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Limit of a Sequence Sequences and Functions Newton-Raphson Method

Sequences of Real Numbers
A sequence is an unending list of real numbers, such as:

1 1, 2, 3, 4, . . .

2 1, 1, 1, 1, . . .

3 1,
1

2
,
1

3
,
1

4
, . . .

4
√
1,−

√
2,
√
3,−

√
4, . . .

5 3, 1, 4, 1, 5, 9, . . .

6 0.1,−0.23, π,
√
2, e, . . .

These examples were chosen to illustrate certain features:

1 A sequence may follow a simple pattern, as in examples (1) to (4).

2 The entries may be any mix of positive and negative, rational and
irrational, as in (4) and (6). They may repeat, as in (2).

3 All the entries should be known, in principle. For example, (5)
consists of the digits in the decimal representation of π. These are
known in principle: if one wants to know the digit in the 10−15 place
there is only one answer, even if it has not been worked out yet.

4 Example (6) is acceptable only if it is part of some complete
assignment of real numbers to positions in the sequence.
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Describing a Sequence

The general notation for a sequence is to label its members by their
position, such as: a1, a2, a3, . . . . A more compact representation is
(an)

∞
n=1 or even just (an).

Example 1

Here are some examples of describing a sequence by giving the form of its
nth term:

1, 2, 3, 4, . . . an = n
1, 1, 1, 1, . . . an = 1
1,−1, 1,−1, . . . an = (−1)n+1

1, 1/2, 1/3, 1/4, . . . an = 1/n√
1,
√
2,
√
3,
√
4, . . . an =

√
n

This is the most satisfactory way of describing a sequence, although it is
not always possible.

Formally, a sequence is a function f : N → R. Such a function generates
numbers a1 = f (1), a2 = f (2), a3 = f (3), . . . .
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Limit of A Sequence

Let (an) be a sequence of real numbers, and L a real number. We say
that (an) converges to L if for every real number ϵ > 0 there is N ∈ N
such that n ≥ N implies |an − L| < ϵ. The number L is called the limit of
the sequence.

N

L− ϵ
L

L+ ϵ

If (an) converges to L we say an → L as n → ∞, or lim
n→∞

an = L. More

briefly, we may just say an → L or lim an = L. If a sequence does not
converge, we say it diverges.
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Example

Example 2

Let us show that lim
n→∞

1

n
= 0. Consider any ϵ > 0. Then 1/ϵ > 0. By the

Archimedean Property, there is a natural number N such that N > 1/ϵ.

Hence
1

N
< ϵ. This N works for us: If n > N then

|an − L| =
∣∣∣∣1n − 0

∣∣∣∣ = 1

n
<

1

N
< ϵ.

1 2 3 4 N

ϵ
1/4
1/3

1/2

1
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Example

Example 3

Let us show that lim
n→∞

rn = 0 if |r | < 1. Note that |r | < 1 implies
1

|r |
> 1.

So we can write
1

|r |
= 1+ h with h > 0. Hence

1

|r |n
= (1+ h)n > nh and

so |r |n <
1

nh
. Consider any ϵ > 0. By the Archimedean Property, there is

a natural number N such that
1

N
< hϵ. This N works: If n > N then

|an − L| = |rn − 0| = |r |n <
1

nh
<

1

Nh
< ϵ.

Task 1

Show that the limit of a sequence is unique, if it exists.

Task 2

Let an = c be a constant sequence. Show that an → c .
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Example of Divergence

Example 4

Consider the sequence given by an = (−1)n. The entries −1, 1,−1, 1, . . .
keep switching between ±1 so the sequence does not settle down and
does not have a limit. How do we establish this formally?

We use the idea that if the sequence entries approach a certain number
L, then they also approach each other. For example, if some numbers are
each within 1 unit of L, then they are also all within 2 units of each
other.

Suppose an → L. Take ϵ = 1. There will be an N such that n ≥ N
implies |an − L| < 1. In particular, |aN − L| < 1 and |aN+1 − L| < 1.
Therefore, |aN − aN+1| ≤ |aN − L|+ |aN+1 − L| < 2, which is false as
consecutive entries actually have a gap of 2. This contradiction informs
us that the sequence diverges.
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Exercises

Task 3

Show that the sequence given by an = n diverges.

Task 4

Let (an) be a given sequence and k a fixed natural number. Define a
sequence (bn) by bn = an+k . (That is, we drop the first k terms of the
given sequence to create a new sequence) Show that lim bn = L if and
only if lim an = L.

Task 5

Suppose (an) is a converging sequence and m ≤ an ≤ M for every n.
Then m ≤ lim

n→∞
an ≤ M.

Task 6

Let |an| → 0. Show that an → 0.
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Sandwich or Squeeze Theorem

Theorem 5 (Sandwich or Squeeze Theorem)

Let (an), (bn), (cn) be sequences such that for every n, an ≤ bn ≤ cn. If
lim

n→∞
an = lim

n→∞
cn = L then lim

n→∞
bn = L.

Proof. Consider any ϵ > 0. Then

an → L =⇒ there is Na such that if n > Na then L− ϵ < an < L+ ϵ,

cn → L =⇒ there is Nc such that if n > Nc then L− ϵ < cn < L+ ϵ.

Define N = max{Na,Nc}. This N works for (bn). □

Example 6

Consider an = rn/n! where r > 0 is fixed. Fix M ∈ N such that M > r .

For n > M, 0 <
rn

n!
=

r

n
· · · r

M + 1
· r

M

M!
<

1

n
· r

M+1

M!
→ 0.

Hence
rn

n!
→ 0.
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Algebra of Limits

Theorem 7

Let an → L and bn → M. Also, let c ∈ R. Then:

1 |an| → |L|.

2 c an → c L.

3 an + bn → L+M.

4 an − bn → L−M.

5 anbn → LM.

6 an/bn → L/M if M ̸= 0.

Proof. The proofs are similar to the algebra of limits for functions. □

Task 7

Find the following limits.

1 lim
n→∞

5n2 − 1

n2 + 3n − 1000
. 2 lim

n→∞

sin n

n
.
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Infinite Limits

We say that lim
n→∞

an = ∞ if for every real number M there is an N ∈ N
such that n ≥ N implies an > M. Similarly, we say lim

n→∞
an = −∞ if for

every real number M there is an N ∈ N such that n ≥ N implies an < M.

N

M

an → ∞

N

M

an → −∞

Example 8

We’ll show 2n/n → ∞. We have
2n

n
=

(1 + 1)n

n
>

n(n − 1)

2n
=

n − 1

2
.

So, for any given M, choose N = 2M + 1.
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Exercises

Task 8

Prove the following.

1 lim n = ∞.

2 If an ≥ bn for every n, and bn → ∞, then an → ∞.

3 Suppose an ̸= 0 for every n. Then an → 0 if and only if |1/an| → ∞.
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Bounded Sequences

Consider a sequence (an). It is called

• Bounded above if there is a real number U such that an ≤ U for
every n (U is called an upper bound),

• Bounded below if there is a real number L such that an ≥ L for
every n (L is called a lower bound),

• Bounded if it is both bounded above and bounded below, and

• Unbounded if it is not bounded.
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Exercise

Task 9

For each given sequence, put a ✓ in each correct category and a ✗ in
each incorrect category:

an Bounded Above Bounded Below Bounded Unbounded
n

−n

(−1)n

(−1)nn

1/n
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Convergent Sequences are Bounded

Theorem 9

Every convergent sequence is bounded.

Proof. Take ϵ = 1.

There will be an N such that n ≥ N implies |an − L| < 1 and so
L− 1 < an < L+ 1.

In addition, the entries a1, . . . , aN−1 are finitely many and have a
maximum value M and a minimum value m.

Then the entire sequence (an) lies between min{m, L− 1} and
max{M, L+ 1}. □
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Monotone Sequences

Consider a sequence (an). It is called

• Increasing if an+1 ≥ an for every n,

• Decreasing if an+1 ≤ an for every n, and

• Monotone if it is either increasing or decreasing.

Task 10

For each given sequence, put a ✓ in each correct category and a ✗ in
each incorrect category:

an Increasing Decreasing Monotone
n

−n

(−1)n

1

1/n
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Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

Proof. Suppose (an) is increasing and bounded. We’ll show it converges
to L = sup{an : n ∈ N}.
Consider any ϵ > 0. Then L− ϵ is not an upper bound for {an : n ∈ N}.
Hence there is N ∈ N such that L− ϵ < aN ≤ L. This N works.
Similarly, if (an) is decreasing and bounded, it converges to
inf{an : n ∈ N}. □

Example 11

We offer another proof that rn → 0 if |r | < 1.
It is enough to show that |r |n → 0. Since |r | < 1, the sequence |r |n is a
decreasing sequence, and it is bounded below by 0. So it converges.
Suppose it converges to L.
Now |r |n+1 will have the same limit L. But |r |n+1 = |r ||r |n → |r |L. This
gives L = |r |L and hence L = 0.
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Example

Example 12

Let (an) be a decreasing sequence that converges to 0. We shall show
that 2an → 1.

First, since (an) is decreasing, so is 2an .

Second, since an ≥ 0, 2an ≥ 1. Hence 2an → L ≥ 1.

To complete the proof we need to show that 1 is the greatest lower
bound of the set {2an}. We already know that it is a lower bound.

So consider any number 1 + ϵ with ϵ > 0. Then log2(1 + ϵ) > 0. Since
an → 0 we have an N such that aN < log2(1 + ϵ). Hence 2aN < 1 + ϵ.
Therefore 1 + ϵ is not an upper bound for {2an}.
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Example

Example 13

Consider the sequence defined recursively by a1 =
√
2 and an+1 =

√
2an.

We shall consider two approaches to investigate its limit. In the first
approach, we try to obtain a direct formula for an. The first few terms are

a1 = 21/2,

a2 =
√
2
√
a1 = 23/4,

a3 =
√
2
√
a2 = 27/8.

The pattern is an = 21−1/2n . We leave it for you to verify this by
mathematical induction. We can now calculate, using the previous
example and the fact that 1/2n → 0, that

lim an = lim 21−1/2n =
2

lim 21/2n
= 2.
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Example

Example 14

In the second approach to the sequence of the previous example, we try
to establish that it is monotone and bounded. We have

an+1

an
=

√
2

an

We need to compare an with 2. Since the first few terms were less than
2, we conjecture that all are less than 2.
This can be proved by mathematical induction:

(a) a1 =
√
2 < 2, (b) an < 2 =⇒ an+1 =

√
2an <

√
2× 2 = 2.

Hence the sequence is increasing as well as bounded above (by the
number 2). Therefore it is convergent. Suppose it converges to L.
From the defining relation an+1 =

√
2an, we get a2n+1 = 2an and hence

L2 = 2L. This implies L = 0 or 2. As the sequence has positive and
increasing terms it cannot have 0 as a limit. Hence L = 2.
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Subsequences

Given a sequence, a subsequence is created by dropping some of the
terms of the sequence, as long as infinitely many terms still remain.

Thus, consider a sequence (an). Let the first term which is retained be
an1 . Let the second term which is retained be an2 , with n2 > n1. In this
way we create a new sequence with terms bi = ani , and call it a
subsequence of the original one.

Theorem 15

If a sequence converges to L, then each of its subsequences also
converges to L.

Proof. Let an → L. Consider a subsequence bk = ank with
n1 < n2 < · · · . First, note that nk ≥ k. Now, for any ϵ > 0, there is
N ∈ N such that n ≥ N implies |an − L| < ϵ. Then k ≥ N implies
nk ≥ k ≥ N implies |bk − L| = |ank − L| < ϵ. □
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Subsequences

It may happen that a sequence involves two or more different patterns.
For example, the odd terms a1, a3, . . . may follow one rule while the even
terms a2, a4, . . . follow another rule. The concept of subsequences helps
in such situations.

Example 16

Consider 1, 1, 2, 1/2, 3, 1/3, 4, 1/4, . . . . The subsequence 1, 2, 3, 4, . . .
diverges and so the original sequence diverges.
Again, consider 1,−1, 1,−1, . . . . The subsequence 1, 1, . . . converges to
1. The subsequence −1,−1, . . . converges to −1. Since the two
subsequences have different limits, the original sequence diverges.

Task 11

1 Show that lim an = L if and only if lim a2n+1 = lim a2n = L.

2 Evaluate lim
n→∞

(−1)nn

n + 1
.
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Functions Applied to Sequences

Theorem 17

Let f (x) be continuous at x = L and let an → L. Then f (an) → f (L).

Proof. Take ϵ > 0. First, by the continuity of f there is a δ > 0 such
that |x − L| < δ implies |f (x)− f (L)| < ϵ.
Next, by the convergence of (an) there is N such that n ≥ N implies
|an − L| < δ, and so |f (an)− f (L)| < ϵ. □

Example 18

Take a positive number c and consider the sequence (c1/n). Now, the
function f (x) = cx is continuous at every x . Hence,

lim c1/n = lim f (1/n) = f (lim 1/n) = f (0) = c0 = 1.

Task 12

Show that log an → L =⇒ an → eL.
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Sequences and Derivatives

Theorem 19

Let f (x) be differentiable at x = L. Then

lim
n→∞

n
(
f (L+ 1/n)− f (L)

)
= f ′(L).

Proof. The function g defined below is continuous at h = 0.

g(h) =


f (L+ h)− f (L)

h
if h ̸= 0,

f ′(L) if h = 0.

Now, n
(
f (L+ 1/n)− f (L)

)
= g(1/n).

Hence, lim
n→∞

n
(
f (L+ 1/n)− f (L)

)
= lim

n→∞
g(1/n) = g(0) = f ′(L). □
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Sequences and Derivatives

Example 20

Consider the sequence (1 + 1/n)n. First, we apply the log function to
convert it into a product which we can evaluate by the last theorem.

lim log(1 + 1/n)n = lim n
(
log(1 + 1/n)− log 1

)
= log′ 1 = 1.

And now, by the continuity of the exponential function,

lim(1 + 1/n)n = lim en log(1+1/n) = e lim n log(1+1/n) = e1 = e.

Task 13

Show that lim(1 + 2/n)n = e2 and lim(1− 1/n)n = e−1.

Task 14

True or False: If f (x) → L as x → a, and an → a, then f (an) → L.
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Sequences from Real Functions

Theorem 21

Let f (x) be a real function with domain [1,∞) and let lim
x→∞

f (x) = L.

Suppose an = f (n) for n ∈ N. Then lim
n→∞

an = L.

1 2 3 4 N

0.5

1

Proof. Consider any ϵ > 0. There is a c ∈ R such that x > c implies
|f (x)− L| < ϵ. Define N = [c] + 1.
Then n ≥ N implies |an − L| = |f (n)− L| < ϵ. □
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Examples

Example 22

We will calculate the limit of an = n sin(1/n).

Consider f (x) = x sin(1/x). Then f (n) = an and

lim
x→∞

f (x) = lim
x→∞

x sin(1/x) = lim
y→0+

sin y

y
= 1.

Therefore, lim
n→∞

an = 1.

Example 23

Consider the sequence 1/(arctan n)n. First, we note that
lim arctan n = lim

x→∞
arctan x = π/2. Hence 1/(arctan n) → 2/π < 1.

Choose any real number r such that 2/π < r < 1. There is an N such
that n ≥ N implies 1/(arctan n) < r and hence 0 < 1/(arctan n)n < rn.
Now, rn → 0 and the Sandwich Theorem gives us 1/(arctan n)n → 0.
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L’Hôpital’s Rule

A major gain from the last theorem is that the results for functions, such
as L’Hôpital’s Rule, can be applied to sequences.

Example 24

Consider the sequence (n1/n). We start by applying log to convert to a

ratio: an = log(n1/n) =
log n

n
. Since lim

x→∞

log x

x
= 0, we have

lim
log n

n
= 0. Hence, lim n1/n = e0 = 1.

Task 15

Find the limits of the following sequences.

1
en

n100
. 2

log n√
n
.
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Stirling’s Approximation

Our later study of ‘infinite series’ will bring up the sequence (n!)1/n.

Let’s plot it:

2 4 6 8 10

1

2

3

4

It looks very close to a straight line! Let us tabulate the slopes (n!)1/n/n.

n 10 100 1000 10000
slope 0.453 0.3799 0.3695 0.3681
1/slope 2.12 2.63 2.706 2.717

The reciprocals could be approaching e ≈ 2.718 . . . .
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Stirling’s Approximation

Theorem 25

lim
n→∞

(n!)1/n

n/e
= 1, i.e. (n!)1/n ≈ n

e
for large n.

Proof. Consider log n! =
∑n

k=1 log k .

It is an upper sum for
∫ n

1
log x dx and a lower sum for

∫ n+1

1
log x dx .

1 n∫ n

1
log x dx <

∑n
k=1 log k

1 n + 1∑n
k=1 log k <

∫ n+1

1
log x dx

(continued. . . )
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Stirling’s Approximation

(. . . continued)

∫ n

1

log x dx < log n! <

∫ n+1

1

log x dx

=⇒ n log n − n + 1 < log n! < (n + 1) log(n + 1)− n

=⇒ log

(
nn

en−1

)
< log n! < log

(
(n + 1)n+1

en

)
=⇒ nn

en−1
< n! <

(n + 1)n+1

en

=⇒ e1/n <
(n!)1/n

n/e
< (1 + 1/n)(n + 1)1/n.

Now, e1/n → 1 and (1 + 1
n )

1+1/n → 1 and n1/n → 1. Apply Sandwich
theorem to finish the proof. □
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Example

Example 26

Here is an application of Stirling’s Approximation.

(n!)1/n
2

=

(
n!1/n

n/e

)1/n (n
e

)1/n

=

(
n!1/n

n/e

)1/n
n1/n

e1/n
.

Now an =
n!1/n

n/e
→ 1. Hence a

1/n
n → 1 (To prove this, apply log).

We already know that n1/n → 1 and e1/n → 1.

Hence, (n!)1/n
2 → 1.
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Newton-Raphson Method

Suppose we have an equation such as x3 − 3 = x2 + x which we have to
solve for x . We move every term to the left side to put it in the form
f (x) = 0.

a
x1

(x1, f (x1))

x2
y = f (x)

We wish to estimate the point a where f (a) = 0. Imagine you are at a
point (x1, f (x1)) on the graph of the function f . In which direction
should you move to move towards a? One idea is to generate the tangent
line at (x1, f (x1)) and see where it cuts the x-axis. If it does so at x2, we
repeat the process from the point (x2, f (x2)).
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Newton-Raphson Method

The equation of the tangent line at (x1, f (x1)) is

y = f (x1) + f ′(x1)(x − x1).

To see where it cuts the x-axis we put y = 0.
This gives x2 = x1 − f (x1)/f

′(x1). Therefore the general iterative step is

xn+1 = xn −
f (xn)

f ′(xn)
.

We have created a sequence x1, x2, x3, . . . . Does it converge? And does
it converge to a?
The good news is that if it converges at all, then it converges to a
solution. If xn → L then

xn+1 = xn −
f (xn)

f ′(xn)
=⇒ L = L− f (L)

f ′(L)
=⇒ f (L) = 0.
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The good news is that if it converges at all, then it converges to a
solution. If xn → L then

xn+1 = xn −
f (xn)

f ′(xn)
=⇒ L = L− f (L)

f ′(L)
=⇒ f (L) = 0.
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Newton-Raphson Method

The equation of the tangent line at (x1, f (x1)) is

y = f (x1) + f ′(x1)(x − x1).

To see where it cuts the x-axis we put y = 0.
This gives x2 = x1 − f (x1)/f

′(x1). Therefore the general iterative step is

xn+1 = xn −
f (xn)

f ′(xn)
.

We have created a sequence x1, x2, x3, . . . . Does it converge? And does
it converge to a?
The good news is that if it converges at all, then it converges to a
solution. If xn → L then

xn+1 = xn −
f (xn)

f ′(xn)
=⇒ L = L− f (L)

f ′(L)
=⇒ f (L) = 0.
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Example

Example 27

Suppose the equation we wish to solve is x2 = N, that is, we want to
estimate a square root.

We rearrange this as f (x) = 0, where f (x) = x2 − N.

Then f ′(x) = 2x , and the Newton-Raphson iteration is

xn+1 = xn −
x2n − N

2xn
=

x2n + N

2xn
=

1

2

(
xn +

N

xn

)
.

Let N = 2. If we start with x1 = 1, we get x2 = 3/2 = 1.5,
x3 = 17/12 = 1.417, and so on.
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Failure of Convergence

x1x2 x3 x1x2

In the first example, the sequence moves away from the solution of
f (x) = 0. In the second example, it cycles repeatedly through the same
two values.
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