. For example, if
x is a length, p(x) has units of length−1. A second comment is that we will also be
somewhat lazy in our language and refer to probability density functions as continuous
distributions, or even as just distributions.

The cumulative distribution function (CDF) is defined to be P(−∞ ≤ x), or

F(x) ≡ P(−∞ ≤ x) =
∫ x

−∞
dx′ p(x′) . (A.138)

In words, F(x) is the probability that an element drawn from p(·) has value ≤ x. Clearly,
F(−∞) = 0 and F(∞)=1. Equivalently, p(x) = d

dx F(x). See left for an illustration.
When x is N-dimensional, we define

P(x ∈ V) =
∫
V

dx p(x) , (A.139)

where V is a subvolume in the n-dimensional event space X. Normalization implies∫
x∈X

dx p(x) = 1, which can be written more explicitly as

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxn p(x1, · · · , xn) = 1 . (A.140)

For simplicity, we now denote the components with a subscript, rather than the
superscript we used in the discrete case, where the subscript was used to denote the
realization, as in x(i)

j , which refers to the ith component of x taking the jth value.
For continuous probabilities, Bayes’ theorem takes the same form as in Eq. (A.133).
Marginalization does too, once we let sums go to the appropriate integral. For
example, the marginal distribution

p(x2, · · · , xn) =
∫ ∞

−∞
dx1 p(x1, x2, · · · , xn) . (A.141)

Similarly,

p(x) =
∫

y∈Y
dy p(x, y) . (A.142)

Marginalization is also referred to, in physics, as integrating out undesired variables.
We can unify the presentations of continuous and discrete event sets through use

of the delta function. Thus, we can write the probability distribution function of a
variable x that can take on values {x1, x2, . . . , xn} with probabilities {p1, p2, . . . , pn} as

p(x) =
n∑

i=1

pi δ (x − xi) . (A.143)
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As an example of how this definition leads to the familiar rules for manipulating
discrete probabilities, the normalization condition for Eq. (A.143) is∫ ∞

−∞
dx p(x) =

∫ ∞

−∞
dx

n∑
i=1

pi δ (x − xi) =
n∑

i=1

pi = 1 , (A.144)

which is just Eq. (A.131). The corresponding discrete distribution is P(xi) = pi.
We can extend these ideas to include mixed cases, neither discrete nor continuous.

For example, p(x) = 1
2 [δ (x)+e−x2/2 /

√
2π] describes a variable that has a 50% chance of

having a value of 0 and a 50% chance of being distributed as a Gaussian with mean 0
and variance 1. An even more general formulation of probability is based on measure
theory.

A.6.4 Expected Value of Functions of Random Variables

We define the expected value of a function f (x) to be

〈 f (x)〉 ≡
∑
x∈X

P(x) f (x)

︸����������︷︷����������︸
discrete case

or
∫

x∈X
dx p(x) f (x)︸����������������︷︷����������������︸

continuous case

, (A.145)

where f (·) is an m-dimensional function defined on the n-dimensional random variable
x. As is traditional in quantum and statistical physics, the angle-bracket notation, 〈·〉,
does not explicitly state which distribution is being integrated over. In most cases,
the context will make the distribution clear. If not, we will specify it explicitly. We
distinguish the probabilistic notion of expected value from the statistical notion of
average,

f (x) ≡ 1
N

N∑
i=1

f (xi) , xi ∼ p(x) . (A.146)

The notation xi ∼ p(x) means that xi is sampled from the distribution p(x). The law
of large numbers asserts that limN→∞ f (x) = 〈 f (x)〉.

Below, we consider important special cases of functions f (·). For brevity, we discuss
only the continuous case. The discrete case has analogous formulas, substituting sums
for integrals and distributions for densities.

Mean and Variance of a Probability Distribution

Although a full description of a continuous random variable requires knowing its dis-
tribution p(x), reduced descriptions are very useful summaries. We begin by defining
the mean, a measure of the “typical” value of x and the variance, a measure of the
width of p(x). We start with one variable and then generalize to n variables.

• The mean, μ ≡ 〈x〉, of a distribution is defined as

μ ≡ 〈x〉 ≡
∫ ∞

−∞
dx p(x) x (A.147)
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and is a common measure of a “typical value” of a distribution. Others include
the mode (global maximum of a probability distribution) and the median (which
divides the lower and higher halves of the distribution). The angle brackets 〈·〉 in
Eq. (A.147) denote ensemble averages (over many trials). Ensemble averages can
sometimes be calculated by taking a single, long time average (the ergodic property).
For distributions that have a single, symmetric peak, the mean, mode, and median
all coincide.

In our discussions of noise, we always assume a noise term of 0 mean because any
constant could be absorbed into the deterministic part of the measurement.
• The variance is defined as a second central moment, which compensates for the

mean:

σ2 ≡ 〈 δx2〉 ≡ Var x ≡
〈
(x − μ)2

〉
= 〈x2〉 − μ2 =

∫ ∞

−∞
dx p(x) (x − μ)2 , (A.148)

and is a measure of the typical fluctuation of a variable x about its mean. The
standard deviation, σ, is the square root of the variance. The mean and stan-
dard deviation are illustrated at left for a Gaussian distribution (discussed in
Section A.7.3).
• With n-dimensional variables x, the mean becomes a vector μ =

∫
dx p(x) x, and the

variance becomes the covariance matrix

Σ ≡ 〈 δx δxT〉 ≡ Cov x =
∫

dx p(x) (x − μ)(x − μ)T , (A.149)

where δx ≡ x − μ. The diagonal elements of Σ are the variances of the ith component
of x. The off-diagonal elements, 〈xi x j〉, give the tendency for fluctuations in xi to
correlate with those of x j. Note that although the variances 〈x2

i 〉 ≥ 0, the covariances
may be positive or negative. A negative covariance means that a positive fluctuation in
xi is likely to be accompanied by a negative fluctuation in x j. See Section A.7.5, below,
for an example.

Higher-Order Moments

Higher-order moments such as the mth-order moment 〈xm〉 and the mth-order central
moment 〈(x − μ)m〉, which subtracts off the mean μ, are sometimes useful, too. The
skewness γ1 is the third central moment, normalized by the standard deviation σ,

γ1 ≡
〈( x − μ
σ

)3
〉
. (A.150)

For a symmetric distribution, where p(x) = p(−x), the skewness γ1 = 0. At left are
distributions with negative, zero, and positive skewness.

The kurtosis is a normalized fourth central moment, but it is more common to use
the excess kurtosis, defined as

γ2 ≡
〈( x − μ
σ

)4
〉
− 3 , (A.151)
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where the factor of −3 is chosen so that a Gaussian distribution has γ2 = 0 (Prob-
lem A.7.3). Distributions with γ2 < 0 thus are “flat topped” relative to a Gaussian,
while those with γ2 > 0 are “peaky” and have fatter tails, as illustrated at right.

Conditional Moments

We can also define moments of conditional probability distributions, for example the
conditional mean:5

〈x〉y ≡
∫

dx p(x|y) x . (A.152)

If x and y are independent variables, the conditional mean reduces to the ordinary
mean:

〈x〉y ≡
∫

dx p(x|y) x =
∫

dx
p(x, y)
p(y)

x =
∫

dx
p(x)��p(y)

��p(y)
x = 〈x〉 . (A.153)

Loosely, the conditional mean is the mean of the subset of those values of x that
satisfy the condition y. Note that we have assumed p(y) > 0. If it equals zero, then y is
impossible and, again, 〈x〉y = 〈x〉.

In Section A.8.7, we show that the conditional mean 〈x〉y of a probability distribu-
tion p(x|y) minimizes the mean-square deviation, 〈(〈x〉 − x)2〉, where the brackets are
averaged over p(x|y). It then serves as a “best” estimate of the quantity x (e.g., an
unknown state) given the quantity y (e.g., a measurement).

Characteristic Function and Cumulants

The characteristic function is just the complex conjugate of the Fourier transform of a
probability distribution.6

ϕx(k) =
〈
eikx

〉
=

∫ ∞

−∞
dx p(x) eikx (A.154)

We can use characteristic functions to generate the mth moment of a probability
distribution function. From Eq. (A.154), we see that

〈
eikx

〉
=

∞∑
m=0

(ik)m 〈xm〉
m!

=⇒ 〈xm〉 = (− i)m dm

dkm
ϕx(k)

∣∣∣∣∣
k=0
. (A.155)

5 An alternate notation, preferred in the statistics and control literature, uses E(x) to define the expected
value of x (the mean). Although I prefer the standard physics notation, 〈x〉, the statistics notation is
perhaps clearer for conditional expectations, which are denoted E(x|y), in closer analogy to the notation
for conditional probability, p(x|y). Unfortunately, 〈x|y〉, is used in physics for the inner product between
two elements x and y. The notation 〈x〉 y is a compromise.

6 The physics literature often uses eikx for the forward transform rather than the e− ikx used here. The
characteristic function then equals the Fourier transform (no complex conjugate).
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Likewise, the mth-order cumulant is defined in terms of the cumulant generating
function hx(k) ≡ lnϕx(k) as

hx(k) = ln
〈
eikx

〉
≡
∞∑

m=0

(ik)mκm(x)
m!

=⇒ κm(x) = (− i)m dm

dkm
lnϕx(k)

∣∣∣∣∣
k=0
. (A.156)

It is easy to see that the first cumulant κ1(x) = 〈x〉 = μ, the mean. Similarly, the second
cumulant κ2(x) = 〈x2〉 − 〈x〉2 = σ2, the variance. Like central moments, cumulants
are independent of μ. But, unlike moments and central moments, the cumulants of
independent random variables add. For two independent random variables x and y,

hx+y(k) = ln
〈
eik(x+y)

〉
= ln

(〈
eikx

〉 〈
eiky

〉)
= hx(k) + hy(k) , (A.157)

which implies that κm(x + y) = κm(x) + κm(y) for all cumulant orders m. More generally,
for N independent random variables, κm(

∑
i xi) =

∑
i κm(xi).

Since we can inverse Fourier transform to find p(x) from ϕx(k), the characteristic
function implies the moments and cumulants, which imply the distribution.7 Thus, we
can “expand” a distribution p(x) in terms of its moments or, better, its cumulants. The
mean, variance, skewness, and kurtosis are then related to the first four terms of that
expansion. Often, we focus on the first two.

A.6.5 Functions of Random Variables

Sometimes, we have several random variables of known distribution, and we want to
know the distribution of some function of these variables. We can transform from one
probability distribution to another using the rules of probability and multivariable
calculus.

As a preliminary step, we prove a delta-function identity. Let g(x) be a function
with r simple roots xi, which satisfy g(xi) = 0 and g′(xi) � 0. Then,

δ [g(x)] =
r∑

i=1

δ (x − xi)
|g′(xi)| (A.158)

To prove Eq. (A.158), assume, first, that g(x) has a single root at x = x1. Let p(x) be
an arbitrary test function and define y = g(x). Realizing that the contribution to the
delta function comes only when its argument is zero, we expand g(x) ≈ g′(x1) (x − x1)
and write∫ ∞

−∞
dx p(x) δ [g(x)] =

∫ ∞

−∞
dx p(x) δ [g′(x1) (x − x1)] =

p(x1)
|g′(x1)| . (A.159)

The last step uses another delta-function identity, δ (ax) = 1
|a|δ (x), which is left as an

exercise for the reader. If there are r simple roots, each contributes a similar term,
giving Eq.(A.158). If g(x) has no roots, then δ [g(x)] = 0.

7 Usually. There are exotic cases where two different distributions share the same moments.
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Functions of One Random Variable

Given a random variable x with probability density function p(x), we calculate the
density function p(y) of the function y = f (x) as follows:

p(y) =
∫

dx p(y, x) marginalization

=

∫
dx p(y|x) p(x) conditional probability

=

∫
dx δ [y − f (x)] p(x) enforce y = f (x)

=

r∑
i=1

p(xi)
| f ′(xi)| using Eq. (A.158) . (A.160)

In Eq. (A.160), the xi constitute the r inverses of y, satisfying x = f −1(y), since they are
also roots of the function g(x) = y − f (x) = 0. If there is a unique inverse, the formula
simplifies to p(y) = p(x)/| f ′(x)|, which can also be justified using the rougher argument
p(y) dy = p(x) dx and noting that probability densities always have to be positive.

Example A.17 (Quadratic transformation) Given the Gaussian random variable x ∼ N(0, 1),
what is the distribution of the random variable y = x2?

Given y, there are two inverses: x1 = +
√

y and x2 = −√y. Then f ′(x) = ±2
√

y and

p(y) =
p(+
√

y)

|2(+
√

y)| +
p(−√y)

|2(−√y)| =
2

2
√

y

⎛⎜⎜⎜⎜⎜⎜⎜⎝ e−
y
2√

2π

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 1√
2πy

e−
y
2 θ(y) , (A.161)

where the step function θ(y) enforces the condition that y ≥ 0. (See right.) It is
straightforward to verify that

∫ ∞
0

dy p(y) = 1. The distribution p(y) is also known as
the χ2 distribution for one degree of freedom. This example, reprised in Section 8.4.2,
shows that a nonlinear transformation of a Gaussian-distributed variable is not, in
general, Gaussian.

Jensen’s Inequality

This useful relation shows up often in proofs, especially for information theory and
stochastic thermodynamics. Let f (x) be a convex � function, as illustrated at right,
and let p(x) be a probability distribution. Then

f (〈x〉) ≤ 〈 f (x)〉 . (A.162)
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To prove this relation, notice that, for two points x and x∗ on a convex function f ,
the slope of the chord is less than the local slope at the endpoint:

f (x∗) − f (x)
x∗ − x

≤ f ′(x∗) , (A.163)

Let x∗ = 〈x〉. Then

f (〈x〉) ≤ f ′(〈x〉) (〈x〉 − x) + f (x) . (A.164)

Taking the expectation of each side and noting that 〈(〈x〉 − x)〉 = 0 proves the result.
For us, important examples of convex functions are log 1/x and x log x.

To understand the Jensen inequality more intuitively, apply the function f (x) = x2

to transform the Gaussian distribution x ∼ N(μ, 1). We plot the distribution of x2

at left for μ = 3. Extending the results from Example A.17, we can easily verify that
〈x2〉 = 10, which is greater than μ2 = 32 = 9. Intuitively, the function “stretches”
higher values of x, which increases the mean of the transformed distribution. Note the
peak near x2 = 0, which results from “folding over” the two square roots.

Functions of More Than One Random Variable

We can also calculate functions of several random variables. We assume that x ∼ p(x)
and y ∼ p(y) are independent random variables, and we wish to find p(z) for z = f (x, y).
Then

p(z) =
�

dx dy p(z, x, y) marginalization

=
�

dx dy p(z|x, y) p(x, y) conditional probability

=
�

dx dy p(z|x, y) p(x) p(y) x, y are independent

=
�

dx dy δ [z − f (x, y)] p(x) p(y) enforce z = f (x, y)

=

r∑
i=1

∫
dx p(x)

p(yi)∣∣∣∂y f (yi)
∣∣∣ using Eq. (A.158) (A.165)

In Eq. (A.165), ∂y f (yi) is short for ∂ f (x, y)/∂y|y=yi , where yi is again the ith branch of
the inverse of z = f (x, y).

Example A.18 (Sum of two random variables) Here z = f (x, y) = x+ y and, thus, |∂y f (x, y)| =
1. The inverse is unique and given by y = z − x. Then,

p(z) =
∫ ∞

−∞
dx p(x) p(z − x) = p(x) ∗ p(y) . (A.166)

Thus, p(z) is just the convolution of the distributions for x and y.

The characteristic function of the transformed probability distribution has a partic-
ularly simple form. Let x be a stochastic vector and y = f (x) be a smooth function.
Starting from
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p(y) =
∫

dx δ [y − f (x)] p(x) , (A.167)

we have

ϕy(k) =
∫

dy p(y) eik·y =
∫

dx eik· f (x) p(x) =
〈
eik· f (x)

〉
. (A.168)

This formula works even when x and y have different numbers of components. For
example, y = x1+ x2 implies ϕy = ϕx1 ϕx2 and p(y) = p(x1)∗ p(x2), as seen in Eq. (A.166).
Transforming back from an explicit expression for a characteristic function often leads
to contour integrals (Problem A.6.3).

A.6.1 Chain rule for probabilities. Let XN = {XN , XN−1, . . . , X1}. Show that

P(XN) =
N∏

k=1

P(Xk |Xk−1) .

A.6.2 Moment exercises. For the following probability density functions, find their
mean μ, variance σ2, skewness γ1, and excess kurtosis γ2.

a Uniform: p(x) = 1
2
√

3
for −√3 ≤ x ≤ √3.

b Exponential: p(x) = e−x, for x ≥ 0.
c Laplace: p(x) = 1√

2
e−
√

2|x|.

A.6.3 Example A.17, again. Find p(y) for y = x2 and x ∼ N(0, 1) via the characteristic
function ϕy(x). Transform back to p(y) using contour integration and a branch
cut.

A.6.4 Ratio of normal variables is Cauchy. Let x and y be independently distributed
as N(0, 1). Show that their ratio is distributed as a Cauchy (or Lorentzian)
distribution. That is, if z = y/x, show that

p(z) =

(
1
π

)
1

1 + z2
. (A.169)

The Cauchy distribution, illustrated at right, is the “bad boy” of probability
distributions. Its samples fluctuate so wildly (whenever x is near zero) that both
mean and variance diverge and are undefined, although median and quartiles
are. We see here that simple mechanisms involving standard random quantities
can lead to such pathologies. The asymptotic power-law behavior ∼ z−2 is known
as a fat tail.

A.7 Gaussian Integrals and Distributions

As we will often need to do integrals involving Gaussian functions, we review the
required techniques here. Then we immediately apply those results to the discussion
of Gaussian probability distributions, which play a key role in the analysis of the noisy
linear systems discussed in Chapter 8.
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A.7.1 Gaussian Integrals in One Variable

The basic Gaussian integral is

I =
∫ ∞

−∞
dx e−

1
2 ax2

. (A.170)

To evaluate I, we write down two copies, in x and y,

I2 =

∫ ∞

−∞
dx e−

1
2 ax2

∫ ∞

−∞
dy e−

1
2 ay2

=
�

dx dy e−
1
2 a(x2+y2) define x = r cos θ, y = r sin θ

=

∫ 2π

0
dθ

∫ ∞

0
dr r e−

1
2 ar2

= 2π

∫ ∞

0
du e−au =

2π

a
. (A.171)

Thus, I =
√

2π/a. Note that we could reduce this calculation to one where a = 1 by
first changing variables to x′ = x/

√
a.

We often need to calculate moments of the form
∫ ∞
−∞ dx xk e−

1
2 ax2

. Since exp(− 1
2 ax2)

is even, the odd moments (k odd) vanish by symmetry. We can calculate the second
moment with another trick:

I =
∫ ∞

−∞
dx x2 e−

1
2 ax2

=

∫ ∞

−∞
dx

(
−2
∂

∂a

)
e−

1
2 ax2

= −2
∂

∂a

∫ ∞

−∞
dx e−

1
2 ax2

= −2
∂

∂a

√
2π

a
=

√
2π

a3/2
. (A.172)

Further derivatives with respect to a give higher even moments.

A.7.2 Gaussian Integrals in n Variables

To extend the results of Section A.7.1 to n variables, we look at the n-dimensional
integral of the multivariate Gaussian

I =
∫
Rn

dx e−
1
2 xT Ax , (A.173)

where we will assume the matrix A to be real, symmetric, and positive definite (see
Section A.1.1). We substitute x = Uz, where U is the unitary transformation that
diagonalizes A and satisfies U UT = I. That is A = UDUT, or UT AU = D. Then,

I =
∫

dz e−
1
2 zTUT AUz

=

∫
dz e−

1
2 zT Dz

=

n∏
k=1

∫ ∞

−∞
dz e−

1
2 λkz2

=

n∏
k=1

√
2π

λk

=
(2π)n/2

√
det A

. (A.174)

Since the columns of U are orthonormal vectors, the Jacobian of the transformation
x = Uz is one, and dx = dz.
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�Fig. A.5 Gaussian distributionN(0, 1). Left: The probability for a point to fall within±1σ is≈ 2
3 . Right: 150 draws from

the distribution on the left. Roughly 2
3 of the draws fall within the shaded region.

The moments of a multivariate Gaussian function can be found by tricks similar to
the one-dimensional case. For example, for a symmetric matrix A,∫

dx
(
xix j

)
e−

1
2 xT Ax

= lim
b→0

∂2

∂bi ∂b j

∫
dx e−

1
2 xT Ax+b·x . (A.175)

We evaluate the integral in Eq. (A.175) by completing the square:

∫
dx e−

1
2 xT Ax+b·x

=

∫
dx e−

1
2 (x−A−1 b)T A(x−A−1 b) e

1
2 bT A−1 b

=

(
(2π)n/2

√
det A

)
e

1
2 bT A−1 b (A.176)

Taking the derivative ∂
∂b j

, recalling that A−1 is symmetric, and using the summation
convention for repeated indices then gives

∂

∂b j
exp

[
1
2 bk(A−1)k�b�

]
= 1

2 [2bk(A−1)k j] exp [·] = (A−1b) j] exp [·] . (A.177)

Taking another derivative, with respect to bi, gives

[(A−1)i j + (A−1b)i (A−1b) j] exp
[

1
2 bi(A−1)i jb j

]
−−−→
b→0

(A−1)i j . (A.178)

Putting the pieces together leads to the final result,∫
dx

(
xix j

)
e−

1
2 xT Ax

=
(2π)n/2

√
det A

(A−1)i j . (A.179)

A.7.3 Gaussian Distributions in One Variable

Gaussian probability distributions, the familiar “bell-shaped curve,” play a key role in
the analysis of stochastic linear systems. Let us define

p(x) =
1

σ
√

2π
exp

[
− (x − μ)2

2σ2

]
, (A.180)
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Using the integrals derived in the previous section, we see that∫ ∞

−∞
dx p(x) = 1 , 〈x〉 ≡

∫ ∞

−∞
dx p(x) x = μ

〈x2〉 ≡
∫ ∞

−∞
dx p(x) x2 = σ2 + μ2 =⇒ Var x = σ2 . (A.181)

We confirm these identities in Problem A.7.3.
Here are some more of the many useful features of a Gaussian:

• It has two (and only two) parameters, the mean μ and variance σ2. The mean μ
controls the location of the distribution, while the variance σ2 controls its lateral
scale.
• Because Gaussian distributions are so common, there is a special notation to denote

that a random variable, say x, is distributed according to a Gaussian distribution of
mean μ and variance σ2.8 We write that x ∼ N(μ, σ2). The “∼” denotes “distributed
as.” TheN notation refers to an alternate name for a Gaussian, the normal distribu-
tion. Occasionally, we will need to be more explicit about the variable, in which case
we extend the notation to read N(x; μ, σ).
• Defining z ≡ (x − μ)/σ, the universal Gaussian distribution N(0, 1) is simply

p(z) =
1√
2π

exp
(
− 1

2 z2
)
. (A.182)

Notice that transforming dx to dz “absorbs” the σ in the prefactor.
• The characteristic function is

ϕx(k) =
1

σ
√

2π

∫ ∞

−∞
dx eikx exp

(
− (x − μ)2

2σ2

)
= exp

(
ikμ − 1

2σ
2k2

)
, (A.183)

whose first and second moments are

〈x〉 = − idk exp
(
ikμ − 1

2σ
2k2

)
|k=0 = μ (A.184)

〈x2〉 = −dkk exp
(
ikμ − 1

2σ
2k2

)
|k=0 = μ

2 + σ2 . (A.185)

• The cumulant generating function, lnϕx(k), is

hx(k) = ikμ − 1
2σ

2k2 , (A.186)

which immediately gives κ1 = μ and κ2 = σ2. The higher-order cumulants are zero.
• The sum of two Gaussian variables is Gaussian. Let x and y be two independent Gaus-

sian random variables, with x ∼ N(μx, σ
2
x) and y ∼ N(μy, σ

2
y). Then Eq. (A.168)

implies that

ϕz(k) = ϕx(k)ϕy(k) = eikμx− 1
2σ

2
xk2

eikμy− 1
2σ

2
y k2
= eik(μx+μy)− 1

2 (σ2
x+σ

2
y )k2
. (A.187)

Taking the inverse Fourier transform of ϕz(−k) gives the desired result.
• Rescaling gives z = Ax ∼ N(Aμx, A2σ2

x).

8 Some authors useN(μ, σ) to indicate a Gaussian (normal) distribution of mean μ and standard deviation
σ.
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• Central-limit theorem (CLT): The average of n independent random variables tends
to a Gaussian for large n. More precisely, for independent random variables with
mean μ and variance σ2, the distribution for nth approximation to the average, x̄n =
1
n

∑n
i=1 xi, converges to a Gaussian for n→ ∞:

p(x̄n)→ N(μ, σ2/n) . (A.188)

Refinements to the basic theorem can relax the requirements for identically dis-
tributed variables. Density functions that lack a finite variance, such as the Cauchy
distribution, do not obey the CLT. For such distributions, estimators of the average
do not converge, no matter how many terms are used.

Problem A.7.1 Show that
∫ ∞
−∞ dx exp

[
− 1

2 (ax2 + bx)
]
=

√
2π
a eb2/8a. (Complete the

square.)
Problem A.7.2 Characteristic function of a Gaussian. Derive the characteristic function

of a Gaussian distribution N(μ, σ2). The result is quoted in Eq. (A.183).
Problem A.7.3 Higher moments of a Gaussian. For a Gaussian distribution N(μ, σ2),

use the characteristic function to calculate the first four moments, 〈xn〉 (n =
1, 2, 3, 4). Verify that the skewness γ1 and kurtosis γ2 both vanish.

Problem A.7.4 Central-limit theorem (CLT), via cumulants. Consider N independent,
identically distributed (i.i.d.) variables, each with mean zero and variance σ2.

a. Homogeneity: Show that the cumulant κm(λx) = λmκm(x), where λ > 0.
b. Using additivity and homogeneity, find κm(zN) for zN ≡ ∑N

i=1(xi/
√

Nσ2).
c. Argue that, for N → ∞, the only nonzero cumulant is m = 2.
d. Conclude that limN→∞ p(zN) ∼ N(0, 1).
e. Define x̄N =

1
N

∑
i xi. Find limN→∞ p(x̄N).

This is the essence of the CLT proof and can be generalized to the case where the
xi all have different distributions, each with its own mean μi and variance σ2

i .
Problem A.7.5 Multiple measurements lead to Gaussian states-of-knowledge. The Cen-

tral Limit Theorem also explains why the state-of-knowledge for a quantity x
tends to be Gaussian after many independent measurements are made.

a. Use Bayes’ theorem, a uniform prior, the relations between characteristic
functions and repeated convolution and the CLT, and that a Fourier trans-
form of a Gaussian is also Gaussian to argue this point. See Jacobs (2014),
Section 1.2.2.

b. Explain why this claim is true but rather trivial when the individual measure-
ments have Gaussian errors.

c. Explain why this claim is not true when the individual measurements have a
uniform error distribution in the interval

[
x − 1

2 , x + 1
2

]
.

A.7.4 Gaussian Distributions in Two Variables

Bivariate Gaussian distributions describe two variables, x and y, that are separately
Gaussian and are also linearly correlated with each other. We define their joint
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Bivariate Gaussian distributions, forσx = σy and various correlation coefficients ρ. Dots are drawn from p(x, y);
solid line is a 2σ contour enclosing≈ 95% of the points.

Fig. A.6

distribution:

p(x, y) =
1

2πσxσy

√
1 − ρ2

exp

[
− z

2(1 − ρ2)

]
, (A.189)

with

z ≡ (x − μx)2

σ2
x
− 2ρ(x − μx)(y − μy)

σxσy
+

(y − μy)2

σ2
y
. (A.190)

The bivariate Gaussian has some interesting properties (proved in problems):

1. Contours of equal probability are ellipses, with principal axes proportional to σx

and σy, as illustrated in Fig. A.6.
2. The correlation coefficient ρ lies in the range −1 ≤ ρ ≤ +1 and measures how much

fluctuations in x correlate with those in y. If the variables x and y are independent,
then ρ = 0. Conversely, if ρ = 0, then x and y are independent. This converse
relation is true for bivariate Gaussian distributions but not, in general, for other
distributions.

3. Marginalizing, or “integrating out” y, leads to a Gaussian in x:

p(x) =
∫ ∞

−∞
dy p(x, y) = N(μx, σ

2
x) . (A.191)

Likewise, marginalizing x leads to p(y) = N(μy, σ
2
y).

4. If p(x, y) is the bivariate distribution given in Eqs. (A.189) and (A.190), then the
conditional distribution p(x|y) is also Gaussian. We will see that

p(x|y) = N(μx|y, σ2
x|y) , μx|y = μx + ρ

σx

σy
(y − μy) , σ2

x|y = σ
2
x(1 − ρ2) . (A.192)

We illustrate this statement at left, for ρ = 0.5. Each horizontal “cut” is a
Gaussian-shaped curve. The varying size implies that the curve must be renor-
malized to form a proper distribution, p(x|y). It is also plausible from the graph
that the conditional mean μx|y increases linearly with y since, on average, when y
is large, we expect x also to be large. Notice that μx|y � 0 even if μx = 0. Again,
inspection of the graph at right should convince you of this. By contrast, the con-
ditional variance is independent of y but depends on ρ. For ρ = 0, the x and y are
independent, and we expect to see the full variance of the x measurement. For ρ = 1
and μx = μy = 0, we have μx|y = σx

σy
y, which shows that x is determined by y. The

proportionality constant σx

σy
is a consequence of the different variances of the two
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variables. Then, knowing y means that you know x perfectly, and the variance σ2
x|y

must consequently be zero.

Problem A.7.6 Marginal and conditional distributions.

a. Show that if p(x, y) is a bivariate Gaussian, then the marginal distributions
are p(x) = N(μx, σ

2
x) and p(y) = N(μy, σ

2
y).

b. Show p(x|y) = N(μx|y, σ2
x|y), with μx|y = μx + ρ

σx

σy
(y− μy) and σ2

x|y = σ
2
x(1− ρ2).

Hint: Simplify by first defining x′ = (x − μx)/σx and y′ = (y − μy)/σy.

A.7.5 Gaussian Distributions in n Variables

The results for a bivariate Gaussian distribution generalize to an n-dimensional multi-
variate distribution. To see how to generalize to n dimensions, we rewrite the bivariate
distribution defined by Eqs. (A.189) and (A.190) in vector-matrix form, defining the
vector x =

( x
y
)
. In terms of the mean μ and covariance matrix Σ, with determinant

equal to det Σ, we have

μ =

(
μx

μy

)
Σ =

(
σ2

x ρσxσy

ρσxσy σ2
y

)
. (A.193)

and

p(x) =
1

2π
√

det Σ
exp

[
− (x − μ)T Σ−1 (x − μ)

]
≡ N(μ, Σ) or N(x; μ, Σ) . (A.194)

Equation (A.194) generalizes immediately to the case where x = (x1 , x2 , . . . , xn)T and
where Σ is a symmetric n × n, positive definite covariance matrix with Σi j = 〈xi x j〉 (see
Eq. A.179).

We list some of the useful properties of the multivariate Gaussian distribution,
mostly without proof. (The proofs are analogous to the two-dimensional cases, but
the algebra is more complicated.)

1. Contours of equal probability are ellipses, with principal axes equal to the square
root of the eigenvalues of Σ.

2. A linear coordinate transformation z = Ax is Gaussian. If x ∼ N(μ,Σ), then
z ∼ N(Aμ, AΣAT). We use this relation in our discussion of the Kalman filter
in Chapter 8.

3. Marginalization. Marginalizing any subset of variables leaves a Gaussian in the
remaining variables. In particular, if we partition p(x) into two blocks of variables,
x1 (d1 dimensions) and x2 (d2 dimensions, with d1 + d2 = n), then

p(x1, x2) = N
[(
μ1

μ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
, (A.195)
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where Σ has been partitioned into submatrices as depicted as left, so that

Σ11︸︷︷︸
d1×d1

= 〈x1 xT
1〉, ΣT

21 = Σ12︸︷︷︸
d1×d2

= 〈x1 xT
2〉, Σ22︸︷︷︸

d2×d2

= 〈x2 xT
2〉 .

The marginalization property is then

p(x1) =
∫

dx2 p(x1, x2) = N(μ1,Σ11) , p(x2) = N(μ2,Σ22) . (A.196)

4. Conditional distributions. For the same partitioning, p(x1|x2) = N(μ1|2,Σ1|2), with

μ1|2 = μ1 + Σ12Σ
−1
22 (x2 − μ2) , Σ1|2 = Σ11 − Σ12Σ

−1
22Σ21 . (A.197)

As in the bivariate case, the conditional mean μ1|2 depends linearly on the given
variables x2 and is nonzero even when μ1 = 0. Note that knowing x2 alters the
estimate of x1 (i.e., the mean μ1|2) in proportion to the covariance Σ1|2. The covari-
ance also determines how much knowing x2 reduces the uncertainty in x1. For a
nice proof based on completing the square and p(x1|x2) = p(x1,x2)

p(x2) , see Coolen et al.
(2005).

5. Characteristic function. The multivariate generalization of Eq. (A.183) is

ϕx(k) =
〈
eik·x〉 = eik·μ−kTΣk . (A.198)

Problem A.7.7 Check that the expressions for mean and variance for the bivariate dis-
tribution (Eq. A.192) are compatible with their n-dimensional generalizations
(Eq. A.197).

Problem A.7.8 Propagating means and covariances. Prove Property A.7.5 for multi-
variate Gaussians: if x ∼ N(μ, Σ), then the linear coordinate transformation
z = Ax is Gaussian with mean Aμ and covariance AΣAT. More succinctly,
z ∼ N(Aμ , AΣAT). Hint: You can use Eq. (A.179), but characteristic functions
are simpler.

A.8 Statistics

Probability theory allows one to understand the consequences of randomness and
indeterminacy in a “forward direction,” as characterized by the probability distribu-
tion function (or its various moments). The goal of the field of statistics is to use data
to infer, or estimate probabilities – to go “backwards” from data to inferences about
the underlying probabilities. In our presentation, the main tool for carrying out this
backwards inference will be Bayes’ theorem.

A classic problem is to estimate, based on the data, quantities such as the mean
and variance. For example, a common estimator for the mean is the average. Using
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methods discussed below in Section A.8.2,9 we will see that if there are N observations,
xi, then we can estimate the mean μ of a probability distribution as

μ̂ ≡ 1
N

N∑
i=1

xi (A.199)

We use the “hat” notation here and elsewhere to denote an estimator of a quantity.
By similar means, we can also estimate the variance of a probability distribution as

σ̂2 =
1

N − 1

N∑
i=1

(xi − μ̂)2 (A.200)

Note that estimators are not unique. Instead of the average, we could use just a sin-
gle measurement, say μ̂1 = x1 and ignore the rest. Intuitively, the average, Eq. (A.199),
should be better, as it uses all of the observations. We can quantify this by realizing
that estimators are themselves random variables, or statistics. Thus, one can define the
mean and variance for the estimator itself. For the estimators of the mean, μ̂ and μ̂1,
the variances are σ/N and σ, respectively. We then prefer μ̂ to μ̂1 because it has lower
variance for N > 1.

Another desirable property of an estimator is that its mean should equal the value
of the quantity it is estimating. If it does, the estimator is unbiased. Both estima-
tors of the mean, μ̂ and μ̂1 are unbiased. The estimator σ̂2 is also unbiased. If the
mysterious N − 1 factor in the denominator were replaced with the more obvious N,
the new estimator [called the population variance, in contrast to the sample variance
of Eq. (A.200)] would be biased for any finite value of N. Of course, when N � 1,
the bias is small and vanishes in the limit N → ∞. We then say that the population
variance is asymptotically unbiased.

A.8.1 Simple Inference

To begin to understand how observations lead to inference on underlying events, let
us consider the case where the underlying system that is being observed can be in
one of two states. In Chapter 12, we will denote such states as +1 and −1, but any two
symbols ({0, 1}, {L,R}), and so on, will do. The system is in state +1 with probability p0.
We measure the system in a way that also gives two outcomes, but the measurement is
noisy: the observation is incorrect with probability ε (for both cases; see right). Then,
if the result of an observation is y = 1, what is the probability that the underlying state
is the same?

To translate the words and images into mathematics, we define p(X = +1) = p0, so
that p(X = −1) = 1 − p0. For the measurement process, p(Y = +1|X = +1) = p(Y =

9 Using N independent observations to make a single inference is equivalent to fitting noisy data to the
function f (x) = μ, with μ a single, free parameter.
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−1|X = −1) = 1 − ε and p(Y = +1|X = −1) = p(Y = −1|X = +1) = ε. From Bayes’
theorem,

p(X = +1|Y = +1) =
p(Y = +1|X = +1)p(X = +1)

p(Y = +1)

=
p(Y = +1|X = +1)p(X = +1)

p(Y = +1|X = +1)p(X = +1) + p(Y = +1|X = −1)p(X = −1)

=
(1 − ε)p0

(1 − ε)p0 + ε(1 − p0)
. (A.201)

Notice that ε→ 0 implies that p(X = +1|Y = +1)→ 1: With no noise, the inference has
no uncertainty. In the other extreme case, ε→ 0.5 and p(X = +1|Y = +1)→ p0. If the
observation conveys no information (returns ±1 with equal probabilities, no matter
what the underlying state), then we fall back on our prior, which is our estimate of
the probabilities before we made the measurement Y. In the intermediate case, the
probability is between p0 and 1.

In Chapter 12, we extend this kind of interference to the case of a sequence of
observations of a hidden Markov model (HMM). In that case, the underlying state
probabilities remain p0 and 1− p0, and rates of transition from one state to another are
given. The problem then is to estimate the current state probabilities given a sequence
of observations going back indefinitely into the past.

Example A.19 (Batch or sequential processing?) Is there a fundamental difference between
analyzing a batch of data yk = {y1, y2, . . . , yk}, as opposed to doing the analysis sequen-
tially? A simple Bayesian analysis confirms our hunch that the two are equivalent. Let
us discuss this for two observations, y1 and y2, with the goal of making an inference
about a state x. Then, the batch analysis tells us that

p(x|y1, y2) ∝ p(y1, y2|x)p(x) ∝ p(y1|x) p(y2|x) p(x) , (A.202)

where the first step uses Bayes’ theorem and the second the independence of the two
observations. Note that we leave out the normalization constant. If needed, it can be
computed at the last step.

Now let us analyze the problem sequentially. In the absence of measurements, all
we know is encapsulated in p(x). After the first measurement, Bayes’ theorem implies
that p(x|y1) ∝ p(y1|x) p(x). After the second measurement, we have

p(x|y2, y1) ∝ p(y2|x, y1) p(x|y1) ∝ p(y2|x) p(x|y1) ∝ p(y2|x) p(y1|x) p(x) , (A.203)

which is the same as the batch algorithm. The first step uses Bayes’ theorem, and the
second uses the independence of observation y2 from the previous observation y1.

Thus, it makes no difference whether we analyze our data all at once or one by one.
Bayes’ theorem is a statement about logical relationships, not temporal ones. We use
this result several times in the book. An elementary example from Chapter 8 is that we
can estimate a sample mean equivalently by either a batch or a recursive algorithm.
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Problem A.8.1 Two Gaussian measurements. Often, we need to combine information
from independent measurements with different precision. Assume that there
are two independent measurements x1 and x2, distributed as x1 ∼ N(μ, σ2

1) and
x2 ∼ N(μ, σ2

2). The variances σ1 and σ2 are known, and we wish to infer the
mean, μ. Assume a uniform prior for μ.

a. Using Bayes’ theorem, show that you can estimate μ as μ̂ ± σμ, with

μ̂ = σ2
μ

⎛⎜⎜⎜⎜⎝ x1

σ2
1

+
x2

σ2
2

⎞⎟⎟⎟⎟⎠ , 1
σ2
μ

=
1

σ2
1

+
1

σ2
2

.

b. Show that p(μ|x1, x2, σ
2
1, σ

2
2) is in fact a Gaussian, with the mean and vari-

ance given above. If you have a computer algebra program, do this in
general. If you are doing the problem by hand, show the claim assuming
that σ2

1 = σ
2
2 = 1.

A.8.2 Estimating Parameters

Another estimation problem is to infer the values of parameters entering into a relation
between two variables. Let us assume that we have a data set of N points (xi, yi),
i = 1 · · ·N, that is generated by the model y = f (x, θ∗), where θ∗ is a vector of K
parameters. That is,

yi = f (xi, θ
∗) + ξi , (A.204)

where ξi ∼ N(0, σ2) is Gaussian noise of mean 0 and variance σ2. We also require
different ξi to be independent: if we collect the N noise terms into a vector ξ, we have
ξ ∼ N(0, σ2

I). The usual least-squares procedure is then to minimize the sum χ2,

χ2(θ) =
N∑

i=1

(
1
σ2

) [
yi − f (xi, θ)

]2 , (A.205)

where the model function is

y = f (x, θ) , θ =
(
θ1 . . . θK

)T
. (A.206)

More generally, the noise could have a different variance at each point i (then σ2 →
σ2

i ), and there can even be correlations between different noise components.
The χ2 statistic is minimized by taking derivatives with respect to the θ�. For exam-

ple, a linear model (straight line) would have the form y = θ0 + θ1 x, as illustrated at
right. Note that we also plot the normalized residuals, εi ≡ 1

σ
[yi − f (xi, θ)]. As we

discuss below, the residuals should be approximately distributed as N(0, 1); however,
the K fit parameters lead to correlations between the residuals, so that they are not
independent. For example, in a linear fit,

∑
i εi = 0; see below.

To understand where this “recipe” comes from, let us return to Bayesian ideas of
parameter estimation. To estimate the parameters θ given a set of observations Y ≡ {yi}
taken at X ≡ {xi}, we can use Bayes’ theorem to evaluate

p(θ|Y, X) =
1
Z

p(Y |X, θ)p(θ, X) , (A.207)
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where Z normalizes the posterior p(θ|Y, X). Note that the background information
in all of the probability distributions includes the “knowledge” that the observations
Y are described by the function f (x, θ). To keep the notation simple, we omit an
explicit reference to this hypothesis in the conditioning of probabilities. If the a priori
distribution of parameters and data points p(θ, X) is taken to be uniform, then

p(θ|Y, X) ∝ p(Y |X, θ) ≡ L . (A.208)

where L is known as the likelihood. If the noise affecting each observation is
independent of the others, then

L = p(Y |X, θ) =
N∏

i=1

p(yi|xi, θ) , (A.209)

Now, we specialize to the case of Gaussian measurement errors, which implies that

L =
N∏

i=1

1

σ
√

2π
exp

⎡⎢⎢⎢⎢⎣− [
yi − f (xi, θ)

]2

2σ2

⎤⎥⎥⎥⎥⎦
=

(
1

σ
√

2π

)N

exp

⎧⎪⎪⎨⎪⎪⎩−
N∑

i=1

⎡⎢⎢⎢⎢⎣ [yi − f (xi, θ)
]2

2σ2

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

≡
(

1

σ
√

2π

)N

e−
1
2 χ

2
, (A.210)

where χ2 is defined above in Eq. (A.205). To summarize, the probability distribution
of the parameters θ given observations Y and Gaussian measurement noise is

p(θ|Y, X) = 1
Z e−

1
2 χ

2
, (A.211)

where we include in the normalization Z all terms that do not depend on the
parameters θ.

Maximum-likelihood (ML) estimation is useful even in cases where the measure-
ment noise is not Gaussian. Then (for independent measurements), we revert to
Eq. (A.209). The ML estimator has many desirable features (Krishnamurthy, 2016),
notably

• Strong Consistency: limN→∞ θ̂ML(N) → θ∗, where θ∗ is the “true” value of the
parameter (in a frequentist perspective).
• Asymptotic Normality: limN→∞ θ̂ML(N) − θ∗ ∼ 1√

N
N(0,I), where the covariance

matrix I = 〈(∇θ log p(y|x, θ))2〉 is known as the Fisher information matrix.

Finally, we can put to rest one worry that often comes up: a truly uniform prior
on an infinite range is not normalizable. But all that we require in our use of Bayes’
theorem in Eq. (A.207) is that the prior be broader than the likelihood function, so
that a large but finite range for each parameter is acceptable. In Bayesian terminology,
we require that the likelihood dominate over the prior in determining the posterior.
More intuitively, the method of maximum likelihood is relevant when the data are
more important than our prior beliefs in estimating parameter values. We usually
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want to be in this limit. The case of state estimation is an exception because our prior
is based on many previous observations, and we ask how to update based on a single
additional observation. The power of the Kalman filter and related ideas explored in
Chapter 8 is precisely that a well-chosen prior can lead to a much better estimate of
the state vector than is given by a single observation.

A.8.3 Nonlinear Fits

In general, the model f (x, θ) will depend nonlinearly on the parameters θ. For exam-
ple,a fit to an exponential plus background would have f (x) = θ1 + θ2 exp(−θ3x), which
depends linearly on θ1 and θ2 but nonlinearly on θ3. Minimizing χ2(θ) is then done
numerically using the same ideas as other optimization problems (cf. Appendix A.5
and Chapter 7). The Levenberg-Marquardt algorithm is a standard way to find a local
solution given initial conditions for θ0 that are “close enough” to the true values θ∗.
You have to supply the θ0. More complicated algorithms such as the genetic algorithm
attempt to find a global minimum for χ2 by allowing different initial conditions to com-
pete, applying biologically inspired strategies that mimic evolution. Standard curvefit
software almost always offers the former and usually the latter – or other possibilities,
such as simulated annealing.

A.8.4 Linear Fits

If f (x, θ) is linear in the parameters θ, then χ2(θ) is quadratic in θ and hence convex,
with a unique minimum. Indeed, taking a derivative leads to K linear equations, which
have a single solution for the K parameters θ. In more detail, we define the linear
model

f (x, θ) =
K∑

k=1

θk ek(x) , (A.212)

with K basis functions ek(x). Note that f (x, θ) is linear in the parameters θ but not
necessarily in the variable x.

In elementary discussions of curve fitting, we often consider ek = 1, x, x2, . . ., but
many other choices are possible. If f and g are real and the scalar product defined to
be f · g ≡ ∫ b

a
dx w(x) f (x) g(x), then an orthonormal basis set will satisfy∫ b

a
dx w(x) e j(x) ek(x) = δ jk . (A.213)

Here, a and b define a domain that can be finite or infinite in extent, and w(x) is a
weight function that in some cases equals 1. Although forming a complete basis (all
integrable functions can be expanded over them), the monomials are not orthogo-
nal. Bases that are orthogonal include Chebyshev polynomials, sines and cosines, and
Bessel functions.

When f (x, θ) is linear in the parameters θ , the likelihood function L is a Gaussian
in the parameters θ that is peaked about a set of values θ∗ that both maximizes L and
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minimizes χ2. If the error distribution widths σi are all similar and approximately
equal to σ, it is easy to see that the density P(theta | Y,X) for each parameter has a
Gaussian form, with variance ≈ σ2/N. As N gets large, the distribution narrows, and
there is little uncertainty in each parameter θm. Even when the function f is not linear
in its parameters θ, a second-order Taylor expansion gives a Gaussian approximation
to the likelihood function.

Since Gaussian distributions are fully characterized by their mean and covariance
matrix, we conclude that when the observation noise is Gaussian, we can infer param-
eters θ∗ by minimizing the χ2 statistic. More generally, if the observation noise is
not Gaussian, we can follow the same procedure to the point of maximizing the log
likelihood function ln L and refer, in that case, to the method of maximum likelihood.
(Recall that the parameters that maximize lnL also maximizeL.) We could generalize
even further – as we do in the state estimation problem or in the recursive inference of
parameters – by allowing for a more informative prior P(θ) than the minimal uniform
distribution assumed here.

We can solve directly for the optimal parameter estimates when the model function
is linear in parameters. We want to minimize

χ2 =
1
σ2

N∑
i=1

⎡⎢⎢⎢⎢⎢⎣yi −
K∑

k=1

θk ek(xi)

⎤⎥⎥⎥⎥⎥⎦
2

≡ 1
σ2

N∑
i=1

⎡⎢⎢⎢⎢⎢⎣yi −
K∑

k=1

Φik θk

⎤⎥⎥⎥⎥⎥⎦
2

≡ 1
σ2

(y −Φθ)T (y −Φθ) = 1
σ2
‖ y −Φθ ‖2 , (A.214)

where the design matrix Φ(x) has elements Φik ≡ ek(xi). For example, with f (x, θ) =
θ1x+ θ2x2 (K = 2 parameters) and with N = 3 data points, the data are generated from⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 x2

1

x2 x2
2

x3 x2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝θ∗1
θ∗2

⎞⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξ1

ξ2

ξ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , or y = Φθ∗ + ξ . (A.215)

where θ∗k are the “true” parameter values of the process. To find the estimate of θ that
minimizes χ2(θ), we differentiate with respect to θ�:

∂χ2

∂θ�
=

2
σ2

N∑
i=1

⎡⎢⎢⎢⎢⎢⎣yi −
K∑

k=1

θkΦik

⎤⎥⎥⎥⎥⎥⎦ [−Φi�] = 0 , (A.216)

which implies, in component and then vector notation, the normal equations:

N∑
i=1

yiΦi� =
∑
i,k

ΦikΦi�θk

ΦTy = ΦTΦ θ , (A.217)

In this notation, y is an N-component vector of data, θ is still a K-component
vector of parameters, and Φ is an N × K matrix. If the K × K square
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matrix ΦTΦ is invertible,10 we can solve for θ̂, the parameter estimate that
minimizes χ2:

θ̂ =
(
ΦTΦ

)−1
ΦTy ≡ Φ+ y , (A.218)

where Φ+ is the Moore-Penrose pseudoinverse of Φ.11 In Problem A.8.2, we show that
if the measurement noise ξ is white, then θ̂ ∼ N[θ̂

∗
, σ2(ΦTΦ)−1]. In other words, the

estimate θ̂ is unbiased. The best estimate for the data y is

ŷ = Φ θ̂ ≡ P(K)y , P(K) = Φ
(
ΦTΦ

)−1
ΦT . (A.219)

In Problem A.8.3, we will see that P(K) projects the N-dimensional vector of observa-
tions y onto the K-dimensional subspace spanned by the columns of Φ.12 Intuitively,
as shown at right, the projection of a vector gives the closest distance between the
original vector and the plane, which represents the space of all possible model vectors.
Because P(K) is a projector matrix, it must be idempotent, meaning P(K)2

= P(K). We
can show this directly:

P(K)2
= Φ

(
ΦTΦ

)−1
ΦT︸������������︷︷������������︸

P(K)

Φ
(
ΦTΦ

)−1
ΦT︸������������︷︷������������︸

P(K)

= Φ
(
ΦTΦ

)−1
ΦT = P(K) . (A.220)

P(K) is also symmetric, hence diagonalizable: P(K) = RDR−1. The diagonal matrix of
eigenvalues then satisfies D2 = D. Correspondingly, each eigenvalue λ satisfies λ2 = λ,
and is thus 0 or 1. The rank of P(K) is then the number of eigenvalues that = 1, which
is just K. Note that P(K) itself is N × N dimensional.

A.8.5 Assessing a Curve Fit

If observational noise is Gaussian, if each point has independent errors, if the model
function is linear in the unknown parameters, and if we have little prior knowledge
of the parameter values, then we are in the limit where the posterior distribution is
Gaussian in the parameters. To assess whether all these hypotheses hold, we can use
the value of the χ2 statistic itself. Its mean value is

〈χ2〉 = 1
σ2

N∑
i=1

〈⎡⎢⎢⎢⎢⎢⎣yi −
K∑

k=1

θkΦik

⎤⎥⎥⎥⎥⎥⎦
2〉
=

1
σ2

〈
‖y − ŷ‖2

〉
=

1
σ2

〈∥∥∥(I − P(K))y
∥∥∥2

〉

=
1
σ2

Tr
(
I − P(K)

)2 〈y2〉 = σ
2

σ2
Tr

(
I − P(K)

)2
= Tr

(
I − P(K)

)
= N − K ≡ ν . (A.221)

In the last step, we recall that the trace of a matrix equals the sum of its eigenval-
ues. The quantity ν is the number of degrees of freedom of the fit. Intuitively, each

10 The invertibility of ΦTΦ can be a delicate question. In Chapters 6 and 10, we use least-squares fits for
system identification. There, the Φ matrix is formed from both inputs u and outputs y of a dynamical
system. The input must satisfy conditions of persistent excitation to ensure that ΦTΦ is invertible.

11 Notice that if Φ were invertible, then Φ+ = Φ−1. Here, Φ is almost never invertible because there would
then be exactly as many data points as parameters (N = K). Nonetheless, we can write Φ+Φ = I.

12 The statistics literature uses the notation H, for hat matrix, because it “puts the hat onto y.” While this
makes for a cute in-joke, I prefer to emphasize the geometrical nature of the transformation.
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fit parameter “absorbs” one degree of freedom and reduces the expected χ2 accord-
ingly. We note that this argument also shows that the residuals y − ŷ =

(
I − P(K)

)
y are

correlated Gaussian variables.
A more detailed argument shows that the variance of P(χ2) is given by 2ν and, more-

over, that for ν � 1, the χ2 distribution is asymptotically normal: χ2 ∼ N(ν, 2ν). We
illustrate this convergence at left, where we normalize χ2 by ν, so that the average
should be unity. Values of χ2 much outside the range ν ± √2ν should be treated with
suspicion. High values of χ2 may result from underfitting – the model is too simple
to describe the data and there are systematic errors – or from using error estimates σi

that are too small. (Recall that χ2 ∼ 1/σ2.) Conversely, low values of χ2 may result
from overfitting – the model has too many parameters and is fitting the noise – or from
values of σ that are too large.

A.8.6 Model Structure Assessment

The χ2 statistic is not the whole story of model assessment because we must also
choose the model structure, the f (x, θ) used in the fit. We should not be impressed
by models that can “fit anything,” even if they lead to better fits than does a simple
model, as they may simply be fitting to the noise. Although it would be logical to
develop this idea here, its novelty to many physicists has led me to include it as part
of the main text in the discussion of System Identification in Section 6.4. Briefly, we
describe two different ways to assess a model structure. The first, minimum description
length (MDL), looks for the “simplest” model, where simplicity is given a technical
definition that amounts to counting fit parameters. It is most appropriate for situa-
tions where the goal is to find and describe the underlying “true” model describing
the data. The second way of assessing a curve fit uses cross-validation, a model’s
ability to predict new data. It is often appropriate for control problems, where the
performance of a control system is limited by the ability to predict the next observa-
tion. Curiously, the two principles can lead to somewhat different model-selection
criteria.

A.8.7 From Posterior Distribution to Best Estimate

The result of a Bayesian analysis is a posterior distribution. For example, in Sec-
tion 8.3.1, we looked at a very simple example, the problem of inferring a constant x
from a noisy observation y = x + ξ when the prior p(x) and likelihood function p(y|x)
are known Gaussian distributions. The resulting posterior distribution, Eq. (8.66), for
p(x|y) also was Gaussian. Since a Gaussian is completely characterized by its mean
and variance, we can equally well give those values instead of the entire formula for a
Gaussian. This is what we do implicitly when we “make a measurement” and report
x ± Δx. More generally, we would like to summarize a posterior distribution by a
“typical” value and an “error,” even if the distribution is not a Gaussian. Obviously,
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such an approach only makes sense when the distribution is at least approximately a
“bell-shaped curve.”

But how to go from a probability distribution to a couple of numbers? Here, there is
no unique answer. A sensible approach, decision theory, draws on ideas from optimal
control (Chapter 7). The strategy is to define a cost function J(x̂) ≡ 〈J0(x̂)〉y, which
quantifies the average “cost” of choosing x̂ as the “best” estimator of x, given the
posterior distribution for x that is conditioned on the observation y. Here J0(x̂) is the
cost function for the deterministic problem.

As the sketch at right shows, there are several reasonable candidates for J0(x̂). From
top to bottom, we minimize the square of deviations, their absolute value, or we add a
constant cost for all deviations outside a range ±Δ from the true value. In the first case,
for example, we look for the value x̂ that minimizes the square of the deviations from
the unknown “true” value x, which is drawn from p(x|y). Then, with J0(x̂) = (x̂ − x)2,
we have

J(x̂) =
〈
(x̂ − x)2

〉
y
=

∫
dx p(x|y) (x̂ − x)2 . (A.222)

Differentiating with respect to x̂ to find the optimum gives

dJ
dx̂

∣∣∣∣∣
x̂=x̂∗
= 2

∫
dx p(x|y) (x̂∗ − x) = 2

(
x̂∗ − 〈x〉y

)
= 0 , (A.223)

using
∫

dx p(x|y) = 1. Thus,

x̂∗(y) = 〈x〉y . (A.224)

Since J(x̂) is convex and J′′(x̂∗) = 2 > 0, we conclude that x̂∗ = 〈x〉y minimizes J. Thus,
with a mean-square-deviation cost function, the “best” value x̂∗ is the (conditional)
mean. We can use the same idea in many contexts, for example to estimate the “best”
parameters in a least-squares fit. Often, we will drop the ∗ and not indicate the explicit
y dependence, using simply x̂.

In Problems A.8.4 and A.8.5, you will explore the other two cost functions, showing
that minimizing the absolute value of deviations leads to the choice of the median value
of p(x|y) and assigning a constant cost to deviations outside a small range ±Δ leads
to the mode. In the context of Bayesian parameter estimation, the choice of mode is
termed the maximum a posteriori (MAP) estimate.

A.8.8 Regularization

As discussed in Section A.8.5, when the number of parameters in a model becomes
large, there can be a danger of overfitting. The χ2 value is then anomalously low.
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Ridge regression provides a way to regularize the χ2 statistic to13

χ2(θ) =
1
σ2
‖ y −Φθ ‖2 + β ‖θ‖2 . (A.225)

In Eq. (A.225), the β parameter is equivalent to putting a prior distribution on the
values of the unknown parameters θ. Indeed, if the prior for each θi is Gaussian,
with standard deviation σθ, we can identify β = 1/σ2

θ . More informally, Eq. (A.225)
expresses a compromise between choosing the parameters to fit the data (first term)
while keeping parameter values small (second term).

Minimizing the augmented χ2 statistic in Eq. (A.225) leads to a straightforward
generalization of Eq. (A.218):

θ̂ =
(
ΦTΦ + βI

)−1
ΦTy , (A.226)

where I is the K × K identity matrix. We see explicitly that for β → 0, the estimate θ̂
reduces to that of Eq. (A.218), while for β→ ∞, we have θ̂ → 0.

Despite its connection to notions of a Bayesian prior, regularization can seem ad
hoc. Its popularity stems from two key points: (1) overfitting tends to produce param-
eter fluctuations that are much larger than plausible parameter values, and (2) the
inversion in Eq. (A.226) is numerically much more stable as β is increased from zero.
Regularization is thus often a practical step for parameter estimation.

A.8.9 Monte Carlo Methods

Monte Carlo methods constitute an alternate way of approximating integrals over a
probability distribution density p(x) that is based on samples drawn from the distri-
bution itself. In evaluating the integral in Eq. (8.103), we sampled uniformly from
the n-dimensional domain bounding the set of possible states x. We can ask, in a
typical case, what fraction of the normalized weights Pi are appreciably nonzero? The
question is equivalent to asking, “Over what fraction of the space does p(x) have a non-
negligible amplitude?” Imagine, for example, that in each dimension, p(·) is nonzero
for 1

10 of the total domain coordinate. Then in two dimensions, p would be nonzero
on only 1% of the area. In three dimensions, it would be 0.1% of the volume, and in
n-dimensions, it would be a fraction 10−n. Thus, another consequence of the curse of
dimensionality is that only a tiny fraction of the weights Pi differ appreciably from 0 in
high dimensions. Evaluating p on all the grid points is then terribly inefficient.

Let us then try the other extreme and draw a single point, x1 from p(x) and try ϕ(x1)
as our estimator. Observe that the expectation value of ϕ(x1) is simply given by the

13 There are many ways to regularize the χ2 statistic. A slight variant, Tikhonov regularization, defines
χ2(θ) = 1

σ2 ‖ y −Φθ ‖2 + ‖Γθ‖2, with Γ a matrix. In this more general kind of regularization, we can
impose more subtle constraints. For example, Γ can approximate a spatial-derivative operator that corre-
sponds to differentiating θ twice in a discrete representation. If the parameters correspond to the spatial
degrees of freedom of a field, we would be favoring smoother solutions that had reduced “roughness.”
Thus, Tikhonov regularization can be appropriate for inverse problems where the goal is to find a non-
parametric estimate of a function, while ridge regression can be appropriate for parameter estimation
problems in curve fitting.
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integral
∫

dx1 ϕ(x1)p(x1) ≡ 〈ϕ〉. This single-point estimator is unbiased! Although
you will immediately object that the variance, equal to Var ϕ, is large – if you happen
to choose a point where ϕ(x) has a very atypical value, your estimate will have a huge
error – we can remedy that by picking a reasonable number N of independently drawn
points and averaging over them. Thus, we arrive at the Monte Carlo estimate for
〈ϕ(x)〉:

p̂(x) =
1
N

N∑
i=1

δ (x − xi) , ϕ̂ =
1
N

N∑
i=1

ϕi , Var ϕ̂ =
1
N

Var ϕ . (A.227)

Equation (A.227) is of the form of Eq. (8.103), except that the weights wi have become
uniform (wi =

1
N ) and the points xi now are drawn from p(x) and not evaluated on

a grid. Note that we should, but do not, use a different symbol for the Monte Carlo
estimator ϕ̂; the context will be enough to distinguish which estimator is referred to. At
right, Var ϕ̂ states that the variance of the mean of the average N independent estimates
is just 1

N the variance of one estimate (standard error of the mean). In Problem A.8.6,
you will review this statement. Notice that the variance of ϕ̂ depends only on the
variance of ϕ itself and the number of samples N drawn from p. It is independent of
the dimension n of the space!

To picture Monte Carlo sampling, consider the figure at right, which shows a con-
tinuous probability distribution at top (sum of two Gaussians). The ticks at bottom
mark the positions of 20 draws, with their even weight represented by the even height
of the lines. The bottom graph is a histogram, based on 1000 draws, which demon-
strates that we can use the Monte Carlo approximation to derive a more conventional
grid approximation of the distribution. Of course, to make this scheme work, we need
to know how to draw numbers from odd-shaped probability distributions.14

The above argument that sampling from a PDF allows us to approximate the con-
tinuous density via a histogram is intuitively reasonable but not rigorous. To justify
p(x) ≈ 1

N

∑
i δ (x − xi) more carefully, we look at the corresponding approximation

to the cumulative density function (CDF). For simplicity, we restrict ourselves to a
one-dimensional case, where xi is distributed as p(x). Then

CDF(a) =
∫ a

−∞
dx p(x) ≈

∫ a

−∞
dx

1
N

N∑
i=1

δ (x − xi) =
N∑

i=1

1
N

1(−∞,a)(xi) (A.228)

where 1(a,b)(x) is the indicator function, which is 1 when a ≤ x ≤ b and 0 otherwise.
Equation (A.228) implies that our Monte-Carlo approximation to p(x) is equivalent
to an approximation to the CDF where the probability that x ≤ a is by the fraction of
elements xi ≤ a, based on N trials. Since the xi are drawn from p(x), the law of large
numbers implies that the fraction ≤ a converges to the probability x ≤ a and, hence,
p̂(x)→ p(x).

Although Eq. (A.227) would seem to solve our problem, we still need to know how
to draw points from a high-dimensional, irregular distribution. Above, we argued that

14 For the example here, we sample using the technique of rejection sampling, which we do not cover because
of its limited applicability to state-estimation problems. See MacKay (2003).
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p(x) ≈ 0 for all but a vanishingly small subset of points, which, in general, are hard to
find. In other words, at best, we have reduced one hard problem to another. Still, that
is progress, and we can now draw on a wide array of techniques for drawing points
from complicated distributions. We focus on two, importance sampling and bootstrap
resampling, that have proven useful in particle-filter applications of MC techniques.

Importance Sampling

We have seen that if we can draw numbers from a probability distribution, we can
approximate nicely all the quantities we need in state estimation. Yet we have argued
that drawing numbers from a high-dimensional distribution is hard, as the density
function p vanishes almost everywhere. Assume, then, that we have another density
function q(x) that is simple enough that we know how to draw numbers from it. Then,
we can use q to help us evaluate 〈ϕ〉p. Notice that we now are careful to specify whether
we average over numbers drawn from p or from q. When xi is distributed as q(x), with
q(x) strictly positive, we have,

ϕ̂ =

∑
i wi ϕi∑

i wi
, wi ≡ p∗(xi)

q(xi)
, (A.229)

where ϕi ≡ ϕ(xi). In Eq. (A.229), P may not be normalized, so that p = p∗/Zp, where
Zp is the normalizing factors (partition functions). The weights wi now are adjusted
to have different importance depending on whether the distribution p∗ or q is larger at
a particular point xi.

Let us first show that ϕ̂ is an unbiased estimator for 〈ϕ〉 when N → ∞.15 The easiest
approach is to look separately at the numerator and the denominator. For the latter,
averaging the point xi over q(xi), we have〈∑

i

wi

〉
q

=
∑

i

∫
dxi p∗(xi)

q(xi)
q(xi) = N

∫
dxi p∗(x)

q(x)
q(x) = NZp . (A.230)

For the numerator, we have, similarly,〈∑
i

wi ϕi

〉
q

= NZp〈ϕ〉p . (A.231)

Note that although the numerator and denominator are each unbiased for any N, their
ratio is unbiased only for N → ∞. See Problem A.8.6.

Also in Problem A.8.6, we investigate the variance of ϕ̂ in Eq. (A.229). The upshot
will be that, assuming ϕ(x) > 0, we can choose q(x) = p(x)ϕ(x) and make the variance
vanish! Before celebrating, we note that the desired q(x) must be normalized. And if
we can normalize Zq =

∫
dx p(x)ϕ(x), then we can do our original integral and have

no business trying to solve it by Monte Carlo methods. Still, the general implication is
that by making q(x) resemble p(x)ϕ(x) as much as possible, we can reduce the variance
of the importance-sampling estimator.

15 Such estimators are termed asymptotically unbiased.
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Bootstrap Resampling

Bootstrap resampling is a simple idea that seems almost magical when you first hear
of it. Imagine that we have drawn N “data points” (samples) xi from a data set that
follows a distribution p(x). We denote this set of data points by {x}. The twist is that
we do not know the distribution explicitly. For example, the samples may come from
an experiment that we do not understand well, or, in the case we are interested in this
book, from a high-dimensional state vector whose distribution is too complicated to
write down easily.

To get a feel for the bootstrap method, consider a statistic ϕ̄ that is defined as a
function of the data set. We distinguish ϕ̄, which is evaluated over {x}, from 〈ϕ〉p, which
is an integral over p(x). To estimate the distribution of ϕ̄, we start from the original
data set {x} and define a new set {x∗} of N elements by resampling with replacement.
That is, we draw N values xi from a “bag” containing the original data set, each time
replacing the value we picked before the next draw. The claim then is that we can
approximate the sampling distribution of ϕ̄ by evaluating it on the set of resampled
elements:

p̂(ϕ̄) =
1

N∗B

N∗B∑
i=1

p[ϕ̄({x∗})] , (A.232)

where {x∗} is a new set of N samples drawn, with replacement, from {x}. The distri-
bution in Eq. (A.232), known as the exact bootstrap estimate, requires evaluating all
possible resamplings (with replacement), N∗B. Since N∗B is impractically large for even
modest N,16 we use a Monte Carlo estimate for Eq. (A.232) that is based on NB � N∗B
bootstrap resamplings. Again, each resampling involves drawing N elements from the
original data set with replacement.

Example A.20 (Bootstrap estimate of the variance of the sample mean.) The most common
application of bootstrap resampling is to estimate Var ϕ rather than the whole sam-
pling PDF. We illustrate the Monte Carlo bootstrap method at right. We draw
5 samples from a Gaussian distribution, N(0, 1), and are interested in the average,
ϕ̄ = 1

5

∑
i xi, which approximates the mean ϕ =

∫
dx x p(x). The smooth curve shows

the exact sampling distribution for ϕ̄, which is simplyN(0, 1
5 ). The histogram estimate

of the PDF at right is based on 100 resamplings with replacement. Note that its form
is close to the Gaussian of the true sampling distribution. For example, its standard

16 The number of times n that an element xi is included in a single sample with replacement is given by the
multinomial distribution of N elements that each have probability 1/N, which implies that the number
of resamplings is N∗B = (2N − 1)!/(N − 1)!. For N = 15, the number of possible resamplings is already
O(10 8).
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deviation, 0.35, is close to 1√
5
= 0.45. But although the mean of the bootstrap dis-

tribution, −0.50, is close to the mean of the 5-element data set, −0.46, it is not (and
cannot) be centered on 0, since all that we know about the true mean is derived from
the original data set. But remarkably, we have found a good estimate of the variance.
Indeed, we seem to have gotten something for nothing: with just one experiment or
simulation, we have estimated the variability in a quantity, something that would have
normally required many (costly) repetitions or a theoretical calculation. We know how
to do the latter for an estimate of the mean, of course, but not for more complicated
statistics.

A variation of resampling that is of direct interest for state estimation is to use
importance sampling to estimate properties of a different distribution. The cal-
culations reprise those of standard importance sampling. Assume that we have
samples xi ∼ q(x) and wish to transform them into samples from the distribution
p(x) = 1

Zp
p∗(x), with Zp =

∫
dx p∗(x). To understand how to do this, we return to the

estimate of the CDF in Eq. (A.228), with q(x) ≈ ∑
i

1
N δ (x − xi). Then,

CDFp(a) =
∫ a

∞
dx p(x) =

∫ a

−∞ dx p∗
q q(x)∫ −∞

−∞ dx p∗
q q(x)

≈
1
N

∫ a

−∞ dx
∑

i
p∗(x)
q(x) δ (x − xi)

1
N

∑
i

p∗(x)
q(x) δ (x − xi)

=

1
N

∑
i

p∗(xi)
q(xi) 1(−∞,a)(xi)

1
N

∑
i

p∗(xi)
q(xi)

=

1
N

∑
i wi1(−∞,a)(xi)

1
N

∑
i wi

=

N∑
i=1

w̃i1(−∞,a)(xi) (A.233)

where we have defined weights wi ≡ p∗(xi)
q(xi) and w̃i ≡ wi∑

i wi
. Thus, if we weight the event

xi by w̃i in all sums involving expectation values, the result will be equivalent to having
drawn a value from p(x), rather than q(x). To put this result in the context of Bayes’
theorem, if p(H|D) = 1

Z p(D|H) p(H) and if we can sample from the prior x ∼ p(H), then
we can generate samples from the posterior using Eq. (A.233), with p∗ = p(D|H) p(H).

One issue with transforming the sampling distribution is that when p(x) is very dif-
ferent from q(x), the resulting wide range of weights w̃i reduces the effective number
of points sampled. Points with very little weight do not contribute much to the sum
in Eq. (A.233). As a consequence, more samples are needed to make the effective
number of samples of p equal to that from the original distribution q. When the new
distribution is not too different from the old, the method can work well.

For further information on Monte Carlo methods, see Press et al. (2007) and
MacKay (2003).

Problem A.8.2 Show that if ξ ∼ N(0, σ2
I), then the best estimate θ̂ of a linear fit is Gaus-

sian distributed about the true values θ̂
∗
, with variance σ2(ΦTΦ)−1. Notice how

the variance of the parameter estimates is proportional to the variance of the
original data. Qualitatively, what happens if the measurement noise is colored,
so that ξ ∼ N(0,Qξ), with a covariance matrix that has off-diagonal elements?
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Problem A.8.3 Show that for an orthonormal basis in function space, e j · ek = δ jk that

θ̂k = y · ek , or y =
K∑

k=1

(y · ek)ek , (A.234)

justifying the interpretation of P(K) as a projector matrix in Eq. (A.219).
Problem A.8.4 For the cost function J(x̂) = 〈|x − x̂|〉 = ∫

dx |x̂ − x| p(x|y), show that
minimizing J implies that x̂∗ is the median of p(x|y). Investigate J′′(x̂∗), too.

Problem A.8.5 For the bottom “box-shaped” cost function with a small width Δ, show
that minimizing J(x̂) implies that x̂∗ is the mode of p(x|y).

Problem A.8.6 Important details about importance sampling. We fill in some gaps in our
discussion of importance sampling. Assume a scalar variable x.

a. As a warmup, use Eq. (A.227) to show that, for N independent draws xi from
p(x), if ϕ̂ = 1

N

∑N
i=1 ϕi, then Var ϕ̂ = 1

N Var ϕ.
b. Importance sampling estimates the average of ϕ(x) over the distribution p(x)

using a second, proposal distribution q(x). In general, p and q need not be
normalized, but here we assume they are. Then, 〈ϕ〉p ≈ ϕ̂ = ∑N

i=1 wi ϕ(xi),

with weights wi =
p(xi)/q(xi)∑
i p(xi)/q(xi) . The xi are N independent draws xi ∼ q(x).

Show that 〈ϕ̂〉 = 〈ϕ〉p and Varq[ϕ̂] = 1
N

(〈 pϕ2

q 〉p − 〈ϕ〉2p
)
. Show that the vari-

ance vanishes when we pick q(x) = p(x)ϕ(x), a choice that is valid only for
ϕ(x) > 0.

c. Bias of the ratio. ϕ̂ is biased for finite N. To see how this can arise, consider
a case of N random variables ni and di (numerator and denominator, in this
case). Assume that they are correlated, as this is true for the importance-
sampling case. (Why?) Let 〈n〉 and 〈d〉 be the mean values of the random
variables (e.g., 〈n〉 = ∫

dn n p(n)). Let bars denote arithmetic averages (e.g.,

n = 1
N

∑N
i=1 ni). Then show

〈
n̄
d̄

〉
� 〈n〉〈d〉 by writing ni = 〈n〉 + δni and giving the

lowest-order corrections.

A.9 Stochastic Processes

We can extend the notion of a random variable x to a sequence of random variables xk,
for example a time series of values measured at regular times, xk ≡ x(kT s). Examples of
such times series include the noise “sources” ν and w from our discussion of Kalman
filters (Chapter 8). The time series are Gaussian white noise processes, with zero mean
and specified variance. That is, each random variable xk ≡ x ∼ N(μ, σ2) is drawn from
a Gaussian distribution,

p(x) =
1

σ
√

2π
exp

[
− x2

2σ2

]
. (A.235)

We are often interested in noise terms νk and ξk, which are stochastic processes, or
time series. For example, in Chapter 8, we consider dynamical systems with noise
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added to the inputs (the process noise νk) and to the outputs (the measurement noise
ξk). At each time kT s (or k, for short), one draws a noise term from a probability
distribution (Gaussian in many cases). Every element in an ensemble would have a
different actual number for the kth draw, and every repetition of a sequence of draws
would also be different. We characterize the stochastic processes by characterizing
their statistics. For example,

〈νk〉 = 〈ξk〉 = 0

〈νk νk′ 〉 = ν2 δ kk′ , 〈ξk ξk′ 〉 = ξ2 δ kk′ , (A.236)

where the Kronecker delta symbol

δ kk′ =

⎧⎪⎪⎨⎪⎪⎩1 if k = k′ ,
0 otherwise .

(A.237)

and where the angle brackets 〈· · · 〉 denote ensemble averages over the respective
Gaussian probability distributions, N(0, ν2) and N(0, ξ2).

Note that in Eq. (A.236), the second moment is the variance, since the mean is
zero. Otherwise, subtract off its square. Note, too, that the variances ν2 and ξ2 are
independent of time k. Time series whose moments (mean, variance, etc.) are constant
are stationary. To denote a nonstationary time series, we would use ν2k and ξ2k (and
would need to carefully distinguish those quantities from the square of the random
variable at time k).

We can extend these definitions to continuous-time stochastic processes. For exam-
ple, a one-dimensional stochastic process ν(t) has, for each time t, a probability
distribution. We will often be interested in the case of Gaussian noise, where that
probability distribution, p(ν, t) is Gaussian, as in Eq. (A.235), above. In such a case,
all we need do is specify the moments. A common idealized case is delta-correlated
noise, where the probability distributions from two different times are independent of
each other. Formally, we can specify such a case using the notation

〈ν(t)〉 = 0 , 〈ν(t) ν(t′)〉 = δ (t − t′) . (A.238)

For a multivariable case ν(t) is an n-dimensional vector, each of whose elements is a
stochastic process, and we write

〈ν(t)〉 = 0 , 〈ν(t) νT(t′)〉 = Qν δ (t − t′) , (A.239)

where the n×n matrix Qν is diagonal when each element of ν is an independent stochas-
tic process. Off-diagonal elements give the covariance of element i with element j. In
the mathematical literature, an alternate notation is usually used:

ν(t) ∼ N(0,Qν) , (A.240)

with a mention that the ν(t) are i.i.d. (independent, identically distributed) variables.
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A.9.1 Independent Processes

The simplest kind of stochastic process is one in which the probability distribu-
tions governing each element are independent. For a discrete-time process X with
realizations xk, independence implies

p(x1, x2, . . . , xN) = p(x1)p(x2) · · · p(xN) . (A.241)

If the distribution for p(xk) is independent of time k, the random variables are i.i.d.:
independent and identically distributed and constitute a purely random process. Using
our more compact notation, we can also write p(xN) =

∏
k p(xk), with k ranging from

1 to N.

A.9.2 Markov Processes

Markov processes are an important special case of a stochastic process, where the
present state alone determines the future. Here, a series of states, xk, is a Markov
process if

p(xk+1|xk) = p(xk+1|xk) . (A.242)

In Eq. (A.242), the notation xk is shorthand for the set {xk, xk−1, . . . , x1}. In other words,
the probability distribution function for the random variable xk+1 depends only on the
most recent state xk and not on the previous states xk−1.

Although the Markov assumption would seem to be very restrictive, many processes
can be put in that form. A process at time k that depends on both k − 1 and k − 2 can
be rewritten as a Markov process by enlarging the state vector to be the pair xk and
xk+1. Thus, increasing the dimension of the state vector can turn a history-dependent
process into a Markov one. In that sense, the question to ask is whether a finite-
dimensional state vector suffices and, if so, whether the required dimension is small
enough to allow useful calculations.

The Chapman–Kolmogorov equation is an important relation satisfied by Markov
processes. Using the marginalization identity of Eq. (A.134) and the definition of
conditional probability, Eq. (A.132), we can always write

p(x2) =
∫

dx1 p(x2, x1) =
∫

dx1 p(x2|x1)p(x1)

Similarly, we write

p(x3, x1) = p(x3|x1)p(x1) =
∫

dx2 p(x3, x2, x1)

=

∫
dx2 p(x3|x2, x1)p(x2, x1)

=

∫
dx2 p(x3|x2)p(x2|x1)p(x1) , (A.243)



A.10 Information Theory 69

where we use the Markov property that p(x3|x2, x1) = p(x3|x2). Dividing by p(x1) gives
the Chapman–Kolmogorov equation for discrete-time processes,

p(x3|x1) =
∫

dx2 p(x3|x2)p(x2|x1) . (A.244)

For the case where xk can take only discrete values (e.g., Chapters 12 and 13), the
integrals over x become sums.

A.10 Information Theory

We give a very quick review. Information theory was “born as an adult” in a remark-
ably clear and complete two-part paper from 1948 by Claude Shannon that is still well
worth reading. For later developments, the standard text in the field is Cover and
Thomas (2006), while Gibson (2014) is compact, accessible, and has an especially nice
treatment of rate distortion theory. Papoulis and Pillai (2002) discusses many connec-
tions between information theory and signal processing. MacKay (2003) discusses
connections to Bayesian inference and statistical physics. Bialek (2012) discusses
biological applications.

Working at Bell Laboratories during World War II, Shannon’s goal was to develop
a general way to understand communication systems. His 1948 article is entitled
“A Mathematical Theory of Communication,”17 with no mention of “information.”
Shannon’s abstract schematic diagram of a communication system is redrawn as
Fig. A.7. The schematic has five elements:

1. Information source. Produces the message(s) to be communicated. For example, a
set of English words. The words are then encoded into a standard alphabet. For
example, each letter in the English alphabet is converted to a sequence of 0s and 1s.

2. Transmitter. The code is converted into a form suitable for transmission (e.g.,
voltage levels for 0 and 1).

3. Channel. The medium used to transmit the signal. For example, the message could
be communicated electrically over wires, by radio waves, by photons over an optical

Abstract elements of a communication system. Adapted from Shannon (1948). Fig. A.7

17 By the time the articles were reprinted a year later in book form (Shannon and Weaver, 1949), the title
had changed to “The Mathematical Theory of Communication.”
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fiber, and so on. The channel is usually noisy: the output can differ, stochastically,
from the input.

4. Receiver. Inverts the coding operation. The equipment could be an antenna for
radio waves, a photodiode for an optical fiber, and so on.

5. Destination. The person (or thing) for whom the message is intended.

“Communication” is thus a very general concept. In this book, our most important
example of it is measurement. That is, we will view the physical quantity we are trying
to measure as the information source and the sensor as the noisy channel and receiver.

Here, we begin by defining and discussing briefly some basic quantities.

A.10.1 Entropy

Shannon viewed the transmission of a message across a noisy communication channel
as a process of selecting from a set of possible messages. In the discrete case, the mes-
sage is a random variable X that takes values (“outcomes”) x that belong to a finite
(or countably infinite) set X = {xi}, which is also called the alphabet and is similar
to the event space of probability theory (Section A.6). For example, a binary signal
may transmit a 0 or 1, a two-letter alphabetX = {0, 1}. The notion of information then
quantifies how much we learn – how “surprised” we are – when we receive a symbol. If,
for example, a symbol x = 0 or 1 with equal probability – i.e., P(x = 0) = P(x = 1) = 1

2
– then receiving a 0 or 1 allows us to answer one “yes or no” question. We define this
to be a bit (= binary digit) of information. With n bits of information, we can answer
n “yes or no” questions, selecting from among 2n possibilities. Inspired by an earlier,
informal effort by Hartley (1928), Shannon called the logarithm of the number of pos-
sibilities the entropy of the message. Here, log2(2n) = n and measures the uncertainty
associated with a random variable. Conversely, it tells how much information is gained
after measuring the quantity (neglecting measurement noise). Note that information,
as defined here, has nothing to do with meaning or semantics.

Let N = |X| be the number of elements in the alphabet. Equally likely possibilities
have probability P = 1/N and entropy log N = log(1/P). When events occur with
different probabilities PX(x = xi) ≡ P(xi), the average entropy of the random variable
X is

H(X) =

〈
log

1
P(x)

〉
= −

∑
xi∈X

P(xi) log P(xi) . (A.245)

Notice that the entropy is a function of the probability distribution P(x). The log-
arithm base in Eq. (A.245) determines the units as conventionally base 2 (bits) or
e (nats). The term “entropy” reflects a formal similarity to the entropy defined
by Boltzmann and Gibbs in statistical physics, the difference being one of units, as
reflected in the dimensional prefactor kB (Boltzmann’s constant). Below, we will see
(Eq. A.280) that for any assignment of probabilities P(x), the entropy is in the range
0 ≤ H(X) ≤ log N.
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Shannon actually derived the form of Eq. (A.245) from a small number of axioms:

1. H(X) is a continuous function of the probabilities P(xi).
2. If P(xi) = 1/N, then H(X) is a monotonically increasing function of N.
3. If a choice is broken down into two different series of sequential steps, the value of

H should be consistent with either partition.

The full statement of the last axiom and the proof that they lead to a unique function
is nicely discussed in Shannon’s original 1948 paper. Pressé et al. (2013) discuss the
derivation in a broad context. Here, we focus on the properties of entropy.

One of the powerful features of information theory is that it leads to proofs that hold
for arbitrary probability distributions. Here, we mostly forego such general results
and consider, instead, two archetypical examples: a discrete binary sequence and a
Gaussian random variable, where the set of possible states is the real line (and hence
a continuous variable that is uncountable). We begin by defining them and evaluating
their entropy.

Example A.21 (Discrete Binary Sequence) Let the signal be a discrete binary sequence xi,
representing, say, two states of a system. We can label them x = 0 and x = 1 for
convenience, but any two “letters” will work equally well. Then, if the probability of
observing 0 is P(x = 0) = p and of observing 1 is P(x = 1) = 1 − p, the entropy is

H2(p) = −p log p − (1 − p) log(1 − p) . (A.246)

The graph at left shows H2 in units of bits. Notice that, as discussed above, the maxi-
mum 1 bit of uncertainty occurs at p = 1

2 , and the minimum value, 0, occurs at p = 0
or 1.

Differential entropy. When there are a continuous number of states, the alphabet
X is a continuous set (for example, the real numbers). Let us define the “obvious”
generalization to the continuous case, the differential entropy:

H(X) = −
∫

x∈X
dx p(x) log p(x) . (A.247)

To see why this definition is not quite the same thing as the “continuous version” of
the discrete sum in Eq. (A.245), let us define a coarse-grained entropy by integrating
over an interval Δx, with

Pi =

∫ (i+1)Δx

iΔx
dx p(x) ≈ P(xi)Δx . (A.248)

Then, at the discretization scale Δx, the coarse-grained entropy is

HΔx(X) = −
∑

i

Pi log Pi = −
∑

i

P(xi)Δx log[P(xi)Δx]

= −
∑

i

Δx P(xi) log P(xi) − (1) logΔx

→ −
∫

dx p(x) log p(x) − logΔx . (A.249)
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Thus, the differential entropy differs from the coarse-grained approximation by a
constant, − logΔx, that diverges as Δx→ 0.

Example A.22 (Uniform distribution) If p(x) is a uniform distribution between a and b, the
differential entropy is

H(X) = +
∫ b

a
dx

(
1

b − a

)
log(b − a) = log(b − a) . (A.250)

Notice that the differential entropy is infinite if the range of x is infinite.

We can also now interpret the differential entropy more precisely: it is the difference
between the entropy of the distribution P(x) and that of a distribution that is uniform
over X. That is, the entropy for a continuous distribution is infinite – it takes an
infinite number of bits or digits to specify an element completely and thus be certain
of its identity – but the difference in entropy between two distributions may be finite.

A Gaussian distribution also has finite differential entropy.

Example A.23 (Gaussian distribution) Let the random variable X have values x ∼ N(0, σ2)
that is a Gaussian random variable. The differential entropy of X is

H(X) = −
∫ ∞

−∞
dx p(x) log p(x) =

〈
log

(
σ
√

2π
)
+

x2

2σ2
log e

〉
= 1

2 log
(
2π eσ2

)
.

(A.251)

Up to constants, H ∼ logσ. It is easy to show that the entropy is the same if 〈x〉 = μ.
Inverting Eq. (A.251) gives the variance in terms of the entropy:

σ2 =
1

2π e
e2H(X) . (A.252)

Joint entropy. The definitions of discrete and continuous entropy functions generalize
immediately to multiple random variables Xi with outcomes xi, with an important
case being the stochastic processes discussed in Section A.9. For the discrete case, we
denote the set of random variables {X1, X2, . . . , XN} by XN , as in Section 15.2. Then,

H(XN) = −
∑
xN

P(xN) log P(xN) . (A.253)

The N-fold sum is (implicitly) over the entire alphabet X for each random variable Xi.
Likewise, the differential entropy is an N-dimensional integral:

H(XN) = −
∫

xN
dxN p(xN) log p(xN) . (A.254)

For example, if XN ≡ X is a multivariate Gaussian with realizations x ∼ N(μ,Σ),
then you will show in Problem A.10.2 that

H(X) = 1
2 log det (2π eΣ) . (A.255)
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Conditional entropy. Consider the reduction in uncertainty, or gain of information, on
measuring y, given that x is known. Let us revert to an explicit notation where the
random variable X has outcomes x ∈ X. Likewise, Y has outcomes y ∈ Y, and sums or
integrals of x and y are taken over their respective alphabets. Then,

H(Y |x) ≡ H(Y |X = x) = −
∑

y

P(y|x) log P(y|x) , (A.256)

which is just the reduction in uncertainty, or gain of information, on measuring Y,
given that another random variable X is known and has a particular value x.

The average reduction in uncertainty on measuring Y, averaging over X, is

H(Y |X) ≡ 〈H(Y |x)〉x = −
∑
x,y

P(x) P(y|x) log P(y|x)

= −
∑
x,y

P(x, y) log P(y|x) . (A.257)

From Eq. (A.132), we also have

H(Y |X) = −
∑
x,y

P(x, y) log
P(x, y)
P(x)

= H(X,Y) − H(X) . (A.258)

Chain rule for entropy. Rearranging the terms in Eq. (A.258) gives

H(X,Y) = H(X) + H(Y |X) = H(Y) + H(X|Y) . (A.259)

The latter relation comes from decomposing the conditional probability the “other
way,” P(x, y) = P(x|y)P(y). Similarly, for three variables, the chain rule is

H(X,Y,Z) = H(X) + H(Y,Z|X)

= H(X) + H(Y |X) + H(Z|X,Y) . (A.260)

For N variables, it is

H(XN) =
N∑

k=1

H(Xk |Xk−1) . (A.261)

Compare this relation with the chain rule for probabilities (Problem A.6.1).

Example A.24 (Two-state Markov chain) Let X be a random variable with alphabet X =
{0, 1}, with transition probabilities P(0|0) = P(1|1) = 1 − ε and P(0|1) = P(1|0) = ε, as
illustrated in the state diagram in Figure A.8. We can calculate the conditional entropy
directly:

H(X2|X1) = −
∑
x1,x2

P(x1, x2) log P(x2|x1) = H2(ε) (A.262)

again illustrated at left. The sum for each xi is over X = {0, 1}. The limits make
sense: When ε = 0 or 1, the sequence is completely determined by its initial condition,
and further observations do not reduce the uncertainty (i.e., they are certain). Thus,
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�Fig. A.8 Two-state symmetric Markov chain.

H(X2|X1) = 0. On the other hand, when ε = 1
2 , there is a 50-50 chance that the next

symbol will be 0 or 1, implying a log 2 reduction in uncertainty per observation.

Changing Variables

If the entropy of X is H(X), what is the entropy H(Y) if y = f (x)? This question
will have very different answers, depending on whether the instances x of the random
variable X are drawn from a discrete or a continuous set.

Discrete case. Let us first assume that the function f (x) is one-to-one, with a unique
inverse. Then, every element xi has a unique element yi. Then P(xi) = P(yi) and, hence,
H(Y) = H(X).

If f (x) is not invertible, then at least two elements xi and x j map to the same new
element yk, implying that H(Y) ≤ H(X). Intuitively, there are “fewer possibilities” for
the variable Y than for X and its uncertainty is therefore lower.

Continuous case. This case is completely different, for reasons that trace back to the
definition of differential entropy itself, which depends on the choice of coordinates.
For example, if we rescale y = ax, then p(y) = p(x) | dx/dy | = p(x)/|a|, and

H(Y) = −
∫

y
dy p(y) log p(y) = H(X) + log |a| . (A.263)

Compare this result to the discrete case, where rescaling is an invertible transforma-
tion and H(Y) = H(X). Since |a| can be less than 1, log |a| and hence H(Y) can be
negative. The absolute value in Eq. (A.263) comes from the transformation of prob-
abilities, which must be ≥ 0. Lack of invariance also traces back to the fact that the
probability density function p(x) has units, whereas probabilities P(x) do not.

As an example, consider the transformation y = 2x. Let a real number x have the
binary expansion x = 0.a1a2a3 . . ., where ai ∈ {0, 1}. Then y = 2x just shifts the binary
digits one place over to the left:

x = 0.a1a2a3 . . . =⇒ y = a1.a2a3a4 . . . . (A.264)

For P(ai = 0) = P(ai = 1) = 1
2 , at a given discretization scale, the binary expansion of

y has one more bit (binary digit) than does x. Equivalently, the uncertainty in y is one
bit greater than that of x, which is what the log |a| = 1 term indicates.
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For multiple variables XN = {X1, X2, . . . , XN}, the differential entropy transforms as

H(YN) = H(XN) + 〈log |J|〉 , (A.265)

where J is the determinant of the Jacobian matrix of the coordinate transformation
between the vectors XN and YN , assuming the transformation to be invertible. In the
special case YN = AXN , we have

H(YN) = H(XN) + log | det A| . (A.266)

As in the discrete case, if the transformation is not invertible, then H(YN) < H(XN) +
〈log |J|〉.

A.10.2 Entropy Rate and Stochastic Processes

The entropy of a stochastic process is a special case of the notion of joint entropy,
defined in Eq. (A.253). Since we expect the entropy to be proportional to the number
of variables N (extensive), we define the entropy rate (or density)

H(X) = lim
N→∞

1
N H(XN) . (A.267)

Clearly, H(X) is a kind of average entropy per variable and is most interesting when
those variables are correlated; however, to build up our intuition, let us first consider
N independent variables Xi. Then P(xN) = P(x1) P(x2) . . . P(xN) and

H(XN) = −
∑
xi∈X

P(x1) . . . P(xN)
N∑

i=1

log P(xi) = N H(X) . (A.268)

The entropy of N independent, identically distributed variables is just N times the
entropy of a single variable. In Eq. (A.268), there are N terms, each with N sums. In
each sum, N − 1 terms “go away,” since

∑
xi

P(xi) = 1. The entropy rate is then

H(X) = lim
N→∞

1
N [N H(XN)] = H(X) . (A.269)

As expected, the entropy rate of a sequence of uncorrelated, identically distributed
random variables is just the entropy of a single random variable.

Example A.25 For a more interesting case, consider a stationary Markov process
(Sec. A.9.2), where P(xk+1|xk, xk−1, . . . , x1) ≡ P(xk+1|xk) = P(xk+1|xk). Then

H(XN) = −
∑
xi∈X

P(xN |xN−1) . . . P(x2|x1)P(x1) log [P(xN |xN−1) . . . P(x2|x1)P(x1)]

= H(XN |XN−1) + . . . + H(X2|X1) + H(X1)

= (N − 1)H(X2|X1) + H(X1)

= (N − 1)H(X+1|X) + H(X) . (A.270)
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In the last step, we introduce X+1 as the random variable one time step after X. Because
the time series is stationary, H(Xk+1|Xk) = H(X+1|X) for any k. Taking the limit N → ∞,
we see that the entropy rate is simply H(X) = H(X2|X1). In other words, the average
increase in entropy per measurement is the conditional entropy. Because of corre-
lations among measurements, the conditional entropy is less than the entropy of a
single measurement: H(X1|X0) ≤ H(X1). Thus, H(XN)/N → H(X) from above, with
corrections O(N−1). Finally, see Section A.10.4 for a proof that conditioning reduces
entropy.

The entropy rate for a general stationary Markov process P(Xk+1|Xk) follows the
arguments given in Example A.25, which leads to

H = −
∑

(x,x+1)∈X
P(x)P(x+1|x) log P(x+1|x) , (A.271)

where P(xk+1|xk) = P(x+1|x) for any k and where the steady-state distribution P(x)
satisfies

P(x) =
∑
x∈X

P(x+1|x) P(x) . (A.272)

For an application, see Problem A.10.7.

Example A.26 Consider the transformation

yk =

k∑
n=0

anxk−n . (A.273)

Since the random variables y0, . . . , yk are causally related to x0, . . . , xk, the transforma-
tion matrix is lower triangular:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a0 0 · · · 0
a1 a0 · · · 0
...

ak ak−1 · · · a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.274)

The determinant of A is easy to calculate: det A = (a0)k+1. The differential entropy is
then H(Y) = H(X) + (k + 1) log |a0|. Dividing by k + 1 gives the entropy rate:

H(Y) = H(X) + log |a0| . (A.275)

In words, the uncertainty typically increases or decreases by log |a0| each observation,
depending on whether |a0| > 1 or < 1.



A.10 Information Theory 77

A.10.3 Relative Entropy

The relative entropy, or Kullback–Leibler divergence, is a useful measure of the
“distance” between a probability distribution Q(x) and a reference distribution P(x):

D(P||Q) =
∑

x

P(x) log
P(x)
Q(x)

. (A.276)

Obviously, D(P||P) = 0. In general, D(P||Q) ≥ 0 (Gibbs’ inequality). To see this, we
consider the convex function f (u) = − log u and apply Jensen’s inequality, 〈 f (u)〉 ≥
f (〈u〉), for P ≡ P(x) and Q ≡ Q(x):

D = −
∑

x

P log
(Q

P

)
≥ − log

∑
x

P
(Q

P

)
= − log

∑
x

Q = − log 1 = 0 . (A.277)

The quantity D is not quite a metric, as it is asymmetric between the two distributions
– D(P||Q) � D(Q||P), in general – and does not satisfy the triangle inequality.

The continuous version of the relative entropy is

D(p||q) =
∫
X

dx p(x) log
p(x)
q(x)
. (A.278)

Unlike differential entropy, the relative entropy between continuous distributions is
invariant under a coordinate transformation y = f (x). The Jacobians cancel in the
ratio of p/q, and we transform probabilities by p(x) dx = p(y) dy. See Section A.6.5.

As an application, H(X) ≤ log N, where N = |X| is the number of elements in the
alphabet X. To see this, let Q(x) = 1/N and apply the Gibbs’ inequality:

D(P||Q) =
∑

x

P(x) log
P(x)
1/N

= −H(X) + log N ≥ 0 . (A.279)

We can strengthen this conclusion. Complete certainty means knowing that a mea-
surement will lead to a particular outcome, for example, x j. Thus, P(xi) = δ i j, which
implies that H(X) = 0. Further, for discrete probabilities, 0 < P(xi) < 1, since prob-
abilities are positive and must sum to one:

∑
i P(xi) = 1. Then log 1/P(xi) > 0 and

H = 〈log 1/P〉 must also be positive. Thus,

0 ≤ H(X) ≤ log N . (A.280)

The relative entropy can also be interpreted as the amount of information lost when
the “wrong” probability distribution (Q) is used to interpret events that actually come
from P.

Example A.27 (Counting and probabilities) Let pi be the probability that event i occurs. For
N trials and K possible outcomes, you observe ni counts of event i, with

∑K
i=1 ni = N.

We claim that p̂i ≡ ni/N is the maximum likelihood estimate of pi. The slick proof
is based on relative entropy. We use the notation P(ni; qi) to denote the likelihood of
observing ni counts given the estimator qi of the probability pi.
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We need to show that P(ni; p̂i) > P(ni; qi) for all numbers qi � p̂i, or, equivalently,
that log P(ni; p̂i)/P(ni; qi) > 0. Independent events of probability pi occur ni times with
probability ∝ pni

i . Then, with n = {ni}, p̂ = {p̂i}, and q = {qi}, we have

log
P(n; p̂)
P(n; q)

= log

∏
i p̂ni

i∏
i qni

i

=
∑

i

ni log
p̂i

qi
= N

∑
i

p̂i log
p̂i

qi
= ND( p̂, q) ≥ 0 , (A.281)

with equality if and only if qi = p̂i. In words, in the absence of any prior information,
the most likely estimate of pi is just its empirical frequency of occurrence, ni/N. This
example is from Durbin et al. (1998).

Example A.28 (Relative entropy and maximum likelihood) The Kullback–Leibler divergence
also leads to an interesting interpretation of the use of maximum likelihood in curve
fitting. To see this in the one-parameter case, let Pθ(x) be the probability distribution
of a discrete variable x, parameterized by θ. Then, in nats,

D(Pθ||Pθ+Δθ) =
∑

x

Pθ(x) ln
Pθ(x)

Pθ+Δθ(x)

=
∑

x

Pθ(x) ln Pθ(x) −
∑

x

Pθ(x) ln Pθ+Δθ(x) . (A.282)

We can expand the latter term in a Taylor series,

ln Pθ+Δθ(x) = ln Pθ(x) +
∂ ln Pθ
∂θ
Δθ +

1
2
∂2 ln P
∂θ2

(Δθ)2 + · · · . (A.283)

The Δθ term vanishes when averaged. To see this, we write∑
x

Pθ(x)
∂ ln Pθ
∂θ
Δθ =

∑
x

Pθ(x)
1

Pθ(x)
∂Pθ
∂θ
Δθ

=
∑

x

∂Pθ
∂θ
Δθ

=
∂

∂θ

⎛⎜⎜⎜⎜⎜⎝∑
x

Pθ(x)

⎞⎟⎟⎟⎟⎟⎠Δθ =
[
∂

∂θ

(
1
)]
Δθ = 0 . (A.284)

We can then evaluate Eq. (A.282):

D(Pθ ||Pθ+Δθ) ≈
∑

x

Pθ(x) ln Pθ(x) −
∑

x

Pθ(x) ln Pθ+Δθ(x)

=
∑

x

Pθ(x) ln Pθ(x) −
∑

x

Pθ(x) ln Pθ(x) + 0 − 1
2

∑
x

Pθ(x)
∂2 ln Pθ
∂θ2

(Δθ)2

= −1
2

〈
∂2 ln Pθ
∂θ2

〉
(Δθ)2 . (A.285)

The quantity −〈∂θθ ln Pθ〉 = +〈(∂θ ln Pθ
)2〉 ≥ 0 is known as the Fisher information. (The

identity is proved by applying the chain rule to the second derivative.) It quantifies how
measurements of x reduce the uncertainty in a parameter θ. Combining this result with
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extensions of Example A.27 leads to the conclusion that maximizing the likelihood in
a curve fit minimizes the relative entropy between the probability distributions based
on the inferred parameter (θ + Δθ) and one based on the “true” parameter value θ
(Sanov’s theorem).

A.10.4 Mutual Information

The mutual information, I(X; Y) indicates how much, on average, measuring Y reduces
the uncertainty in X. More precisely,

I(X; Y) ≡ H(X) − H(X|Y) . (A.286)

One of the motivations for this definition is to account for measurement noise. For
a noiseless measurement, the physical quantity X is deterministically related to the
measurement Y, implying that H(X|Y) = 0: there is no uncertainty in X after the
measurement. In that limit, I(X; Y) = H(X). In the other limit where measurement
noise dominates, H(X|Y) ≈ H(X): the measurement is so bad that it does not reduce
the uncertainty in X at all. In this case I(X; Y) = 0, and we say that, on average,
the measurement Y does not give any information about the physical quantity X. In
between these extremes, I(X; Y) tells us the amount we learn about X after making a
noisy measurement Y.

Let us establish a few properties of the mutual information:

• I(X; Y) = I(Y; X). Mutual information is symmetric between input and output.
What X tells about Y is the same as what Y tells about X. To see this,

I(X; Y) = H(X) +
∑
x,y

P(x, y) log P(x|y) = H(X) +
∑
x,y

P(x, y) log
P(x, y)
P(y)

= H(X) + H(Y) − H(X,Y) , (A.287)

which is manifestly symmetric in X and Y. Expanding all the entropy terms gives

I(X; Y) =
∑
x,y

P(x, y) log
P(x, y)

P(x) P(y)
. (A.288)

• I(X; Y) = H(Y) − H(Y |X). This is a simple consequence of symmetry, with X ↔ Y.
• I(X; X) = H(X). Entropy can be viewed as “self-information.”
• I(X; Y) = D[P(x, y)||P(x)P(y)]. This follows from interpreting Eq. (A.288) as an

expression for relative entropy.
• I(X; Y) ≥ 0, with I = 0 only when X and Y are independent random variables. This

follows from the Gibbs inequality, D ≥ 0. Two useful corollaries follow immediately:

– H(X|Y) ≤ H(X). This follows from I(X; Y) = H(X) − H(X|Y) and I(X; Y) ≥ 0.
On average, conditioning can only decrease uncertainty. Curiously, an individual
measurement can increase the uncertainty about X. See Problem A.10.6.

– H(XN) ≤ ∑
i H(Xi). This follows from the previous result and the chain rule for

entropy.
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• I(X; Y) ≤ min [H(X), H(Y)]. This follows from the definition of I(X; Y) and the
positivity of entropies. Thus, a measurement Y cannot tell us more about X than
its a priori uncertainty. Likewise, we cannot learn more about X than the entropy
contained in the measurement (as might be deduced from looking at a long series
of measurements). Putting the last two results together, we have

0 ≤ I(X; Y) ≤ min[H(X), H(Y)] . (A.289)

• Data-processing inequality. Consider the random variables X → Y → Z, by
which we imply a Markov chain where X affects Y and Y affects Z. But X does
not directly affect Z. In probabilities, this last statement implies that P(z|x, y) =
P(z|y), independent of x. The data-processing inequality then states that I(X; Z) ≤
min[I(X; Y), I(Y; Z)]:

I(X; Z) = H(Z) − H(Z|X) ≤ H(Z) − H(Z|X,Y)

= H(Z) − H(Z|Y) = I(Y; Z) (A.290)

A similar argument shows I(X; Z) ≤ I(X; Z) (it also requires showing X → Y →
Z =⇒ Z → Y → X). Thus, any kind of data manipulation at best preserves
information; it can never add information. Extending the argument to a chain X1 →
X2 → · · · → XN shows that the mutual information is bounded by the weakest link:
I(X1; XN) ≤ mini I(Xi; Xi+1), which can also be viewed as a bottleneck.

• Continuous case. The definition of mutual information is the obvious extension:

I(X; Y) =
∫

x∈X, y∈Y
dx dy p(x, y) log

p(x, y)
p(x) p(y)

. (A.291)

Unlike the differential entropy, the continuous version of mutual information is
coordinate invariant. That is, if we transform x → x′ and y → y′, the Jacobian
factors cancel out in the log term, since numerator and denominator transform in
the same way. Coordinate invariance gives the mutual information absolute mean-
ing: it tells us what we learn from a noisy measurement of a physical quantity. An
alternate form for I(X; Y) that is sometimes useful is

I(X; Y) =
∫

x∈X
dx p(x)

∫
y∈Y

dy p(y|x) log
p(y|x)
p(y)

. (A.292)

• Gaussian signals and noise. Consider a signal with additive Gaussian noise. If y =
x + ξ, with signal x ∼ N(0, σ2

x) and noise ξ ∼ N(0, σ2
ξ), then Eq. (A.291) implies,

I(X; Y) = 1
2 log

(
1 + SNR2

)
≡ 1

2 log

⎛⎜⎜⎜⎜⎜⎝1 + σ2
x

σ2
ξ

⎞⎟⎟⎟⎟⎟⎠ . (A.293)
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See Problem A.10.11. We can define a signal-to-noise ratio (SNR) = σx/σξ.18 In
the limit σx � σξ (or SNR� 1), the measurement tells us nothing about the signal,
and the mutual information I ≈ 0. When σx � σξ (or SNR� 1), the mutual infor-
mation I ≈ log

(
σx/σξ

)
≡ log n, where n is the number of possible measurements,

given the noise level, that we can make of the continuous signal. Then I ≈ log n, as
expected for a “discrete” system of n equally likely states.

Equation (A.293) is a celebrated result, so much so that it is worth emphasizing
that it is a particular case – a linear measurement with additive Gaussian noise.
The mutual information for nonlinear measurements and for other types of noise is
different.

• Correlated time series, part I. Consider N noisy measurements YN = {y1, y2, . . . , yN}
of N variables XN = {x1, x2, . . . , xN}, taken at intervals T s, with T = NT s, and related
by yk =

∑
n Gknxn+ξk. The random variables XN are multivariate Gaussian, with zero

mean and covariance (Sxx)i j = 〈xi x j〉. Similarly, measurement noise is correlated,
with ξN ∼ N(0,Ξ). If the ξN are uncorrelated with the states XN , then Eq. (A.293)
generalizes to (Problem A.10.12),

I(XN ; YN) =
1
2

Tr log
[
I + Ξ−1(G Sxx GT)

]
. (A.294)

Equation (A.294) simplifies in the frequency domain, where each frequency com-
ponent is independent of the others. After discrete Fourier transformation, each
frequency ωk acts as an independent Gaussian channel, with a signal-to-noise ratio
SNR2(ω) = |G|2(ω) S xx(ω)/Ξ(ω). The mutual information sums these independent
contributions:

I(XN ; YN) =
1
2

∑
ω

log

(
1 +
|G|2(ω)S xx(ω)
Ξ(ω)

)
→ T

2

∫
dω
2π

log

(
1 +
|G|2(ω)S xx(ω)
Ξ(ω)

)

=
T
2

∫
dω
2π

log
[
1 + SNR2(ω)

]
, (A.295)

for T → ∞. The frequency limits are given by the Nyquist frequency, ωN =

± π
T s

, which go to ±∞ for a continuously sampled signal. The SNR2(ω) ≡
|G|2(ω)S xx(ω) /Ξ(ω), the signal-to-noise ratio at frequency ω. Equation (A.295)
generalizes the result in Eq. (A.293) for I(X; Y), since each Fourier component is
statistically independent of the others. The time series X and noise terms must
have stationary time series, and the time-domain response function G(t) must be
time-translation invariant.

• Mutual information rate. We can define the rate at which information is communi-
cated between X and Y by analogy with the definition of entropy rate:

I(X; Y) ≡ lim
N→∞

1
N

I(XN ; YN) . (A.296)

18 As always, we define SNR as an amplitude ratio. Some authors define it to be the power ratio σ2
x/σ

2
ξ .
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By substituting the definitions of individual mutual-information functions in
Eq. (A.296) in terms of entropy functions, we can easily see that I(X; Y) = H(X) −
H(X|Y) = H(Y) − H(Y |X). In other words, an information-theory identity in terms
of entropies and mutual information terms can be transformed into a correspond-
ing rate identity (e.g., by setting H → H). Dividing by N in Eq. (A.296) gives the
rate per observation, while dividing by T = NT s would give the rate per time. We
will use both conventions.

In the Gaussian example above, the information acquired per unit time is,

I(X; Y) = lim
T→∞

1
T

I(X; Y) =
1
2

∫
dω
2π

log
[
1 + SNR2(ω)

]
. (A.297)

If YN is a deterministic and invertible function of XN , then H(YN |XN) = 0. That is,
if we know the XN , then we know the YN , as well. As a consequence, I(X; Y) = H(Y).

In Example A.26, yk =
∑k

n=0 anxk−n, implies that I(X; Y) = H(X) + log |a0|.

• Correlations. Mutual information generalizes the notion of linear correlation.
For example, if the random variables {X,Y} are stationary, correlated processes,
distributed as a bivariate Gaussian with correlation coefficient ρ = σxy/(σx σy)
(Section A.7.4), then

I(X; Y) = log

⎛⎜⎜⎜⎜⎜⎝ 1√
1 − ρ2

⎞⎟⎟⎟⎟⎟⎠ = −1
2

log
(
1 − ρ2

)
. (A.298)

See Problem A.10.8. For ρ = 0 (independent variables) I = 0, as expected. In the
deterministic limit |ρ| → 1, the mutual information diverges (I → ∞) because a mea-
surement of y determines the value of x, and a real number takes an infinite amount
of information to describe completely. (Its decimal expansion has an infinite number
of digits.)

The conventional correlation coefficient ρ does not do a good job of quantifying
the dependence of variables that are nonlinearly related. For example, if y = x2

and x ∼ N(0, 1), then ρ = 0 but I(X; Y) > 0. That is, the linear correlation coef-
ficient wrongly suggests that the two variables are independent, while the mutual
information correctly quantifies the relation. (See Problem A.10.10.)

• Correlated time series, part II. Equation (A.298) gives I(X; Y) for two Gaussian
random variables. Following the logic that led from Eq. (A.293) to Eq. (A.297),
we can calculate I(X; Y) between two correlated, stationary Gaussian processes by
integrating over frequency:19

I(X; Y) = −1
2

∫
dω
2π

log
[
1 − ρ2(ω)

]
, ρ2(ω) ≡ |S xy|2

S xx(ω) S yy(ω)
, (A.299)

19 For example, see Munakata and Kamiyabu (2006) or, for more rigor, Liptser and Shiryaev (2000).
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where the squared coherence function ρ2(ω) is equivalent to the bivariate correlation
coefficient ρ2 for each frequency component, with S xx = 〈|x|2(ω)〉 the power spec-
trum of the input signal x(t) and S yy = 〈|y|2(ω)〉 the power spectrum of the output
signal y(t). The cross spectral density S xy(ω) ≡ 〈x(ω) y∗(ω)〉 is also the Fourier trans-
form of the covariance function 〈x(t) y(t)〉. As with the correlation coefficient ρ2, the
quantity ρ2(ω) ∈ [0, 1] for each frequency. We see that

x(t) and y(t) are independent signals =⇒ ρ2 = 0 and I(X; Y) = 0.
x(t) completely determines y(t) =⇒ ρ2 = 1 and I(X; Y)→ ∞.

Although Eqs. (A.297) and (A.299) for I(X; Y) look rather different, they are
equivalent when signal and noise are uncorrelated at equal times.

• Chain rule for mutual information. For the time series XN and YN ,

I(XN ; YN) =
N∑

k=1

I(Xk; YN |Xk−1) . (A.300)

This follows from the chain rule for entropy, Eq. (A.261). We write

I(XN ; YN) = H(XN) − H(XN |YN)

=

N∑
k=1

H(Xk |Xk−1) −
N∑

k=1

H(Xk |Xk−1,YN) =
N∑

k=1

I(Xk ; YN |Xk−1) . (A.301)

Note that Y may have a different number of elements than X. Also, the symmetry
of I implies a similar expansion with X ↔ Y.

A.10.5 Some Fundamental Theorems

Much of the interest historically in information theorem is due to Shannon’s three
fundamental theorems on source coding (a long sequence of N independent, identi-
cally distributed random variables with entropy H(X) cannot be compressed into fewer
than NH(X) bits without loss of information), channel coding (information can be sent
without loss up to a rate known as the channel capacity), and rate distortion, which
sets bounds on the amount of loss (distortion) that occurs if information is sent at a
rate higher than the channel capacity. These topics are mostly outside our purview,
and you should consult standard references such as Cover and Thomas (2006) or
MacKay (2003). We do, however, make use of the concept of channel coding, which
we introduce below.

Channel Coding

We first define the notion of a communication channel, following the careful treatment
of Massey (1990). A discrete channel has a source (input) X with finite alphabet X.
When used N times, the input distribution is P(xN). Similarly, the receiver (output
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Y with finite output alphabet Y) has output distribution P(yN). The channel is
memoryless if, for each k (with 1 ≤ k ≤ N), we have

P(yk |xk, yk−1) = P(yk |xk) . (A.302)

The channel is used without feedback if

P(xk |xk−1, yk−1) = P(xk |xk−1) . (A.303)

Note that P(xk) commonly does depend on previous values, xk−1. For example, if an
English-language text transmits “b,u,z,” the next letter is more likely to be “z” than
“e”, even though the overall probability of receiving an “e” is higher than “z.”

If a channel is memoryless and used without feedback, then (Problem A.10.13)

P(yN |xN) =
N∏

k=1

P(yk |xk) . (A.304)

The output yk then depends only on the input xk and no other value of x or y. Notice
that our standard measurement relation for a linear system, yk = Cxk + ξk, defines a
DMC. We can think of measurement as a communication between a system and its
measuring device.

We now define the capacity C of a DMC as

C ≡ max
P(x)

I(X; Y) . (A.305)

In other words, we evaluate I(X; Y) for each possible input distribution P(x) of a DMC.
The capacity is given by choosing P(x) to maximize the mutual information between
source and receiver. Shannon’s theorem then states that it is possible to transmit infor-
mation, with arbitrarily small probability of error at a rate up to the channel capacity.
The theorem is remarkable, as we would naively expect a crossover between regimes
of small and large transmission errors. But no: for long messages, at rates less than C,
there is no error; at rates greater than C, there will be errors. For a DMC, it turns out
that using feedback does not increase the capacity.

Problem A.10.1 Entropy of a function of a stochastic process. For any deterministic
function f (·) and discrete random variable X, show that H[ f (X)] ≤ H(X). Hint:
Apply the chain rule to H[X, f (X)].

Problem A.10.2 Entropy of a multivariate Gaussian distribution. The N-dimensional
vector X has realizations x ∼ N(μ,Σ). Show that H(X) = 1

2 log det
(
2π eΣ

)
.

Problem A.10.3 Chain rule for relative entropy. Show that D[p(x, y) || q(x, y)] =
D[p(x) || q(x)] + D[p(y|x) || q(y|x)] – i.e., coarse graining reduces relative entropy.

Problem A.10.4 Relative entropy for Gaussians.

a. If x1 ∼ N(μ1, σ
2) and x2 ∼ N(μ2, σ

2), show D(px1 ||px2 ) = (μ1 − μ2)2/2σ2.
b. If x1 ∼ N(0, σ2

1) and x2 ∼ N(0, σ2
2), show D(px1 ||px2 ) = (σ2

1 − σ2
2)/(2σ2

2) +
log σ2

σ1
. Verify that D(px1 ||px2 ) is nonnegative.
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Problem A.10.5 Relative entropy and Fisher information. Consider a one-parameter fam-
ily of probability distributions Pθ(x) over a discrete variable x. Show that the
relative entropy between Pθ(x) and Pθ+Δθ(x) is given, to lowest order in Δθ, by

D(Pθ||Pθ+Δθ) ≈ (Δθ)2

2

〈(
d log Pθ

dθ

)2〉
≡ (Δθ)2

2
F ,

where F is the Fisher information.
Problem A.10.6 Numerical example. Consider two variables X and Y with two-letter

alphabets {1, 2}. The joint probabilities P(x, y) are given in the table at left.
Calculate

x
P(x, y) 1 2

y
1 0.3 0.3
2 0.4 0a. the marginal distributions P(x) and P(y);

b. the entropies H(X), H(Y), and H(X,Y);
c. conditional entropies H(Y |x = 1) and H(Y |x = 2). Show that H(Y |x = 1) >

H(Y). What does this mean?
d. the average conditional entropy H(Y |X). Show that H(Y |X) < H(Y), and

reconcile this result with the previous part.
e. the mutual information I(X; Y).

Problem A.10.7 Entropy rate of a Markov chain. Generalize the result for the entropy
rate of a symmetric 2-state Markov chain (Eq. A.262) to the asymmetric case,
with transition probabilities α and β, using Eq. (A.271).

a. Show thatH(X) =
(
β
α+β

)
H2(α) +

(
α
α+β

)
H2(β).

b. Which values of (α, β) maximize and which minimizeH(X)?
c. What is wrong with the following argument: For α = β = ε, the single-

symbol entropy is 1 bit. The time spent in each state before jumping to the
other is typically ε−1. Therefore, the entropy rate should beH ≈ 1 bit/(ε−1) =
ε bits/trial.

Problem A.10.8 Mutual information of a bivariate Gaussian. Derive Eq. (A.298).
Problem A.10.9 Estimating entropy from limited experimental data is tricky.

a. Simulate N draws x ∼ N(0, 1) of the random variable X, and histogram the
results. Let Ni be the number of data points in bin i and let fi = Ni/N be
the corresponding frequency estimates. If pi are the exact frequencies, then
H = −∑

pi ln pi and a “naive” estimator is Ĥ = −∑
fi ln fi, in nats. Confirm

the plot of Ĥ versus N−1 at right, where the dashed line is the expected result,
1
2 ln 2π e ≈ 1.42. Use 100 bins, over x ∈ [−5, 5]. The linearity of the plot

implies an O(1/N) bias. The bias is large: more than 20% for 100 points.
b. Use Jensen’s inequality to show that the bias is general: 〈Ĥ〉 ≤ H.
c. Taylor expand Ĥ about the exact H. Assuming that Ni is Poisson distributed

about the expected value, N pi, show that 〈Ĥ〉 = H(X) − (1/2) (Nbin/N) +
O(N−2), which has the O(N−1) dependence noted in part (a). An obvious way
to deal with finite-N bias is to extrapolate N−1 to zero, as shown in the figure.
Appendix A.8 of Bialek (2012) discusses more sophisticated estimators with
smaller bias.
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Problem A.10.10 Mutual information for a nonlinear relationship. Let y = x2 and let
x ∼ N(0, 1). Show the following:

a. The linear correlation coefficient ρ = 0.
b. I(X; Y) ≈ 1.13 bits. Why is I < H(X) ≈ 2.05 bits? Hint: Show that

H(Y |X) = 0.

Problem A.10.11 Noisy measurements and Gaussian channels. Derive Eq. (A.293).
Problem A.10.12 Measurements of noisy, correlated variables. Derive Eq. (A.294). Hint:

Follow Problem A.10.11, and use Tr log = log det (see Problem A.1.21).
Problem A.10.13 Discrete memoryless channel (DMC). Prove Eq. (A.304).
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Problem A.1.14 Show that if A is symmetric, then so is A−1.

Solution.

AA−1 = I(
A−1

)T
AT = I take transpose(

A−1
)T

A = I A is symmetric(
A−1

)T
= A−1 . take inverse on right

Problem A.1.15 Verify the Sherman–Morrison formula, Eq. (A.15).

Solution.

(
A + uvT

)−1 (
A + uvT

)
=

(
A−1 − A−1uvT A−1

1 + vT A−1u

) (
A + uvT

)

= I + A−1uvT − A−1uvT + A−1uvT A−1uvT

1 + vT A−1u

= I + A−1uvT −
A−1u������(

1 + vT A−1u
)

vT

�����
1 + vT A−1u

= I + A−1uvT − A−1uvT

= I .

The above is a verification, not a proof, as we assumed we knew the formula
already!

Problem A.1.16 Show ∂2

∂xT∂x

(
xT Ax

)
= A + AT; ∂

∂x Tr
(
xxT

)
= 2xT, and ∂

∂x

(
xTy

)
= yT.

Solution.

a. The first identity follows from Eq. (A.39):

∂2

∂xT∂x

(
xT Ax

)
=
∂

∂xT

[
d

dx

(
xT Ax

)]
=
∂

∂xT

[
xT

(
A + AT

)]
= A + AT .

87
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b. For the second identity,

∂

∂x
Tr

(
xxT

)
→ ∂

∂x j

∑
i

(
x2

i

)
= 2x j → 2xT .

c. For the third identity,

∂

∂x

(
xTy

)
→ ∂

∂x j

∑
i

xiyi = y j → yT .

Problem A.1.17 Let A and B be n × m matrices. Show ∂A

(
Tr ABT

)
= ∂A

(
Tr BAT

)
=

BT. Hint: Make sure your definition of derivative with respect to a matrix is
consistent with the previously defined limiting case m = 1 for a vector.

Solution.
Let

f ≡ Tr ABT =
∑

i j

Ai j BT
ji =

∑
i j

Ai j Bi j .

Then

∂ f
∂Ak�

=
∂

∂Ak�

∑
i j

Ai j Bi j = Bk� .

To know whether the derivative is B or BT in our convention, let us look at the
case m = 1. Then A and B are vectors, and we have already established that the
derivative of a scalar with respect to a column vector is a row vector. Thus,

∂

∂A

(
Tr ABT

)
= BT .

For the other identity,

f ≡ Tr BAT =
∑

i j

Bi j AT
ji =

∑
i j

Bi j Ai j .

This is just the same as before and gives the same answer.
Problem A.1.18 Let A be an n × m matrix and let B be an m × m matrix. Show that

∂A

(
Tr ABAT

)
=

(
B + BT

)
AT.

Solution.
Let

f ≡ Tr ABAT =
∑
i jk

Ai j B jk AT
ki =

∑
i jk

Ai j B jk Aik .

Then

∂ f
∂Aab

= Bbk Aak + Aa j Bjb = Bb j Aa j + Bjb Aa j =
(
Bb j + BT

b j

)
Aa j
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Let us look at the case m = 1. Then A is a vector and B is a scalar. Since the
answer must be a row vector, it must involve AT. Thus,

∂

∂A

(
Tr ABAT

)
=

(
B + BT

)
AT .

Problem A.1.19 Show that if AB = BA, then eA+B = eA eB. If you are clever, no
calculations are required! This identity does not hold when A and B do not
commute.

Solution.
The straightforward way to prove this would be show that(

I +
A + B

1!
+ · · · + (A + B)n

n!
+ · · ·

)
=

(
I +

A
1!
+ · · · + An

n!
+ · · ·

)

×
(
I +

B
1!
+ · · · + Bn

n!
+ · · ·

)
,

by expanding out the terms and matching coefficients. Alternatively, we can
argue for the same by noting that if the matrices commute, then the calculation
is exactly the same as for real numbers. But we know the identity holds in that
case, and hence it does here, too.

For reference, if the matrices do not commute, then the Baker-Campbell-
Hausdorff formula states that

log
(
eA eB

)
= A + B +

1
2

[A, B] + · · · ,
where the higher-order terms involve repeated commutators of A and B. There
are deep connections to the theory of Lie Algebras.

Problem A.1.20 In analogy with the matrix exponential, we can define a matrix loga-
rithm via the identity ln(I + A) = A− 1

2 A2 + 1
3 A3 − · · · . Use the previous problem

to show that if AB = BA, then log AB = ln A + log B.

Solution.
The basic idea is again the same: Since A and B commute, they obey all the

ordinary identities of algebra, and thus all the ordinary identities, such as ea+b =

ea eb, for scalars a and b.
Problem A.1.21 Show ln det A = Tr ln A, for symmetric, positive-definite matrices A.

The identity holds for more general A using the complex logarithm.

Solution.
From the identities for trace and det, both are invariant under coordinate

transformation. Thus, choose coordinates so that A = D the diagonal matrix
of eigenvalues λi. This is always possible if A is symmetric and positive definite.
In this coordinate system,

ln det A = ln
∏

i

λi =
∑

i

ln λi = Tr ln A .
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Problem A.4.1 Let us calculate some simple Fourier series.

a. Square wave. Verify the coefficients given in Eq. (A.60) of the Fourier series
for the square wave , defining it to be an even function about t = 0.

b. Square wave with variable duty cycle. Find the coefficients of an even, asym-
metric square wave that equals 1 for a quarter period and 0 for the rest,

.
c. An even function satisfies f (t) = − f (−t). Show that if the function also

satisfies f (t) = − f (t + T/2), the even cosine terms will vanish in the Fourier
series.

d. Triangle wave. Find the coefficients of the Fourier series for the even triangle
wave . Show, in particular, that an ∼ O( 1

n2

)
.

Solution.

a. When the square wave is defined as an even function, the sine terms (bn in
Eq. (A.58)) are zero. The DC term is 1

T

∫ T/2

−T/2
dt f (t) = 1

2 . The finite-order
terms are then, with ω = 2π/T ,

an =
2
T

∫ T/2

−T/2
dt f (t) cos nωt

=
2
T

∫ T/4

−T/4
dt (1) cos nωt

=
4
T

∫ T/4

0
dt cos nωt

=
4

nωT
sin nωt

∣∣∣∣∣T/4
0

=
(

2
π

) (
1
n

)
sin 1

2πn .

The sine term evaluates to +1, 0, −1, 0 +1, . . ., and thus,

sq(t) = 1
2 +

2
π

(
cosωt − 1

3 cos 3ωt + 1
5 cos 5ωt − . . .

)
,

which is just Eq. (A.60).
b. We can again repeat most of the square-wave derivation in (a). Picking up

where things begin to be different,

an =
4
T

∫ T/8

0
dt cos nωt =

4
nωT

sin nωt
∣∣∣∣∣T/8
0
=

(
2
π

) (
1
n

)
sin 1

4πn .

The pattern of the sine term is now 1√
2
, 1, 1√

2
, 0,− 1√

2
,−1,− 1√

2
, 0, 1√

2
, 0 . . .,

and the DC term is 1
4 , which gives

sq1/4(t) = 1
4 +

2
π

(
1√
2

cosωt + 1
2 cos 2ωt + 1

3
√

2
cos 3ωt − 1

5
√

2
cos 5ωt − · · ·

)
.

Notice the “missing orders” cos 4ωt, cos 8ωt, etc. These are analogous to the
case in optics where missing orders in a diffraction grating occur when there
is a rational ratio between wavelength and slit spacing.
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c. As we have seen, an even function has only cosine terms. Now let us impose
the additional symmetry f (t) = − f (t + T/2). In words, the function is invari-
ant if you slide it half a period and invert. Notice that the standard square
wave satisfies this symmetry, but a square wave with asymmetric duty cycle
does not. Let us compute the Fourier series of the shifted function, noting
again that there are only cosine terms. With the substitution s = t + T/2
and using the fact that we can integrate over one period starting and ending
anywhere we like, we have

an =
2
T

∫ T/2

−T/2
dt f (t + T/2) cos nωt =

2
T

∫ T/2

−T/2
ds f (s) cos nω(s − T/2) .

Let us use the trig identity

cos nω(s − T/2) = cos nωs cos nπ − sinωs sin nπ .

The second term is zero (sin nπ = 0 for integer n). If we look at even orders,
n = 2m, then cos 2mπ = 1 for integer m. Thus, for our shifted function,

a2m =
2
T

∫ T/2

−T/2
ds f (s) cos 2mωs .

But this is also what we would find for the same coefficient of the expansion
of f (t). Thus, the only way for a function to satisfy the symmetry f (t) =
− f (t + T/2) is to have the even orders a2m = 0.

d. The sine terms are again 0, and a0 =
1
2 . The Fourier cosine terms have

amplitude

an =
4
T

∫ T/2

0
dt

(
2t
T

)
cos nωt

=
8t
T 2

sin nωt
nω

∣∣∣∣∣T/2
0
− 8

nωT 2

∫ T/2

0
dt sin nωt

= −
(

8
nωT 2

) (
2

nω

)
1
2

(1 − cos πn)

= −
(

4
π2n2

)
1
2

(1 − cos πn) .

where we integrate by parts and note that the boundary term is zero. The
cosine terms give a pattern 1, 0, 1, 0 . . . for n = 1, 2, 3, 4 . . . and, thus, for
general T ,

tr(t) = 1
2 −

(
2
π

)2 (
cosωt + 1

9 cos 3ωt + 1
25 cos 5ωt + · · ·

)
.

Problem A.4.2 Poisson summation formula. Prove the following version of the Poisson
summation formula, which relates Fourier coefficients to Fourier transforms for
a periodic function f (t) = f (t + T ) built out of non-periodic “basis” functions
g(t). Show that f (t) =

∑∞
k=−∞ g(t + kT ) = 1

T

∑∞
n=−∞G(nω) einωt, where ω = 2π

T and
the Fourier transform G(ω) =

∫ ∞
−∞ dt g(t) e− iωt.
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Solution. Since f (t) is periodic with period T , it has a Fourier series
representation

f (t) =
∞∑

n=−∞
cn einωt

with coefficients given by Eq. (A.63):

cn =
1
T

∫ T

0
dt f (t) e− inωt

=
1
T

∫ T

0
dt

∞∑
k=−∞

g(t + kT ) e− inωt

=
1
T

∞∑
k=−∞

∫ T

0
dt g(t + kT ) e− inωt

=
1
T

∞∑
k=−∞

∫ (k+1)T

kT
dt′ g(t′) e− inω(t′−kT )

=
1
T

∞∑
k=−∞

∫ (k+1)T

kT
dt′ g(t′) e− inωt′ einkωT︸︷︷︸

=1

=
1
T

∫ ∞

−∞
dt′ g(t′) e− inωt′

=
1
T

G(nω) .

Problem A.4.3 Parseval’s theorem. Show that
∫ ∞
−∞ dt

[
f (t)

]2
=

∫ ∞
−∞

dω
2π

∣∣∣F f (ω)
∣∣∣2. Check

the relation explicitly for f (t) = θ(t) e−t, with θ(t) the Heaviside step function.

Solution.

∫ ∞

−∞
dω
2π

F f (ω)F f (ω)∗ =
∫ ∞

−∞
dω
2π

∫ ∞

−∞
dt f (t) e− iωt

∫ ∞

−∞
dt′ f (t′) e+ iωt′

=

∫ ∞

−∞
dt dt′ f (t) f (t′)

∫ ∞

−∞
dω
2π

eiω(t′−t)

=

∫ ∞

−∞
dt dt′ f (t) f (t′) δ (t′ − t)

=

∫ ∞

−∞
dt

[
f (t)

]2 .

using Eq. (A.77) for the delta function.
For f (t) = θ(t) e−t, ∫ ∞

−∞
dt

[
f (t)

]2
=

∫ ∞

0
dt e−2t =

1
2
.

On the other hand,

F f (ω) =
∫ ∞

−∞
dt f (t) e− iωt =

∫ ∞

0
dt e−(1+iω)t =

1
1 + iω

,
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so that ∫ ∞

−∞
dω
2π

∣∣∣F f (ω)
∣∣∣2 = ∫ ∞

−∞
dω
2π

1
1 + ω2

=
1

2π
(2π i)

1
2 i
=

1
2
,

where we use the Residue Theorem to evaluate the contour integral.

Problem A.4.4 Fourier transform of a comb function. By applying the Poisson summa-
tion formula to the delta function, g(t) = δ (t), show that the Fourier transform
of the time-domain comb function, f (t) =

∑
k δ (t−kT s), is the frequency-domain

comb function F(ω) = 2π
T s

∑
n δ (ω − nωs).

Solution. In the Poisson summation formula from Problem A.4.2, we set g(t) =
δ (t), which implies

G(ω) = 1 .

Thus, the Fourier series representation is

f (t) =
∞∑

k=−∞
δ (t − kT s) =

1
T s

∞∑
n=−∞

einωst .

Next, we take the Fourier transform:

F(ω) =
∫ ∞

−∞
dt f (t) e− iωt

=

∞∑
n=−∞

1
T s

∫ ∞

−∞
dt (1) einωst e− iωt

=
1
T s

∞∑
n=−∞

∫ ∞

−∞
dt e− i(ω−nωs)t

=
2π

T s

∞∑
n=−∞

δ (ω − nωs) .

Here, we use Eq. (A.76) in the form

2πδ (ω) =
∫ ∞

−∞
dt e− iωt .

Problem A.4.5 Laplace transform of integral. Show that L[∫ t

0
dt′ f (t′)

]
= 1

s F(s).

Solution. The Laplace transform of
∫ t

0
dt′ f (t′)] is

L
[∫ t

0
dt′ f (t′)

]
=

∫ ∞

0
dt

[∫ t

0
dt′ f (t′)

]
︸����������︷︷����������︸

u

e−st︸︷︷︸
dv

= 0 −
∫ ∞

0
dt f (t)

(
−e−st

s

)
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= +
1
s

∫ ∞

0
dt f (t) e−st

=
1
s

F(s) .

The boundary term uv|∞0 = 0 because of the integral term at t = 0 and the
exponential at t = ∞.

Problem A.7.1 Show that
∫ ∞
−∞ dx exp

[
− 1

2 (ax2 + bx)
]
=

√
2π
a eb2/8a. (Complete the

square.)

Solution.∫ ∞

−∞
dx exp

[
− 1

2 (ax2 + bx)
]
=

∫ ∞

−∞
dx exp

[
− 1

2 a

(
x2 +

b
a

x

)]

=

∫ ∞

−∞
dx exp

[
− 1

2 a

(
x2 +

b
a

x +
b2

4a2
− b2

4a2

)]

=

∫ ∞

−∞
dx exp

⎡⎢⎢⎢⎢⎢⎣− 1
2 a

(
x +

b
2a

)2⎤⎥⎥⎥⎥⎥⎦ eb2/8a

=

∫ ∞

−∞
dy exp

[
− 1

2 ay2
]

eb2/8a

=
1√
a

∫ ∞

−∞
dz exp

[
− z2

2

]
eb2/8a

=

√
2π
a eb2/8a .

Problem A.7.2 Characteristic function of a Gaussian. Derive the characteristic function
of a Gaussian distribution N(μ, σ2). The result is quoted in Eq. (A.183).

Solution.
The characteristic function of a Gaussian-distributed variable x ∼ N(μ, σ2) is

ϕx(k) = 〈eikx〉 =
∫ ∞

−∞
dx

1√
2πσ

e−
(x−μ)2

2σ2 eikx .

We change variables to z = x−μ
σ

, or x = μ + σz, with dx = σ dz. Then,

ϕx(k) =
σ√
2πσ

∫ ∞

−∞
dz e−z2/2 eik(μ+σz)

=
eikμ

√
2π

∫ ∞

−∞
dz e−

1
2 (z2−2 ikσz)

=
eikμ

√
2π

√
2π e−

4k2σ2

8

= eikμ e−k2σ2/2 ,

which is the result in Eq. (A.183).
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Problem A.7.3 Higher moments of a Gaussian. For a Gaussian distribution N(μ, σ2),
use the characteristic function to calculate the first four moments, 〈xn〉 (n =
1, 2, 3, 4). Verify that the skewness γ1 and kurtosis γ2 both vanish.

Solution.
We recall that the characteristic function ϕk(x) can generate moments via

〈xm〉 = (− i)m dm

dkm
ϕx(k)

∣∣∣∣∣
k=0
.

For a Gaussian random variable x ∼ N(μ, σ2),

ϕx(k) = eikμ e−k2σ2/2 .

The first four derivatives dm

dkm ϕx(k) with m = 1, 2, 3, 4 are, with α ≡ (iμ − kσ2),

ϕ′x(k) = ϕx(k)α

ϕ′′x (k) = ϕx(k)
[
−σ2 + α2

]
ϕ′′′x (k) = ϕx(k)

[
−3σ2α + α3

]
ϕ′′′′x (k) = ϕx(k)

[
3σ4 − 6σ2α2 + α4

]
.

To find the moments, we note that ϕ′x(0) = 1 and α(0) = iμ. Then,

〈x〉 = (− i)(iμ) = μ〈
x2

〉
= (− i)2

(
−σ2 − μ2

)
= σ2 + μ2〈

x3
〉
= (− i)3

(
−3 iσ2μ − iμ3

)
= 3σ2μ + μ3〈

x4
〉
= (− i)4

(
3σ4 + 6σ2μ2 + μ4

)
= 3σ4 + 6σ2μ2 + μ4 .

The skewness and kurtosis are best found by changing coordinates to z = x−μ
σ

,
but we will calculate them the “hard way” by directly evaluating the moments.
For skewness,

γ1 =

〈( x − μ
σ

)3
〉

=
1
σ3

(
〈x3〉 − 3〈x2〉μ + 3 〈x〉 μ2 − μ3

)
=

1
σ3

(
(3σ2μ + μ3) − 3(σ2 + μ2)μ + 3μ3 − μ3

)
= 0 .

For the excess kurtosis,

γ2 + 3 =

〈( x − μ
σ

)4
〉

=
1
σ4

(
〈x4〉 − 4〈x3〉μ + 6〈x2〉μ2 − 3 〈x〉 μ3 + μ4

)
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=
1
σ4

(
(3σ4 + 6σ2μ2 + μ4) − 4(3σ2μ + μ3)μ + 6(σ2 + μ2)μ2 − 4μ4 + μ4

)
= 3 ,

so that γ2 = 0, as well.
Problem A.7.4 Central-limit theorem (CLT), via cumulants. Consider N independent,

identically distributed (i.i.d.) variables, each with mean zero and variance σ2.

a. Homogeneity: Show that the cumulant κm(λx) = λmκm(x), where λ > 0.
b. Using additivity and homogeneity, find κm(zN) for zN ≡ ∑N

i=1(xi/
√

Nσ2).
c. Argue that, for N → ∞, the only non-zero cumulant is m = 2.
d. Conclude that limN→∞ p(zN) ∼ N(0, 1).
e. Define x̄N =

1
N

∑
i xi. Find limN→∞ p(x̄N).

This is the essence of the CLT proof and can be generalized to the case where the
xi all have different distributions, each with its own mean μi and variance σ2

i .

Solution.

a. Homogeneity: From the definition, hx(k) = ln
〈
eikx

〉
, we can write

hλx(k) = ln
〈
eik(λx)

〉
= ln

〈
ei(λk)x

〉
=

∞∑
m=0

(iλk)mκm(x)
m!

=

∞∑
m=0

(ik)m[λmκm(x)]
m!

.

Alternatively,

hλx(k) =
∞∑

m=0

(ik)mκm(λx)
m!

,

which implies κm(λx) = λmκm(x).
b. With zN ≡ ∑N

i=1(xi/
√

Nσ2), we have

κm(zN) = Nκ(xi/
√

Nσ2)︸������������︷︷������������︸
additivity

= N (Nσ2)−m/2κm(xi)︸��������������︷︷��������������︸
homogeneity

= N1−m/2σ−mκm(xi) .

c. When N → ∞, the factor N1−m/2 diverges for m = 1, is finite for m = 2, and
goes to zero for m ≥ 3. The m = 1 divergence is tamed because κ1(xi) = μ = 0.
Thus, only the m = 2 cumulant is non-zero.

d. Since κ2(xi) = σ2,

κ2(zN) = N1−2/2︸�︷︷�︸
N0=1

(
σ−2

) (
σ2

)
= 1 .

Thus, as N → ∞, the cumulants are κm(zN) = δm,2. The cumulant gen-
erating function is then hzN (x) = − 1

2 k2, which implies a characteristic
function ϕzN (k) = exp

[
− 1

2 k2
]
, and corresponds to a normal distribution:

limN→∞ p(zN) ∼ N(0, 1).
e. We can rephrase the conclusion for the Nth approximation to the average. If

x̄N ≡ 1
N

N∑
i=1

xi =
1
N

(√
Nσ2zN

)
=

√
σ2

N
zN ,
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then, for N → ∞,

p(zN) ∼ N(0, 1) =⇒ p(x̄N) ∼ p

⎛⎜⎜⎜⎜⎜⎝
√
σ2

N
zN

⎞⎟⎟⎟⎟⎟⎠ ∼ N(0, σ2/N) .

Thus, the average of N random variables tends to a Gaussian whose width
decreases as N−1/2.

I learned about this way to prove the CLT from Prof. Haye Hinrichsen (Univ.
Würzburg, Germany).

Problem A.7.5 Multiple measurements lead to Gaussian states-of-knowledge. The Cen-
tral Limit Theorem also explains why the state-of-knowledge for a quantity x
tends to be Gaussian after many independent measurements are made.

a. Use Bayes’ theorem, a uniform prior, the relations between characteristic
functions and repeated convolution and the CLT, and that a Fourier trans-
form of a Gaussian is also Gaussian to argue this point. (See Jacobs, 2014,
Section 1.2.2.)

b. Explain why this claim is true but rather trivial when the individual measure-
ments have Gaussian errors.

c. Explain why this claim is not true when the individual measurements have a
uniform error distribution in the interval

[
x − 1

2 , x + 1
2

]
.

Solution.

a. Define yN = {y1, y2, . . . , yN} to be a set of N independent measurements of
the same quantity x. Then, using Bayes’ theorem and assuming a uniform
prior for x,

p(x|yN) ∝ p(yN |x) p(x) ∝ p(y|x) =
N∏

i=1

p(yi|x) .

Next, consider the CLT from the point of view of characteristic functions.
The CLT claims that if we make N measurements yN of the same quantity x
that the average,

y ≡ 1
N

∑
yi → N(x, σ2) ,

as N → ∞. The variance of the Gaussian, σ2, depends on the individual vari-
ances of measurements (e.g., σ2

0/N for measurements that all have individual
variances σ2

0).

The next step is to show that the distribution of the sum of N random
variables is the repeated convolution of the individual distributions. The
argument generalizes Example A.18. Let zN ≡ ∑N

i=1 yi. Then

p(z2) =
∫

dy1 dy2 δ (z − y1 − y2) p(y1) p(y2)

=

∫
dy1 p(y1)p(z − y1) ≡ p(y1) ∗ p(y2) .
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Similarly, with z3 = z2 + y3, we have

p(z3) = p(z2) ∗ p(y3) =
[
p(y1) ∗ p(y2)

] ∗ p(y3) ≡ p(y1) ∗ p(y2) ∗ p(y3) .

Repeating, we conclude that p(zN) = p(y1) ∗ . . . ∗ p(yN). We can extend
this result to p(y) = p(zN/N) = N p(zN). Thus the probability distribution
of the average is proportional to the repeated convolution of the individual
distributions.

Now, we combine these two results: the CLT says that p(yN) tends to a
Gaussian. But p(yN) is also a repeated convolution. Thus, the repeated
convolution of N variables must tend to a Gaussian probability distribution.

Finally, in our original problem, the state-of-belief p(x|yN) is the product of
N probability distributions. The characteristic function of such a product is
the repeated convolution of the N characteristic functions. By the previous
argument, this convolution must tend to a Gaussian (in the variable k). Since
the Fourier transform of a Gaussian in k space is another Gaussian (in x),
we have our result.

b. If the likelihood of each measurement, p(yi|x) is Gaussian, then the claim
is true for all N because the product of two Gaussian functions is another
Gaussian.

c. The claim is not true for uniform distributions. We can see this two ways.
First, by direct calculation. The likelihood function p(yi|x) is the interval
[x − 1

2 , x +
1
2 ]. This means that, with a uniform prior,

p(x|yN) ∝
N∏

i=1

1{yi ∈ [x − 1
2 , x +

1
2 ]} .

This is distribution is also uniform (i.e., not Gaussian) and ranges over the
common intersection of the N intervals about each yi. For example, given
measurements y1 and y2, we would form the intersection of y1 ± 1

2 and y2 ± 1
2 ,

and so on. Thus, the product never converges to a Gaussian.

To understand more deeply what is going on, we recall that the character-
istic function of a uniform distribution is the sinc function, sin x/x. This
goes to zero asympotitically as 1/x, meaning that its variance diverges and
that the CLT cannot be applied. Loosely, we can view this as a case where
the high frequencies always are important (the distribution always cuts off
very quickly), rather than having ever-reduced importance when the CLT
applies. The requirement for this claim to be valid is then that the tail of
each measurement decay slowly enough. A local parabola would suffice.

Problem A.7.6 Marginal and conditional distributions.

a. Show that if p(x, y) is a bivariate Gaussian, then the marginal distributions
are p(x) = N(μx, σ

2
x) and p(y) = N(μy, σ

2
y).
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b. Show p(x|y) = N(μx|y, σ2
x|y), with μx|y = μx + ρ

σx

σy
(y− μy) and σ2

x|y = σ
2
x(1− ρ2).

Hint: Simplify by first defining x′ = (x − μx)/σx and y′ = (y − μy)/σy.

Solution.
We change variables as suggested. Dropping the primes, the joint distribution

is

p(x, y) =
1

2π
√

1 − ρ2
exp

[
− x2 − 2ρxy + y2

2(1 − ρ2)

]
.

a. For the marginal distribution p(x), we have

p(x) =
∫ ∞

−∞
dy p(x, y)

=
1

2π
√

1 − ρ2
exp

[
− x2

2(1 − ρ2)

] ∫ ∞

−∞
dy exp

[
−y2 − 2ρxy

2(1 − ρ2)

]

=
1

2π
√

1 − ρ2
exp

[
− x2

2(1 − ρ2)

]
exp

[
ρ2x2

2(1 − ρ2)

] ∫ ∞

−∞
dy exp

[
− (y − ρx)2

2(1 − ρ2)

]

=
1

2π
√

1 − ρ2
exp

[
− x2

2(1 − ρ2)

]
exp

[
ρ2x2

2(1 − ρ2)

] √
2π(1 − ρ2)

=
1√
2π

exp

[
− x2

2

]
.

Thus, p(x) = N(0, 1), which, transforming back to the original variables,
gives p(x) = N(μx, σ

2
x). The calculation for p(y) is identical, interchanging

x↔ y.
b. For the conditional distribution p(x|y), we have

p(x|y) =
p(x, y)
p(y)

∝ exp

[
−1

2

(
x2 − 2ρxy + y2

1 − ρ2
− y2

)]

= exp

[
−1

2

(
x2 − 2ρxy + y2

1 − ρ2
− (1 − ρ2)y2

1 − ρ2

)]

= exp

[
−1

2

(
x2 − 2ρxy + ρ2y2

1 − ρ2

)]

= exp

[
−1

2

(
(x − ρy)2

1 − ρ2

)]
.

When normalized properly, the above expression describes a Gaussian, with

μx|y = ρy , σ2
x|y = 1 − ρ2 .

Going back to the original variables proves the relations in Eq. (A.192).

Problem A.7.7 Check that the expressions for mean and variance for the bivariate dis-
tribution (Eq. A.192) are compatible with their n-dimensional generalizations
(Eq. A.197).
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Solution.
We first compute mean and covariance for the scaled distribution

p(x, y) =
1

2π
√

1 − ρ2
exp

[
− x2 − 2ρxy + y2

2(1 − ρ2)

]
,

where we have substituted

x =
x′ − μx

σx
, y =

y′ − μy

σy
.

Then it is straightforward to see (perhaps using Mathematica) that

〈x〉 = 〈y〉 = 0 ,
〈
x2

〉
=

〈
y2

〉
= 1 , 〈xy〉 = ρ .

Transforming back to the original coordinates then gives, for the means

〈x〉 = μx , 〈y〉 = μy ,

and, for the covariance elements

Σxx =
〈
(x − μx)2

〉
= σ2

x , Σyy =
〈
(y − μy)2

〉
= σ2

y ,

Σxy = 〈(x − μx)(y − μy)〉 = ρσxσy .

In Eq. (A.192), we saw that p(x|y) is a Gaussian whose mean is

μx|y = μx + ρ
σx

σy
(y − μy)

= μx +
ρσxσy

σ2
y

(y − μy)

= μx + ΣxyΣ
−1
yy (y − μy) .

and variance

σ2
x|y = σ

2
x(1 − ρ2)

= σ2
x −
ρ2σ2

xσ
2
y

σ2
y

= Σxx − Σ2
xy/Σyy

= Σxx − ΣxyΣ
−1
yy Σxy .

Thus, marginalizing the bivariate Gaussian distribution gives a scalar version
of the more general formula from Eq. (A.197), which holds for arbitrary
dimensions d1 and d2 for x1 and x2.

Problem A.7.8 Propagating means and covariances. Prove Property A.7.5 for multi-
variate Gaussians: if x ∼ N(μ, Σ), then the linear coordinate transformation
z = Ax is Gaussian with mean Aμ and covariance AΣAT. More succinctly,
z ∼ N(Aμ , AΣAT). Hint: You can use Eq. (A.179), but characteristic functions
are simpler.
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Solution.
The characteristic function is〈

eik·z〉 = 〈
eik·Ax

〉
=

〈
ei(AT k)·x〉 = ei(AT k)·μ−(AT k)·ΣAT k/2

= eik·Aμ−k·(AΣAT)k/2 .

This last expression is the characteristic of a Gaussian with mean Aμ and
covariance AΣAT.

Problem A.8.1 Two Gaussian measurements. Often, we need to combine information
from independent measurements with different precision. Assume that there
are two independent measurements x1 and x2, distributed as x1 ∼ N(μ, σ2

1) and
x2 ∼ N(μ, σ2

2). The variances σ1 and σ2 are known, and we wish to infer the
mean, μ. Assume a uniform prior for μ.

a. Using Bayes’ theorem, show that you can estimate μ as μ̂ ± σμ, with

μ̂ = σ2
μ

⎛⎜⎜⎜⎜⎝ x1

σ2
1

+
x2

σ2
2

⎞⎟⎟⎟⎟⎠ , 1
σ2
μ

=
1

σ2
1

+
1

σ2
2

.

b. Show that p(μ|x1, x2, σ
2
1, σ

2
2) is in fact a Gaussian, with the mean and vari-

ance given above. If you have a computer algebra program, do this in
general. If you are doing the problem by hand, show the claim assuming
that σ2

1 = σ
2
2 = 1.

Solution.

a. With a uniform prior for μ, we can write

p(μ|x1, x2, σ
2
1, σ

2
2) ∝ p(x1, x2|μ, σ2

1, σ
2
2) ∝ p(x1|μ, σ2

1) p(x2|μ, σ2
2) ≡ L

Since p(x1|μ, σ2
1) = N(μ, σ2

1) and p(x2|μ, σ2
2) = N(μ, σ2

1), we can write

− ln L =
(x1 − μ)2

2σ2
1

+
(x2 − μ)2

2σ2
2

,

We find μ̂ by maximizing L and hence minimizing − ln L. Taking ∂μ(− ln L) =
0 gives

∂μ(− ln L) = − x1 − μ
σ2

1

− x2 − μ
σ2

2

= 0 .

Solving for μ then gives

μ̂ = σ2
μ

⎛⎜⎜⎜⎜⎝ x1

σ2
1

+
x2

σ2
2

⎞⎟⎟⎟⎟⎠ , where
1
σ2
μ

≡ 1

σ2
1

+
1

σ2
2

Taking the second derivative ∂μμ(− ln L) gives

∂μμ(− ln L) =
1

σ2
1

+
1

σ2
2

.
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Then, since σ2
μ ≡ ∂μμ(− ln L)−1, we have

1
σ2
μ

=
1

σ2
1

+
1

σ2
2

,

which confirms the identification made in the estimate for μ̂.
b. i. Using Mathematica, I find that

(x1 − μ)2

2σ2
1

+
(x2 − μ)2

2σ2
2

− (μ̂ − μ)2

2σ2
μ

=
(x1 − x2)2

2(σ2
1 + σ

2
2)
.

Since the right-hand side is independent of μ, we conclude that since the
exponential of − (μ̂−μ)2

2σ2
μ

describes a Gaussian, so does the exponential of

− (x1−μ)2

2σ2
1
− (x2−μ)2

2σ2
2

. That is,

exp

⎡⎢⎢⎢⎢⎣− (x1 − μ)2

2σ2
1

⎤⎥⎥⎥⎥⎦ exp

⎡⎢⎢⎢⎢⎣− (x2 − μ)2

2σ2
2

⎤⎥⎥⎥⎥⎦ ∝ exp

⎡⎢⎢⎢⎢⎣− (μ̂ − μ)2

2σ2
μ

⎤⎥⎥⎥⎥⎦ ,
where we omit constants that are independent of μ.

ii. For hand calculations, simplify by setting σ1 = σ2 = 1. We then have
μ̂ = 1

2 (x1 + x2) and σ2
μ =

1
2 . We can then easily verify that

(x1 − μ)2

2
+

(x2 − μ)2

2
−

[
( 1

2 (x1 + x2) − μ)
]2

2( 1
2 )

=
(x1 − x2)2

4
.

Problem A.8.2 Show that if ξ ∼ N(0, σ2
I), then the best estimate θ̂ of a linear fit is Gaus-

sian distributed about the true values θ̂
∗
, with variance σ2(ΦTΦ)−1. Notice how

the variance of the parameter estimates is proportional to the variance of the
original data. Qualitatively, what happens if the measurement noise is colored,
so that ξ ∼ N(0,Qξ), with a covariance matrix that has off-diagonal elements?

Solution.
The best estimate is Gaussian distributed since

θ̂ =
(
ΦTΦ

)−1
ΦTy (A.1)

shows that θ̂ is a linear transformation of y. Then, since y is Gaussian, so is θ̂.
To show that θ̂ is unbiased, we have〈

θ̂
〉
=

〈(
ΦTΦ

)−1
ΦTy

〉
=

〈(
ΦTΦ

)−1
ΦT(Φθ∗ + ξ)

〉
=

(
ΦTΦ

)−1
ΦTΦ θ∗ + 0

= θ∗ .

In the last step, we assume that〈(
ΦTΦ

)−1
ΦT ξ

〉
= 0 ,
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which is true only if the elements of ξ are not correlated with the measurements
(elements Φi j of the design matrix). The condition is satisfied if ξ is white noise.

We next find the variance, recalling from Section A.7.5 that if θ̂ = Ay, then
Var (Ay) = AyAT. Thus,

Var θ̂ = Var
[(
ΦTΦ

)−1
ΦTy

]
=

(
ΦTΦ

)−1
ΦT︸���������︷︷���������︸

A

(Var y) Φ
(
ΦTΦ

)−1︸��������︷︷��������︸
AT

= σ2
(
ΦTΦ

)−1
.

Problem A.8.3 Show that for an orthonormal basis in function space, e j · ek = δ jk that

θ̂k = y · ek , or y =
K∑

k=1

(y · ek)ek , (A.2)

justifying the interpretation of P(K) as a projector matrix in Eq. (A.219).

Solution.
The model ŷ =

∑K
k=1 θkek, and we want to minimize ||y − ŷ||2. We have

||y − ŷ||2 = y2 − 2y · ŷ + ŷ2 = y2 − 2y ·
K∑

k=1

θkek +

K∑
k=1

θ2k .

Taking a derivative with respect to θ� then gives

−2(y · e�) + 2θ� = 0 .

Solving for θ�, we have

θ� = y · e� =
N∑

i=1

yi e�(xi) ,

as claimed. Thus, each parameter is obtained by projecting the data vector onto
the associated basis function.

Problem A.8.4 For the cost function J(x̂) = 〈|x − x̂|〉 = ∫
dx |x̂ − x| p(x|y), show that

minimizing J implies that x̂∗ is the median of p(x|y). Investigate J′′(x̂∗), too.

Solution.
The derivative of the absolute value function is the sign function. Thus,

dJ
dx̂

∣∣∣∣∣
x̂∗
=

∫ ∞

−∞
dx sign(x̂∗ − x) p(x|y)

= (+1)
∫ x̂∗

−∞
dx p(x|y) + (−1)

∫ ∞

x̂∗
dx p(x|y) = 0 .

Equating the two terms means that∫ x̂∗

−∞
dx p(x|y) =

∫ ∞

x̂∗
dx p(x|y) ,
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which defines the median (x̂∗). Note that J′′(x̂∗) = 2p(x̂∗|y) ≥ 0, implying that the
median minimizes J. (The case J′′(x̂∗) = 0 would require further investigation.)

Problem A.8.5 For the bottom “box shaped” cost function with a small width Δ, show
that minimizing J(x̂) implies that x̂∗ is the mode of p(x|y).

Solution.
The cost function J(x̂) is given by

J(x̂) = 1 −
∫ x̂+Δ

x̂−Δ
dx p(x|y) ,

where the value 1 is just an arbitrary positive constant and where Δ is some small
interval. In words, we slide a small band centered on x̂, of width 2Δ, over the
posterior p(x|y) and select the x̂ that minimizes J. Clearly, this is the value that
maximizes the integral. But for small Δ, the integral is∫ x̂+Δ

x̂−Δ
dx p(x|y) ≈ p(x̂|y) 2Δ ,

which is maximized by

x̂∗ = arg max
x

p(x|y) ,

meaning that x̂∗ is the mode of the posterior distribution, as illustrated below.

Problem A.8.6 Important details about importance sampling. We fill in some gaps in our
discussion of importance sampling. Assume a scalar variable x.

a. As a warmup, use Eq. (A.227) to show that, for N independent draws xi from
p(x), if ϕ̂ = 1

N

∑N
i=1 ϕi, then Var ϕ̂ = 1

N Var ϕ.
b. Importance sampling estimates the average of ϕ(x) over the distribution p(x)

using a second, proposal distribution q(x). In general, p and q need not be
normalized, but here we assume they are. Then, 〈ϕ〉p ≈ ϕ̂ = ∑N

i=1 wi ϕ(xi),

with weights wi =
p(xi)/q(xi)∑
i p(xi)/q(xi) . The xi are N independent draws xi ∼ q(x).

Show that 〈ϕ̂〉 = 〈ϕ〉p and Varq[ϕ̂] = 1
N

(〈 pϕ2

q 〉p − 〈ϕ〉2p
)
. Show that the vari-

ance vanishes when we pick q(x) = p(x)ϕ(x), a choice that is valid only for
ϕ(x) > 0.

c. Bias of the ratio. ϕ̂ is biased for finite N. To see how this can arise, consider
a case of N random variables ni and di (numerator and denominator, in this
case). Assume that they are correlated, as this is true for the importance-
sampling case. (Why?) Let 〈n〉 and 〈d〉 be the mean values of the random
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variables (e.g., 〈n〉 = ∫
dn n p(n)). Let bars denote arithmetic averages (e.g.

n = 1
N

∑N
i=1 ni). Then show

〈
n̄
d̄

〉
� 〈n〉〈d〉 by writing ni = 〈n〉 + δni and giving the

lowest-order corrections.

Solution.

a. We first recall that

〈ϕ̂〉 =
〈

1
N

N∑
i=1

ϕ(xi)

〉
=

1
N

∑
i

〈ϕ(xi)〉 =
(

1
N

)
N〈ϕ〉 = 〈ϕ〉 .

For the second moment,

〈ϕ̂2〉 =
〈⎛⎜⎜⎜⎜⎜⎝ 1

N

N∑
i=1

ϕ(xi)

⎞⎟⎟⎟⎟⎟⎠
2〉

=
1

N2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣N〈ϕ2〉︸︷︷︸
diagonal

+ (N2 − N) 〈ϕ(xi)ϕ(x j)〉︸����������������������︷︷����������������������︸
off-diagonal

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1
N
〈ϕ2〉 + N2 − N

N2
〈ϕ(xi)〉〈ϕ(x j)〉︸�����������︷︷�����������︸

independent

=
1
N

(
〈ϕ2〉 − 〈ϕ〉2

)
+ 〈ϕ〉2 ,

so that

Var ϕ̂ = 〈ϕ̂2〉 − 〈ϕ̂〉2 = 1
N

Var ϕ , as claimed.

b. With weights w(x) = p(x)
q(x) , we can go through the same steps as in part (a) to

show that the Var ϕ̂ = 1
N Var [ϕw]. Thus,

Varq [ϕ̂] =
1
N

Varq[ϕ(x) w(x)]

=
1
N

Varq

[
ϕ(x) p(x)

q(x)

]

=
1
N

∫
dx

(
ϕp
Q

)2

q(x) −
(∫

dx
ϕp
q

q(x)

)2

=
1
N

∫
dx

[
ϕ2 p2

q

]
− 1

N
〈ϕ〉2p



106 Mathematics

=
1
N

∫
dx

[
pϕ2

q

]
p − 1

N
〈ϕ〉2p

=
1
N

⎛⎜⎜⎜⎜⎝〈 pϕ2

q

〉
p

− 〈ϕ〉2p
⎞⎟⎟⎟⎟⎠ ,

Selecting q = pϕ, or, equivalently, writing ϕ = q/p, we note that

〈ϕ〉p =
∫

dx
q
p

p =
∫

dx q = 1 .

Similarly, 〈
pϕ2

q

〉
p

=

∫
dx

pq2

qp2
p =

∫
dx q = 1 ,

which implies that Varq [ϕ̂] ∝ 1 − 1 = 0. Intuitively, the variance vanishes
because we have selected a distribution q(x) from which every draw, x ∼ q(x),
will give a value of 1.
As stated in the text, this is not a useful result in itself. But it does mean
that you can reduce the variance of your estimator by matching, as well as
possible, q to pϕ, so that the range of values x that you find upon drawing
from q(x) is as small as possible. Finally, selecting q = p just gives Varq [ϕ̂] =
Varp [ϕ̂], as it must.

c. We have

n̄ =
1
N

N∑
i=1

ni

=
1
N

N∑
i=1

〈n〉 + δni

= 〈n〉 + 1
N

N∑
i=1

δni .

Then, the ratio of n̄ to d̄ is

n̄

d̄
=
〈n〉 + 1

N

∑N
i=1 δni

〈d〉 + 1
N

∑N
j=1 δd j

=
〈n〉
〈d〉

1 + 1
N

∑N
i=1

δni

〈n〉
1 + 1

N

∑N
j=1

δd j

〈d〉

=
〈n〉
〈d〉

⎛⎜⎜⎜⎜⎜⎝1 + 1
N

N∑
i=1

δni

〈n〉

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝1 + 1

N

N∑
j=1

δd j

〈d〉

⎞⎟⎟⎟⎟⎟⎟⎠
−1

=
〈n〉
〈d〉

⎛⎜⎜⎜⎜⎜⎝1 + 1
N

N∑
i=1

δni

〈n〉

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝1 − 1

N

N∑
j=1

δd j

〈d〉 +
N∑

j=1

δd j

〈d〉
N∑

k=1

δdk

〈d〉 + · · ·
⎞⎟⎟⎟⎟⎟⎟⎠
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Then, taking ensemble averages we have, to second order,〈 n̄

d̄

〉
≈ 〈n〉〈d〉

[
1 +

1
N

( 〈 δd2〉
〈d〉2 −

〈 δnδd〉
〈n〉 〈d〉

)]
,

where we have used an argument similar to (a) in writing the averages. More
intuitively, we are just using the fact that δn is the standard error of the mean,
which is σn/

√
N.

Finally, note that the calculation depends on having δn � n̄. On the other
hand, the general statement that the ratio of finite-N estimators is biased still
clearly holds. But you may need to evaluate the bias more carefully in some
cases.

Problem A.10.1 Entropy of a function of a stochastic process. For any deterministic
function f (·) and discrete random variable X, show that H[ f (X)] ≤ H(X). Hint:
Apply the chain rule to H[X, f (X)].

Solution.
From the chain rule for entropy, Eq. (A.259),

H[X, f (X)] = H(X) + H[ f (X)|X] = H(X) .

The last equation follows because if X is given, then the value of the deterministic
function f (X) is known and thus has no entropy.

We can also write the chain rule the other way:

H[X, f (X)] = H[ f (X)] + H[X| f (X)] ≥ H[ f (X)] .

The last identity occurs because f (X) may have multiple inputs. For example, if
f (X) = X2, then knowing f (X) means that there are two possible values for X.
The multiple values for X means that H[X| f (X)] ≥ 0 and hence gives the stated
inequality.

Putting these two identities together, we have

H[ f (X)] ≤ H(X) .

The direct, intuitive statement of the result is that f (X) may map different values
of X onto the same functional value, thereby reducing the entropy of f (X). If f (·)
is an invertible function, then H[ f (X)] = H(X).

Problem A.10.2 Entropy of a multivariate Gaussian distribution. The N-dimensional
vector X has realizations x ∼ N(μ,Σ). Show that H(X) = 1

2 log det
(
2π eΣ

)
.

Solution.
For x ∼ N(μ,Σ), the distribution p(x) is

p(x) =
1√

(2π)Ndet Σ
e−

1
2 xTΣ−1 x .
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Then,

− log p(x) = N
2 log 2π + 1

2 log det Σ + 1
2 log e xTΣ−1x .

The entropy is H = 〈− log p〉, which gives

H = N
2 log 2π + 1

2 log det Σ + 1
2 log e 〈xTΣ−1x〉 .

To evaluate the last term, we transform to coordinates in which

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ2

1 · · · 0
...
. . .

...

0 · · · σ2
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
In that coordinate system,

xTΣ−1x =
(
x1 · · · xN

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1/σ2

1 · · · 0
...

. . .
...

0 · · · 1/σ2
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
N∑

i=1

x2
i

σ2
i

,

and

〈xTΣ−1x〉 =
N∑

i=1

σ2
i

σ2
i

= N .

Substituting this result into the differential entropy expression gives

H(X) = N
2 log 2π + 1

2 log det Σ + 1
2 (log e) N

= N
2 log(2π e) + 1

2 log det Σ

= 1
2 log(2π e)N + 1

2 log det Σ

= 1
2 log det

(
2π eΣ

)
,

where (2π e)N = det (2π e I) and I is the N × N identity matrix. Note that det
Σ > 0, since the covariance matrix Σ is positive definite.

Problem A.10.3 Chain rule for relative entropy. Show that D[p(x, y) || q(x, y)] =
D[p(x) || q(x)] + D[p(y|x) || q(y|x)]; i.e., coarse graining reduces relative entropy.

Solution.
We first prove the chain rule for relative entropy:

D[p(x, y) || q(x, y)] =
∑
x,y

p(x, y) log
p(x, y)
q(x, y)

=
∑
x,y

p(x, y) log
p(x) p(y|x)
q(x) q(y|x)

=
∑
x,y

p(x, y) log
p(x)
q(x)

+
∑
x,y

p(x, y) log
p(y|x)
q(y|x)

= D[p(x) || q(x)] + D[p(y|x) || q(y|x)] .

This proof is from Cover and Thomas (2006), Theorem 2.5.3.
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Because of the Gibbs inequality, Eq. A.277, we have D[p(y|x) || q(y|x)] ≥ 0.
Thus,

D[p(x, y) || q(x, y)] ≥ D[p(x) || q(x)] .

That is, the relative entropy is reduced, or held constant, whenever we “integrate
out” variables from both probability distributions. The result clearly applies
when x represents Nx variables and y represents Ny variables.

In practice, the equality condition is seldom encountered. For equality, we
must have D[p(y|x) || q(y|x)] = 0. From the Gibbs inequality, the relative entropy
is zero only when the two probability distributions are the same. The most likely
scenario for this to occur is that X and Y are independent random variables, so
that p(y|x) = p(y) and q(y|x) = q(y). Then we would further require p(y) = q(y).
Since these are fairly artificial circumstances, we can conclude that in almost all
cases of interest, coarse graining does indeed reduce relative entropy.

Problem A.10.4 Relative entropy for Gaussians.

a. If x1 ∼ N(μ1, σ
2) and x2 ∼ N(μ2, σ

2), show D(px1 ||px2 ) = (μ1 − μ2)2/2σ2.
b. If x1 ∼ N(0, σ2

1) and x2 ∼ N(0, σ2
2), show D(px1 ||px2 ) = (σ2

1 − σ2
2)/(2σ2

2) +
log σ2

σ1
. Verify that D(px1 ||px2 ) is non-negative.

Solution.

a. We have 〈x〉 = μ1, since we average over x1.

D(px1 ||px2 ) =

〈
− (x − μ1)2

2σ2
+

(x − μ2)2

2σ2

〉

=
1

2σ2
〈2xμ1 − μ2

1 − 2xμ2 + μ
2
2〉

=
1

2σ2
(2μ2

1 − μ2
1 − 2μ1μ2 + μ

2
2)

= 1
2σ2 (μ1−μ2)2 .

b. We have 〈x2〉 = σ2
1, since μ = 0.

D(px1 ||px2 ) =

〈
− x2

2σ2
1

+
x2

2σ2
2

+ log
σ2

σ1

〉

= −1
2
+
σ2

1

σ2
2

+ log
σ2

σ1

=
σ2

1−σ2
2

2σ2
2
+ log σ2

σ1
.

A graph of D(σ2/σ1) is at left (solid trace). Notice that it is indeed non-
negative, with a minimum of 0 at σ1 = σ2, as claimed.
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Algebraically, we can define s = σ2/σ1, in terms of which

D =
1 − s2

2s2
+ log s ,

A series expansion about s = 1 gives

D = (s − 1)2 + O(s − 1)3

and shows, locally, that D ≥ 0 for σ1 ≈ σ2. The quadratic approximation is
included (dashed line) in the plot below.

Problem A.10.5 Relative entropy and Fisher information. Consider a one-parameter fam-
ily of probability distributions Pθ(x) over a discrete variable x. Show that the
relative entropy between Pθ(x) and Pθ+Δθ(x) is given, to lowest order in Δθ, by

D(Pθ||Pθ+Δθ) ≈ (Δθ)2

2

〈(
d log Pθ

dθ

)2〉
≡ (Δθ)2

2
F ,

where F is the Fisher information.

Solution.

The relative entropy, in nats, is

D =
∑

i

Pθ(xi) ln
Pθ(xi)

Pθ+Δθ(xi)

= −
∑

i

Pθ(xi) ln
Pθ+Δθ(xi)

Pθ(xi)

= −
∑

i

Pθ(xi) ln
Pθ(xi) + (Δθ)P′θ(xi) + 1

2 (Δθ)2P′′θ (xi) + · · ·
Pθ(xi)

= −
∑

i

Pθ(xi) ln

[
1 + (Δθ)

P′θ(xi)

Pθ(xi)
+ 1

2 (Δθ)2 P′′θ (xi)

Pθ(xi)

]

= −
∑

i

Pθ(xi)

⎡⎢⎢⎢⎢⎢⎣(Δθ) P′θ(xi)

Pθ(xi)
+ 1

2 (Δθ)2

⎛⎜⎜⎜⎜⎜⎝P′′θ (xi)

Pθ(xi)
−

(
P′θ(xi)

Pθ(xi)

)2⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ + · · ·

=
∑

i

⎧⎪⎪⎨⎪⎪⎩−(Δθ)P′θ(xi) − 1
2 (Δθ)2P′′θ (xi) + 1

2 (Δθ)2Pθ(xi)

(
P′θ(xi)

Pθ(xi)

)2
⎫⎪⎪⎬⎪⎪⎭
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= −(Δθ)
d
dθ

∑
i

Pθ(xi) − 1
2 (Δθ)2 d2

dθ2

∑
i

Pθ(xi) + 1
2 (Δθ)2

∑
i

Pθ(xi)

(
P′θ(xi)

Pθ(xi)

)2

= 0 + 0 + 1
2 (Δθ)2

〈(
d ln Pθ

dθ

)2〉
,

where
∑

i Pθ(xi) = 1, and the first two terms vanish because we take d
dθ of a

constant. Note that we first Taylor expanded Pθ and then used ln(1 + x) = x −
1
2 x2 + · · · .

Problem A.10.6 Numerical example. Consider two variables X and Y with two-letter
alphabets {1, 2}. The joint probabilities P(x, y) are given in the table at left.
Calculate

a. the marginal distributions P(x) and P(y);
b. the entropies H(X), H(Y), and H(X,Y);
c. conditional entropies H(Y |x = 1) and H(Y |x = 2). Show that H(Y |x = 1) >

H(Y). What does this mean?

x
P(x, y) 1 2

y
1 0.3 0.3
2 0.4 0

d. the average conditional entropy H(Y |X). Show that H(Y |X) < H(Y), and
reconcile this result with the previous part.

e. the mutual information I(X; Y).

Solution.

a. P(x = 1) = 0.3 + 0.4 = 0.7. P(x = 2) = 0.3 + 0 = 0.3. P(y = 1) = 0.6.
P(y = 2) = 0.4.

b. H(X) = −0.7 log 0.7 − 0.3 log 0.3 ≈ 0.88 bits. H(Y) ≈ 0.97 bits. Finally, the
joint entropy H(X,Y) ≈ 1.57 bits.

c. H(Y |x = 1) = −∑
y P(y|1) log P(y|1). Then use P(y|1) = P(y, 1)/P(x = 1). This

gives H(Y |x = 1) ≈ 0.98 bits, which is indeed bigger than H(Y). We also
calculate H(Y |x = 2) = 0 bits.

What does it mean to have H(Y |x = 1) > H(Y)? Informally, the partic-
ular observation x = 1 is confusing, making us more uncertain about Y
than before the observation. The conditional probabilities are more “even”
than the unconditional ones. By contrast, the result that H(Y |x = 2) = 0
means that if we observe x = 2, then we know that y = 1, since there is zero
probability to observe y = 2, given x = 2.

d. We can calculate H(Y |X) two ways. First, we have the previous result.
H(Y |X) = P(x = 1)H(Y |x = 1) + P(x = 2)H(Y |x = 2) = 0.7 × 0.98 + 0 ≈ 0.69
bits.
Alternatively, H(Y |X) = H(Y, X) − H(X) = 1.57 − 0.88 ≈ 0.69 bits.

e. Finally, I(X; Y) = H(X) + H(Y) − H(X,Y) ≈ 0.28 bits.

Problem A.10.7 Entropy rate of a Markov chain. Generalize the result for the entropy
rate of a symmetric 2-state Markov chain (Eq. A.262) to the asymmetric case,
with transition probabilities α and β, using Eq. (A.271).
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a. Show thatH(X) =
(
β
α+β

)
H2(α) +

(
α
α+β

)
H2(β).

b. Which values of (α, β) maximize and which minimizeH(X)?
c. What is wrong with the following argument: For α = β = ε, the single-

symbol entropy is 1 bit. The time spent in each state before jumping to the
other is typically ε−1. Therefore, the entropy rate should beH ≈ 1 bit/(ε−1) =
ε bits/trial.

Solution.

a. The state diagram is shown below.

The transition matrix is then

P =
(
1 − α β

α 1 − β
)
.

The entropy rate is

H(X) = H(X2|X1) = −
∑
i, j

P(xi) P(x j|xi) log P(x j|xi) .

The probabilities P(xi) are just the steady-state occupation probabilities and
satisfy the marginal probability law P(xi) =

∑
j P(xi, x j) =

∑
j P(x j)P(xi|x j).

P(0) = P(0) (1 − α) + P(1)β , P(1) = P(0)α + P(1) (1 − β) .
Using P(0) + P(1) = 1, we find

P(0) =
β

α + β
, P(1) =

α

α + β
.

Then

H(X) = −
(
β

α + β

)
[(1 − α) log(1 − α) + α logα]

−
(
α

α + β

)
[(1 − β) log(1 − β) + β log β]

=
(
β
α+β

)
H2(α)+

(
α
α+β

)
H2(β) .

b. It is easy to see that α = β = 0.5 maximizesH(X) = log 2. We can understand
this limit by noting x = 0 and 1 occur with equal probability (0.5) and that
we learn the full 1 bit of information each time we measure them, regardless
of what state they were previously.

The minimum value isH(X) = 0, which occurs when either α or β = 0. This
also makes sense: If α = 0, then x = 0 is an absorbing state. Once the system
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gets to x = 0, it will stay there. The entropy rate, an average over infinite
time, is zero because we know that the system is eventually always in x = 0.
The value of β merely determines the mean lifetime of an initial state that
happens to be x = 1. Note that the same statements apply (with 0 ↔ 1)
when β = 0.

The situation α = 1 is different. This case means that if the system is in x = 0,
we are certain that it will be in x = 1 the next time; however, depending on
the value of β, the system will take a greater or lesser time to return to x = 0.

c. For α = β = ε � 1, the simple argument gives H = ε bits/trial. The exact
answer isH = −ε ln ε− (1− ε) ln(1 − ε) ≈ −ε ln ε is greater by a factor ln 1/ε.

The simple, “mean-field” solution neglects the information contained in the
fluctuations of transition times. This is easily understood by comparing
graphical representations of representative time series generated from the
“mean-field” solution and from the exact solution. The top plot shows a
Markov sequence of 1000 points, with a transition probability ε = 0.1. Thus,
there is, on average, a jump every 10 steps. The bottom plot shows a sim-
ilar sequence, but not grouped in blocks of ε−1 = 10 steps. Each block is
chosen with P(0) = P(1) = 0.5. Qualitatively, it is obvious that there is less
information contained in the sequence (fewer transitions).

Problem A.10.8 Mutual information of a bivariate Gaussian. Derive Eq. (A.298).

Solution.
We calculate the mutual information as I(X; Y) = H(X) + H(Y) − H(X,Y).

For x ∼ N(0, σ2
x), the entropy H(X) =

√
2π e + 1

2 logσ2
x.

Likewise, for y ∼ N(0, σ2
y), the entropy H(Y) =

√
2π e + 1

2 logσ2
y .

For a bivariate Gaussian (x, y) ∼ N(0,Σ). From Eq. (A.193), we have,

Σ =

(
σ2

x ρσxσy

ρσxσy σ2
y ,

)
.

Then

H(X,Y) = 2 log
√

2π e + 1
2 log det Σ

= 2 log
√

2π e + 1
2 log[σ2

xσ
2
y(1 − ρ2)] .
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Finally,

I(X; Y) =
(
log
√

2π e + 1
2 logσ2

x

)
+

(
log
√

2π e + 1
2 logσ2

y

)
−

(
2 log

√
2π e + 1

2 log[σ2
xσ

2
y(1 − ρ2)]

)
= − 1

2 log
(
1 − ρ2

)
.

Problem A.10.9 Estimating entropy from limited experimental data is tricky.

a. Simulate N draws x ∼ N(0, 1) of the random variable X, and histogram the
results. Let Ni be the number of data points in bin i and let fi = Ni/N be
the corresponding frequency estimates. If pi are the exact frequencies, then
H = −∑

pi ln pi and a “naive” estimator is Ĥ = −∑
fi ln fi, in nats. Confirm

the plot of Ĥ versus N−1 at left, where the dashed line is the expected result,
1
2 ln 2π e ≈ 1.42. Use 100 bins, over x ∈ [−5, 5]. The linearity of the plot

implies an O(1/N) bias. The bias is large: more than 20% for 100 points.
b. Use Jensen’s inequality to show that the bias is general: 〈Ĥ〉 ≤ H.
c. Taylor expand Ĥ about the exact H. Assuming that Ni is Poisson distributed

about the expected value, N pi, show that 〈Ĥ〉 = H(X) − (1/2) (Nbin/N) +
O(N−2), which has the O(N−1) dependence noted in part (a). An obvious way
to deal with finite-N bias is to extrapolate N−1 to zero, as shown in the figure.
Appendix A.8 of Bialek (2012) discusses more sophisticated estimators with
smaller bias.

Solution.

a. See the book website for code.
b. The frequencies fi are unbiased estimators of the probabilities pi. That is,
〈 fi〉 = pi. Then, 〈Ĥ〉 = 〈H( f )〉 ≤ H(〈 f 〉) = H(p), where we use the Jensen
inequality and the fact that the entropy is a convex function of its arguments.

c. Let Ni ∼ Poisson(N pi). Then 〈Ni〉 = 〈( δNi)2〉 = N pi. The empirical frequen-
cies for bin i are fi = Ni/N. Then 〈 fi〉 = pi and 〈( δ fi)2〉 = N pi/N2 = pi/N
and

Ĥ = H(X) +
Nbin∑
i=1

∂Ĥ
∂ fi

∣∣∣∣∣∣
pi

( δ fi) +
1
2
∂2Ĥ

∂ f 2
i

∣∣∣∣∣∣
pi

( δ fi)
2 + · · · .

We have

−∂Ĥ
∂ fi
= ln fi + 1 , −∂

2Ĥ

∂ f 2
i

=
1
fi
.

Substituting and taking the expectation value then gives

〈Ĥ〉 = H(X) + 0 − 1
2

Nbin∑
i=1

1
pi

pi

N
+ · · ·

≈ H(X) − 1
2

Nbin

N
,
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where 〈 δ fi〉 = 0 eliminates the linear term. The next term would be
O〈( δ f )3〉 = O(N−2), since the Poisson distribution is skew, and the central
3rd moment is 〈( δ fi)3〉 = N pi/N3.

Note that while reducing the number of bins would seem to lower the bias,
the situation is more complicated because coarsening bins increases dis-
cretization bias. Accurate estimation with the naive estimator Ĥ requires
taking a large Nbin and then an even larger N. Although extrapolation
(N → ∞) helps, as mentioned in the problem statement, other estimators
can do a better job. See Appendix A.8 of Bialek (2012) for a discussion of
all these issues.

Problem A.10.10 Mutual information for a nonlinear relationship. Let y = x2 and let
x ∼ N(0, 1). Show the following:

a. The linear correlation coefficient ρ = 0.
b. I(X; Y) ≈ 1.13 bits. Why is I < H(X) ≈ 2.05 bits? Hint: Show that H(Y |X) =

0.

Solution.

a. The linear covariance ρ is proportional to〈
(x − 〈x〉)(x2 − 〈x2〉)

〉
=

〈
(x − 0)(x2 − σ2

x)
〉

=
〈
x3

〉
− 〈x〉σ2

x

= 0 − 0 = 0 .

More simply, x is odd and x2 even. The covariance between even and odd
functions of a random variable with even probability distribution function
vanishes.

b. From Eq. (A.288), a definition of mutual information is I(X; Y) = H(Y) −
H(Y |X). But the latter term is zero, because if we know x exactly, we know
y = x2 exactly. Thus, a measurement of X does not tell us anything more
about Y.

We recall that H(X) = log
√

2π e ≈ 2.05 bits. We also recall, from Eq. (A.161),
that

p(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
2πy

e−
y
2 . y > 0

0 y ≤ 0

Then, using Mathematica to do the integral gives

H(Y) = −
∫ ∞

0
dy p(y) log p(y) =

1 − γ + log π

2 log 2
≈ 1.13 bits ,
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where γ ≈ 0.577 is the Euler-Mascheroni constant. Intuitively, a measure-
ment y tells us only “half as much” about x, because x = ±√y, and there
is a roughly one-bit ambiguity. The relationship is not exact because it also
depends on local stretching of coordinates.

Problem A.10.11 Noisy measurements and Gaussian channels. Derive Eq. (A.293).

Solution.

We first note that

p(x) =
1√

2πσ2
x

e
− x2

2σ2
x p(y) =

1√
2πσ2

y

e
− y2

2σ2
y p(y|x) =

1√
2πσ2

ξ

e
− (y−x)2

2σ2
ξ ,

where σ2
y = σ

2
x + σ

2
ξ . The mutual information is then

I(X; Y) =
�

dx dy p(x, y) log

(
p(y|x)
p(y)

)

=
1

ln 2

〈
ln

√
2πσ2

y√
2πσ2

ξ

− (y − x)2

2σ2
ξ

+
y2

2σ2
y

〉

=
1

ln 2

⎛⎜⎜⎜⎜⎜⎝1
2

ln
σ2

y

σ2
ξ

− 1
2
+

1
2

⎞⎟⎟⎟⎟⎟⎠
=

1
ln 2

(
1
2

)
ln

⎛⎜⎜⎜⎜⎜⎝1 + σ2
x

σ2
ξ

⎞⎟⎟⎟⎟⎟⎠
= 1

2 log
(
1 + σ

2
x

σ2
ξ

)
.

Problem A.10.12 Measurements of noisy, correlated variables. Derive Eq. (A.294). Hint:
Follow Problem A.10.11, and use Tr log = log det (see Problem A.1.21).

Solution

This problem is just the multivariate analog of Problem A.10.11, and the solu-
tion parallels the steps in that case. We first recall (Eq. A.194) the following
multivariate Gaussian distributions:

p(XN) = p(x) =
1√

(2π)N det Sxx

exp

[
−1

2
xT

(
S−1

xx

)
x
]
,

p(YN) = p(y) =
1√

(2π)N det Syy

exp

[
−1

2
yT

(
S−1

yy

)
y
]
,

p(YN |XN) = p(y|x) =
1√

(2π)N det Ξ
exp

[
−1

2
(y − Gx)T Ξ−1 (y − Gx)

]
,
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where (Sxx)i j = 〈xi x j〉, (Syy)i j = 〈yi y j〉, and Ξi j = 〈ξi ξ j〉. We also introduce, for
this problem, the vector notation x = {x1, x2, . . . , xN}, etc.

The mutual information is then

I(XN ; YN) =
�

dx dy p(x, y) log

(
p(y|x)
p(y)

)

=
1

ln 2

〈
ln

√
det Syy

det Ξ
− 1

2
(y − Gx)T Ξ−1 (y − Gx) +

1
2

yT
(
S−1

yy

)
y
〉

=
1

ln 2

(
1
2

ln
det Syy

det Ξ
− 1

2
(Ξ−1 Ξ) +

1
2

(S−1
yy Syy)

)

=
1

ln 2

(
1
2

ln
det Syy

det Ξ

)

=
1
2

log
det Syy

det Ξ
.

We can express Syy in terms of Sxx and Ξ via

Syy = 〈y yT〉 =
〈
(Gx + ξ) (Gx + ξ)T

〉
=

〈
(Gx + ξ) (xTGT + ξT)

〉
= G〈x xT〉GT + 〈ξ ξT〉 +�������0

crossterms

= G Sxx GT + Ξ .

Then,

I(XN ; YN) =
1
2

[
log det (G Sxx GT + Ξ) − log det Ξ

]
=

1
2

{
Tr

[
log (G Sxx GT + Ξ)

]
− Tr

[
log Ξ

]}
=

1
2

Tr
[
log (G Sxx GT + Ξ) − log Ξ

]
=

1
2

Tr log
[
Ξ−1(G Sxx GT + Ξ)

]
= 1

2 Tr log
[
I + Ξ−1(G Sxx GT)

]
,

where Tr log = log det (see Problem A.1.21).

Problem A.10.13 Discrete memoryless channel (DMC). Prove Eq. (A.304).

Solution.
The solution follows Massey (1990).

P(xN , yN) =
N∏

k=1

P(xk, yk |xk−1, yk−1) chain rule for probabilities

=

N∏
k=1

P(xk |xk−1, yk−1) P(yk |xk, yk−1)
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=

N∏
k=1

P(xk |xk−1) P(yk |xk, yk−1) used without feedback

= P(xN)
N∏

k=1

P(yk |xk, yk−1) chain rule .

If P(xN) � 0, we can divide by it and express the relation in terms of conditional
probabilities:

P(yN |xN) =
N∏

k=1

P(yk |xk, yk−1)

=

N∏
k=1

P(yk |xk) memoryless ,

Thus, the intuitive definition of a discrete memoryless channel also assumes that
it is used without feedback. If not, we are led to concepts such as directed
information, as discussed in Chapter 15.
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