Estimating Population Variance: theoretical approach and
using Monte Carlo simulation

1. The mean, standard deviation and variance of a sample of readings

(See Chapter 5, section 5.1 in ‘Introduction to Uncertainty in Measurement’, by Les
Kirkup and Bob Frenkel)

In statistics the term ‘population’ is used in a more general sense than in ordinary
English, where it refers to a large number of living creatures, often humans. In the more
general statistical sense, a population is often a very large number, or an infinite number,
of possible readings or measurements. For example, a factory may have produced ten
thousand steel ball bearings of a particular size. Because of unavoidable variability in
the manufacturing process, the precise sizes of individual bearings will vary slightly,
even though they are all intended to be ‘nominally’ the same size. We therefore
have a population of ten thousand sizes. As another example, a high-quality digital
multimeter (DMM) may be measuring the voltage of a battery and displaying it to
six or seven decimal places. Because the voltage is not perfectly stable, and because
there may be electrical ‘pick-up’ or interference from surrounding equipment or TV
and radio transmissions, the displayed voltage fluctuates and may show a drift. In this
second example, where we can in principle continue endlessly taking measurements, the
population of voltages is evidently infinite.

How do we describe or characterise a population? The two obvious descriptions that
immediately come to mind are: the average value and the range of values. The average
value is more commonly given the technical term mean value and is often denoted by
the Greek symbol p (‘mu’). The range of values is the difference between the maximum
and minimum values, but the practically more useful and more common measure of the
‘spread’ of results is the standard deviation of the population, and this is often given
the Greek symbol o (‘sigma’). The standard deviation is not the same as the range of
values; in fact the standard deviation is less than the range by a factor that is generally
between (roughly) 3 and 4.

If the population, of size N, contains N readings x1, zs,...zx, the mean reading p is
defined as
_m1+x2+...xN_Zi]ilmi (1)
H= N N
The symbol ¥ denotes summation and is a very commonly used shorthand expression
in mathematics.

The standard deviation o of the N readings is defined as
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For example, consider the (absurdly small!) population of size N = 4 and comprising
the readings z; = 1.0, 2 = 1.1, 3 = 0.9 and x4 = 1.2. Then we have u = 1.05 and

o = 0.112 for this population. The range of values is 1.2 — 0.9 = 0.3.



Consider another population, also with N = 4, but with the values x1 = 0.7, x5 = 1.3,
x3 = 1.6, 4 = 0.6. This population also has mean p = 1.05, but its standard deviation
o is 0 = 0.415. The standard deviation is larger than for the first population, and this
is evidently how it should be, since although the second population has the same mean,
its range of values is 1.6 — 0.6 = 1.0, more than three times as large as for the first
population.

With a large or infinite population, we evidently cannot afford the time nor the
resources to measure every single member of the population. We therefore have to make
do with a relatively much smaller sample from the population. We denote by n the
size of the sample, with n << N. An immediate and rather obvious question arises.
Unless we are fortunate in our choice of sample, the mean T of our sample will not be
exactly equal to p (although we expect them to be fairly close to each other). So if we
take a large number of samples, will the average of the resulting large number of sample
means T tend towards the ‘true’ population mean u, or will this average be ‘biased’ too
high or too low relative to p, no matter how many samples we take? If the average of
the large number of sample means does actually tend towards pu, then we say that the
mean T of a single sample is an unbiased estimate of u. We obviously prefer unbiased
to biased estimates of population quantities. A similar question arises regarding the
standard deviation of our sample of size n; is this, or is this not, an unbiased estimate
of the population standard deviation?

An alternative expression of unbiasedness uses the term ‘expectation’. The expecta-
tion of a quantity is the mean value of that quantity over an entire population. Then
the mean of a sample is an unbiased estimate of the population mean if the expectation
of a sample mean equals the population mean. It is shown in section 5.1.2 of the book
that the expectation of the sample mean is in fact equal to the population mean. So
Z is an unbiased estimate of p. We examine below in some detail the corresponding
question regarding the standard deviation. It is convenient to work with the square of
the standard deviation, known as the wvariance. The variance o2 of the population is,
then,
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2. The unbiased estimate s? of the variance o2 of a population

Let a sample consist of n independent readings x1, xo,...T,, drawn from a population
which is not necessarily Gaussian. We know that the mean Z of our sample is given by
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and that z is an unbiased estimate of the population mean pu. We express this
unbiasedness as:

E(Z)=p (5)

where E denotes: ‘expectation of’.



The expectation of the sum of quantities is the sum of the expectations of the
quantities:

E(y1 +yo +y3...) = E(y1) + E(y2) + E(y3)... (6)

A similar rule applies to the product of quantities, as long as they are mutually
uncorrelated (this will be satisfied if they are independent of one another):

E(y1y2ys3...) = E(y1) E(y2) E(y3)... (7)

Just as 7 is an unbiased estimate of p, the following quantity s2 is an unbiased estimate
of the variance o2 of the population:
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The unbiasedness of s? is expressed, similarly to (5) above, as:
E(s%) = o2 9)
As well as (5) and (9), we have the following results:
E(z;) = p (10)

and
E (2 — w2 = 0%, (11)
which can be used as alternative definitions of ; and 2.

We note that in (8), the sum is over all squared differences (z; — Z)? between the
readings and the sample mean, but this sum is divided not by n but by n — 1. This
can be understood intuitively as reasonable, because Z, being the mean of the z; in the
sample, tends to ‘follow’ the sample. If, for example, the sample that we pick happens
to contain several fairly large values, then obviously their mean will also be rather large.
The mean of the sample, in other words, is positively correlated with the sample values.
Moreover, as might be expected, the smaller the sample size n, the larger will be the
correlation. So the differences (z; — )2 will not be precise measures of the variability
of the x;, but will be shrunken slightly. Dividing the sum of these squared differences
by the smaller number n — 1, rather than by n, exactly compensates for this shrinking:
dividing by a smaller number gives a bigger result. Naturally, if n is large, the shrinking
may be negligible because of the smaller correlation, and n — 1 is then very close to n
anyway.

To show that s in (8) satisfies E(s?) = o2, we first establish the result:
E(z—p)? =o*/n (12)

It is, incidentally, worth comparing (12) with (11). Equation (12) states that the variance
of the mean of a sample is less by a factor of n than the variance of any reading in
that sample, the latter being expressed by (11). This result, which applies only to



uncorrelated readings, is well known as the theoretical underpinning of the notion that
taking the average of several readings from a population generally gives a more reliable
result than a single reading.

Expanding (z — p)? in the left-hand side of (12) gives:
(7 — 1)? = ()2 + 2 — 20p (13)
SO
E[(z - p)?*] = E [(2)*] + 4 - 2uE(z), (14)
since E(u) = p (1 being the constant population mean) and E(zu) = pE(Z).
Substituting (5) into (14) gives:
B (@ -] = B @] - (19
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From (10) and (11), we have
E [(@i — p)?] = 0® = B(?) + 4 — 0B (w:) = B(a?) — 2, (17)
so
B(z}) = o + pi?. (18)
Now taking expectations of (16), and using (18),
oy ()(0® ) | iy Blrg)
E[(2)*] = — + — : (19)
If z;, x; are uncorrelated for all 4, j, then
B(zix;) = E(x;)E(x)) = p?, (20)

using (10).

The second term on the right-hand size of (19) has n(n — 1) terms (since i # j and
the range of each of 7 and j is 1, 2,...n). Therefore (19) becomes:

n 0'2 2 n{n — 2
0.2

Substituting (21) into (14) now gives

Elz-p? ="+ -pn2=2, (23)



which verifies (12).

From (8), we have
2 _ 2 %+ (@) — 2n(2)°

s = p— (24)
- Tt (@) ”3: @ (25)
Using (18) and (22),
n(o? + p? n [o?
B(s") = (n——i_lu)_n—1<;+'uz> (26)
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=02, (28)

implying that s? as defined in (8) is an unbiased estimate of o2. We note that no
assumption has been made about the distribution of the population — whether it is
Gaussian, uniform or some other. (These distributions are discussed in Chapter 8 of the
book).

We should note that E(s?) = 0% does not imply that F(s) = o. In other words, the
standard deviation s of the sample, defined (from equation (8)) as

(29)

is not an unbiased estimate of o. However, if the sample size n is large, then E(s) ~ o
to a good approximation. For a small sample size like n = 4, it can be shown that
E(s) ~ 0.921c if the population has a Gaussian distribution of readings, which is often
the case. So for n = 4 the bias is such that s will, on the average, underestimate o
by about 8%. To estimate o unbiasedly for n = 4 and a Gaussian distribution, we
should use not s but 1.086s, since £(1.086s) = 1.086E(s) = 1.086 x 0.9210 ~ ¢. This is
discussed in Chapter 9 of the book (see in particular section 9.3).

3. Demonstration of (8) and (9) using Monte Carlo simulation

Equations (8) and (9) can be demonstrated using Monte Carlo simulation — a kind of
‘experimental statistics’. To do so, we generate many, say 100 000, numbers distributed
as a Gaussian distribution with mean 0 and standard deviation 1. (A very similar
demonstration could use a different mean and standard deviation. Moreover, as will also
be demonstrated, the distribution need not be Gaussian). We imagine a sample size of 4
(n = 4) and, accordingly, divide up these numbers into 25 000 samples each containing 4
numbers. For each sample, we calculate the variance using (8), and for comparison the
variance using the divisor n instead of n — 1 in (8). We take the average of all 25 000



variances for the two cases (the correct unbiased case n —1 =4 —1 = 3 and the biased
case n = 4).

The table shows, for illustration, one hundred values from the Gaussian population
of size 100 000 and mean 0 and standard deviation 1. For comparison, one hundred
values are also shown from a uniform distribution extending from 0 to 1 (with mean
therefore 3). The results of the Monte Carlo simulation are illustrated next, after an

introductory block diagram.



Gaussian population of 100 000

Mean 0,

Samples of size 4:
1 -2.585815
5 0.543145
9 -0.086750

13 1.515258
17 -0.170757
21 -0.167282
25 -0.446727
29 0.020367
33 0.980897
37 1.099143
41 -0.100176
45 0.894236
49 1.048546
53 -0.432180
57 0.294313
61 -0.566067
65 0.350986
69 0.055844
73 1.117899
77 0.834611
81 -1.245917
85 -1.125063
89 0.083045
93 0.544686
97 1.217833

2

6
10
14
18
22
26
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
98

standard deviation 1
first 25 samples:

0.024374
-0.199996
0.148071
-0.101430
-1.716129
-0.833529
-0.007423
-0.146662
1.543196
-0.567788
0.940348
-0.237383
0.649478
0.407568
1.870753
0.372851
-0.713021
-1.524628
1.428137
-0.111120
-1.682947
0.000698
1.083728
-0.445188
-0.932395

Uniform population of 100 000

extending from 0 to 1
Samples of size 4:

1

5

9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
87

0.851861
0.532818
0.441439
0.587625
0.273201
0.810426
0.201223
0.099747
0.453570
0.471476
0.387356
0.123223
0.698097
0.047627
0.575952
0.552198
0.644230
0.225713
0.283646
0.181504
0.310592
0.309958
0.387302
0.838576
0.234767

3

7
11
15
19
23
27
31
35
39
43
47
51
55
59
63
67
71
75
79
83
87
91
95
99

first 25 samples

2

6
10
14
18
22
26
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
98

0.234244
0.078772
0.276162
0.217014
0.691587
0.829256
0.953568
0.441949
0.152807
0.104747
0.288257
0.011697
0.918552
0.464565
0.034715
0.790738
0.587353
0.562817
0.242082
0.533745
0.124073
0.465966
0.386714
0.955317
0.727674

3

7
11
15
19
23
27
31
35
39
43
47
51
55
59
63
67
71
75
79
83
87
91
95
99

-1.418745 4
1.583771 8
-1.118133 12
1.741255 16
-0.201561 20
0.853021 24
-0.332461 28
1.375571 32
1.788238 36
-0.901259 40
0.591314 44
0.109399 48
-1.292128 52
-0.638912 56
-0.148265 60
-1.149085 64
-0.441229 68
0.007190 72
-1.526690 76
0.162576 80
-0.376980 84
0.541020 88
1.327011 92
1.929916 96
-0.126377 100

0.947130 4
0.919987 8
0.458671 12
0.349702 16
0.510050 20
0.319412 24
0.628917 28
0.832755 32
0.235978 36
0.489978 40
0.735057 44
0.588628 48
0.110281 52
0.952701 56
0.449590 60
0.933588 64
0.655884 68
0.273296 72
0.676899 76
0.659507 80
0.292402 84
0.501753 88
0.502628 92
0.023078 96
0.031519 100

0.674210
0.381309
-0.886265
0.079619
-0.131813
0.902268
0.037005
0.330749
-0.080641
0.587309
0.728907
-0.347329
-0.210678
3.294370
1.447460
0.169951
0.380111
1.821286
-0.833840
0.266859
0.946597
0.210036
1.312118
0.890427
1.911818

0.419321
0.235166
0.887998
0.451435
0.415530
0.357244
0.216880
0.117061
0.084993
0.057261
0.111568
0.078997
0.499497
0.049299
0.270456
0.830287
0.442150
0.285850
0.646586
0.348623
0.406813
0.966941
0.667688
0.868521
0.744684



