
Notes on Ada 2022 Programs 

These two programs illustrate the use of Big_Integers which were introduced into Ada 2022 
and are described in Section A23.4a. The first program is a demonstration of the RSA 
algorithm for encoding. The second uses the Lucas–Lehmer test for checking whether a 
Mersenne number is prime or not. 

RSA Algorithm 

This algorithm was devised by Ronald Rivest, Adi Shamir, and Leonard Aldeman in 1977 
and so is known as the RSA algorithm. A key point is that it is very easy to multiply two large 
prime numbers together but very hard in general to find the factors of a large number. 

The essence of the algorithm is as follows. Choose two prime numbers p and q and multiply 
them together to give n = p × q. The next stage is to choose e such that e is less than and 
relatively prime to m = (p – 1) × (q – 1). The numbers n and e comprise the public key and 
encryption is performed by converting a value v using the formula 

 c = ve mod n 

The code value c is then the coded message. Decryption is performed using the unique secret 
number d which is such that e × d ≡ 1 mod m according to the similar formula  

 v = cd mod n 

Simple text messages can be encoded by for example assigning values 1 to 26 to the upper 
case letters A to Z and 27 to 52 for the lower case letters with 0 representing a space and 
constructing the number in base 53. Thus CAT can be encoded as 3×532 + 1×531 + 20×530 = 
3×2809 + 53 + 20 = 8500. 

As an illustration suppose we have chosen the primes p and q as 613 and 719 so that n = 
440747 and m = 439416. Now 439417  = 11 × 43 × 929 so we can take e = 929 and d = 473. 
Using these values 8500 encrypts to 320793. We could send this as the encrypted message but 
it is perhaps more interesting to convert it into a string which using base 53 gives BHJk.  

Note that Cat becomes ACMm and cat becomes AHcG. If we choose e = 473 and d  = 929 
then we find that CAT becomes AAKh, Cat becomes e_F (where _ denotes a space, 
remember that a space encodes as zero) and cat becomes eoZ. 

The demonstration program asks for values for p and q. These can be provided as a simple 
integer (but not a Big Integer) such as 613 or as a Mersenne number written as M13 or m13 
where the Mersenne number Mn is 2n – 1. So M13 = 8191. Using Mersenne numbers is a 
convenient way of entering a largish prime. The following Mersenne numbers are prime 

M2 = 3 
M3 = 7 
M5 = 31 
M7 = 127 
M13 = 8_191 
M17 = 131_071 
M19 = 524_287 
M31 = 2_147_483_647 
M61 = 2_305_843_009_213_693_951 
M89 = 618_970_019_642_690_137_449_562_111 
M107 = 162_259_276_829_213_363_391_578_010_288_127 
M127 = 170_141_183_460_469_231_731_687_303_715_884_105_727 



An interesting Mersenne number is M67.which Mersenne himself thought was prime but was 
shown by Cole in 1903 to be the product of two numbers which are themselves both prime, 
thus 

M67 = 147_573_952_589_676_412_927 = 193_707_721 × 761_838_257_287 

Having given the demonstration program values for p and q, it echoes them in confirmation; 
if they were given as Mersenne numbers they are echoed as big integers. The program then 
calculates and displays the public key n = p × q and m = (p–1) × (q–1).  

The program then asks for a value for the encoding key e. It checks that it is relatively prime 
to m and if it is not, it asks for a new value for e until it is satisfied. 

It then computes d such that e × d ≡ 1 mod m and displays the computed value of d. The 
calculation of d is a sort of inverse mod operation. 

The program is now in a state ready to encrypt a message. The message can either be just a 
number or a sequence of letters. So it asks whether you want to use a numeric or alpha 
message. It expects a reply of N or A (upper or lower case).  

If a numeric message is to be given then the program outputs the message  

 "Preparing for a numeric message not exceeding n" 

where n is the public key p × q. 

This is followed by  

 "Message is " 

and it then expects a numeric message which can be supplied using the same format as for the 
values of p and q, that is either an integer or a Mersenne number. If the value given is zero, 
then a farewell message is output and the program goes back to the beginning thus enabling 
other values of p and q to be tried. 

If an alpha message is to be given then the program outputs the messages 

 "Preparing for a text message with max length M" 

 "Include spaces and letters only." 

This is followed by 

 "Message is " 

and it then expects an alpha message where M is such that the encoded value will not exceed 
the public key. If a longer message is supplied the additional characters are simply ignored. 
Alphabetic characters are accepted in both upper and lower case. Any unexpected character 
terminates the message and is crudely encoded as 99. 

In both cases the program then says 

 "The encrypted message is" 

which is followed by the appropriate encrypted form. 

The program then says 

 "Now ready to decrypt your message" 

and awaits for a couple of newlines to trigger the decryption. 



It finally outputs 

 "The decrypted message is" 

which with luck is followed by the original message.  

In the case of an alpha message, if the message supplied was too long then it is simply 
truncated. 

In the case of a numeric message, if the number exceeds the public key n, the value is taken 
mod n. 

If the values given for p and q are not prime then decryption of the encrypted message usually 
does not return the original message. 

Most of the program is straightforward but the computation of d such that e × d ≡ 1 mod m by 
the function Inverse_Mod is interesting. It is essentially the traditional Euclidean algorithm 
but the iteration is also unwound. This is explained in Nice Numbers by the author in the 
section entitled Linear Congruences. 

I am particularly grateful to Jeff Cousins for his assistance in converting the program so that it 
does actually work using an Ada 2022 compiler from AdaCore. 

Readers might like to improve the program by for example introducing subprograms Put and 
Get for manipulating Big Integers. Note that Put_Num does essentially do the job using a 
string as an intermediary but it would be nice to have underscores every third digit from the 
origin. 

Historical note. The program has its origins in an Ada 83 program written in about 1992 using 
a home-brewed multilength integer system. 

Perfection 

This addresses two issues. How to check whether a Mersenne number is a prime number and 
also the relationship between Mersenne primes and perfect numbers. 

Determining whether a large number is a prime is usually a tedious and generally unsolved 
problem. However, in the special case of Mersenne numbers there is a simple and perfect test. 
The theory was developed by Edouard Lucas (1842–1891) and a practical test was devised by 
Derrick Lehmer (1905–1991). 

It goes as follows. Form the series of numbers 

 Li+1 = (Li)2 – 2, starting with L2 = 4 

We get L2 = 4,  L3 = 14,  L4 = 194,  L5 = 37634,  and so on 

The amazing fact is that Mp is prime if and only if Lp is exactly divisible by Mp . Thus since 
M3 is 7 and L3 is 14, we find that M3 is prime.  

The trouble with the test is that the numbers get huge very soon. In the case of M11 which is 
2047 and not prime since 2047 = 23×89, we find that L11 has 293 digits. If we divide L11 by 
M11 we get a remainder of 1736 confirming that indeed M11 is not prime. 

The difficulty can be overcome by doing modulo arithmetic. To check out M11 we do all the 
arithmetic mod M11 and then L11 is simply 1736 with just 4 digits. 

Another interesting point regarding Mersenne primes is that if Mp is prime then p is also 
prime. But the opposite is not true since M11 is not prime as mentioned above. 



The other relationship concerns perfect numbers. Remember that a perfect number is one 
whose factors add up to the number itself. The first perfect number is 6 and the next two are 
28 and 496 thus 

 6 = 1+2+3 28 = 1+2+4+7+14  496 = 1+2+4+8+16+31+62+124+248 
Strangely enough there is a close relationship between perfect numbers and Mersenne primes. 
Every Mersenne prime has an associated perfect number and vice versa.  

It is fairly easy to show that all even perfect numbers are of the form 

 Pk = 2k–1 × (2k – 1) 

where (2k – 1) is a Mersenne prime. So we have 

 k = 2  M2 = 3   P2 = 2 × M2 = 6 
 k = 3  M3 = 7   P3 = 4 × M3 = 28 
 k = 5  M5 = 31   P5 = 16 × M5 = 496 
 k = 7  M7 = 127  P7 = 64 × M7 = 8128 
 k = 13  M13 = 8191  P13 = 4096 × M13 = 33_550_336 
 k = 17  M17 = 131_071  P17 = 65_536 × M17 = 8_589_869_056 

The demonstration program is quite simple. It includes a table of the first 30 odd prime 
numbers thus 

 (3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,  
   61, 67, 71, 73, 79, 83, 89, 97,101, 103, 107, 109, 113, 127) 

and will analyse a range of these numbers. After a message of greeting it asks for values for 
Start loop and End loop. Thus given the values 3 and 4, it will process the prime numbers 7, 
and 11. It will grumble if the values supplied are unacceptable and ask again. 

It then outputs the message 

 "Level of detail required, answer 1, 2, or 3" 

If the answer given is not 1, 2, or 3 it just repeats the message. 

Level 1 outputs a message saying whether the Mersenne number is prime or not and if it is 
prime it outputs the value of the corresponding perfect number. Thus we get 

 7 : 127 is prime 
 8128 is perfect 
 
 11 : 2047 is not prime 

Level 2 also outputs the result of the Lucas Lehmer analysis using the version with modulo 
arithmetic. Thus in the case of the prime number 7, we also get 

 L is 12319 
 equals 127 times 
 97 

and in the case of 11 we get 

 L is 79522 
 equals 2047 times 
 38 
 remainder = 1736 



Level 3 give the full works. In the case of the prime number 7 we get 

 L is 2005956546822746114 
 equals 127 times 
 15794933439549182 

and in the case of 11 we get 

 L is 68729 ... 203714   (293 digits) 
 equals 2047 times 
 33575 ... 341574   (290 digits) 
 remainder = 1736 

For large primes such as 127 it is best not to use level 3. But it does work and gives the 
perfect number corresponding to M127 as 

   14_474_011_154_664_524_427_946_373_126_085_988_481_573_677_491_ 
 474_835_889_066_354_349_131_199_152_128 

Enjoy!! 

PS This is all described in Lecture 2 of Nice Numbers. And again many thanks to Jeff Cousins 
for checking that the program does work. 
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