
Chapter 1

A Brief Review of Quantum

Mechanics

1. (a) We know that p = �i~d=dx. To �nd [x; p], let it act on an arbitrary di�erentiable function f(x),

[x; p]f = [x;�i~d=dx]f = �i~x(d=dx)f + i~(d=dx)xf

We should understand the meaning of (d=dx)xf : both d=dx and x are operators, so x acts �rst on f
giving the new function xf on which d=dx acts. Therefore

[x; p]f = �i~xf 0 + i~f + i~xf 0 = i~f

Since f is arbitrary, [x; p] = i~.
To �nd [x2; p] = [xx; p], we use [AB;C] = A[B;C] + [A;C]B along with [x; p] = i~. We �nd [x2; p] =
2i~x.
To �nd [p; V (x)], let f(x) be an arbitrary di�erentiable function,

[p; V ]f = pV f � V pf = �i~(d=dx)V f + i~V (d=dx)f

= �i~(dV=dx)f � i~V f 0 + i~V f 0 = �i~(dV=dx)f
=) [p; V ] = �i~(dV=dx)

(b) Consider any orthonormal basis fj1i; j2i; : : : g. By de�nition of the adjoint of an operator,

hnj(AB)yjmi = hmjABjni� =
 X

k

hmjAjkihkjBjni
!�

=
X
k

hmjAjki�hkjBjni� =
X
k

hkjAyjmihnjByjki =
X
k

hnjByjkihkjAyjmi

= hnjByAyjmi
It follows that (AB)y = ByAy.

(c) To show that Tr(ABC) = Tr(CAB), it is su�cient to show that Tr(AB) = Tr(BA).

Tr(AB) =
X
n

hnjABjni =
X
nm

hnjAjmihmjBjni =
X
nm

hmjBjnihnjAjmi =
X
m

hmjBAjmi

= Tr(BA)

The �rst equality results from the de�nition of the trace of an operator: it is the sum of the diagonal
elements. The second equality is valid because

P
m jmihmj = 1. The third equality holds true because

hnjAjmi and hmjBjni are simply numbers.

(d) Writing Sx = (~=2)�x, Sy = (~=2)�y, and Sz = (~=2)�z, it is straightforward to check that [Sx; Sy] =
i~Sz, [Sy; Sz] = i~Sx, and [Sz; Sx] = i~Sy. These are the commutation relations for spin operators;
hence, the representation of S as (~=2)� is a valid one.

Note that this representation is obtained if we take j "i and j #i as the basis states of the 2-dimensional

spin vector space. In this case, j "i is represented by

�
1
0

�
, j #i by

�
0
1

�
, and Sz by

Sz =

�h" jSzj "i h" jSzj #i
h# jSzj "i h# jSzj #i

�
=

�
~=2 0
0 �~=2

�
= (~=2)�z

1
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(e)

Sxj "i = ~

2

�
0 1
1 0

��
1
0

�
=

~

2

�
0
1

�
=

~

2
j #i

Sxj #i = ~

2

�
0 1
1 0

��
0
1

�
=

~

2

�
1
0

�
=

~

2
j "i

Syj "i = ~

2

�
0 �i
i 0

��
1
0

�
=

~

2

�
0
i

�
= i

~

2
j #i

Syj #i = ~

2

�
0 �i
i 0

��
0
1

�
=

~

2

��i
0

�
= �i~

2
j "i

2. Dirac-delta function

I =

Z 1

�1
eikxdk =

Z 0

�1
eikxdk +

Z 1

0

eikxdk = lim
�!0+

�Z 0

�1
eikxe�kdk +

Z 1

0

eikxe��kdk
�

= lim
�!0+

"
e(ix+�)k

ix+ �

����
0

�1
+
e(ix��)k

ix� �

����
1

0

#
= lim

�!0+

�
1

x+ i�
� 1

ix� �

�

= lim
�!0+

2�

x2 + �2

We note the following:

� If x 6= 0 then I = 0.

� If x = 0 then I =1.

� Integrating I over x, we �nd

J =

Z 1

�1

2�

x2 + �2
= 2

Z 1

�1

dy

y2 + 1

where y = x=�. We thus �nd,

J = 2tan�1y
��1
�1 = 2[�=2� (��=2)] = 2�

Therefore, Z 1

�1
eikxdk = 2��(x)

3. Another representation of the Dirac-delta function.

A(x) = lim
�!1

sin2(�x

�x2

We note the following:

� x 6= 0 =) A(x) = 0.

� x! 0 =) A(x)! �!1.

� De�ne I as:

I =

Z 1

�1

sin2(�x

�x2
dx

Setting y = �x,

I =

Z 1

�1

sin2y

y2
dy = 2

Z 1

0

sin2y

y2
dy � 2J

Integrate by parts: u = sin2y; dv = dy=y2 ) v = �1=y.

J = �sin
2y

y

����
1

0

+

Z 1

0

sin(2y)

y
dy =

Z 1

0

sinx

x
dx

Evaluation of J =
R1
0

sinx
x dx:
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{ First method:Z 1

0

e�sxds =
e�sx

�x
����
1

0

=
1

x

=) J =

Z 1

0

dx

Z 1

0

dse�sxsinx =

Z 1

0

ds

�Z 1

0

e�sxsinxdx
�
=

Z 1

0

f(s)ds

where

f(s) =

Z 1

0

e�sxsinxdx

Integrate by parts: u = sinx; dv = e�sxdx) v = � 1
se
�sx. We �nd

f(s) = �1

s
e�sxsinx

����
1

0

+
1

s

Z 1

0

e�sxcosxdx =
1

s

Z 1

0

e�sxcosxdx

Integrate by parts again: u = cosx; dv = e�sxdx. We �nd

f(s) = � 1

s2
e�sxcosx

����
1

0

� 1

s2

Z 1

0

e�sxsinxdx =
1

s2
� 1

s2
f(s)

Therefore,

f(s) =
1=s2

1 + 1=s2
=

1

s2 + 1

Hence,

J =

Z 1

0

ds

s2 + 1
= �=2

=)
Z 1

�1

sin2(�x)

�x2
dx = �

=) lim
�!1

1

�

sin2(�x)

�x2
= �(x)

Second method:

I =

Z 1

�1

sinx

x
dx = Im

Z 1

�1

eix

x
dx

Consider

A =

Z
C

eiz

z
dz

where C is a closed contour in the complex plane which consists of four segments: two segments
along the real axis, one of which extending from �1 to x = �� (�! 0) and the other segment
running from x = � to 1, a semicircle C1 of radius � in the upper half-plane, and a semicircle
C2 at 1 also in the upper half-plane.

A = lim
�!0

�Z �

�1

eix

x
dx+

Z 1

�

eix

x
dx+

Z
C1

eiz

z
dz +

Z
C1

eiz

z
dz

�

The integral over C2 vanishes (Jordan's lemma). Thus,

P

Z 1

�1

eix

x
= �

Z
C1

eiz

z
dz

Here, P stands for the principal value. The principal value of the integral is the value of the
integral from �1 to1 excluding the value x = 0. To evaluate the integral over C1, let z = �ei�,
then dz=z = id�. Furthermore, eiz ! 1. Therefore,

P

Z 1

�1

eix

x
= �i

Z 0

�

d� = i�

Since the integrand sinx=x is �nite at x = 0 (it is equal to 1) the principal value of the integral
of sinx=x is equal to the integral itself (they di�er only by lim�!0

R �
��[sinx=x]dx ). Hence I = �.
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4. Periodic boundary conditions.

The eigenvalue equation is

�(~2=2m)r2� = ��

The normalized eigenfunctions are �k = 1p
V
eik:r, where k is a real vector, and the eigenvalues are

�k = ~
2k2=2m. Note that

R
��
k
�kd

3r = 1.

The boundary condition eikx(x+L) = eikxx implies that

eikxL = 1 =) kx = 0;�2�=L;�4�=L; � � � = 2n�=L; n 2 Z

Taking into account the electron's spin, the states are given by jk�i, where � =" or #, and

�k�(r) = hrjk�i = 1p
V
eik:rj�i

To show that the states are orthonormal, consider

hk0�0jk�i = 1

V

Z
d3rei(k�k

0):rh�0j�i = ���0
1

V

Z
ei(k�k

0):rd3r

where the integration is over the volume of the cube. the integral may be written as

I =
1

V

Z
ei(k�k

0):rd3r = IxIyIz

where

Ix =
1

L

Z L

0

ei(kx�k
0
x)xdx

and Iy and Iz are the same as Ix with x replaced by y and z, respectively. If kx 6= k0x, then

Ix =
1

L

ei(kx�k
0
x)L � 1

i(kx � k0x)

Since kx; k
0
x = 2n�=L; n 2 Z, and kx 6= k0x, it follows that kx � k0x = 2m�=L;m 2 Z, and the numerator

in the above expression for Ix vanishes. If kx = k0x, then Ix = 1. Therefore, Ix = �kx;k0x . Similarly,
Iy = �ky;k0y and Iz = �kz;k0z . Hence I = �kk0 and hk0�0jk�i = �kk0���0 ; the states are orthonormal.

To establish the completeness property, we evaluateX
k�

�k�(r)�
�
k�(r

0) =
X
k

�k(r)�k(r
0)
X
�

j�ih�j

First, consider the spin part. for an arbitrary state j�i = aj "i+ bj #i,
X
�

j�ih�j�i = j "ih" j�i+ j #ih# j�i = j "ia+ j #ib = j�i

=)
X
�

j�ih�j = 1

Now consider the spatial part,

A =
X
k

�k(r)�kv
�(r0) =

1

V

X
k

eik:(r�r
0) = AxAyAz

where

Ax =
1

L

X
kx

eikx(x�x
0)

Similar expressions can be written for Ay and Az with x replaced by y and z, respectively. We note the
following:

(a) If x = x0, then Ax = 1
L

P
1 =1 since there is an in�nite number of terms in the sum.
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(b) Suppose that x 6= x0. We can write

Ax = � � �+ e�i4�(x�x
0)=L + e�i2�(x�x

0)=L + 1 + ei2�(x�x
0)=L + ei4�(x�x

0)=L + � � �
We make the crucial observation that if we multiply the above in�nite series by ei2n�(x�x

0)=L, for any
integer n, the value of the series remains unchanged, because we are still summing exactly the same
terms, the 1 being simply shifted n spaces. Therefore,

Ax = ei2n�(x�x
0)=LAx; n 2 Z

Since �L < x�x0 < L, and x 6= x0, the only way the above equation is satis�ed is by setting Ax = 0.
We conclude that: x 6= x0 =) Ax = 0.

(c) Consider Z L

0

Axdx =
1

L

Z L

0

X
kx

eikx(x�x
0)dx =

1

L

X
kx

Z L�x0

�x0
eikxudu

=
1

L

X
kx

eikxLe�ikxx
0 � e�ikxx

0

ikx
=

1

L

X
kx

e�ikxx
0 eikxL � 1

ikx

Since kxL = 2n�; n 2 Z, it follows that eikxL = e2in� = 1, and the above integral vanishes if kx 6= 0.
If kx = 0, the integral is equal to 1. Therefore,

R
A(x)dx = 1.

To summarize, Ax(x � x0) is equal to zero if x 6= x0, is equal to 1 if x = x0, and its integral over x is 1
) Ax = �(x� x0).

Similarly, Ay = �(y � y0) and Az = �(z � z0). Therefore,X
k�

�k�(r)�
�
k�(r

0) = �(r� r
0)

The completeness property is thus established.

5. Singlets and triplets.

S2 = (S1 + S2)
2 = S21 + S22 + 2S1:S2 = S21 + S22 + 2S1xS2x + 2S1yS2y + 2S1zS2z

S21 acts only on states of electron 1 and S22 acts only on states of electron 2.

(S21 + S22)�(1)�(2) = ~
2s1(s1 + 1)�(1)�(2) + ~

2s2(s2 + 1)�(1)�(2)

= ~
2

�
1

2
(
1

2
+ 1) +

1

2
(
1

2
+ 1)

�
�(1)�(2) =

3~2

2
�(1)�(2)

S1zS2z�(1)�(2) =
~

2

~

2
�(1)�(2) = (~2=4)�(1)�(2)

S1xS2x�(1)�(2) = (~2=4)�(1)�(2)

S1yS2y�(1)�(2) = (�i~=2)2�(1)�(2) = �(~2=4)�(1)�(2)
We have used the results of problem 1 in writing the last two equations. Collecting terms, we �nd

S2�(1)�(2) = 2~2�(1)�(2) = ~
2s(s+ 1)�(1)�(2)

Sz�(1)�(2) = (S1z + S2z)�(1)�(2) =
~

2
�(1)�(2) +

~

2
�(1)�(2) = ~�(1)�(2)

where s = 1. We conclude that �(1)�(2) is an eigenstate of S2 and Sz with s = 1 and ms = 1.

Following the same steps as above, we �nd

S2
1p
2
[�(1)�(2) + �(1)�(2)] = 2~2

1p
2
[�(1)�(2) + �(1)�(2)]

Sz
1p
2
[�(1)�(2) + �(1)�(2)] = 0

S2�(1)�(2) = 2~2�(1)�(2)

Sz�(1)�(2) = �~�(1)�(2)
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As for the singlet state, we obtain

S2
1p
2
[�(1)�(2)� �(1)�(2)] = 0

Sz
1p
2
[�(1)�(2)� �(1)�(2)] = 0

To summarize:

Triplet :

8><
>:

�(1)�(2) s = 1; ms = 1
1p
2
[�(1)�(2) + �(1)�(2)] s = 1; ms = 0

�(1)�(2) s = 1; ms = �1

Singlet :
1p
2
[�(1)�(2)� �(1)�(2)] s = 0; ms = 0

We conclude with the following remarks:

� The four states given above are normalized and orthogonal to each other.

� The triplet states are symmetic under the interchange of electrons 1 and 2, while the singlet state is
antisymmetric under such an interchange.

6. Particle bound by a delta-function potential.

(a) The potential energy is V (x) = ���(x). The wave function �(x) satis�es the Schr�odinger equation

� ~
2

2m

d2

dx2
�(x)� ��(x)�(x) = E�(x)

For a bound state the energy E must be negative (if E > 0, the wave function for x < 0 and for x > 0
will be plane waves extending to �1; the particle will not be bound).

Writing E = �jEj, and noting that V (x) = 0 for x < 0 and for x > 0, and that the wave function
must vanish at �1, we obtain

�(x) =

(
Ae�x x < 0

Be��x x > 0

where � =
p
2mjEj=~. The continuity of �(x) at x = 0 implies that A = B. Thus we can write

�(x) = Ae��jxj for all values of x. The constant A is determined by requiring that �(x) be normalized:R1
�1 j�(x)j2dx = 1. This readily gives A =

p
�. To determine �, we integrate the Schr�odinger equation

from �� to �, and take the limit as �! 0,

� ~
2

2m
lim
�!0

Z �

��

d2�

dx2
dx� � lim

�!0

Z �

��
�(x)�(x)dx = E lim

�!0

Z �

��
�(x)dx

Continuity of �(x) implies that the right hand side (RHS) vanishes. Using the sifting property of �(x),
we �nd

� ~
2

2m

�
�0(0+)� �0(0�)

�
= ��(0)) � ~

2

2m
[��A� �A] = �A) � = m�=~2

=) E = �m�
2

2~2

Thus, we �nd that there is only one bound state with energy E as given above.

(b) Now V (x) = �b��(x), where b is a dimensionless positive constant. We want to determine the
probability that the particle remains bound.

With the new potential energy, the bound state wave function  (x) is obtained from �(x) by replacing
� with b�. Since � = m�=~2, it follows that  (x) =

p
b�e�b�jxj. The particle is initially in the state

with wave function �(x), so the probability amplitude of �nding it in the state with wave function  9x)
is h j�i = R1�1  �(x)�(x)dx. The integral is easily evaluated; it yields 2

p
b=(b+ 1). The probability

that the particle remains bound is thus given by

P = jh j�ij2 = 4b

(b+ 1)2

Note that P � 1, as it should; it is equal to 1 only if b = 1, which corresponds to no change in the
delta-function potential.
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7. Harmonic oscillator. We want to show that in the ground state of a harmonic oscillator, hp2=2mi =
h(1=2)m!2x2i = ~!=4.

One way to obtain this result is by using the wave function of the ground state, which is a gaussian, and
carrying out the integrals

R1
�1  �0(p

2=2m)psi0dx and
R1
�1  �0(1=2)m!

2x2psi0dx. Another way is to use
the expressions for x and p in terms of creation and annihilation operators. Starting from

a = b

�
x+

i

m!
p

�

ay = b

�
x� i

m!
p

�
; b =

�m!
2~

�1=2
;

we solve for x. We �nd

x =

�
~

2m!

�1=2

(a+ ay)

=) 1

2
m!2x2 =

~!

4

�
a+ ay

�2
=

~!

4

�
a2 + aay + aya+ ay2

�
Using aay = aya� 1, we �nd

1

2
m!2x2 =

~!

4
+

~!

4

�
a2 + 2aya+ ay2

�
Therefore,

h0j1
2
m!2x2j0i = ~!

4
+

~!

4
h0ja2 + 2aya+ ay2j0i = ~!

4

Since

h0jHj0i = ~!

2

and H = p2=2m+ (1=2)m!2x2, it follows that

h0jp2=2mj0i = ~!=2� ~!=4 = ~!=4

8. Harmonic oscillator coherent states.

(a) Since any state j i can be expanded as  i =Pn cnjni, where the states jni are the harmonic oscillator
eigenstates, it follows that ay does not have an eigenstate. To show this, suppose that in the expansion
 i =Pn cnjni, the lowest value of n is m. Then, in ayj i =Pn cn

p
n+ 1jn+ 1i, the lowest energy

state that occurs in the expansion is jm + 1i; hence ayj i cannot be equal to a constant times j i.
We conclude that no state j i could be an eigenstate of ay.

(b) For any complex number z, consider the state

jzi = e�z
�z=2eza

y j0i
To show that this is an eigenstate of the annihilation operator a, let us �rst prove that [a; ayn] =
nayn�1. This is proved by mathematical induction. It is clearly true for n = 1 since [a; ay] = 1. We
assume that the formula is true for n and show that it is true for n + 1. That is, we assume that
[a; ayn] = nayn�1, and show that [a; ayn+1] = (n+ 1)ayn. Using

[A;BC] = B[A;C] + [A;B]C;

which is easily checked, we can write�
a; ayn+1

�
=
�
a; aynay

�
= ayn

�
a; ay

�
+
�
a; ayn

�
ay = ayn(1) +

�
nayn�1

�
ay = ayn + nayn = (n+ 1)ayn

In the third equality, we used the assumption that the formula is true for n. The formula is thus
veri�ed. Now consider

h
a; eza

y
i
=

1X
n=0

zn

n!

�
a; ayn

�
=

1X
n=0

zn

n!
nayn�1 = z

1X
n=1

zn�1

(n� 1)!
ayn�1 = z

1X
m=0

zm

m!
aym = zeza

y

It follows that
aeza

y j0i = eza
y

aj0i+ zeza
y j0i = zeza

y j0i
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This shows that eza
y j0i is indeed an eigenstate of a with eigenvalue z. We can write

jzi = e�z
�z=2eza

y j0i = e�z
�z=2

1X
n=0

zn

n!
aynj0i = e�z

�z=2
1X
n=0

zn

n!

p
n! jni

hz0j = e�z
0�z0=2

1X
n=0

z0�n

n!

p
n! hnj

(recall that 9! = 1). We thus obtain

hz0jzi = e�(z
�z+z0�z0)=2

X
nm

znz0�m

n!m!

p
n!
p
m!hmjni = e�(z

�z+z0�z0)=2
1X
n=0

(zz0�)n

n!

= e�(z
�z+z0�z0�2zz0�)=2

This shows that hzjzi = 1: the states are normalized. However, the above shows that hz0jzi 6= �(z�z0),
i.e., the states are not orthogonal.

9. Time-independent perturbation.

(a)
H = H0 + V; H0 = p2=2m+ (1=2)m!2x2; V = �x

Treating V as a perturbation, the shift in energy of the ground state is given by

�E0 = h0jV j0i+
X
m 6=0

jhmjV j0ij2
E0 � Em

� �E
(1)
0 +�E

(2)
0

The perturbation can be written in terms of creation and annihilation operators:

V = �x = �

�
~

2m!

�1=2 �
a+ ay

�
Since h0jaj0i = hjayj0i = 0, it follows that �E

(1)
0 = 0. Noting that aj0i = 0 and ayj0i = j1i, we obtain

hmjV j0i = �

�
~

2m!

�1=2

�m;1

Hence,

�E
(2)
0 =

~�2

2m!

X
m 6=0

�m;1

E0 � Em
=

~�2

2m!

1

E0 � E1
=

~�2

2m!

�
1

�~!
�

= � �2

2m!2

(b)

H =
p2

2m
+

1

2
m!2x2 + �x

=
p2

2m
+

1

2
m!2

�
x2 +

2�

m!2
x

�

=
p2

2m
+

1

2
m!2

�
x2 +

2�

m!2
x+

�2

m2!4
� �2

m2!4

�

=
p2

2m
+

1

2
m!2

�
x+

�

m!2

�2

� �2

2m!2

Except for the last term, which is a constant, this is the Hamiltonian for a harmonic oscillator whose
center is at x = ��=m!2. Therefore,

En = (n+ 1=2)~! � �2

2m!2

The perturbation shifts all states downward by �2=2m!2. In this case, the second-order perturbation
theory yields the exact answer.
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10. Heisenberg picture of quantum mechanics.

(a) Denoting an operator in the Schr�odinger picture by A, the corresponding operator in the Heisenberg
picture is given by

AH(t) = eiHt=~Ae�iHt=~

Taking the derivative with respect to time,

d

dt
AH(t) = (iH=~)eiHt=~Ae�iHt=~ + eiHt=~A(�iH=~)e�iHt=~ + eiHt=~ @A

@t
e�iHt=~

Note that H commutes with e�iHt=~. Therefore,

d

dt
AH(t) =

i

~
(HAH �AHH) + eiHt=~ @A

@t
e�iHt=~

The last term is simply @A=@t in the Heisenberg picture. If A has no explicit time dependence, as is
usually the case, then

d

dt
AH =

1

~
[H;AH ]

(b) Let a(t) be the annihilation operator in the Heisenberg picture. Then

da

dt
=
i

~
[H; a]

For the harmonic oscillator, H = ~!
�
aya+ 1=2

�
. Thus,

[H; a] = ~!
�
aya; a

�
+ ~![1=2; a]

The last term on the RHS vanishes (a number commutes with an operator). To evaluate the �rst
term, we use

[AB;C] = A[B;C] + [A;C]B

We thus �nd �
aya; a

�
= ay[a; a] +

�
ay; a

�
a = 0� a = �a

Hence
da

dt
= �i!a =) a(t) = a(0)e�i!t

For ay(t), we can either repeat the same steps as above, or simply note that ay(t) is the adjoint of
a(t). Therefore,

ay(t) = ay(0)ei!t

11. The interaction picture

(a) Let A be an operator in the Schr�odinger picture. The corresponding operator in the interaction picture
is de�ned as

AI(t) = eiH0t=~Ae�iH0t=~

This has the same form as AH(t) except that H ! H0. Thus

d

dt
AI(t) =

i

~
[H0; AI(t)]

(b)

j I(t)i = eiH0t=~j S(t)i ) i~
@

@t
j I(t)i = �H0e

iH0t=~j S(t)i+ eiH0t=~i~
@

@t
j S(t)i

Using the Schr�odinger equation

i~
@

@t
j S(t)i = Hj S(t)i = H0j S(t)i+ V j S(t)i

and noting that H0e
iH0t=~ = eiH0t=~H0, we obtain

i~
@

@t
j I(t)i = eiH0t=~V j S(t)i+ eiH0t=~V e�iH0t=~j I(t)i

Hence,

i~
@

@t
j I(t)i = VI(t)j I(t)i
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(c) For an arbitrary state j I(t0)i,

j I(t)i = UI(t; t0)j I(t0)i ) i~
@

@t
j I(t)i = i~

@

@t
UI(t; t0)j I(t0)i

We also have

i~
@

@t
j I(t)i = VI(t)j I(t)i = VI(t)UI(t; t0)j I(t0)i

Since j I(t0)i is arbitrary, it follows that

i~
@

@t
UI(t; t0) = VI(t)UI(t; t0)

(d) Let us integrate the above equation from t0 to t,Z t

t0

@

@t1
UI(t1; t0)dt1 = � i

~

Z t

t0

VI(t1)UI(t1; t0)dt1

=) UI(t; t0)� UI(t0; t0) = � i

~

Z t

t0

VI(t1)UI(t1; t0)dt1

Since UI(t0; t0) = 1, we obtain

UI(t; t0) = 1� i

~

Z t

t0

VI(t1)UI(t1; t0)dt1

This is an integral equation. We solve it by iteration:

UI(t; t0) = 1� i

~

Z t

t0

dt1VI(t1)

�
1� i

~

Z t1

t0

dt2VI(t2)UI(t2; t0)

�

= 1� i

~

Z t

t0

dt1VI(t1) +

��i
~

�2 Z t

t0

dt1

Z t1

t0

dt2VI(t1)VI(t2)UI(t2; t0)

We continue to iterate; we �nd

UI(t; t0) = 1� i

~

Z t

t0

dt1VI(t1) +

��i
~

�2 Z t

t0

dt1

Z t1

t0

dt2VI(t1)VI(t2) + � � �

(e)

j I(t)i = eiH0t=~j S(t)i = eiH0t=~U(t; t0)j S(t0)i
= eiH0t=~U(t; t0)e

�iH0t0=~j I(t0)i
Therefore,

UI(t; t0) = eiH0t=~U(t; t0)e
�iH0t0=~;

and

hf jUI(t; t0)jii = hf jeiH0t=~U(t; t0)e
�iH0t0=~jii

= eiEf t=~e�iEit0=~hf jU(t; t0)jii
Therefore,

jhf jUI(t; t0)jiij2 = jhf jU(t; t0)jiij2 = Pi!f

12. Fermi golden rule.

(a)

V (t) =

(
0 t < 0

V t � 0

Pi!f = jhf jUI(t; t0)jiij2

Here, t0 = 0, and

UI(t; 0) = 1� i

~

Z t

0

VI(t1)dt1 + � � �
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Suppose that jfi 6= jii. Then to �rst order in the perturbation,

hf jUI(t; 0)jii = � i

~

Z t

0

dt1hf jVI(t1)jii

The matrix element is given by

hf jVI(t1)jii = hf jeiH0t1=~V e�iH0t1=~jii = ei!fit1Vfi

where !fi = (Ef � Ei)=~ and Vfi = hf jV jii. Therefore,

hf jUI(t; 0)jii = � i

~
Vfi

Z t

0

dt1e
i!fit1 = � i

~
Vfi

ei!fit � 1

i!fi
= � i

~!fi
Vfie

i!fit=2

�
ei!fit=2 � e�i!fit=2

i

�

=

� �2i
~!fi

�
Vfie

i!fit=2sin (!fit=2)

The transition probability is thus given by

Pi!f =
4

~2
jVfij2 sin

2 (!fit=2)

!2fi

(b) The above is rewritten as

Pi!f = t
jVfij2
~2

sin2 (t!fi=2)

t (!fi=2)
2

Using the result of problem 2.3, we can write

lim
t!1

sin2 (t!fi=2)

t (!fi=2)
2 = �� (!fi=2) = ��

�
Ef � Ei

2~

�
= 2�~� (Ef � Ei)

where we used the formula �(ax) = �(x)=jaj. Hence,

lim
t!1

Pi!f =
2�

~2
jVfij2 t� (Ef � Ei)

The transition rate is thus given by

wi! f =
d

dt
lim
t!1

Pi!f =
2�

~2
jVfij2 � (Ef � Ei)

This is Fermi's golden rule.

13. Harmonic perturbation.

(a)
V (t) = Aei!t +Aye�i!t t � 0

We assume that ! 6= 0. If ! = 0, then V is constant for t � 0, and the problem becomes identical to
the previous one. To �rst order in the interaction, the evolution operator in the interaction picture is
given by

UI(t; 0) = 1� i

~

Z t

0

VI(t
0)dt0 + � � �

The transition probability from state jii to state jfi (these are eigenstates of H0) is given by

Pi!f = jhf jUI(t; 0)jiij2

Assuming that jfi 6= jii,

hf jUI(t; 0)jii = � i

~

Z t

0

dt0 hf jVI(t0)jii = � i

~

Z t

0

dt0
D
f jeiH0t

0=~V e�iH0t
0=~ji

E

= � i

~

Z t

0

dt0
h
ei(!fi+!)t

0hf jAjii+ ei(!fi�!)t
0hf jAyjii

i

= � i

~

�
ei(!fi+!)t � 1

i(!fi + !)
hf jAjii+ ei(!fi�!)t � 1

i(!fi � !)
hf jAyjii

�

Hence,

Pi!f =
1

~2

����1� ei(!fi+!)t

!fi + !
hf jAjii+ 1� ei(!fi�!)t

!fi � !
hf jAyjii

����
2
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(b) Writing

1� ei(!fi�!)t = ei(!fi�!)t=2
h
e�i(!fi�!)t=2 � ei(!fi�!)t=2

i
= �2iei(!fi�!)t=2sin [(!fi � !) t=2] ;

we obtain

Pi!f =
1

~2

����sin [(!fi + !) t=2]

(!fi + !) =2
ei(!fi+!)t=2hf jAjii+ sin [(!fi � !) t=2]

(!fi � !) =2
ei(!fi�!)t=2hf jAyjii

����
2

=
1

~2

��B(!)hf jAjii+B(�!)hf jAyjii��2
=

1

~2

�jhf jAjiij2jB(!)j2 + jhf jAyjiij2jB(�!)j2 + 2Re
�hf jAjiihf jAyjii�B(!)B�(�!)�	

The term jB(!)j2 is given by

jB(!)j2 = sin2 [(!fi + !) t=2]

(!fi + !) =2
=
t sin2 [t (!fi + !) =2]

t (!fi + !) =2

Using the result of problem 1.3, we can write

lim
t!1

jB(!)j2 = lim
t!1

�t �

�
!fi + !

2

�
= lim

t!1
�t �

�
Ef � Ei + ~!

2~

�
= lim

t!1
2�~ t � (Ef � Ei + ~!)

Therefore,
1

~2

d

dt
lim
t!1

jB(!)j2 = 2�

~
� (Ef � Ei + ~!)

Similarly,
1

~2

d

dt
lim
t!1

jB(�!)j2 = 2�

~
� (Ef � Ei � ~!)

The term in Pi!f containing B(!)B�(�!) vanishes as t!1. To see this, note that

lim
t!1

1

�

sin [(!fi + !) t=2]

(!fi + !) =2
= �

�
!fi + !

2

�
= 2� (!fi + !)

We can prove this as follows:

�(�) =
1

2�

Z 1

�1
ei�tdt =

1

2�
lim
R!1

Z R

�R
ei�tdt =

1

2�
lim
R!1

eiR� � e�iR�

i�

=
1

�
lim
R!1

sin(R�)

�

Thus, the product B(!)B�(�!) contains �(!fi + !) �(!fi � !), which vanishes if ! 6= 0. Therefore,

wi!f =
2�

~

h
jhf jAjiij2 � (Ef � Ei + ~!) +

��hf jAyjii��2 � (Ef � Ei � ~!)
i
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1. Important sums.

(a)

k =
m1

N1
b1 +

m2

N2
b2 +

m3

N3
b3

where N1; N2; N3 are, respectively, the number of primitive cells along the directions
of a1; a2, and a3. The vectors b1, b2, and b3 are primitive reciprocal lattice vectors,
and m1; m2;m3 2 Z. Let I and I 0 be de�ned by

I =
X
n

eik:Rn ; I 0 = Ieik:R

where

R = u1a1 + u2a2 + u3a3 ; u1 ; u2 ; u3 2 Z

Setting Rn = n1a1 + n2a2 + n3a3 ; n1 ; n2 ; n3 2 Z, we can write

I =
N1X

n1=1

N2X
n2=1

N3X
n3=1

exp

�
2�i

�
m1n1
N1

+
m2n2
N2

+
m3n3
N3

��

where we used the formula bi:aj = 2��ij. On the other hand,

I 0 =
N1X

n1=1

N2X
n2=1

N3X
n3=1

exp

�
2�i

�
m1(n1 + u1)

N1
+
m2(n2 + u2)

N2
+
m3(n3 + u3)

N3

��

=
N1+u1X

n1=u1+1

N2+u2X
n2=u2+1

N3+u3X
n3=u3+1

exp

�
2�i

�
m1n1
N1

+
m2n2
N2

+
m3n3
N3

��

=) I 0 � I =
N1+u1X

n1=N1+1

N2+u2X
n2=N2+1

N3+u3X
n3=N3+1

exp

�
2�i

�
m1n1
N1

+
m2n2
N2

+
m3n3
N3

��

�
u1X

n1=1

u2X
n2=1

u3X
n3=1

exp

�
2�i

�
m1n1
N1

+
m2n2
N2

+
m3n3
N3

��
= 0

Therefore,

0 = I 0 � I = I
�
eik:R � 1

�
This is true for every lattice vector R. The only way to satisfy this for I 6= 0 is to set
k = G, whereG is a reciprocal lattice vector. However, the only reciprocal lattice vector
within the FBZ is G = 0. Hence, I must vanish unless k = 0. When k = 0; I = N .
Therefore, I = N� � k;0.

(b)

k =
m1

N1
b1 +

m2

N2
b2 +

m3

N3
b3
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Since k 2 FBZ, �Ni=2 � mi � Ni=2 � 1; i = 1; 2; 3. Let R = u1a1 + u2a2 + u3a3,
where u1; u2; u3 2 Z. Let J =

P
k2FBZ

exp(ik:R). Then,

J =

N1=2�1X
m1=�N1=2

N2=2�1X
m2=�N2=2

N3=2�1X
m3=�N3=2

exp

�
2�i

�
m1u1
N1

+
m2u2
N2

+
m3u3
N3

��

Let k0 =
p1
N1
b1 +

p2
N2
b2 +

p3
N3
b3 ; p1 ; p2 ; p3 2 Z. be any vector 2 FBZ. De�ne

J 0 = eik0:RJ =
X
k2FBZ

ei(k+k0):R

Then

J 0 =

N1=2�1X
m1=�N1=2

N2=2�1X
m2=�N2=2

N3=2�1X
m3=�N3=2

exp

�
2�i

�
(m1 + p1)u1

N1
+

(m2 + p2)u2
N2

+
(m3 + p3)u3

N3

��

=

N1=2+p1�1X
m1=�N1=2+p1

N2=2+p2�1X
m2=�N2=2+p2

+

N3=2+p3�1X
m3=�N3=2+p3

exp

�
2�i

�
m1u1
N1

+
m2u2
N2

+
m3u3
N3

��

It is straightforward to show that J 0 � J = 0) J(eik0:R � 1) = 0. The only way for J
to be nonzero is if eik0:R = 1, which is satis�ed if either k0 is a reciprocal lattice vector
or if R = 0. But k0 2 FBZ, and if it is nonzero, then it cannot be a reciprocal lattice
vector. Therefore J = 0 unless R = 0, and when R = 0, J is equal to N , the number
of k-points in the FBZ. Hence, J = N�R0.

2. Free electron model at zero temperature.

(a) The mean energy per electron (in 3D) is �� = 3�F=5, where �F = ~
2k2F=2m is the Fermi

energy. The Fermi wave vector kF = (3�2N=V )1=3.

The parameter rs is de�ned by

4�

3
(rsa0)

3 =
V

N
) (N=V )1=3 =

�
3

4�

�1=3

(rsa0)
�1 ) kF =

�
9�

4

�1=3

(rsa0)
�1

=) �� =
3~2

10ma20

�
9�

4

�2=3
1

r2s
w

2:21

r2s
Ry

where 1 Ry = ~
2=(2ma20) is one Rydberg (1 Ry w 13:6eV ).

(b) Consider a spherical shell in k-space bounded by the constant energy surfaces � =
h2k2=2m and �+ d� = h2k2=2m+(h2k=m)dk. The volume of the shell is 4�k2dk. Since
each k-point occupies a volume in k-space given by (2�)3=V , the number of k-points
in the shell is 4�k2dk=(2�)3=V = V k2dk=2�2. The number of states in the shell with
one spin orientation (for example, the number of states with spin up) is equal to the
number of k-points in the shell. Thus,

N�(�; �+ d�) = V k2dk=2�2 = D�(�)d� = V d�(�)d�
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where D�(�) is the density of states with one spin orientation, and d�(�) is the density
of states per unit volume per spin orientation. Thus,

d�(�) =
k2

2�2(d�=dk)
=

k2

2�2~2k=m
=

mk

2�2~2

=) d�(�F ) =
mkF
2�2~2

3. Free electron model in lower dimensions.

(a) For a two-dimensional system in the ground state at T = 0, the electrons �ll states in
k-space within a circle of radius kF . Since each k-point occupies an area of (2�)2=A,
where A is the area of the crystal, the number of k-points within the Fermi circle is
�k2F=(2�)

2=A = Ak2F=4�. Each k-point can accommodate two electrons, one with its
spin up and another with its spin down. Thus, the number of electrons N is given by

N = 2
�
Ak2F=4�

�
= Ak2F=2� ) k2F = 2�N=A = 2�n

=) kF =
p
2�n

In 1D, the Fermi surface consists of two k-points at k = �kF . The points in k-space
are separated by 2�=L. The number of k-points between �kF and kF is therefore
2kF=2�=L = LkF=�, and the number of electrons is

N = 2LkF=� ) kF = �N=2L

=) kF = �n=2

(b) In 3D,
�� = 3�F=5 = �Fd=(d+ 2); d = 3

In 2D,

�� =
1

N

X0

k�

~
2k2

2m
=

2

N

X0

k

~
2k2

2m

The factor 2 arises from summing over � (" or #), and the prime on the summation
symbol means that the sum is over all k-points within the Fermi circle of radius kF .
Replacing the sum over k by an integral, we obtain

�� =
2

N

~
2

2m

A

(2�)2

Z kF

0

k22�kdk =
~
2A

8�Nm
k4F =

1

4�n

~
2k2F
2m

k2F =
1

4�n
�F2�n = �F=2

= �Fd=(d+ 2); d = 2

In 1D,

�� =
1

N

X0

k�

~
2k2

2m
=

2

N

X0

k

~
2k2

2m
=

~
2

Nm

L

2�

Z kF

�kF

k2dk =
~
2

Nm

L

2�

2k2F
3

=
~
2k2F
2m

2kF
3�n

= �F
�n

3�n
= �F=3 = �Fd=(d+ 2); d = 1

In the above, n = N=L. The prime on � means that the sum is over k-points between
�kF and +kF .
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4. Graphene bands.

(a) The real lattice vectors are

a1 = a(
p
3=2;�1=2); a2 = a(0; 1)

The formulas for the primitive lattice vectors b1 and b2 are written assuming that there
are three primitive real lattice vectors. We imagine that there is a third primitive lattice
vector a3 perpendicular to the x-y plane. Then

b1 =
2�a2 � a3

a1:a2 � a3
=

4�p
3a
x̂

b2 =
2�a3 � a1

a1:a2 � a3
=

4�p
3a

(
1

2
x̂+

p
3

2
ŷ)

where x̂ and ŷ are unit vectors in the x- and y-directions, respectively. The vectors
b1 and b2 have the same magnitude (4�=

p
3a) and the angle between them is 60�.

The reciprocal lattice vectors are G = m1b1 + m2b2 ;m1 ;m2 2 Z. To draw the �rst
Brillouin zone (FBZ), choose one reciprocal lattice point, draw all reciprocal lattice
vectors starting from this point and draw the perpendicular bisectors of these vectors.
The area enclosed by these perpendicular bisectors, and centered on the chosen point,
is the FBZ. For the case of graphene, the FBZ is a regular hexagon. The center of the
FBZ is called the �-point. The point M has coordinates (2�=

p
3a; 0), the point K has

coordinates (2�=
p
3a; 2�=3a), and the point K0 has coordinates (0; 4�=

p
3a).

(b)

 A
k (r) =

1p
N

X
n

eik:Rn�(r�Rn);  B
k (r) =

1p
N

X
n

eik:Rn�(r� � �Rn)

These are normalized Bloch functions; they satisfy Bloch's theorem:

 A;B
k (r+Rm) = eik:Rm A;B

k (r)

Since we are neglecting the overlap between atomic orbitals on di�erent sites,  A
k (r)

and  B
k (r) are orthogonal: Z

 A�
k (r) B

k (r)d
3r = 0

To solve the Schr�odinger equation H	k(r) = Ek	k(r), we consider a solution of the
form

	k(r) = a A
k (r) + b B

k (r)

Since  A
k (r) and  B

k (r) are orthogonal, 	k(r) is normalized if jaj2 + jbj2 = 1. The
Schr�odinger equation becomesX

n

eik:Rn [aH�(r�Rn) + bH�(r� � �Rn)]

= En

X
n

eik:Rn [aH�(r�Rn) + bH�(r� � �Rn)]
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We multiply the above equation by ��(r) and integrate over d3r. First, we note thatZ
��(r)H�(r�Rn)d

3r = 0

This is because if Rn = 0, the integral is equal to the orbital energy � which we set
equal to zer0, and if Rn 6= 0, then �(r) and �(r � Rn) are atomic orbitals centered
on atoms of type A, and such atoms are not nearest neighbors. Since we assume that
interactions exist only between nearest neighbors, the integral vanishes. Since we also
ignore the overlap between orbitals on di�erent sites, we set

R
��(r)�(r���Rn) equal

to zero.

Taking account of these observations, the Schr�odinger equation becomes

X
n

eik:Rnb

Z
��(r)H�(r� � �Rn)d

3r = Ek

X
n

eik:Rna

Z
��(r)�(r�Rn)d

3r

On the RHS, the integral vanishes unless Rn = 0, in which case the integral is equal to 1
(we are neglecting the overlap between orbitals on di�erent atoms and we are assuming
that the atomic orbitals are normalized). Hence, RHS = aEk.

On the LHS, the integral vanishes unless �(r� � �Rn) is centered on one of the three
nearest neighbors of atom A. Therefore, in summing over n, only three terms survive:
R1 = 0; R2 = a(�p3=2; 1=2), and R3 = a(�p3=2;�1=2). For each of these values of
Rn, the integral on the LHS of the above equation is the matrix element of H between
the pz orbital on A and the pz orbital on one of the nearest neighbors of A; it is thus
�t. Hence, the above equation becomes

�btgk = aEk

where

gk = 1 + exp

"
i

 
�
p
3

2
kxa+

1

2
kya

!#
+ exp

"
i

 
�
p
3

2
kxa� 1

2
kya

!#

Next we multiply the Schr�odinger equation by ��(r��) and integrate over d3r. On the
RHS we end up with bEk, whereas

LHS =
X
n

eik:Rna

Z
��(r� �)H�(r�Rn)d

3r

The integral vanishes except for three values ofRn, namely,R1 = 0; R2 = a(
p
3=2;�1=2),

and R3 = a(
p
3=2; 1=2). For each of these values of Rn, the integral is �t. These three

Rn vectors are simply the negative of the three Rn vectors encountered earlier. We
thus obtain,

�atg�k = bEk



6

To sum up, the constants a and b satisfy the two homogeneous equations:

Eka+ tgkb = 0

tg�ka+ Ekb = 0

To have a nontrivial solution (a; b 6= 0), the determinant of the coe�cients must vanish,����Ek tgk
tg�k Ek

���� = 0) E2
k � t2 jgkj2 = 0

=) Ek = �t jgkj
The dispersion of the valence �-band is given by Ek = �tgk, while that for the conduc-
tion �-band is Ek = +tgk. For pure, undoped graphene at zero temperature, all states
in the valence band are occupied whereas all states in the conduction band are empty.

For the valence band,

�t jgkj a+ tgkb = 0) a =
gk
jgkjb

The wave function for the valence band states is thus given by

 v
k =

1p
2

�
gk
jgkj 

A
k +  B

k

�

For the conduction band,

 c
k =

1p
2

�
� gk
jgkj 

A
k +  B

k

�

(c)
jgkj =

p
g�kgk

Let
p
3kxa=2 = �; kya=2 = � . Then

gk = 1 + ei(���) + e�i(�+�) = 1 + e�i�
�
ei� + e�i�

�
= 1 + 2cos�e�i�

Therefore,

g�kgk =
�
1 + 2cos�ei�

� �
1 + 2cos�e�i�

�
= 1 + 4cos2� + 2cos�

�
ei� + e�i�

�
= 1 + 4cos2� + 4cos�cos�

Using the trigonometric identity

cos2� = 2cos2� � 1

we can write
4cos2� = 2cos2� + 2

Hence,
g�kgk = 3 + 4cos�cos� + 2cos(2�)
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(d) Let kx = 2�=
p
3a + k0x ; ky = 2�=3a + k0y, where k

0
x and k0y are small: k0x ; k

0
y << �=a.

Setting k0xa = x and k0ya = y,

Ek = �t
"
3 + 4cos

 
� +

p
3

2
x

!
cos
��
3
+
y

2

�
+ 2cos (2�=3 + y)

#1=2

= �t
(
3� 4cos(

p
3x=2)

"
1

2
cos(y=2)�

p
3

2
sin(y=2)

#
� cosy �

p
3siny

)1=2

where in the last step we used the formula cos(a+b) = cosacosb�sinasinb. Expanding:
cos� = 1� �2=2! + � � � ; sin� = � � �3=3! + � � � ;

we obtain

Ek = �t
n
3� 4(1� 3x2=8)(1=2� y2=16�

p
3y=4)� 1 + y2=2�

p
3y
o1=2

= �t
h
3� 2 + y2=4 +

p
3y + 3x2=4� 1 + y2=2�

p
3y
i1=2

= �t
�
3

4

�
x2 + y2

��1=2
= �

p
3

2
ta
�
k
02
x + k

02
y

�1=2

= �
p
3

2
tak0

There are, of course, terms of higher order in k0 which we have neglected since they are
less important when k0 is small. Measuring k from point K in the FBZ, we can write

Ek = �~vFk
where vF =

p
3ta=2~ is the magnitude of the Fermi velocity, and the �(+) sign refers

to the valence (conduction) band.

We have expanded around point K; it is easily veri�ed that the same linear dispersion
is obtained near point K0.

(e) Consider a shell near point K, bounded by the constant energy surfaces � = ~vFk and
�+ d� = ~vFk + ~vFdk. The area of the shell is 2�kdk. Each k-point occupies an area
in k-space given by (2�)2=A, where A is the area of the graphene crystal. Since there
are two states for each k-point (jk "i and jk #i), the number of states in the shell is

N = 2(2�kdk)=(2�)2=A = Akdk=�

The density of states is thus

D(�) =
dN

d�
=
Ak

�

dk

d�
=

Ak

�~vF
=

Aj�j
�(~vF )2

=
4Aj�j
3�a2t2

=) d(�) � 1

A
D(�) =

4j�j
3�a2t2
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Since there are two valleys, one near point K and another near point K0, the total
density of states per unit area is

dtotal(�) =
8j�j

3�a2t2

5. More on graphene.

The pz orbital on each atom is represented by the wave function

�(r) = Arcos�e�Zr=2a0

Here, A is a normalization constant, a0 is the Bohr radius, � is the angle between r and the
z-axis (the one perpendicular to the graphene plane), and Ze is the e�ective charge on the
carbon nucleus, as seen by the electron in the pz orbital (Z ' 3). We want to evaluate

I(q) =

Z
��(r)e�iq:r�(r)d3r

where q is a two-dimensional vector in the FBZ of graphene.

First, note that since �(r) is normalized,

2�A2

Z
1

0

r4e�Zr=a0dr

Z 2

�1

cos2�dcos� = 1

=) 4�

3
A2

Z
1

0

r4e�Zr=a0 = 1

Expanding e�iq:r, we can write

I(q) = A2
1X
n=0

1

n!

Z
1

0

r4e�Zr=a0dr

Z 2�

0

d�

Z 1

�1

d(cos�) cos2� (�iq:r)n

If we choose the x-axis to be along the direction of q, then q:r = qrsin�cos�. Therefore,

I(q) = A2
1X
n=0

(�iq)n
n!

Z
1

0

r4+ne�Zr=a0dr

Z �

0

cos2� sinn+1� d�

Z 2�

0

cosn�d�

Note that Z 2�

0

cosn�d� = 0 if n is odd;

hence,

I(q) = A2
1X
n=0

(�1)n q2n

(2n)!

Z
1

0

r4+2ne�Zr=a0dr

Z �

0

(1� sin2�) sin2n+1� d�

Z 2�

0

cos2n�d�
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UsingZ �

0

sin2n+1� d� =
2[(2n)!!]

(2n+ 1)!!
;

Z �

0

sin2n+3� d� =
2[(2n+ 2)!!]

(2n+ 3)!!Z 2�

0

cos2n�d� = 2�
(2n� 1)!!

(2n)!!
;

Z
1

0

r4+2ne�Zr=a0dr =
(2n+ 4)!

4!

�a0
Z

�2n Z 1

0

r4e�Zr=a0dr;

and noting that
(2n)!!

(2n+ 1)!!
� (2n+ 2)!!

(2n+ 3)!!
=

(2n)!!

(2n+ 3)!!
;

and using the normalization condition, we obtain

I(q) =
1X
n=0

(�1)n (n+ 1)(n+ 2)

2

��qa0
Z

�2�2

=
1�

1 + (qa0=Z)
2�3

Since Z ' 3, then for small values of q : qa0 << 1, I(q) ' 1.

This result is not surprising: ��(r)�(r) is maximum at r = 2a0=Z ' 2a0=3 and decays
exponentially for larger values of r. For r > 3a0 ; �

�(r)�(r) is almost vanishing. On the
other hand, eiq:r ' 1 for r - 3a0 since qa0 << 1. So for values of r where ��(r)�(r) is
appreciable, eiq:r = 1. Since �(r) is normalized, I(q) ' 1.

6. Matrix elements of graphene wave functions.

 A
k (r) =

1p
N

X
n

eik:Rn�(r�Rn);  B
k (r) =

1p
N

X
n

eik:Rn�(r� � �Rn);

 v
k =

1p
2

�
gk
jgkj 

A
k +  B

k

�
;  c

k =
1p
2

�
� gk
jgkj 

A
k +  B

k

�

(i)

I1 =


 A
k

��e�iq:r�� A
k+q

�
=

1

N

X
n;n0

e�ik:Rnei(k+q):Rn0

Z
e�iq:r��(r�Rn)�(r�Rn0)d

3r

Ignoring overlap between orbitals on di�erent sites, the integral vanishes unless n = n0;
hence

I1 =
1

N

X
n

eiq:Rn

Z
e�iq:r j�(r�Rn)j2 d3r = 1

N

X
n

Z
e�iq:(r�Rn) j�(r�Rn)j2 d3r

By a change of variable: r! r�Rn,

I1(q) =
1

N

X
n

Z
e�iq:r) j�(r)j2 d3r ' 1

In the last step, we made use of the result of problem 2.5.
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(ii) Following the same steps as above, it is readily shown that

 B
k

��e�iq:r�� B
k+q

� ' 1;


 A
k

��e�iq:r�� B
k+q

�
=


 B
k

��e�iq:r�� A
k+q

�
= 0

The second equation results from neglecting overlap between atomic orbitals on dif-
ferent sites.

(iii)



 v
k

��e�iq:r�� v
k+q

�
=

1

2

�
g�kgk+q
jgkgk+qj



 A
k je�iq:rj A

k+q

�
+


 B
k je�iq:rj B

k+q

�
+
g�k
jgkj



 A
k je�iq:rj B

k+q

�
+

gk
jgkj



 B
k je�iq:rj A

k+q

��

Using the results of (i) and (ii),



 v
k

��e�iq:r�� v
k+q

� ' 1

2

�
1 +

g�k gk+q
jgk gk+qj

�

(iv) Similarly, it is readily shown that

 c
k

��e�iq:r�� c
k+q

�
=


 v
k

��e�iq:r�� v
k+q

�


 c
k

��e�iq:r�� v
k+q

�
=


 v
k

��e�iq:r�� c
k+q

�
=

1

2

�
1� g�k gk+q

jgk gk+qj
�

(v)

gk = 1 + e
i
�
�

p
3

2
kxa+

1

2
kya

�
+ e

�i
�p

3

2
kxa+

1

2
kya

�

We assume that k is near the point K or K' (gk vanishes at these points). Expanding
about point K,

gk =
@gk
@kx

����
K

�
kx � 2�p

3a

�
+
@gk
@ky

����
K

�
ky � 2�

3a

�

=
i
p
3a

2

�
kx � 2�p

3a

�
+

p
3a

2

�
ky � 2�

3a

�

Measuring k from point K,

gk =
i
p
3a

2
(kx � iky) = i

p
3

2
kae�i�k

where �k is the angle between k and the x-axis. Therefore,

jgkgk+qj = 3a2

4
kjk+ qj

and

g�kgk+q =
3a2

4
kjk+ qjei(�k��k+q)
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Hence, 

 v
k

��e�iq:r�� v
k+q

�
=

1

2

h
1 + ei(�k��k+q)

i
and

��
 v
k

��e�iq:r�� v
k+q

���2 = 1

4

h
1 + ei(�k��k+q)

i h
1 + e�i(�k��k+q)

i
=

1

2
(1 + cos�)

where � is the angle between k and k+ q:

cos� =
k:(k+ q)

kjk+ qj =
k2 + kqcos�

kjk+ qj =
k + qcos�

jk+ qj
where � is the angle between k and q.

Following the same steps as above, we �nd

��
 c
k

��e�iq:r�� v
k+q

���2 = 1

2

�
1� k + qcos�

jk+ qj
�

Since 

 c
k

��e�iq:r�� c
k+q

�
=


 v
k

��e�iq:r�� v
k+q

�
and 


 v
k

��e�iq:r�� c
k+q

�
=


 c
k

��e�iq:r�� v
k+q

�
we can write

Fss0(k;q) =
1

2

�
1 + ss0

k + qcos�

jk+ qj
�

where s; s0 = �1 (+1) if s; s0 = v (c).

7. Density of states.

D(�)d� = 2
(2�)3

V

Z
dk?dS�

In the above, the function dk? is integrated over the surface in k-space on which the energy
is a constant equal to �. dk? is the perpendicular distance in k-space between the inner and
outer surfaces of the shell.

The point to note here is that for the constant energy surface �(k) = �, the gradientrk�(k)
is perpendicular to the constant energy surface. Therefore,

jrk�j dk? = d�

Hence,

D(�)d� = 2
(2�)3

V

Z
dS�
jrk�jd�
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We note that d� is simply a constant; the integration is not over �, but rather over the
constant energy surface. Cancelling d�, we obtain the desired result:

D(�) = 2
(2�)3

V

Z
dS�
jrk�j



Chapter 3

Second Quantization

1. Noninteracting electrons on a square lattice.

The two lattice vectors are a1 = a(1; 0); a2 = a(0; 1). The Hamiltonian is

H = �t
X
<ij>�

cyi�cj�

Expanding in terms of momentum operators,

cyi� =
1p
N

X
k2FBZ

e�ik:Ricyk� ; cj� =
1p
N

X
k2FBZ

eik:Rjck� ;

the Hamiltonian is rewritten as

H = �(t=N)
X
<ij>�

X
kk0

e�ik
0:Rieik:Rjcyk0�ck�

= �(t=N)
X
<ij>�

X
kk0

e�i(k
0�k):Rieik:(Rj�Ri)cyk0�ck�

The sum over k and k0 is restricted to the values within the �rst Brillouin zone (FBZ).

For any given lattice site i, Rj�Ri can only take four values, namely, �a(1; 0) and �a(0; 1).
Hence, X

<ij>

e�i(k
0�k):Rieik:(Rj�Ri) =

�
eikxa + e�ikxa + eikya + e�ikya

�X
i

ek
0�k):Ri

= (2cos(kxa) + 2cos(kya)N�kk0

In the last step we used the result of problem 2.1.

We thus �nd
H =

X
k�

2t [cos(kxa) + cos(kya)] c
y
k�ck� =

X
k�

�kc
y
k�ck�

where
�k = 2t [cos(kxa) + cos(kya)]

This is the dispersion of the energy band.

1
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2. Graphene revisited.

(a) The Hamiltonian is

H = �t
X
i�

3X
�=1

ayi�bi+�;� +H:C:

The creation and annihilation operators are expanded as follows:

ayi� =
1p
N

X
k2FBZ

e�ik:Riayk� ; bi� =
1p
N

X
k2FBZ

eik:Ribk�

Putting these into the expression for the Hamiltonian, we �nd

H = � t

N

X
kk0

X
i�

X
�

e�ik
0:Rieik:(Ri+�)ayk0�bk� +H:C:

Note that X
�

eik:� = gk

where gk was de�ned earlier in problem 2.4. Thus

H = � t

N

X
kk0�

gka
y
k0�bk�

X
i

ei(k�k
0):Ri +H:C:

= �t
X
k�

gka
y
k�bk� � t

X
k�

g�kb
y
k�ak�

= �t
X
k�

�
ayk� byk�

�� 0 gk
g�k 0

��
ak�
bk�

�

(b) The matrix

G =

�
0 gk
g�k 0

�
has eigenvalues �jgkj. The eigenvector corresponsing to the eigenvalue �jgkj is

1p
2

��gk=jgkj
1

�

and that corresponsing to the eigenvalue +jgkj is
1p
2

�
gk=jgkj

1

�

We form the matrix A whose columns are the above two eigenvectors, and its inverse
A�1,

A =
1p
2

�� gk
jgkj

gk
jgkj

1 1

�
; A�1 =

1p
2

"
� g�

k

jgkj
1

g�
k

jgkj
1

#



3

It is easily veri�ed that

A�1GA =

��jgkj 0
0 jgkj

�
The Hamiltonian is now written as

H = �t
X
k�

�
ayk� byk�

�
AA�1

�
0 gk
g�k 0

�
AA�1

�
ak�
bk�

�

= �t
X
k�

�
cy1k� cy2k�

���jgkj 0
0 jgkj

��
c1k�
c2k�

�

= �t
X
k�

2X
n=1

Enkc
y
nk�cnk�

where �
c1k�
c2k�

�
= A�1

�
ak�
bk�

�
=

1p
2

 
� g�

k

jgkj
ak� + bk�

g�
k

jgkj
ak� + bk�

!

3. Commutators.

(a) "
ck�;

X
k�

�kc
y
k�ck�

#
=

"
ck�;

X
k0�0

�k0c
y
k0�0ck0�0

#
=
X
k0�0

�k0
h
ck�; c

y
k0�0ck0�0

i

If c and cy are boson operators, then

[A;BC] = B[A;C] + [A;B]C

gives h
ck�; c

y
k0�0ck0�0

i
= cyk0�0 [ck�; ck0�0 ] +

h
ck�; c

y
k0�0

i
ck0�0

= 0 + �kk0���0ck0�0

If, on the other hand, c and cy are fermion operators, then the formula

[A;BC] = fA;BgC �BfA;Cg
gives h

ck�; c
y
k0�0ck0�0

i
=
n
ck�; c

y
k0�0

o
ck0�0 � cyk0�0 fck�; ck0�0g

= �kk0���0ck0�0

Therefore, whether c and cy are boson or fermion operators, we have"
ck�;

X
k�

�kc
y
k�ck�

#
=
X
k0�0

�k0�kk0���0ck0�0 = �kck�
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(b) For boson operators,"
cyk�;

X
k�

�kc
y
k�ck�

#
=
X
k0�0

�k0
h
cyk�; c

y
k0�0ck0�0

i
=
X
k0�0

�k0c
y
k0�0

h
cyk�; ck0�0

i

= �
X
k0�0

�k0c
y
k0�0�kk0���0 = ��kcyk�

For fermion operators,"
cyk�;

X
k�

�kc
y
k�ck�

#
=
X
k0�0

�k0
h
cyk�; c

y
k0�0ck0�0

i
= �

X
k0�0

�k0c
y
k0�0

n
cyk�; ck0�0

o

= �
X
k0�0

�k0c
y
k0�0�kk0���0 = ��kcyk�

The same answer is obtained whether c and cy are boson or fermion operators.

4. Field and number operators.

The total number of particles operator is given by

N =
X
�

Z
d3r	y

�(r)	�(r)

For bosons,

[N;	�(r)] =
X
�0

Z
d3r0

h
	y
�0(r

0)	�0(r0);	�(r)
i

Using [AB;C] = A[B;C] + [A;C]B, we �ndh
	y
�0(r

0)	�0(r0);	�(r)
i
= 	y

�0(r
0) [	�0(r0);	�(r)] +

h
	y
�0(r

0);	�(r)
i
	�0(r0)

For boson �eld operators,

[	�0(r0);	�(r)] = 0;
h
	y
�0(r

0);	�(r)
i
= ����0�(r� r0)

For fermion operators,h
	y
�0(r

0)	�0(r0);	�(r)
i
= 	y

�0(r
0) f	�0(r0);	�(r)g �

n
	y
�0(r

0);	�(r)
o
	�0(r0)

= 0� ���0�(r� r0)	�(r)

Hence, for both bosons and fermions,

[N;	�(r)] = �
X
�0

Z
d3r0���0�(r� r0)	�0(r0) = �	�(r)
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Now consider [N;	y
�(r)]. For boson operators,h

	y
�0(r

0)	�0(r0);	�(r)
i
= 	y

�0(r
0)
�
	�0(r0);	y

�(r)
�
= ���0�(r� r0)	y

�0(r
0)

For fermion operators,h
	y
�0(r

0)	�0(r0);	�(r)
i
= 	y

�0(r
0)
�
	�0(r0);	y

�(r)
	
= ���0�(r� r0)	y

�0(r
0)

Hence, for both bosons and fermions,�
N;	y

�(r)
�
= 	y

�(r)

De�ne 	�(r; �) by

	�(r; �) = eiN�	�(r)e
�iN�

Taking derivatives with respect to �,

d

d�
	�(r; �) = iN	�(r; �)� i	�(r; �)N = i [N;	�(r; �)]

Since N commutes with e�iN�, we can write

[N;	�(r; �)] = NeiN�	�(r)e
�iN� � eiN�	�(r)e

�iN�N

= eiN�N	�(r)e
�iN� � eiN�	�(r)Ne�iN� = eiN� [N;	�(r)] e

�iN�

= �	�(r; �)

where in the last step we used [N;	�(r)] = �	�(r). Thus,

d

d�
	�(r; �) = �i	�(r; �)) 	�(r; �) = e�i�	�(r; � = 0) = e�i�	�(r)

Taking the adjoint on both sides,

	y
�(r; �) = ei�	y

�(r)

5. Spin operators.

The spin operator for the N electrons is

S =
NX
i=1

si

The second quantized form of Sx is

Sx =
X
k�k0�0

hk0�0jsxjk�icyk0�0ck� =
X
k��0

h�0j�icyk�0ck�
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In writing the above, we have used sxjk�i = jkisxj�i and hkjk0i = �kk0 . The state j�i is
either j "i or j #i. Using the results of problem 1.5: h" jsxj "i = h# jsxj #i0; h" jsxj #i =
~=2 = h# jsxj "i, we �nd

Sx =
~

2

X
k

�
cyk"ck# + cyk#ck"

�

For sy we have

h" jsyj "i = h# jsyj #i = 0; h" jsyj #i = �i~=2 = �h# jsyj "i

Hence,

Sy = i
~

2

X
k

�
cyk#ck" � cyk"ck#

�

For sz we have

h" jszj "i = ~=2 h# jszj #i = �~=2; h" jszj #i = h# jszj "i = 0

It follows that

Sz =
~

2

X
k

�
cyk"ck" � cyk#ck#

�

6. Number-density operator.

n(r) =
X
�

	y
�(r)	�(r) =

X
�

X
nk

X
n0k0

��nk(r)�n0k0(r)c
y
nk�cn0k0�

In writing the above, we used the formula for the expansion of the �eld operators in terms
of the creation and annihilation operators. The function �nk(r) is a Bloch function, and it
can be written as

�nk(r) = unk(r)e
ik:r; unk(r) = unk(r+R)

where R is any lattice vector. The Fourier transform of n(r) is

nq =

Z
n(r)e�iq:rd3r =

X
�

X
nk

X
n0k0

cynk�cn0k0�

Z
u�nk(r)un0k0(r)e

i(k0�k�q):rd3r

Shifting the integration variable from r to r+R, the integral does not change; however, the
integrand gets multiplied by ei(k

0�k�q):R). This quantity must be equal to 1 for all lattice
vectors R; this implies that k0 � k� q = G, where G is a reciprocal lattice vector.

******************************************************************************

Another way to arrive at the above conclusion is to note that f(r) = u�nk(r)un0k0(r) is a
periodic function: f(r) = f(r+R). Expanding f(r) in a Fourier series

f(r) =
1

V

X
q0

fq0e
iq0:r;
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and using

f(r) = f(r+R) =
1

V

X
q0

fq0e
iq0:(r+R);

we �nd that eiq
0:R = 1, which means that q0 is a reciprocal lattice vector. Thus

f(r) =
1

V

X
G

fGe
iG:r;

and Z
f(r)ei(k

0�k�q):rd3r =
1

V

X
G

fG

Z
ei(k

0�k�q+G):rd3r

=
X
G

fG�k0�k�q;�G

In other words, the integral vanishes unless k0 = k+ q+G for some lattice vector G.

Note:

To see that
R
eik:rd3r = V �k;0, suppose that the crystal is a cube of side L and that the

lattice vectors are along the x, y, and z directions. ThenZ
eik:rd3r =

Z L

0

eikxxdx

Z L

0

eikyydy

Z L

0

eikzzdz

Now consider Z L

0

eikxxdx =
eikxL � 1

ikx
Since kx = 0;�2�=L;�4�=L; : : : , the numerator vanishes, and the integral thus vanishes
unless kx = 0, in which case the integral equals L.

*******************************************************************************

To summarize, in the expression for nq, the integral vanishes unless k
0 = k+ q+G, where

G is a reciprocal lattice vector. Since k; k0 2FBZ, then for any given q, G is the particular
reciprocal lattice vector that carries k+q, should it lie outside the FBZ, back into the FBZ.
If k+ q 2FBZ, then G = 0. We thus write k0 = k+ q with the understanding that k+ q

lies in the FBZ. Therefore,

nq =
X
�

X
nn0k

cynk�cn0k+q�

Z
��nk(r)e

�iq:r�n0k+q(r)d
3r

=
X
k�

X
nn0

hnk�je�iq:rjn0k+ q�icynk�cn0k+q�

7. Current density.

j(r) = � e

2m

X
i

h�
pi +

e

c
A(ri)

�
�(r� ri) + �(r� ri)

�
pi +

e

c
A(ri)

�i

= � e

2m

X
i

[pi�(r� ri) + �(r� ri)pi]� e2

2mc

X
i

[A(ri)�(r� ri) + �(r� ri)A(ri)]
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Since A(ri) commutes with ri, the second term becomes

jD(r) = � e2

mc

X
i

A(ri)�(r� ri)

Its second quantized form is

jD(r) = � e2

mc

X
�

Z
	y
�(r1)A(r1)�(r� r1)	�(r1)d

3r1 = � e2

mc
A(r)

X
�

	y
�(r)	�(r)

= � e2

mc
A(r)n(r)

The paramagnetic current is given by

jP (r) = � e

2m

X
i

[pi�(r� ri) + �(r� ri)pi]

Its second quantized form is

jP (r) =
ie~

2m

X
�

�Z
	y
�(r1)rr1�(r� r1)	�(r1)d

3r1 +

Z
	y
�(r1)�(r� r1)rr1	�(r1)d

3r1

�

� ie~

2m
(A+B)

To evaluate this, consider a complete set of states f�n(r)j�ig. Using

	�(r) =
X
n

�+ n(r)cn� ; 	y
�(r) =

X
n

��n(r)c
y
n� ;

the second term becomes

B =
X
�

X
nn0

cyn0�cn�

Z
��n0(r1)�(r� r1)rr1�n(r1)d

3r1

=
X
�

X
nn0

cyn0�cn��
�
n0(r)rr�n(r)

=
X
�

	y
�(r)r	�(r)

The �rst term is given by

A =
X
�

X
nn0

cyn0�cn�

Z
��n0(r1)rr1�(r� r1)�n(r1)d

3r1

Recall how the adjoint of an operator X is de�ned:Z
f �Xgd3r =

Z
(Xyf)�gd3r
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Thus

A =
X
�

X
nn0

cyn0�cn�

Z �
r

y
r1
�n0(r1)

��
�(r� r1)�n(r1)d

3r1

Noting that ry = �r (recall that py = p) (�i~r)y = �i~r), we �nd

A = �
X
�

X
nn0

cyn0�cn�

Z
(rr1�

�
n0(r1)) �(r� r1)�n(r1)d

3r1

= �
X
�

X
nn0

cyn0�cn� (r��n0(r))�n(r)

= �
X
�

�
r	y

�(r)
�
	�(r)

The required expression for jP (r) is thus obtained.

******************************************************************************

An alternative method to determine A is as follows.

A =
X
�

X
nn0

cyn0�cn�I

I =

Z
��n0(r1)rr1�(r� r1)�n(r1)d

3r1

The operator �(r� r1) �rst acts on the function �n(r1) to yield the function �(r� r1)�n(r1)
which is equal to the function �(r� r1)�n(r). Thus

I = �n(r)

Z
��n0(r1)rr1�(r� r1)d

3r1

In the above , �(r � r1) is the Dirac-delta function (not an operator). The operator rr1

now acts on the function �(r� r1),

rr1�(r� r1) = �rr�(r� r1)

Therefore,

I = ��n(r)
Z

��n0(r1)rr�(r� r1)d
3r1

Since the integration is over r1, we can move rr to outside the integral,

I = ��n(r)rr

Z
��n0(r1)�(r� r1)d

3r1 = ��n(r)r��n0(r)

Hence,

A = �
X
�

X
nn0

cyn0�cn��n(r)r��n0(r) = �
X
�

�
r	y

�(r)
�
	�(r)

******************************************************************************
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The Fourier transform of jP (r) is given by

jPq =

Z
jP (r)e�iq:rd3r

=
ie~

2m

X
�

Z �
	y
�(r)r	�(r)�

�
r	y

�(r)
�
	�(r)

�
e�iq:rd3r

Expanding the �eld operators, using plane waves as basis:

	�(r) =
1p
V

X
k

eik:rck� ; 	y
�(r) =

1p
V

X
k

e�ik:rcyk� ;

we obtain

jPq =
ie~

2mV

X
�

X
kk0

�Z �
e�ik:r(ik0)eik

0:re�iq:r + ike�ik:reik
0:re�iq:r

�
d3r

�
cyk�ck0�

= � e~

2mV

X
�

X
kk0

(k0 + k)

Z
ei(k

0�k�q):rd3r cyk�ck0�

Since Z
ei(k

0�k�q):rd3r = V �k0;k+ q

we �nd

jPq = � e~

2m

X
k�

(2k+ q)cyk�ck+q�

8. Contact potential.

H 0 = (g=2)
X
i6=j

�(ri � rj)

In terms of �eld operators, V is written as

H 0 = (g=2)
X
�1�2

Z Z
	y
�1
(r1)	

y
�2
(r2)�(r1 � r2)	�2(r2)	�1(r1)d

3r1d
3r2

= (g=2)
X
�1�2

Z
	y
�1
(r)	y

�2
(r)	�2(r)	�1(r)d

3r

If we use a set of plane waves as a basis,

H 0 =
g

2

X
k1�1

X
k2�2

X
k3�3

X
k4�4

hk1�1k2�2j�(r1 � r2)jk3�3k4�4icyk1�1cyk2�2ck4�4ck3�3
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The matrix element is given by

M � hk1�1k2�2j�(r1 � r2)jk3�3k4�4i
=

1

V 2
��1�3��2�4

Z Z
e�ik1:r1e�ik2:r2�(r1 � r2)e

ik3:r1eik4:r2

=
1

V 2
��1�3��2�4

Z
ei(k3+k4�k1�k2):rd3r

=
1

V
��1�3��2�4�k1�k3;k4�k2

Let k1 � k3 = q. Then, for M not to vanish, we should have k2 � k4 = �q; hence
H 0 =

g

2V

X
q

X
k3�3

X
k4�4

cyk3+q�3c
y
k4�q�4

ck4�4ck3�3

=
g

2V

X
q

X
k�

X
k0�0

cyk+q�c
y
k0�q�0ck0�0ck�

We could have arrived at this result more quickly. The interaction is of the form

H 0 =
1

2

X
i6=j

v(i; j); v(i; j) = g�(ri � rj)

The system is translationally invariant; hence

H 0 =
1

2V

X
k�

X
k0�0

X
q

vqc
y
k+q�c

y
k0�q�0ck0�0ck�

where vq, the Fourier transform of v(ri � rj) is

vq =

Z
v(r)e�iq:rd3r =

Z
g�(r)e�iq:rd3r = g

9. Spin waves.

H = �J

2

X
<ij>

Si:Sj = �J

2

X
i;m

Si:Si+m

The sum over i runs over all the lattice vectors Ri (i = 1; 2; : : : ; N), while the sum over m
runs over the Z lattice vectors connecting i to its nearest neighbors (m = 1; 2; : : : ; Z). Z is
called the coordination number. The raising and lowering spin operators are

S+
i = Sx

i + iSy
i ; S�

i = Sx
i � iSy

i

We transform to boson operators ai and ayi ,

S+
i = [2s� ayiai]

1=2ai ; S�
i = ayi [2s� ayiai]

1=2

The operators ai and ayi satisfy the usual boson commutation relations:

[ai ; aj] = [ayi ; a
y
j] = 0; [ai ; a

y
j] = �ij
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(a)

S�
i S

+
i = (Sx

i � iSy
i )(S

x
i + iSy

i ) = (Sx
i )

2 + (Sy
i )

2 + i(Sx
i S

y
i � Sy

i S
x
i )

= (Sx
i )

2 + (Sy
i )

2 � Sz
i

) (Sx
i )

2 + (Sy
i )

2 = S�
i S

+
i + Sz

i

In order to simplify notation, in what follows we drop the subscript i and write x, y,
and z as subscripts instead of superscripts. We thus write the above relation as

S2
x + S2

y = S�S+ + Sz

Using S2
z = s(s+ 1)� S2

x � S2
y = s(s+ 1)� S�S+ � Sz, we �nd

S2
z + Sz = s(s+ 1)� S�S+ = s(s+ 1)� 2say(1� aya=2s)a

= s(s+ 1)� 2saya+ ayayaa

Using the commutation relation [a; ay] = 1, we obtain

S2
z + Sz = s(s+ 1)� 2saya+ ay(aay � 1)a = s(s+ 1)� (2s+ 1)aya+ (aya)2

) Sz(Sz + 1) = (s� aya)(s� aya+ 1)

This equation has two solutions

Sz = s� aya or Sz = aya� s� 1

However, the second solution is not acceptable because S+ ; S�, and Sz satisfy the
follwing commutation relation

[S+; S�] = 2Sz

As we now check, it is the �rst solution that satis�es this commutation relation.

[S+; S�] = S+S� � S�S+ =
p
2s� aya aay

p
2s� aya� ay

p
2s� aya

p
2s� aya a

=
p
2s� aya (aya+ 1)

p
2s� aya� ay(2s� ay)a

Next we use the fact that aya commutes with any function of aya that can be expanded
in a power series in aya. Thus

[S+; S�] = aya(2s� aya) + 2s� aya� ay(2s� aay + 1)a

= 2(s� aya)

We can also form Sx and Sy in terms of a and ay and verify easily that the usual
commutation relations are satis�ed.

(b) First we note that

Si:Si+m = Sz
i S

z
i+m +

1

2
[S+

i S
�
i+m + S�

i S
+
i+m]
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We are interested in expanding the Hamiltonian up to quadratic terms in a and ay.
Hence we write

S+
i =

q
2s� ayiai ai '

p
2s ai

S�
i = ayi

p
2s� aya =

p
2s ayi

Sz
i = s� ayiai

Including other terms in S+
i and/or S�

i will lead to terms in H of order higher than
quadratic. Physically, the above approximation for S+

i and S�
i can be justi�ed at low

temperatures where there are only few excitations above the ground state, for then the
thermal average hayiaii will be of order 1=N , which is negligible compared to 2s.

The Hamiltonian is now written as

H = �J

2

X
i;m

[(s� ayiai)(s� ayi+mai+m) + saia
y
i+m + sayiai+m]

Ignoring terms containing four operators, we can write

H = �J

2

X
i;m

s2 +
Js

2

X
i;m

(ayiai + ayi+mai+m)�
Js

2

X
i;m

(ayiai+m + aia
y
i+m)

Noting that X
i;m

s2 = NZs2 ;
X
i;m

ayiai =
X
i;m

ayi+mai+m = Z
X
i

ayiai

aia
y
i+m = ayi+mai ;

X
i;m

ayi+mai =
X
i;m

ayiai+m

The Hamiltonian reduces to

H = E0 + ZJs
X
i

ayiai � Js
X
i;m

ayiai+m

where

E0 = �1

2
JNZs2

is the ground state energy.

We now consider the transformation

ak =
1p
N

X
i

eik:Riai ; ayk =
1p
N

X
i

e�ik:Riayi

Inverting the transformation, we obtain

ai =
1p
N

X
k2FBZ

e�ik:Riak ; ayi =
1p
N

X
k2FBZ

eik:Riayk
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The operators ak and ayk satisfy the usual commutation relations. For example,

[ak ; a
y
k0 ] =

1

N

X
i;j

eik:Rie�ik
0:Rj [ai; a

y
j] =

1

N

X
i;j

eik:Rie�ik
0:Rj�ij =

1

N

X
i

ei(k�k
0):Ri

= �kk0

In the last step we used the result from problem 2.1. We now have

X
i

ayiai =
1

N

X
i

X
kk0

ei(k�k
0):Riaykak0

On the RHS, summing over i �rst, we �nd

X
i

ayiai =
1

N

X
kk0

N�kk0a
y
kak0 =

X
k

aykak

Next, we evalute

X
i;m

ayiai+m =
1

N

X
i;m

X
kk0

eik:Rie�ik
0:(Ri+�m)aykak0

where �m is the lattice vector connecting the lattice site i to the site i +m, which is
one of the nearest neighbors of i. We de�ne the quantity �(k0) by

�(k0) =
1

Z

X
m

e�ik
0:�m

Thus X
i;m

ayiai+m =
1

N

X
kk0

Z�(k0)
X
i

ei(k�k
0):Riaykak0

=
1

N

X
kk0

Z�(k0)N�kk0a
y
kak0

= Z
X
k

�(k)aykak

Assembling all the pieces together,

H = E0 + ZJs
X
k

[1� �(k)]aykak = E0 +
X
kv

~!ka
y
kak

where ~!k = ZJs[1� �(k)]. Note that as k! 0; �(k)! 1 and !k ! 0.



Chapter 4

Electron Gas

1. Constrained ground state.

For the unpolarized state,

FF = ~
2k2F=2m =

~
2

2m
(3�N=V )2=3

For the polarized state,

N" =
4�k3F"=3

(2�)3=V

=) kF" = (6�2N"=V )1=3 =

�
6�2N(1 + p)

2V

�1=3
= kF (1 + p)1=3

Similarly,

kF# = kF (1� p)1=3

The total energy is

E =
X

k;k<kF"

~
2k2

2m
+

X
k;k<kF#

~
2k2

2m

Replacing the sum by an integral,

E =
~
2

2m

V

(2�)3

�Z kF"

0

k2d3k +

Z kF#

0

k2d3k

�

=
~
2

2m

V

(2�)3
4�

�Z kF"

0

k4dk +

Z kF#

0

k4dk

�
=

~
2

2m

V

10�2
[k5F" + k5F#]

=
~
2

2m

V

10�2
k5F [(1 + p)5=3 + (1� p)5=3]

Noting that
~
2

2m
k5F =

~
2k2F
2m

k3F = EF (3�
2N=V );

1
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we obtain

EN =
3EF

5

�
(1 + p)5=3 + (1� p)5=3

2

�
=

E0

N

�
(1 + p)5=3 + (1� p)5=3

2

�

2. Correlation function.

G�(r; r
0) = h�0j	y

�(r)	�(r
0)j�0i = 1

V

X
kk0

eik:re�ik
0:r0h�0jcyk�ck0�j�0i

In the ground state j�0i, all single-particle states within the Fermi sphere are occupied,
whereas all states outside the Fermi sphere are empty. Thus ck0�j�0i vanishes unless k0 < kF .
If k0 < kF , then ck0� annihilates an electron in state jk0�i. The operator cyk� then creates an

electron in state jk�i. Thus, for the matrix element h�0jcyk�ck0�j�0i to be nonzero, k and

k0 must be equal, in which case h�0jcyk�ck0�j�0i = 1.

G�(r; r
0) =

k<kFX
k

eik:(r�r
0) =

1

V

V

(2�)3

Z
FS

eik:(r�r
0)d3k

The integration is over the Fermi sphere. Let r � r0 = x, and choose the z-direction to be
along k. Then

G�(r; r
0) = G�(x) =

1

(2�)3

Z kF

0

k2dk

Z 1

�1

d(cos�)

Z 2�

0

d�eikxcos�

Integration over � gives 2�. The integral over � is straightforward,

G�(x) =
1

4�2

Z kF

0

k2
eikx � e�ikx

ikx
dk =

1

2�2x

Z kF

0

ksin(kx)dk

The integration over k is carried out by parts: u = k; dv = sin(kx)dk ) v = �cos(kx)=x.
Thus,

G�(x) =
1

2�2x

"
� kcos(kx)

x

����
kF

0

+
1

x

Z kF

0

cos(kx)dk

#

=
1

2�2x3
[sin(kFx)� (kFx)cos(kFx)] =

k3F
2�2

�
sin(kFx)� (kFx)cos(kFx)

(kFx)3

�

=
3n

2

�
sin(kFx)� (kFx)cos(kFx)

(kFx)3

�

In the last step, we used the formula k3F = 3�2n, where n = N=V is the density of electrons.
In the limit as x!1; G�(x)! 0. On the other hand,

lim
x!0

G�(x) =
1

2�2x3

�
kFx� (kFx)

3

3!
� kFx+

(kFx)
3

2!

�
= k3F=6�

2 =
3�2N=V

6�2

= n=2
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We remark that G�(r; r
0) is the overlap of states 	�(r

0)j�0i and 	�(r)j�0i. These states
are not normalized. In fact,

h�0j	y
�(r)	�(r)j�0i = 1

2
h�0j

X
�

	y
�(r)	�(r)j�0i = 1

2
h�0jn(r)j�0i = n=2

Thus, the state
q

2
n
	�(r)j�0i is normalized. Therefore, the probability amplitude for the

ground state with one particle at r removed to be found in the ground state with one particle
at r0 removed is g�(r; r

0) = 2
n
G�(r; r

0).

As r ! r0; g�(r; r
0) ! 1. For larger values of kFx, the function g�(x) displays damped

oscillations.

3. Pair correlation function.

D��0(r; r
0) = h�0j	y

�(r)	
y
�0(r

0)	�0(r
0)	�(r)j�0i

Expanding

	�(r) =
1p
V

X
k

eik:rck� ; 	y
�(r) =

1p
V

X
k

e�ik:rcyk� ;

we obtain

D��0(r; r
0) =

1

V 2

X
k1k2

X
k3k4

eik1:reik2:r
0

e�ik3:r
0

e�ik4:rh�0jcyk4�cyk3�0ck2�0ck1�j�0i

=
1

V 2

X
k1k2

X
k3k4

ei(k1�k4):rei(k2�k3):r
0h�0jcyk4�cyk3�0ck2�0ck1�j�0i

(i) Consider �rst the case � 6= �0. For the matrix element to be nonzero, we must have
k4 = k1 and k3 = k2. Thus

D��0(r; r
0) =

1

V 2

X
kk0

h�0jcyk�cyk0�0ck0�0ck�j�0i

Since � 6= �0, we have ck0�0ck� = �ck�ck0�0 and cyk0�0ck� = �ck�cyk0�0 . Therefore

D��0(r; r
0) =

1

V 2

X
kk0

h�0jnk�nk0�0j�0i = 1

V 2
N�N�0 =

1

V 2

N

2

N

2

= (n=2)2

(ii) Next, consider the case � = �0. For D��0(r; r
0) to be nonzero, either (k4 = k1 and

k3 = k2) or (k3 = k1 and k4 = k2). Thus

D��0(r; r
0) =

1

V 2

X
kk0

h�0jcyk�cyk0�ck0�ck�j�0i+ 1

V 2

X
kk0

ei(k�k
0):(r�r0)h�0jcyk0�cyk�ck0�ck�j�0i
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Consider the �rst term,

h�0jcyk�cyk0�ck0�ck�j�0i = �h�0jcyk�cyk0�ck�ck0�j�0i
= ��kk0h�0jcyk�ck0�j�0i+ h�0jcyk�ck�cyk0�ck0�j�0i
= ��kk0h�0jnk�j�0i+ h�0jnk�nk0�j�0i

Now consider the second term

h�0jcyk0�cyk�ck0�ck�j�0i = �kk0h�0jcyk0�ck�j�0i � h�0jcyk0�ck0�cyk�ck�j�0i
= �kk0h�0jnk�j�0i � h�0jnk0�nk�j�0i

Hence,

D��(r; r
0) =

1

V 2

X
kk0

[1� ei(k�k
0):x]h�0jnk0�nk�j�0i

=
1

V 2

X
kk0

[1� ei(k�k
0):x]nk0�nk�

=
1

V 2

N

2

N

2
� 1

V

X
k

eik:xnk�
1

V

X
k0

e�ik
0:xnk0�

= (n=2)2 � [G�(x)]
2

where

G�(x) =
1

2�2x3
[sin(kFx)� (kFx)cos(kFx)]

=
3n

2

�
sin(kFx)� (kFx)cos(kFx)

(kFx)3

�

This was evaluated in the previous problem. Thus

D��(x) = (n=2)2

(
1� 9

�
sin(kFx)� (kFx)cos(kFx)

(kFx)3

�2)

� (n=2)2g(kFx)

The function g(kFx) is zero at kFx = 0, rises to 1 for a value of kFx between � and
2�, and then undergoes damped oscillations.

To interpret this result, consider the system ofN electrons in the ground state j�0i. Suppose
an electron with spin � is removed from position r to yield the (N � 1)-particle statep
2=n	�(r)j�0i. In this state the density distribution of electrons with spin �0 is

2

n
h�0j	y

�(r)n�0(r
0)	�(r)j�0i = (2=n)D��0(r; r

0)
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What we found was that

(2=n)D��0(r; r
0) =

(
n=2 � 6= �0

(n=2)g��(kFx) � = �0

For electrons with spin �0 6= �, the removal of an electron at r with spin � has no e�ect;
the density is still n=2. However, for electrons with spin �, the density is greatly reduced
for jr � r0j . k�1F . In other words, it is unlikely to �nd two electrons with the same spin
at a separation . k�1F . This is known as an exchange hole, or correlation hole, associated
with an electron of a given spin. Thus, electrons with the same spin tend to stay away from
each other, which is purely a consequence of the antisymmetry of the wave function, not
the result of any genuine repulsion between the electrons.

To elaborate this point further, consider

D��0(r� r0) = h�0j	y
�(r)	

y
�0(r

0)	�0(r
0)	�(r)j�0i

= �h�0j	y
�(r)	

y
�0(r

0)	�(r)	�0(r
0)j�0i

Replacing 	y
�0(r

0)	�(r) with ���0�(r� r0)�	�(r)	
y
�0(r

0), we obtain

D��0(r� r0) = h�0j	y
�(r)	�(r)	

y
�0(r

0)	�0(r
0)j�0i � ���0�(r� r0)h�0j	y

�(r)	�(r)j�0i
= h�0jn�(r)n�0(r0)j�0i � ���0�(r� r0)h�0jn�(r)j�0i
=
X
i;j

h�0j�(r� ri;�)�(r
0 � rj;�0)j�0i � ���0�(r� r0)n=2

=
X
i;j

h�0j�(r� r0 + r0 � ri;�)�(r
0 � rj;�0)j�0i � ���0�(r� r0)n=2

Let x = r� r0. Then

D��0(x) =
X
i;j

h�0j�(x� ri� + rj;�0)�(r
0 � rj;�0)j�0i � ���0�(x)n=2

We have already seen earlier that D��0 depends only on x and not on r and r0 separately.
Since D��0 does not depend on r0, we integrate over r0 ( 1

V

R
d3r0 = 1),

D��0(x) =
1

V

X
i;j

h�0j�[x� (ri� � rj;�0)]j�0i � ���0�(x)n=2

Let us consider now the two cases: � 6= �0 and � = �0.

(i) � 6= �0,

D��0(x) =
1

V

X
i;j

h�0j�[x� (ri� � rj;�0)]j�0i

We have seen that in this case D��0 = (n=2)2. The above expression for D��0(x) can
be interpreted as being proportional to the probability density that two electrons with
opposite spins are separated in space by x. Since D��0 = (n=2)2, this probability
density is independent of x.
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(ii) � = �0,

D��(x) =
1

V

X
i;j

h�0j�[x� (ri� � rj;�)]j�0i � n

2
�(x)

The last term may be rewritten as

n

2
�(x) =

N

2V
�(x) =

1

V

X
i

�(x� ri� + ri�)

=
1

V

X
i

h�0j�(x� ri� + ri�)j�0i

Hence

D��(x) =
1

V

X
i 6=j

h�0j�[x� (ri� � rj;�)]j�0i

This shows that D��(x) is proportional to the probability density that two electrons
with the same spin orientation are separated by x. We have seen that in this case
D��(x) is very small for x . k�1F . Thus, two electrons with the same spin orientation
are unlikely to be very close to each other.

4. Coulomb interaction in 2D.

vq = e2
Z

1

r
e�iq:rd3r = e2

Z 1

0

dr

Z 2�

0

d�e�iqrcos�

= 2�e2
Z 1

0

J0(qr)dr =
2�e2

q

Z 1

0

J0(x)dx

= 2�e2=q

**************************************************

Notes on Bessel's function:

Consider the generating function

f(x; t) = exp

�
x

2

�
t� 1

t

��

Bessel's functions of the �rst jind, Jn(x), are de�ned using this generating function as
follows:

f(x; t) =
1X

n=�1

Jn(x)t
n

It is clear that Jn(x) is a real function of x. It can be shown that

J�n(x) = (�1)nJn(x)
To obtain an integral representation of J0(x), let t = e�i�. Then

x

2

�
t� 1

t

�
=

x

2
(e�i� � ei�) = �ixsin�
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Thus,

e�ixsin� = J0(x) + J1(x)e
�i� + J�1(x)e

i� + J2(x)e
�2i� + J�2(x)e

2i� + � � �
= J0(x) + J1(x)[e

�i� � ei�] + J2(x)[e
�2i� + e2i�] + J3(x)[e

�3i� � e3i�] + � � �
= J0(x)� 2i[J1(x)sin� + J3(x)sin3� + � � � ] + 2[J2(x)cos2� + J4(x)cos4� + � � � ]

Integrating over � from 0 to 2�, we obtain

2�J0(x) =

Z 2�

0

e�ixsin�d�

Hence,

J0(x) =
1

2�

Z 2�

0

e�ixsin�d�

Since

e�ixsin� =
X
n

(�ix)2
n!

sinn�

and Z 2�

0

sinn�d� =

Z 2�

0

cosn�d�

it follows that

J0(x) =
1

2�

Z 2�

0

e�ixcos�d�

We used this result to obtain vq. Since J0(x) is real, we also have

J0(x) =
1

2�

Z 2�

0

eixcos�d�

The other result we used was that
R1
0
J0(x)dx = 1. To prove this, consider

Z 1

0

J0(x)dx =
1

2�

Z 2�

0

d�

Z 1

0

dxeixcos�

The integrand is oscillatory at 1. To do the integral, we introduce a damping factor �,Z 1

0

dxeixcos� = lim
�!0+

Z 1

0

dxeix(cos�+i�) = lim
�!0+

i

cos� + i�

Thus

I �
Z 1

0

J0(x)dx =
i

2�
lim
�!0+

Z 2�

0

d�

cos� + i�

Let z = ei�, then dz = izd� ) d� = dz=(iz). We also have cos� = (z + 1=z)=2. Therefore,

I =
1

�

Z
C

dz

z2 + 2i�z + 1
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where the integration is over the unit circle. The poles are at

z1 = �i(� +
p
�2 + 1); z2 = �i� + i

p
�2 + 1

The pole at z2 lies within the unit circle. By the residue theorem,

I = lim
�!0+

1

�
2�i lim

z!z2

1

z � z1
= lim

�!0+
2i

1

2i
p
�2 + 1

= lim
�!0+

1p
�2 + 1

= 1

5. Exchange energy in 2D.

As seen in the previous problem, in 2D we have vq = 2�e2=q. The �rst-order energy shift is

�E =
1

2A

X
q

0
X
k�

X
k0�0

vqhF jcyk+q�cyk0�q�0ck0�0ck�jF i

The prime on the summation indicates that the term q = 0 is excluded. Since q 6= 0, it
follows that cyk0�q�0ck0�0 = �ck0�0cyk0�q�0 . Hence,

�E = � 1

2A

X
q

0
X
k�

X
k0�0

2�e2

q
hF jcyk+q�ck0�0cyk0�q�0ck�jF i

The exchange term is obtained for the case k0 = k+ q; � = �0. The exchange contribution
is thus given by

�Ex = ��e2

A

X
q

0
X
k�

1

q
hF jcyk+q�ck+q�cyk�ck�jF i

= �2�e2

A

X
kq

0 1

q
�(kF � k)�(kF � jk+ qj)

Replacing
P

k by (A=(2�)2)
R
d2k, we obtain

�Ex = � e2

2�

X
q

0 1

q

Z
d2k�(kF � k)�(kF � jk+ qj)

The integral over d2k is the area A0(q) of the region of intersection of two Fermi circles, one
centered at k = 0 and another centered at k = �q; thus,

�Ex = � e2

2�

X
q

1

q
A0(q)

where

A0(q) = 2

�
K2

F cos
�1(q=2kF )� (q=2)

q
k2F � d2=4

�
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Replacing the summation over q by integration, we obtain

�Ex =
e2A

4�2

Z 2kF

0

A0(q)dq

De�ne x = q=2kF . Then

�Ex = �e2Ak3F
�2

Z 1

0

[cos�1x� x
p
1� x2]dx = �e2Ak3F

�2
(I1 � I2)

where

I1 =

Z 1

0

cos�1xdx; I2 =

Z 1

0

x
p
1� x2dx

I1 is evaluated by parts (u = cos�1x; dv = dx) and I2 is elementary. We �nd that I1 =
1; I2 = 1=3. Hence,

�Ex = �2e2Ak3F
3�2

= �2e2Ak2F
3�2

kF = �2e2A2�(N=A)

3�2
kF = �4Ne2

3�
kF

=) �Ex

N
= �4e2

3�
kF



Chapter 5

A Brief review of statistical mechanics

1. Stirling's formula.

N ! =

Z 1

0

e�ttNdt

Let t = N +
p
N x = N(1 + x=

p
N), then

tN = NN

�
1 +

xp
N

�N

; e�t = e�Ne�
p
N x; dt =

p
N dx

Thus,

N ! =
p
N NNe�N

Z 1

�pN
e�

p
N x

�
1 +

xp
N

�N

dx

The integrand f(x) is maximum at x = 0 (f(0) = 1) and falls o� to zero on both sides of
the maximum (it is easy to check that the derivative of f(x) vanishes at x = 0).

Let us expand lnf(x) = ln

�
e�

p
N x
�
1 + xp

N

�N�
= �pN x+N ln(1+x=

p
N) about x = 0,

lnf(x) = lnf(0) +
@

@x
lnf(x)

����
0

x+
1

2!

@2

@x2
lnf(x)

����
0

x2 +
1

3!

@3

@x3
lnf(x)

����
0

x3 + � � �

Noting that

@

@x
lnf(x) = �

p
N +

p
N

1 + x=
p
N

=
p
N

"
�x=pN
1 + x=

p
N

#
=

�x=
1 + x=

p
N

@2

@x2
lnf(x) =

@

@x

� �x
1 + x=

p
N

�
= �

�
1 +

xp
N

��2
@3

@x3
lnf(x) =

2p
N

�
1 +

xp
N

��3

1
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We �nd

lnf(x) = �x
2

2
+

x3

3
p
N

+ � � �

exp[lnf(x)] = exp

�
�x

2

2
+

x3

3
p
N

+ � � �
�

Hence,

N ! '
p
NNNe�N

Z 1

�pN
e�x

2=2dx

For x = �pN; e�x2=2 = e�N=2 is exceedingly small and the limit may be safely pushed to
�1,

N ! '
p
NNNe�N

Z 1

�1
e�x

2=2dx =
p
2�N NNe�N

Therefore,

lnN ! ' N lnN �N +
1

2
ln(2�N)

For N >> 1, the last term is negligible compared to the �rst two; hence

lnN ! ' N lnN �N

2. Vacancies and interstitials in graphene.

(a) Since there are M vacancies and a total of N lattice sites, the number of ways of
choosing the vacancies is the number of ways of choosing M objects from among N
objects; this is given by


v =
N !

M !(N �M)!

The removed atoms are placed at the centers of hexagons. A hexagon has 6 atoms,
bet each atom is shared by 3 hexagons; hence there are two atoms per hexagon. Since
there is a total of N atoms, the total number of interstitial sites (hexagon centers) is
N=2. Thus, we have M atoms that are to be distributed among N=2 sites; the number
of ways to do that is


i =
(N=2)!

M !(N=2�M)!

The number of distinct con�gurations, where each con�guration is a graphene crystal
with N carbon atoms, M vacancies, and M interstitials, is thus equal to 
 = 
v
i.
The entropy is given by

S = kln
 = kln
v + kln
i

Using Stirling's approximation (see problem 5.1): N >> 1 ) lnN ! = N lnN � N , we
obtain for the entropy

S = k [N lnN �MlnM�(N �M)ln(N �M) + (N=2)ln(N=2)�MlnM

� (N=2�M)ln(N=2�M)]
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(b) The temperature T is related to the entropy S through the formula 1=T = @S=@E.
Since E =M", it follows that

1

T
=

1

"

@S

@M
=
k

"
[ln(N �M) + ln(N=2�M)� 2lnM ]

=) e"=kT = (N �M)(N=2�M)=M2

De�ning x =M=N = E=(N"), the above equation reduces to

2(e"=kT � 1)x2 + 3x� 1 = 0;

which is a quadratic equation in x, whose solution (x is positive) is

x =
�3 +

p
8e"=kT + 1

4(e"=kT � 1)

In the low-temperature and high-temperature limits, the above expression reduces to

E = N"

(
(1=2)1=2e�"=2kT kT << "

1=3 kT >> "

3. Magnetic susceptibility

(a) One atom is the small system and the rest of the crystal is the heat reservoir. There
are two states with energies ��B and +�B. The partition function of the system is

Z = e��B=kT + e�B=kT

The probability that the magnetic moment points in the direction ofB is P1 = e�B=kT=Z,
while the probability that in points in the direction opposite to B is P2 = e��B=kT=Z.
The average value of � is thus given by

�� = P1�+ P2(��) = �(P1 � P2) = �

�
e�B=kT � e��B=kT

e�B=kT + e��B=kT

�
= � tanh(�B=kT )

Thus, the magnetization is

M = n� tanh(�B=kT )

(b) For x = �B=kT << 1,

M ' n�

�
1 + x� 1 + x

1 + x+ 1� x

�
= n�x =

n�2B

kT

=) � =
@M

@B
=
n�2

kT
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4. Entropy.

The free energy F = E � TS is given by �kT lnZ. Hence TS = kT lnZ +E. We thus �nd
(with � = 1=(kT ))

S = k[lnZ + �E] = k[lnZ + �
X
n

pnEn]

The probability for a state with energy En to be occupied is pn,

pn =
e��En

Z
) e��En = Zpn ) ��En = ln(Zpn)) �En = �ln(Zpn)

Therefore,

S = k

"
lnZ �

X
n

pn ln(Zpn)

#
= k

"
lnZ �

X
n

pn lnZ �
X
n

pn lnpn

#

= �k
X
n

pn lnpn

In the last step we used
P

n pn = 1.

5. Statistical operator.

From the de�nition of the statistical operator.

� =
X
i

pij iih ij

) �2 =
X
i;j

pipjj iih ij jih jj =
X
i;j

pipjj ii�ijh jj =
X

p2i j iih ij

Hence

Tr[�2] =
X
m

X
i

p2i h mj iih ij mi =
X
i

p2i
X
m

h ij mih mj ii

=
X
i

p2i h ij ii =
X
i

p2i � 1

6. Ising model in one dimension.

(a) A state of the system is represented as an N -row fs1 s2 � � � sNg where each entry is
either +1 or �1. The total number of states is 2N . Summing over the states means
summing over s1; s2; � � � ; sN independently. Thus, the partition function is given by

Z =
X

s1=�1;+1

X
s2=�1;+1

� � �
X

sN=�1;+1
e��Efs1 s2���sNg

=
X

s1=�1;+1

X
s2=�1;+1

� � �
X

sN=�1;+1
e�J
P

N

i=1
sisi+1+(1=2)�h

P
N

i=1
si+si+1
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We note that the mean value of the total magnetization, hMi = hPi sii, can be obtained
from the partition function. Taking the derivative of the Helmholtz free energy F =
�kT lnZ with respect to the applied �eld, we obtain

@F

@h
= �kT

Z

@Z

@h
= �kT

Z

@

@h

X
s1

� � �
X
sN

e�J
P

N

i=1
sisi+1+�h

P
N

i=1
si

= � 1

Z

X
fs1 s2 ���sNg

(s1 + � � �+ sN)e
��Efs1 s2 ���sNg = �h

X
i

sii

= �hMi
We de�ne a 2x2 matrix T whose matrix elements are

hsjT js0i = e�Jss
0+�h(s+s0)=2; s; s0 = 1;�1

T is called a transfer matrix. The equation for the partition function may now be
written as

Z =
X

s1=�1;+1

X
s2=�1;+1

� � �
X

sN=�1;+1

NY
i=1

e�Jsisi+1+(1=2)�h(si+si+1)

=
X

s1=�1;+1

X
s2=�1;+1

� � �
X

sN=�1;+1

NY
i=1

hsijT jsi+1i
X

s1=�1;+1

X
s2=�1;+1

� � �
X

sN=�1;+1
hs1jT js2ihs2jT js3i � � � hsN jT jsN+1 = s1i

=
X

s1=�1;+1
hs1jTN js1i = Tr[TN ]

The completeness property of spin states (j1ih1j + j � 1ih�1j) was used above in the
step before the last.

(b) Since T is a real symmetric matrix, it can be diagonalized by an orthogonal trans-
formation: T = OTDO, where the 2x2 matrix O is orthogonal (OT = O�1), OT is
the transpose of O and D is a 2x2 diagonal matrix whose diagonal elements are the
eigenvalues of O. It follows that

Tr[TN ] = Tr [OTDOOTDO � � �OTDO ] = Tr [OTDNO ] = Tr [OOTDN ]

= Tr [DN ]

We have used (i) OOT = 1 (by virtue of O being orthogonal), and (ii) the invariance of
the trace under cyclic permutations. The eigenvalues of D are readily found; they are
given by

�� = e�J
h
cosh(�h)�

p
sinh2(�h) + e�4�J

i
The diagonal elements of D are �+ and ��. Hence, the diagonal elements of DN are
�N+ and �N� , and

Tr [TN ] = Tr [DN ] = �N+ + �N� = �N+ [1 + (��=�+)N ]
N!1���! �N+
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The last step follows because 0 < ��=�+ < 1. The Helmholtz free energy is given by

F = �kT lnZ = �NkT ln�+
= �NJ �NkT ln

h
cosh(�h) +

p
sinh2(�h) + e�4�J

i

(c) The mean magnetization per one magnetic moment (or spin) is

m = � 1

N

@F

@h
=

sinh(�h)p
sinh2(�h) + e�4�J

h!0��! 0



Chapter 6

Correlation and Green's functions

1. Time dependence.

A(t) = ei
�Ht=~Ae�i

�Ht=~

hT A(t)B(t0)i = �(t� t0)hA(t)B(t0)i � �(t0 � t)hB(t0)A(t)i

The lower sign (�) refers to the case when A and B are fermion operators, while the upper
sign (+) refers to the case when A and B are boson operators.

hA(t)B(t0)i = hei
�Ht=~Ae�i

�H(t�t0)=~Be�i
�Ht0=~i

= Z�1G Tr
h
e��

�Hei
�Ht=~Ae�i

�H(t�t0)=~Be�i
�Ht0=~

i
Using the invariance of the trace under cyclic permutations, we move e�i

�Ht0=~ to the far left
and then commute it through e��

�H ,

hA(t)B(t0)i = Z�1G Tr
h
e��

�Hei
�H(t�t0)=~Ae�i

�H(t�t0)=~B
i

= hA(t� t0)B(0)i

Similarly,

hB(t0)A(t)i = Z�1G Tr
h
e��

�Hei
�Ht0=~Bei

�H(t�t0)=~Ae�i
�Ht=~

i
Commuting e�i

�Ht0=~ through e��
�H , then moving it to the far right, we obtain

hB(t0)A(t)i = Z�1G Tr
h
e��

�HBei
�H(t�t0)=~Ae�i

�H(t�t0)=~
i

= hB(0)A(t� t0)i

Hence

hT A(t)B(t0)i = �(t� t0)hA(t� t0)B(0)i � �(t0 � t)hB(0)A(t� t0)i

= hTA(t� t0)B(0)i

This proves that the correlation function �ihT A(t)B(t0)i depends on t� t0, not on t and t0

separately.

1
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2. Translational invariance.

(a)

[	�(r);P] =
X
�0

�
	�(r);

Z
	y
�0(r

0)(�i~rr0)	�0(r
0)d3r0

�

Note that it is the commutator of 	�(r) (not 	
y
�(r) as the problem incorrectly states)

with P.

For bosons, using
[A;BC] = [A;B]C +B[A;C];

we �nd

[	�(r);P] =
X
�0

�Z
[	�(r);	

y
�0(r

0)](�i~rr0)	�0(r
0)d3r0

+

Z
	y
�0(r

0)[	�(r); (�i~rr0)	�0(r
0)]d3r0

�

Noting that
[	�(r); (�i~rr0)	�0(r

0)] = �i~rr0 [	�(r);	�0(r
0)] = 0

and that
[	�(r);	

y
�0(r

0)] = ���0�(r� r0)

we �nd

[	�(r);P] =
X
�0

���0

Z
�(r� r0)(�i~rr0)	�0(r

0)]d3r0

= �i~r	�(r)

This is a di�erential equation for 	�(r) that is to be solved subject to the condition
that at r = 0, 	�(r) = 	�(0). It is straightforward to check that the solution is

	�(r) = e�iP:r=~	�(0)e
iP:r=~

Indeed,
�i~r	�(r) = �Pe�iP:r=~	�(0)e

iP:r=~ + e�iP:r=~	�(0)Pe
iP:r=~

Since P commutes with eiP:r=~, the above equation can be written as

�i~r	�(r) = �P	�(r) + 	�(r)P = [	�(r);P]

(b)

C = h	(r�t)	y(r0�0t0)i

= Z�1G Tr
h
e��

�HT (r)	(0�t)T (�r)T (r0)	y(0�0t0)T (�r0)
i
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where T (r) = e�iP:r=~. Moving T (�r0) to the far left and commuting it through e��
�H ,

we obtain

C = Z�1G Tr
h
e��

�HT (r� r0)	(0�t)T (�r+ r0)	y(0�0t0)
i

= h	(r� r0�t)	y(0�0t0)i = C(r� r0;�t;�0t0)

Since all single-particle Green's functions are linear combinations of C(r�t; r0�0t0) and
C(r0�0t0; r�t) with coe�cients consisting of �(t � t0) and �(t0 � t), it follows that, in
a translationally invariant system, all single-particle Green's functions are functions of
r� r0.

3. Spectral function.

From Eq. (6.35),

A(k�; !) = 2�Z�1G

X
nm

e��
�En
���hmjcyk�jni���2 �1� e��~!

�
�
�
! �

�
�Em � �En

�
=~
�

Thus

I =

Z 1

�1

A(k�; !)d!

= 2�Z�1G

X
nm

e��
�En
���hmjcyk�jni���2 h1� e��(

�Em� �En)
i

= 2�Z�1G

X
nm

�
e��

�En � e��
�Em)
�
hmjcyk�jnihnjck�jmi

= 2�Z�1G

"X
nm

e��
�Enhnjck�jmihmjc

y
k�jni �

X
nm

e��
�Emhmjcyk�jnihnjck�jmi

#

Using the resulution of identity (1 =
P

m jmihmj or 1 =
P

n jnihnj), we �nd

I = 2�Z�1G

"X
n

e��
�Enhnjck�c

y
k�jni �

X
m

e��
�Emhmjcyk�ck�jmi

#

Relabeling m in the second sum as n,

I = 2�Z�1G

X
n

e��
�Enhnjck�c

y
k� � cyk�ck�jni = 2�Z�1G

X
n

e��
�Enhnj1jni

= 2�Z�1G

X
n

e��
�En = 2�

4. Advanced Green's function.

GA(k�; t) = i�(�t)h[ck�(t); c
y
k�(0)]�i

= i�(�t)
h
hck�(t)c

y
k�(0)i � hc

y
k�(0)ck�(t)i

i
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Using Eqs. (6.30) and (6.32),

hck�(t)c
y
k�(0)i = �

Z 1

�1

P (k�; �)e�i�t
d�

2�

hcyk�(0)ck�(t)i = �

Z 1

�1

e��~�P (k�; �)e�i�t
d�

2�

where P (k�; �) is given in Eq. (6.31). Therefore,

GA(k�; t) = �i�(�t)

Z 1

�1

(1� e��~�)P (k�; �)e�i�t
d�

2�

The Fourier transform is

GA(k�; !) =

Z 1

�1

ei!tGA(k�; t)dt

Since GA(k�; t) vanishes for t > 0,

GA(k�; !) = �i

Z 1

�1

(1� e��~�)P (k�; �)
d�

2�

Z 0

�1

ei(!��)tdt

The integral over t is oscillatory at �1, so we introduce a damping factor,

Z 0

�1

ei(!��)tdt =

Z 0

�1

ei(!���i0
+)tdt =

ei(!���i0
+)t

i(! � �� i0+)

�����
0

�1

=
1

i(! � �� i0+)

Hence

GA(k�; !) = �

Z 1

�1

(1� e��~�)P (k�; �)

! � �� i0+
d�

2�

The spectral density function A(k�; �) = �(1� e��~�)P (k�; �) [see Eq. (6.35)]. Thus

GA(k�; !) = �

Z 1

�1

A(k�; �)

! � �� i0+
d�

2�

5. Advanced correlation function.

The advanced correlation function is de�ned as

CA
AB(t) = i�(�t)h[A(t); B(0)]�i

The ensemble average of the commutator was evaluated in Sec. 6.4.3,

CA
AB(t) = i�(�t)Z�1G

X
nm

ei(
�En� �Em)t=~hnjAjmihmjBjni

�
e��

�En � e��
�Em
�
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The Fourier transform is

CA
AB(!) =

Z 1

�1

ei!t)CA
AB(t)dt

= iZ�1G

X
nm

hnjAjmihmjBjni
�
e��

�En � e��
�Em
�Z 0

�1

ei[!�(
�Em� �En)=~]tdt

The integral is evaluated as follows:Z 0

�1

ei[!�(
�Em� �En)=~]tdt = lim

�!0+

Z 0

�1

ei [!�(
�Em� �En)=~�i� ]tdt

= lim
�!0+

1

i[! � ( �Em � �En)=~� i� ]

Thus,

CA
AB = Z�1G

X
nm

hnjAjmihmjBjni
�
e��

�En � e��
�Em
�

! � ( �Em � �En)=~� i0+

The poles are at ! = ( �Em � �En)=~+ i0+; they are all above the real axis.

6. Greater and lesser functions.

For fermions,
iG>(k�; t) = hck�(t)c

y
k�(0)i = C(k�; t)

We have already shown in the text [see Eq. (6.43)] that

C(k�; !) = A(k�; !)(1� f!)

As for the lesser function,

iG<(k�; t) = �hcyk�(0)ck�(t)i =

Z 1

�1

e��~�P (k�; �)e�i�t
d�

2�

[see Eq. (6.32)]. Therefore,

iG<(k�; !) =

Z 1

�1

ei!tiG<(k�; t)dt

=

Z 1

�1

e��~�P (k�; �)
d�

2�

Z 1

�1

ei(!��)tdt

Using Z 1

�1

ei(!��)tdt = 2��(! � �);

we �nd

iG<(k�; !) =

Z 1

�1

e��~�P (k�; �)�(! � �)d� = e��~!P (k�; !)

=
�e��~!A(k�; !)

1 + e��~!
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In the last step we used the relation between P (k�; !) and A(k�; !) given in Eq. (6.35).
Hence

iG<(k�; !) =
�A(k�; !)

e�~! + 1
= �A(k�; !)f!

For bosons,
iG>(k�; t) = hck�(t)c

y
k�(0)i = C(k�; t)

Hence,
iG>(k�; !) = A(k�; !) (1 + n!)

[see Eq. (6.43)].

The lesser function, iG<(k�; t) = hcyk�(0)ck�(t)i, has the same expression as in the fermions
case, except for a minus sign. Thus,

iG<(k�; !) = �e��~!P (k�; !)

Using Eq. (6.35), we �nd

iG<(k�; !) =
e��~!A(k�; !)

1� e��~!
=

A(k�; !)

e�~! � 1
= A(k�; !)n!

7. Causal Green's function.

The causal, or time-ordered, Green's function is de�ned as

G(k�; t) = �ihT ck�(t)c
y
k�(0)i;

where T is the time-ordering operator. The above can be written as

G(k�; t) = �i�(t)hck�(t)c
y
k�(0)i � �(�t)hcyk�(0)ck�(t)i

Equations (6.30) and (6.33) give

hck�(t)c
y
k�(0)i = �

Z 1

�1

P (k�; �)e�i�t
d�

2�
� I(t)

hcyk�(0)ck�(t)i = �

Z 1

�1

e��~�P (k�; �)e�i�t
d�

2�
� J(t)

The Fourier transform of the causal Green's function is thus given by

G(k�; !) =

Z 1

�1

ei!tG(k�; t)dt = �i

Z 1

0

I(t)ei!tdt� i

Z 0

�1

J(t)ei!tdt

Z 1

0

I(t)ei!tdt = �

Z 1

�1

P (k�; �)
d�

2�

Z 1

0

ei(!��)tdt

= �i

Z 1

�1

P (k�; �)

! � �+ i0+
d�

2�
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Z 0

�1

J(t)ei!tdt = �

Z 1

�1

e��~�P (k�; �)
d�

2�

Z 0

�1

ei(!��)tdt

= i

Z 1

�1

e��~�P (k�; �)

! � �� i0+
d�

2�

Thus,

G(k�; !) = �

Z 1

�1

P (k�; �)

! � �+ i0+
d�

2�
�

Z 1

�1

e��~�P (k�; �)

! � �� i0+
d�

2�

We could now replace P (k�; �) by its expression in Eq. (6.31)

P (k�; �) = �2�Z�1G

X
nm

e��
�Enjhmjcyk�jnij

2�
�
��

�
�Em � �En

�
=~
�

and integrate over �. The delta function makes the integral easy to perform,

G(k�; !) = Z�1G

X
nm

e��
�Enjhmjcyk�jnij

2

! � ( �Em � �En)=~+ i0+
� Z�1G

X
nm

e��
�Em jhmjcyk�jnij

2

! � ( �Em � �En)=~� i0+

= Z�1G

X
nm

jhmjcyk�jnij
2

"
e��

�En

! � ( �Em � �En)=~+ i0+
�

e��
�Em

! � ( �Em � �En)=~� i0+

#

8. Relations among Green's functions.

(a) The retarded correlation function is given in Eq, (6.67), and the advanced correlation
function was calculated in problem 5. We can chhose A = ck� and B = cyk�; then CR

AB

and CA
AB become the retarded and advanced single-particle Green's functions. Thus,

GR(k�; !) = Z�1G

X
nm

jhmjcyk�jnij
2(e��

�En � e��
�Em)

! � ( �Em � �En)=~+ i0+

and

GA(k�; !) = Z�1G

X
nm

jhmjcyk�jnij
2(e��

�En � e��
�Em)

! � ( �Em � �En)=~� i0+

The causal Green's function was evaluated in the previous problem. Using

1

x� i0+
= P (1=x)� i�(x);

we readily obtain

ReG(k�; !) = ReGR(k�; !) = ReGA(k�; !)

and

ImGR(k�; !) = �ImGA(k�; !)
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(b) For fermions,

ImGR(k�; !) = ��Z�1G

X
nm

jhmjcyk�jnij
2(e��

�En + e��
�Em)�

�
! � ( �Em � �En)=~

�
= ��Z�1G

X
nm

e��
�Enjhmjcyk�jnij

2(1 + e��(
�Em� �En))�

�
! � ( �Em � �En)=~

�
= ��Z�1G

�
1 + e��~!

�X
nm

e��
�Enjhmjcyk�jnij

2�
�
! � ( �Em � �En)=~

�

In the above, we have used the relation �(x� a)f(x) = �(x� a)f(a).

ImG(k�; !) = ��Z�1G

X
nm

e��
�Enjhmjcyk�jnij

2(1� e��(
�Em� �En))�

�
! � ( �Em � �En)=~

�
= ��Z�1G

�
1� e��~!

�X
nm

e��
�Enjhmjcyk�jnij

2�
�
! � ( �Em � �En)=~

�

Hence,

ImGR(k�; !)

ImG(k�; !)
=

1 + e��~!

1� e��~!
=

e�~!=2 + e��~!=2

e�~!=2 � e��~!=2

=
1

tanh(�~!=2)

For bosons, the + and � signs in teh above expression are interchanged,

ImGR(k�; !)

ImG(k�; !)
=

1� e��~!

1 + e��~!
= tanh(�~!=2)

9. Greater and lesser correlation functions.

iC<
AB(t) = hB(0)A(t)i = Z�1G Tr

h
e��

�HB(0)ei
�Ht=~A(0)e�i

�Ht=~
i

We �rst move e�i
�Ht=~ to the far left, then move A(0) to the far left, then move ei

�Ht=~ to the
far left; we end up with

iC<
AB(t) = Z�1G Tr

h
ei

�Ht=~A(0)e�i
�Ht=~e��

�HB(0)
i

= Z�1G Tr
h
e��

�He�
�Hei

�Ht=~A(0)e�i
�H(t�i�~)=~B(0)

i
= Z�1G Tr

h
e��

�Hei
�H(t�i�~)=~A(0)e�i

�H(t�i�~)=~B(0)
i

= Z�1G Tr
h
e��

�HA(t� i�~)B(0)
i
= hA(t� i�~)B(0)i

= iC>
AB(t� i�~)

This proves the �rst part of the question.
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Taking the Fourier transform,

C<
AB(!) =

Z 1

�1

ei!tC<
AB(t)dt =

Z 1

�1

ei!tC>
AB(t� i�~)dt

Changing variables: t! t0 = t� i�~,

C<
AB(!) =

Z 1

�1

ei!t
0

e��~!C>
AB(t

0)dt0 = e��~!C>
AB(!)

We could arrive at the same results by writing the spectral representations of C<
AB(!) and

C>
AB(!).

10. Susceptibility.

(a)

~�AB(t) = �i�(t)h[A(t); B(0)]i

A and B are hermitian operators ) Ay = A; By = B. We can write

~�AB(t) = �i�(t)hA(t)B(0)i+ i�(t)hB(0)A(t)i

Its complex conjugate is

~��AB(t) = i�(t)hA(t)B(0)i� � i�(t)hB(0)A(t)i�

Note that for any operator A,

hAi = Z�1G Tr[e��
�HA] = Z�1G

X
m

hmje��
�HAjmi

= Z�1G

X
m

e��
�EmhmjAjmi

=) hAi� = Z�1G

X
m

e��
�EmhmjAjmi� = Z�1G

X
m

e��
�EmhmjAyjmi = hAyi

Hence,

~��AB(t) = i�(t)h(A(t)B(0))yi � i�(t)h(B(0)A(t))yi

= i�(t)hBy(0)Ay(t)i � i�(t)hAy(t)By(0)i

Since A and B are hermitian,

~��AB(t) = i�(t)hB(0)A(t)i � i�(t)hA(t)B(0)i

= �i�(t)h[A(t); B(0)]i = ~�AB

Thus, �AB(t) is real.
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(b)

�AB(!) =

Z 1

�1

ei!t�AB(t)dt

=) [�AB(!)]
� =

Z 1

�1

e�i!t[�AB(t)]
�dt =

Z 1

�1

e�i!t�AB(t)dt = �AB(�!)

11. Kramers-Kronig relations.

Since there are no poles inside the contour C,

I =

Z
C

�(!0)d!0

!0 � !
= 0

Also

I =

Z �

�1

�(!0)d!0

!0 � !
+

Z 1

�

�(!0)d!0

!0 � !
+

Z
C1

�(!0)d!0

!0 � !
+

Z
C2

�(!0)d!0

!0 � !

C2 is the large semicircle at in�nity, and the integral over it vanishes by assumption (b). C1

is the semicircle of radius �, centered on !. Writing !0�! = �ei�; d!0 = i�ei�d� = i(!0�!)d�,
we �nd Z

C1

�(!0)d!0

!0 � !
= i

Z 0

�

�(! + �ei�)d�

Taking the limit �! 0, Z
C1

�(!0)d!0

!0 � !
= i

Z 0

�

�(!)d� = �i��(!)

We note that

lim
�!0

�Z �

�1

�(!0)d!0

!0 � !
+

Z 1

�

�(!0)d!0

!0 � !

�
= P

Z 1

�1

�(!0)d!0

!0 � !

Thus, I = 0 implies that

�(!) =
1

i�
P

Z 1

�1

�(!0)d!0

!0 � !

Taking the real part on both sides,

Re�(!) =
1

�
P

Z 1

�1

Im�(!0)d!0

!0 � !
=

1

�
P

�Z 0

�1

Im�(!0)d!0

!0 � !
+

Z 1

0

Im�(!0)d!0

!0 � !

�

In the integral from �1 to 0, let !00 = �!0,

P

Z 0

�1

Im�(!0)d!0

!0 � !
= P

Z 0

1

Im�(�!00)d!00

!00 + !
= P

Z 1

0

Im�(!0)d!0

!0 + !

where we used the fact that Im�(!) is an odd function of !. Hence,

Re�(!) =
1

�
P

Z 1

0

Im�(!)

�
1

!0 + !
+

1

!0 � !

�
d!0 =

2

�
P

Z 1

)

!0Im�(!0)

!02 � !2
d!0

The expression for Im�(!) follows in a similar way.
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12. Polarizability.

CR
AB(t� t0) = �i�(t� t0)h[A(t); B(t0)]�i

�0(q; !) =
1

~
DR;0(q; !)

DR;0(q; t� t0) = �i�(t� t0)
1

V
h[nH(q; t); nH(�q; t

0)]i

In the �rst expression, the +(�) sign refers to fermions (bosons). The operator nH is
bosonic, and the subscript indicates that the operator is in the Heisenberg picture. We see
that

�0(q; !) =
1

~V
CR
AB(q; !)

if we set A(t) = nH(q; t) and B(t0) = nH(�q; t
0). Thus

�0(q; !) =
1

~V
CR
nqn�q

(q; !)

where
nq =

X
k�

cyk�ck+q�

Equation (6.47) in the text now becomes

CR
nqn�q

(q; !) = Z�1G

X
nm

hnjnqjmihmjn�qjni(e
�� �En � e��

�Em)

! � ( �Em � �En)=~+ i0+

Note that
n�q =

X
k�

cyk�ck�q� =
X
k�

cyk+q�ck� = nyq

Therefore,

CR
nqn�q

(q; !) = Z�1G

X
nm

jhnjnqjmij
2(e��

�En � e��
�Em)

! � ( �Em � �En)=~+ i0+

The matrix element
hnjnqjmi =

X
k�

hnjcyk�ck+q�jmi

is nonvanishing if jni di�ers from jmi by the replacement of a particle of coordinates (k+q�)
with one of coordinates (k�). Hence

�Em � �En = ��k+q� � ��k�

Furthermore,

hnjnqjmihmjn
y
qjni =

X
k�

X
k0�0

hnjcyk�ck+q�jmihmjc
y
k+q�ck�jni
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The retarded correlation function now becomes

CR
nqn�q

(q; !) = Z�1G

X
k�

1

! + (��k� � ��k+q�)=~+ i0+X
nm

hnjcyk�ck+q�jmihmjc
y
k+q�ck�jni(e

�� �En � e��
�Em)

Consider

S1 =
X
nm

e��
�Enhnjcyk�ck+q�jmihmjc

y
k+q�ck�jni

=
X
n

e��
�Enhnjcyk�ck+q�c

y
k+q�ck�jni

and

S2 =
X
nm

e��
�Emhnjcyk�ck+q�jmihmjc

y
k+q�ck�jni

=
X
nm

e��
�Emhmjcyk+q�ck�jnihnjc

y
k�ck+q�jmi

=
X
m

e��
�Emhmjcyk+q�ck�c

y
k�ck+q�jmi

Hence,

CR
nqn�q

(q; !) = Z�1G

X
k�

1

! + (��k� � ��k+q�)=~+ i0+X
n

e��
�Enhnjcyk�ck+q�c

y
k+q�ck� � cyk+q�ck�c

y
k�ck+q�jni

Now consider

cyk�ck+q�c
y
k+q�ck� = cyk�(1� cyk+q�ck+q�)ck�

= cyk�ck� � cyk�c
y
k+q�ck+q�ck�

and

cyk+q�ck�c
y
k�ck+q� = cyk+q�(1� cyk�ck�)ck+q�

= cyk+q�ck+q� � cyk+q�c
y
k�ck�ck+q�

= cyk+q�ck+q� � cyk�c
y
k+q�ck+q�ck�

In writing the above equations we have used

fck�; ck0�0g = fcyk�; c
y
k0�0g = 0; fck�; c

y
k0�0g = �kk0���0
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Assembling the pieces together,

CR
nqn�q

(q; !) = Z�1G

X
k�

1

! + (��k� � ��k+q�)=~+ i0+

X
n

e��
�Enhnjcyk�ck� � cyk+q�ck+q�jni

=
X
k�

1

! + (��k� � ��k+q�)=~+ i0+
hcyk�ck� � cyk+q�ck+q�i

=
X
k�

fk� � fk+q�
! + (��k� � ��k+q�)=~+ i0+

13. Equation of motion.

�H =
X
k�

��k�c
y
k�ck� + V = �H0 + V

For bosons,
GR(k�; t) = �i�(t)h[ck�(t); c

y
k�(0)]i

Taking the derivative with respect to t,

i
@

@t
GR(k�; t) = �(t)h[ck�(t); c

y
k�(0)]i+ �(t)h[

@

@t
ck�(t); c

y
k�(0)]i

The �rst term on the RHS is �(t)h[ck�(0); c
y
k�(0)]i = �(t)h1i = �(t). As for the second term,

@

@t
ck�(t) =

i

~
[ �H; ck�(t)] =

i

~
[ �H0(t); ck�(t)] +

i

~
[V (t); ck�(t)]

The �rst commutator is

[ �H0; ck�] =
X
k0�0

��k0�0 [c
y
k0�0ck0�0 ; ck�] =

X
k0�0

[cyk0�0 ; ck�]ck0�0

=
X
k0�0

��k0�0(��kk0���0)ck0�0 = ���k�ck�

Thus,

i
@

@t
ck�(t) = �

i

~
��k0�0ck�(t) +

i

~
[V (t); ck�(t)]

The equation of motion for GR(k�; t) now becomes

i~
@

@t
GR(k�; t) = ~�(t) + �(t)(�i��k�)h[ck�(t); c

y
k�(0)]i+ i�(t)h[[V (t); ck�(t)]; c

y
k�(0)]i

Rearranging terms,

(i~
@

@t
� ��k�)G

R(k�; t) = ~�(t)� i�(t)h[�[V (t); ck�(t)]; c
y
k�(0)]i

This is the same equation as the one for fermions except that a commutator replaces an
anticommutator.
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14. Mixed retarded function.

The Hamiltonian is

H =
X
nk�

�nkc
y
nk�cnk� +

X
�

�dd
y
�d� +

X
nk�

Vnkdc
y
nk�d� +

X
nk�

V �
nkdd

y
�cnk�

The mixed retarded function is

GR(nkd�; t) = �i�(t)hfcnk�(t); d
y
�(0)gi

Its time-derivative is

i
@

@t
GR(nkd�; t) = �(t)hfcnk�(t); d

y
�(0)gi+ �(t)hf

@

@t
cnk�(t); d

y
�(0)gi

The �rst term on the RHS is equal to �(t)hfcnk�(0); d
y
�(0)gi = 0 since operators c and d

anticommute. As for the second term,

@

@t
cnk�(t) =

i

~
[ �H; cnk�]

Using [AB;C] = AfB;Cg � fA;CgB, we �nd"X
nk�

�nkc
y
nk�cnk�; cnk�

#
= ��nkcnk�

"X
�

�dd
y
�d�; cnk�

#
= 0

"X
nk�

Vnkdc
y
nk�d�; cnk�

#
= �Vnkdd�

"X
nk�

V �
nkdd

y
�cnk�; cnk�

#
= 0

Hence,
@

@t
cnk� = �

1

~
�nkcnk� �

1

~
Vnkdd�

and

i~
@

@t
GR(nkd�; t) = �i�(t)�nkhfcnk�(t); d

y
�(0)gi � i�(t)Vnkdhfd�(t); d

y
�(0)gi

= �nkG
R(nkd�; t) + VnkdG

R(dd�; t)

This is Eq. (6.15).

15. Polarizability at zero temperature.
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�0(q; !) =
1

V

X
k�

fk� � fk+q�
~! + ��k� � ��k+q� + i0+

=
1

V

X
k�

fk�
~! + ��k� � ��k+q� + i0+

�
1

V

X
k�

fk+q�
~! + ��k� � ��k+q� + i0+

In the second term, replace k with �k� q; then

fk+q� ! f�k� = fk�; ~!+��k����k+q�+i0
+ ! ~!+��k�q���k+i0

+ = ~!+�k+q��k+i0
+

Therefore,
�(~! + ��k� � ��k+q� + i0+)! �~! + ��k� � ��k+q� � i0+

The polarizability is thus given by

�0(q; !) =
1

V

X
k�

fk�
~! + ��k� � ��k+q� + i0+

+ (~! + i0+ ! �~! � i0+)

The denominator

~! + ��k� � ��k+q� + i0+ = ~! + ~
2k2=2m� ~

2(k2 + q2 + 2k:q)=2m+ i0+

= ~! � ~
2q2=2m� (~2kq=m)cos� + i0+

=
~
2q

m

�
!

~q=m
�

q

2
� k cos� + i0+

�

=
~
2kF q

m

�
!

qvF
�

q

2kF
�

k

kF
cos� + i0+

�

where vF = ~kF=m is the Fermi velocity and � is the angle between k and q. Thus

�0(q; !) =
m

~2V kF q

X
k�

fk�
(!=qvF )� (q=2kF )� (k=kF )cos� + i0+

+ (~! + i0+ ! �~! � i0+)

the sum over � gives a factor of 2. At T = 0, fk� = 1 if k < kF , otherwise it is zero. The
sum over k is replaced by an integral,

X
k

F (k) =
V

(2�)3

Z
d3kF (k) =

V

(2�)3

Z
k2dkd
F (k)

Because of the presence of fk�, which is equal to �(kF � k) at T = 0, the integration over
k ranges from 0 to kF . Thus

�0(q; !) =
2m

~2V kF q

V

(2�)3

Z kF

0

k2dk

Z 1

�1

cos�

Z 2�

0

d�
1

!=qvF � q=2kF � (k=kF )cos� + i0+

+ (! + i0+ ! �! � i0+)



16 CHAPTER 6. CORRELATION AND GREEN'S FUNCTIONS

The integral over � gives 2�. Let x = k=kF . Then

�0(q; !) =
2mk2F

(2�)2~2q

Z 1

0

x2dx

Z 1

�1

dcos�

!=qvF � q=2kF � xcos� + i0+
+ (! + i0+ ! �! � i0+)

Its real part is

Re�0(q; !) =
2mk2F

(2�)2~2q

Z 1

0

x2dx

Z 1

�1

dcos�

!=qvF � q=2kF � xcos�
+ (! ! �!)

=
�2mk2F
(2�)2~2q

Z 1

0

x ln

����!=qvF � q=2kF � x

!=qvF � q=2kF + x

���� dx+ (! ! �!)

Z 1

0

x ln

����!=qvF � q=2kF � x

!=qvF � q=2kF + x

���� dx =

Z 1

0

x lnjx+ (q=2kF � !=qvF )jdx

�

Z 1

0

x lnjx� (q=2kF � !=qvF )jdx

=
1� z2�

2
ln

����1� z�
1 + z�

����� 1

4
(1 + z�)

2 +
1

4
(1� z�)

2

=
1� z2�

2
ln

����1� z�
1 + z�

����� z�

Upon replacing ! by �!,

z+ = !=qvF + q=2kF ! �!=qvF + q=2kF = �z�

z� = !=qvF � q=2kF ! �!=qvF � q=2kF = �z+

Hence

Re�0(q; !) =
�2mkF
(2�)2~2

�
1 +

1� z2�
2q=kF

ln

����1� z�
1 + z�

����� 1� z2+
2q=kF

ln

����1� z+
1 + z+

����
�

=
�mkF
�2~2

�
1

2
+

1� z2�
4q=kF

ln

����1� z�
1 + z�

����� 1� z2+
4q=kF

ln

����1� z+
1 + z+

����
�

Replacing mkF=�
2
~
2 by d(�F ), the required answer is obtained.

As for the imaginary part of the polarizability,

Im�0(q; !) = �
�mk2F
2�2~2q

Z 1

0

x2dx

Z 1

�1

�(!=qvF � q=2vF � xcos�)dcos� � (! ! �!)

= �
�mk2F
2�2~2q

Z 1

0

xdx

Z 1

�1

�(z�=x� cos�)dcos� � (z� ! �z+)
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For this not to vanish, we must have �1 < z�=x < 1. Since max(x) = 1, it follows that
�1 < z� < 1 and x > z�. Hence,

Im�0(q; !) = �
�mk2F
2�2~2q

Z 1

z�

xdx�(1� z2�)� (z� ! �z+)

= �
�mk2F
4�2~2q

�
(1� z2�) �(1� z2�)� (1� z2+) �(1� z2+)

�
= �d(�F )

�

4q=kF

�
(1� z2�) �(1� z2�)� (1� z2+) �(1� z2+)

�

16. Polarizability.

(a) 3D:

! = 0; z+ = q=2kF ; z� = �q=2kF

Hence, Im�0(q; !) = 0 (see the expression for Im�0(q; !) in the previous problem).
Thus

�0(q; !) = �d(�F )

�
1

2
+

1� q2=4k2F
4q=kF

ln

����1 + q=2kF
1� q=2kF

����� 1� q2=4k2F
4q=kF

ln

����1� q=2kF
1 + q=2kF

����
�

= �d(�F )

�
1

2
�

1� q2=4k2F
2q=kF

ln

����1� q=2kF
1 + q=2kF

����
�

= �d(�F )

�
1

2
�

1� q02=4

2q0
ln

����1� q0=2

1 + q0=2

����
�

= �d(�F )

�
1

2
�

4� q02

8q0
ln

����2� q0

2 + q0

����
�

where q0 = q=2kF .

(b) 2D:

�0(q; !) =
1

A

X
k�

fk�
~! + ��k� � ��k+q� + i0+

+ (! + i0+ ! �! � i0+)

The sum over � gives a factor of 2. Replacing the sum over k by an integral,

�0(q; !) =
2m

A~2kF q

A

(2�)2

Z kF

0

kdk

Z 2�

0

d�

!=qvF � q=2kF � (k=kF )cos� + i0+
+ (! + i0+!�! � i0+)

=
2mkF
4�2~2q

Z 1

0

xdx

Z 2�

0

d�

!=qvF � q=2kF � xcos� + i0+
+ (! + i0+ ! �! � i0+)

It is clear that when ! = 0; Im�0(q; !) = 0. Hence,

�0(q; 0) = �
mkF
�2~2q

Z 1

0

xdx

Z 2�

0

d�

q=2kF + xcos�
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The integral over � may be evaluated by changing variables: t = tan(�=2) (or by the
residue theorem upon setting cos� = (z + 1=z)=2, where z = ei�),

t = tan(�=2)) cos� = (1� t2)=(1 + t2); d� = 2dt=(1 + t2)

Then,

I =

Z 2�

0

d�

q=2kF + xcos�

=

Z �

0

d�

q=2kF + xcos�
+

Z 2�

�

d�

q=2kF + xcos�

= 2

Z 1

0

dt

(q=2kF )(1 + t2) + x(1� t2)
+ 2

Z 0

�1

dt

(q=2kF )(1 + t2) + x(1� t2)

= 2

Z 1

0

dt

(q=2kF + x) + (q=2kF � x)t2
+ 2

Z 0

�1

dt

(q=2kF + x) + (q=2kF � x)t2

First, consider the case when q=2kF > x :

I =
2p

(q=2kF )2 � x2

2
4tan�1

s
q=2kF � x

q=2kF + x
t

�����
1

0

+ tan�1

s
q=2kF � x

q=2kF + x
t

�����
0

�1

3
5

=
2�p

(q=2kF )2 � x2

Next we consider the case q=2kF < x :

Let q=2kF + x = r2; x� q=2kF = s2. Then

I =
2

rs

�
ln

����r + st

r � st

����
�1
0

+
2

rs

�
ln

����r + st

r � st

����
�0
�1

= 0

Therefore,

�0(q; 0) = �
2mkF
�~2q

Z 1

0

xdx

(q=2kF )2 � x2

Let q0 = q=kF ; u = q02=4� x2; then du = �2xdx.

If q0=2 < 1, then

�0(q; 0) =
m

�~2q0

Z
u�1=2du =

2m

�~2q0

p
q02=4� x2

����
x=q0=2

x=0

= �
2m

�~2q0
q0

2
= �

m

�~2
= �d(�F )

Recall that in two dimensions, the density of states per unit area is a constant given
by m:�~2.
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If q0=2 > 1, then

�0(q; 0) =
2m

�~2q0

p
q02=4� x2

���1
0
=

2m

�~2q0
(
p
q02=4� 1� q0=2)

= �
m

�~2

�
1�

2

q0

p
q02=4� 1

�
= �d(�F )(1�

p
q02 � 4 =q0)

Hence,

�0(q; 0) = �d(�F )

"
1� �(q0 � 2)

p
q02 � 4

q0

#

(c) 1D.

Clearly, Im�0(q; 0) = 0. Thus

�0(q; 0) =
2

L

X
k�

fk�
��k� � ��k+q�

Since

��k� � ��k+q� = ~
2k2=2m� (~2=2m)(k2 + q2 + 2kq) = �~2q2=2m� ~

2kq=m ;

it follows that

�0(q; 0) =
4

L

X
k

fk
�~2q2=2m� ~2kq=m

=
4m

~2Lq

X
k

fk
�q=2� k

=
4m

~2Lq

L

2�

Z kF

�kF

dk

�q=2� k
=

2m

�~2q

Z 1

�1

dk

�q=2kF � k

=
2m

�~2q

Z 1

�1

dk

�q0=2� k
= �

2m

�~2q

Z 1

�1

dk

q0=2 + k
= �

2m

�~2kF q0
ln jk + q0=2jj

1
�1

= �
2m

�~2kF q0
ln

����1 + q0=2

1� q0=2

���� = �
2m

�~2kF q0
ln

����2 + q0

2� q0

����
In one dimension, d(�F ) = 2m=(�~2kF ). Therefore,

�0(q; 0) = �d(�F )

�
1

q0
ln

����2 + q0

2� q0

����
�





































































10.1 First-order self energy∑∗

1
(kσ, ωn) = − 1

~V
∑
k

4πe2

|k− k′|2
fk′

As T → 0, fk′ → θ(kF − k′)

∑∗

1
(kσ, ωn) = − 1

~V
V

(2π)3
(4πe2)

∫
θ(kF − k′)
|k− k′|2

d3k′

= − e2

2π~

∫ kF

0

k′2dk′
∫ 2π

0

dφ

∫ 1

−1

dcosθ

k′2 + k2 − 2kk′cosθ

= − e
2

π~

∫ kF

0

k′2dk′
∫ 1

−1

dx

k′2 + k2 − 2kk′x

=
e2

π~

∫ kF

0

k′2dk′

2kk′

∫ 1

−1

dx

x− k′2+k2

2kk′

=
e2

2π~k

∫ kF

0

k′dk′
(
ln

∣∣∣∣x− k′2 − k2

2kk′

∣∣∣∣1
−1

)
=

e2

2π~k

∫ kF

0

k′ln

∣∣∣∣ (k′ − k)2

(k′ + k)2

∣∣∣∣dk′
=

e2

π~k

∫ kF

0

k′ln

∣∣∣∣k′ − kk′ + k

∣∣∣∣dk′

Let k′=kF y, k = kFx:

∑∗

1
(kσ, ωn) = − e2

π~kFx

∫ 1

0

kF yln

∣∣∣∣y − xy + x

∣∣∣∣kFdy

=
e2kF
π~x

∫ 1

0

yln

∣∣∣∣y − xy + x

∣∣∣∣dy = −e
2kF
π~x

I

Where,

I =

∫ 1

0

yln|y + x|dy −
∫ 1

0

yln|y − x|dy ≡ A(x)−A(−x)

A(x) =

∫ 1

0

yln|y + x|dy =

[
y2 − x2

2
ln|y + x| − frac14(y − x)2

]1
0

Thus,

I =
1− x2

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ x

1



Therefore, ∑∗

1
(kσ, ωn) = −e

2kF
π~

[
1 +

1− x2

2x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣]

10.2 Proper self energy in two dimentions

In 2D, The Coulomb interaction is vq = 2πe2

q . Therefore,

∑∗

1
= − 1

~A
∑
k′

2πe2

|k− k′|
fk′

= −2πe2

~A
A

(2π)2

∫ kF

0

k′dk′
∫ 2π

0

dθ

(k′2 + k2 − 2kk′cosθ)1/2

Let k′ = kFx. Then,

∑∗

1
(kσ, ωn) = −e

2kF
2π~

∫ 1

0

xdx

∫ 2π

0

dθ

(x2 + ( k
kF

)2 − 2x( k
kF

)cosθ)1/2

The integral is difficult to do. We restrict ourselves to the case k = kF , for
which the integral becomes more manageable,∑∗

1
(kσ, ωn) = −e

2kF
2π~

I

I =

∫ 2π

0

dθ

∫ 1

0

xdx

(x2 − 2xcosθ + 1)1/2
=

∫ 2π

0

J(θ)dθ

The integral over x is tabulated:∫
xdx√

ax2 + bx+ c
=

1

a

√
ax2 + bx+ c− b

2a3/2
ln

∣∣∣∣2ax+ b√
a

+ 2
√
ax2 + bx+ c

∣∣∣∣
Thus,

J(θ) =

[√
x2 − 2xcosθ + 1 + cosθln

∣∣∣2x− 2cosθ + 2
√
x2 − 2xcosθ + 1

∣∣∣ ]1
0

=
√

2− 2cosθ − 1 + cosθln

∣∣∣∣2− 2cosθ + 2
√

2− 2cosθ

2− 2cosθ

∣∣∣∣
= 2sin

(
θ

2

)
− 1 + cosθln

∣∣∣∣∣1 +
1

sin
(
θ
2

) ∣∣∣∣∣
Thus, ∫ 2π

0

J(θ)dθ = 8− 2π +B

2



Where

B =

∫ 2π

0

cosθln

∣∣∣∣∣1 +
1

sin
(
θ
2

) ∣∣∣∣∣dθ
Let u=ln

∣∣∣∣1 + 1

sin( θ2 )

∣∣∣∣, dv = cosθdθ. Then

B = −
∫ 2π

0

sinθ

1 + 1

sin( θ2 )

(
− 1

2cos
(
θ
2

)
sin2

(
θ
2

) ) dθ

=
1

2

∫ 2π

0

sinθcos θ2
sin2 θ2sin

θ
2

dθ

=

∫ 2π

0

sin θ2cos
2 θ
2

sin θ2 (1 + sin θ2 )
dθ

= 2

∫ π

0

cos2x

sinx+ 1
dx

In the last step, we have substituted x = θ/2. Therefore,

B = 2

∫ π

0

1− sin2x
1 + sinx

dx = 2

∫ 2

0

(1− sinx)dx = 2π − 4

Hence,
I = 8− 2π + 2π − 4=4
We thus find ∑∗

1
(kσ, ωn) = −2e2kF

π~

10.3 ∏0
(q, ω) =

2

V

∑
k

fk − fk+q

~ω + εk − εk+q + i0+

In the limit ω→∞, Im
∏o

(q, ω) = 0 since it contains δ(~ω + εk − εk+q)
Thus, as ω→∞,

∏0
(q, ω) = Re

∏o
(q, ω) =

2

V

∑
k

fk − fk+q

~ω + εk − εk+q

=
4

V (~ω)2

∑
k

fk(εk+q − εk)

(see the next problem 10.4)

Since εk+q − εk= ~2

2m (q2 + 2k · q),∏0
(q, ω) =

4~2

2mV (~ω)2

∑
k

(q2 + 2k · q)fk

3



Since fk depends only on εk = ~2k2

2m , it follows that :∑
k

= (k · q)fk = 0

Therefore, as ω→∞,∏0
(q, ω) =

2q2

mV ω2

∑
k

fk =
2q2

mV ω2

N

2
=

nq2

mω2

and

ε(q, ω →∞) = 1− vq
∏0

(q, ω →∞) = 1− 4πe2

q2
nq2

mω2

= 1− (4πe2/m)

ω2

= 1−
ω2
p

ω2

10.4 An alternative derivation of the plasmon dispersion
a)

Re
∏0

(q, ω) =
2

V

∑
k

fk − fk+q
~ω + εk − εk+q

=
2

V

∑
k

fk
~ω + εk − εk+q

− 2

V

∑
k

fk+q
~ω + εk − εk+q

We’re dropping the arrow sign over the vectors. In the second sum,
k → −k′ − q, then εk′ → ε−k′−q=εk′+q, fk+q → f−k′=fk′ , εk+q → ε−k′=εk′ .
Hence

Re
∏0

(q, ω) =
2

V

∑
k

fk
~ω + εk − εk+q

− 2

V

∑
k

fk
~ω − εk + εk+q

=
2

V

∑
k

fk

[
1

~ω + εk − εk+q
− 1

~ω − εk + εk+q

]
=

2

V

∑
k

fk

[
2εk+q − 2εk

(~ω)2 − (εk+q − εk)2

]
=

4

V

∑
k

fk(εk+q − εk)

(~ω)2 − (εk+q − εk)2

4



b) ~ω � εk+q − εk

Re
∏0

(q, ω) =
4

V (~ω)2

∑
k

fk(εk+q − εk)

[
1− (εk+q − εk)2

(~ω)2

]−1
=

4

V (~ω)2

∑
k

fk(εk+q − εk)

[
1 +

(εk+q − εk)2

(~ω)2
+ ...

]

c) T→ 0, fk → θ(kF − k), εk+q − εk= ~2

2m (q2 + 2k · q)

∑
k

fk(εk+q − εk) =
~2q2

2m

∑
k

fk +
~2

m

∑
k

fkk · q

The sencond sum vanishes since fk depends only on |k|. Thus,

∑
k

fk(εk+q − εk) =
~2q2

2m

N

2

Where N is the total number of electrons.
Next, we need to evaluate ∑

k

fk(εk+q − εk)3 ≡ A

A =

(
~2

2m

)3∑
k

fk(q2 + 2kqcosθ)3

Where θ is the angle between k and q

A =

(
~2

2m

)3∑
k

fk(q6 + 6kq5cosθ + 12k2q4cos2θ + 8k3q3cos3θ)

=

(
~2

2m

)3

q6
N

2
+

(
~2

2m

)3
V

(2π)3

∫ kF

0

2πk2dk

∫ 1

−1
dcosθ[6kq5cosθ + 12k2q4cos2θ + 8k3q3cos3θ]

Upon integrating over cosθ, only the term proportional to cos2θ gives a nonva-
nishing contribution,

A =

(
~2

2m

)3

q6
N

2
+

(
~2

2m

)3
V

(2π)3
(12)

2

3
q4
∫ kF

0

k4dk

=

(
~2

2m

)3

q6
N

2
+

(
~2

2m

)3
V

(2π)3
8

5
q4k5F

5



Therefore,

Re
∏0

(q, ω) =
n

m

(
q

ω

)2

+
4

V (~ω)4

(
~2

2m

)3
V

(2π)2
8

5
q4k5F + ...

=
n

m

(
q

ω

)2

+

(
q

ω

)4 ~2k2F
m2

k3F
8m

8

5

4

(2π)2

Using k3F=3π2n (see Chapter 2),

Re
∏0

(q, ω) =
n

m

(
q

ω

)2

+
1

5

(
q

ω

)4
3n

m
V 2
F + ...

=
n

m

(
q

ω

)2[
1 +

3

5

(
qVF
ω

)2

+ ...

]
Which is Eq.(10.65);
The derivation of the plasmon dispersion now proceeds as in the text.

10.5 Thomas Fermi wave number in 2D∏0
(q, ω) =

1

A

∑
kσ

fk − fk+q
~ω + εk − εk+q + i0+

In the static case, Im
∏0

(q,ω=0)=0. Hence∏0
(q, ω) =

1

A

∑
kσ

fk − fk+q
εk − εk+q

Now consider the long wavelength limit q → 0,∏0
(q → 0, ω = 0) =

1

A

∑
kσ

∂f

∂εk

At low temperature, fεk → θ(εF − εk). Thus∏0
(q → 0, ω = 0) = − 1

A

∑
kσ

δ(εk − εF ) = −d(εF )

Where d(εF ) is the density of states per unit area at the Fermi energy. To
determine d(εF ), consider the shell bounded by two constant energy surfaces ε
and ε+ dε. The number of states with energies between ε and ε+ dε is:

N(ε, ε+ dε) = 2 (number of k-points in the shell)

6



The factor of 2 results from spin degeneracy. Since each k-point occupies an
area in k-space given by (2π)2/A.

(ε, ε+ dε) = 2
2πkdk

(2π)2/A
=
Akdk

π

Since ε = ~2k2

2m , dε = ~2

m kdk. Hence,

N(ε, ε+ dε) =
Am

π~2
dε ≡ Ad(ε)dε

⇒ d(ε) =
m

π~2
⇒ d(εF ) =

m

π~2
The dielectric function,

ε(q → 0, ω = 0) = 1− vq
∏0

(q → 0, ω = 0)

= 1 +
2πe2

q

m

π~2
= 1 +

2

q

1

(~2/me2)
= 1 +

2

qa0

The screened Coulomb interaction is thus,

VTF =
2πe2/q

1 + 2
qa0

=
2πe2

q + 2/a0

10.6 Plasmon dispersion in 2D
Using the result of problem 10.4,

Re
∏0

(q, ω) =
2

A

∑
k

fk − fk+q
~ω + εk − εk+q

=
4

A(~ω)2

∑
k

fk(εk+q − εk) +
4

A(~ω)4

∑
k

fk(εk+q − εk)3 + ...

= S1 + S2

S1 =
4

A(~ω)2

∑
k

fk

[
~2

2m
(q2 + 2k · q)

]
=

4

A(~ω)2
~2q2

2m

∑
k

fk

=
4q2

2Amω2

N

2
=

n

m

(
q

ω

)2

Where n = N
A is the number of electrons per unit area.

S2 =
4

A(~ω)4

∑
k

fk(εk+q − εk)3 + ...

=
~2

2Am3ω4

∑
k

fk(q6 + 6kq5cosθ + 12k2q4cos2θ + 8k3q3cos3θ + ...)

7



Replacing

fk → θ(kF − k),
∑
k

→ A

(2π)2

∫
d2k =

A

(2π)2

∫ kF

0

kdk

∫ 2π

0

dθ...

The terms proportional to cosθ or cos3θ vanish upon integration over θ. Also,∫ 2π

0

cos2θdθ = π

Hence,

S2 =
~2

2Am3ω4
12πq4

A

(2π)2

∫ kF

0

k3dk + ...

The terms represented by ... are of order q6. In 2D,

N =
∑
kσ

θ(kF − k) = 2
A

(2π)2
πk2F ⇒ n =

N

A
=
k2F
2π
⇒ k2F = 2πn

Thus, ∫ kF

0

k3dk =
k4F
4

=
(2πn)2

4
= π2n2

Thus,

S2 =
3π~2

2m

(
n

m

)2(
q

ω

)4

+ ...

and

Re
∏0

(q, ω) =

(
n

m

)2(
q

ω

)2

+
3π~2

2m

(
n

m

)2(
q

ω

)4

+ ...

=

(
n

m

)2(
q

ω

)2[
1 +

3π~2

2m

n

m

(
q

ω

)2

+ ...

]
The plasmin frequency is the solution of 1−vqRe

∏0
(q, ω) = 0. In 2D, vq = 2πe2

q .
Thus

1− 2πne2q

mω2

[
1 +

3π~2

2m

n

m

(
q

ω

)2

+ ...

]
= 0

⇒ ω2 =
2πne2q

m

[
1 +

3π~2

2m

n

m

(
q

ω

)2

+ ...

]
=

2πne2q

m

[
1 +

3π~2

2m

n

m

q2

2πne2q)/m
+ ...

]
=

2πne2q

m

[
1 +

3~2q
4me2

+ ...

]

8



The Bohr radius a0 = ~2

me2 ; hence

ω2 =
2πne2q

m

[
1 +

3qa0
4

+ ...

]

⇒ ω =

√
2πne2q

m

[
1 +

3qa0
4

+ ...

]1/2
=

√
2πne2q

m

[
1 +

3qa0
8

+ ...

]

9













































































Chapter 13

Problem 1.

W (t, t0) = 1− i
h̄

∫ t
t0
dt1H(t1) + (− i

h̄ )2
∫ t

0
dt1
∫ t1
t0
dt2H(t1)H(t2) + · · ·

Here t < t0. Let us consider the term with two integrals. The times
are now arranged as in the following figure:

t0 t1 t2 t

with time increasing from left to right.

A ≡
∫ t
t0
dt1
∫ t1
t0
dt2H(t1)H(t2)

= 1
2 [
∫ t
t0
dt1
∫ t1
t0
dt2H(t1)H(t2) +

∫ t
t0
dt2
∫ t1

0
dt1H(t2)H(t1)]

The second term on the RHS is equal to the first term; it is obtained
from the first term by relabelling the indices. In the first term on the
RHS, t2 > t1, and so we can introduce θ(t2 − t1) and extend the limits
of integration over t2 from t0 to t. For the second term on the RHS,
we can introduce θ(t1 − t2):

A = 1
2

∫ t
t0
dt1
∫ t1
t0
dt2[θ(t2 − t1)H(t1)H(t2) + θ(t1 − t2)H(t2)H(t1)]

= 1
2

∫ t
t0
dt1
∫ t1
t0
dt2 T̃ [H(t1)H(t2)]

We can generalize this to all terms in the expansion for W (t, t0), and
thus obtain Eq.(13.7).

Problem 2.

The properties of W (t, t′) can be obtained directly from the defining
equation,

|Ψs(t)〉 = W (t, t0) |Ψs(t0)〉

setting t0 = t,

1



|Ψs(t)〉 = W (t, t) |Ψs(t)〉 =⇒ W (t, t) = 1

Next

|Ψs(t)〉 = W (t, t′′) |Ψs(t
′′)〉

= W (t, t′′)W (t′′, t′) |Ψs(t
′)〉

But,

|Ψs(t)〉 = W (t, t′) |Ψs(t
′)〉 =⇒ W (t, t′) = W (t, t′′)W (t′′, t′)

Next,

1 = 〈Ψs(t) |Ψs(t)〉 =
〈
Ψs(t0)

∣∣W †(t, t0)W (t, t0)
∣∣Ψs(t0)

〉
= 〈Ψs(t0) |Ψs(t0)〉

=⇒ W †(t, t0)W (t, t0) = 1 =⇒ W †(t, t0) = W−1(t, t0)

Finally,

1 = W (t, t) = W (t, t0)W (t0, t)

=⇒ W (t0, t) = W−1(t, t0)

Problem 3.

%s(t) =
∑
n
Pn |Ψns

(t)〉 〈Ψns
(t)|

Tr[%s(t)As] =
∑
m
〈Ψms

(t)| %s(t)As |Ψms
(t)〉

=
∑
m,n

Pn 〈Ψms(t) |Ψns(t)〉 〈Ψns(t)|As |Ψms(t)〉

=
∑
m,n

Pnδm,n 〈Ψns
(t)|As |Ψms

(t)〉

=
∑
n
Pn 〈Ψns

(t)|As |Ψns
(t)〉

= 〈A〉 (t)

2



Problem 4.

The relation

|ΨI(t)〉 = S(t, t0) |ΨI(t0)〉

is similar to the corresponding relation

|Ψs(t)〉 = W (t, t0) |Ψs(t0)〉

This relation in the Schrödinger picture was used in Problem 2. to de-
rive the properties of W (t, t0). The S(t, t0) satisfies the same properties
satisfied by W (t, t0). The proof of Eq. (13.26) is obtained by follow-
ing the same steps used to derive Eq. (13.8): simply |Ψs〉 −→ |ΨI〉,
W −→ S.

Problem 5.

GT (1, 1′) = −iθ(t− t′)
〈

ΨH(1)Ψ†H(1′)
〉
∓ iθ(t′ − t)

〈
Ψ†H(1′)ΨH(1)

〉
We add and subtract the term −iθ(t′ − t)

〈
ΨH(1)Ψ†H(1′)

〉
,

GT (1, 1′) = −iθ(t− t′)
〈

ΨH(1)Ψ†H(1′)
〉
∓ iθ(t′ − t)

〈
Ψ†H(1′)ΨH(1)

〉
−iθ(t′ − t)

〈
ΨH(1)Ψ†H(1′)

〉
+ iθ(t′ − t)

〈
ΨH(1)Ψ†H(1′)

〉
= −i[θ(t− t′) + θ(t′ − t)]

〈
ΨH(1)Ψ†H(1′)

〉
+iθ(t′ − t)

〈
ΨH(1)Ψ†H(1′) ∓ Ψ†H(1′)ΨH(1)

〉
= −i

〈
ΨH(1)Ψ†H(1′)

〉
+ iθ(t′ − t)

〈
[ΨH(1),Ψ†H(1′)]∓

〉
= G>(1, 1′) +GA(1, 1′)

3



If, instead, we add and subtract −iθ(t− t′)
〈

Ψ†H(1′)ΨH(1)
〉
, we obtain

GT (1, 1′) = −iθ(t− t′)
〈

ΨH(1)Ψ†H(1′)
〉
∓ iθ(t′ − t)

〈
Ψ†H(1′)ΨH(1)

〉
−iθ(t− t′)

〈
Ψ†H(1′)ΨH(1)

〉
+ iθ(t− t′)

〈
Ψ†H(1′)ΨH(1)

〉
For Fermions, combine the first and third terms.

GT = −iθ(t− t′)
〈

[ΨH(1),Ψ†H(1′)]+

〉
+ i[θ(t′− t)+θ(t− t′)]

〈
Ψ†H(1′)ΨH(1)

〉
= GR + i

〈
Ψ†H(1′)ΨH(1)

〉
= GR +G<

For Bosons,

GT (1, 1′) = −iθ(t− t′)
〈

ΨH(1)Ψ†H(1′)−Ψ†H(1′)ΨH(1)
〉

− i[θ(t′ − t) + θ(t− t′)]
〈

Ψ†H(1′)ΨH(1)
〉

= GR(1, 1′)− i
〈

Ψ†H(1′)ΨH(1)
〉

= GR(1, 1′) +G<(1, 1′)

In both cases (fermions and bosons), we have

GT = GR +G<

To obtain the corresponding expression for GT̃ , we us Eq. (13.44),

GT +GT̃ = G> +G<

Thus

GT̃ = G> +G< −GT

Since GT = GR +G<, we obtain GT̃ = G> −GR

4



Using GT = G> +GA, we obtain GT̃ = G< −GA

Problem 6.

Now the contour looks like

t′t0

t

C1 C2

C3

iG(1, 1′) = ±
〈

Ψ†H(1′)ΨH(1)
〉

= ±
〈
S(t0, t

′)Ψ̂†(1′)S(t′, t)Ψ̂(1)S(t, t0)
〉

Where the −(+) sign refers to fermions (bosons).

We can rewrite Eq.(13.49) as

iGC(1, 1′) =

〈
TC [e

− i
h̄

∫
C
Ĥ

′
(τ1)dτ1Ψ̂(1)Ψ̂†(1′)]

〉

= ±
〈
TC [e

− i
h̄

∫
C
Ĥ

′
(τ1)dτ1Ψ̂†(1′)Ψ̂(1)]

〉
≡ ±〈D〉

D is identical to B introduced in deriving Eq. (13.49) for the case

τ
c
> τ ′ except for the interchange of Ψ(1) and Ψ†(1′).

Thus D = P Ψ̂†(1′)QΨ̂(1)P

Now C1 extends from t0 to t, C2 from t to t′, and C3 from t′ to t0;
hence

5



D = S(t0, t
′)Ψ̂†(1′)S(t′, t)Ψ̂(1)S(t, t0)

This proves the validity of Eq. (13.49) for the case τ
c
< τ ′.
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