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Sequences of Real Numbers W o
A sequence is an unending list of real numbers, such as:
® 1,2,3,4,... 0 V1,—V2,V3,—V4,...
®111]1,... @ 3,1,4,1,5,9,...
91,%, % @ 0.1,-0.23,7,V2,e,...

W =
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A sequence is an unending list of real numbers, such as:

cla2a3747"' aﬁy_\/i;\/ga_\/iw"

®111]1,... ® 3,1,4,1,5,9,...
111
e 1a§a§717"' @ 0.1,*0.23,71',\/5,6,...

These examples were chosen to illustrate certain features:

@ A sequence may follow a simple pattern, as in examples (1) to (4).
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Sequences of Real Numbers TP et e

A sequence is an unending list of real numbers, such as:

91a2a3747"' gﬁy_\/i;\/ga_\/iw"

®111]1,... Q 3,1,4,1,5,9,...
111
e 1a§a§717"' @ 0.1,*0.23,’/7',\/5,6,...

These examples were chosen to illustrate certain features:
@ A sequence may follow a simple pattern, as in examples (1) to (4).

@ The entries may be any mix of positive and negative, rational and
irrational, as in (4) and (6). They may repeat, as in (2).
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A sequence is an unending list of real numbers, such as:

91a253747"' eﬁy_\/i;\/ga_\/zwn

®111]1,... Q 3,1,4,1,5,9,...
111
e 1a§a§717"' @ 0.1,*0.23,’/7',\/5,6,...

These examples were chosen to illustrate certain features:
@ A sequence may follow a simple pattern, as in examples (1) to (4).

@ The entries may be any mix of positive and negative, rational and
irrational, as in (4) and (6). They may repeat, as in (2).

© All the entries should be known, in principle. For example, (5)
consists of the digits in the decimal representation of 7. These are
known in principle: if one wants to know the digit in the 107!® place
there is only one answer, even if it has not been worked out yet.
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A sequence is an unending list of real numbers, such as:

91a253747"' eﬁy_\/i;\/ga_\/zwn

®111]1,... Q 3,1,4,1,5,9,...
111
e 1a§a§717"' @ 0.1,*0.23,’/7',\/5,6,...

These examples were chosen to illustrate certain features:
@ A sequence may follow a simple pattern, as in examples (1) to (4).

@ The entries may be any mix of positive and negative, rational and
irrational, as in (4) and (6). They may repeat, as in (2).

© All the entries should be known, in principle. For example, (5)
consists of the digits in the decimal representation of 7. These are
known in principle: if one wants to know the digit in the 107!® place
there is only one answer, even if it has not been worked out yet.

@ Example (6) is acceptable only if it is part of some complete
assignment of real numbers to positions in the sequence.
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The general notation for a sequence is to label its members by their
position, such as: ay, az, as,.... A more compact representation is
(an)52; or even just (a,).
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The general notation for a sequence is to label its members by their
position, such as: ay, az, as,.... A more compact representation is
(an)52; or even just (a,).

Example 1
Here are some examples of describing a sequence by giving the form of its
h term:
1,2,3,4,.. ap,=n
1,1,1,1,.. a, =1
1,-1,1,— 1 a, = (1)1
1,1/2,1/3, 1/4 a,=1/n

VIVEVB ... ay=/n

This is the most satisfactory way of describing a sequence, although it is
not always possible.
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The general notation for a sequence is to label its members by their
position, such as: ay, az, as,.... A more compact representation is
(an)52; or even just (a,).

Example 1
Here are some examples of describing a sequence by giving the form of its
h term:
17 273747 an=n
1,1,1,1,.. a, =1
1,-1,1,— 1 a, = (1)1
1,1/2,1/3, 1/4 a,=1/n

VIVEVB ... ay=/n

This is the most satisfactory way of describing a sequence, although it is
not always possible.

Formally, a sequence is a function f: N — R. Such a function generates
numbers a; = (1), ax = f(2), a3 = f(3),
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Let (a,) be a sequence of real numbers, and L a real number. We say
that (a,) converges to L if for every real number € > 0 there is N € N
such that n > N implies |a, — L| < e. The number L is called the limit of

the sequence.
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Let (a,) be a sequence of real numbers, and L a real number. We say
that (a,) converges to L if for every real number € > 0 there is N € N
such that n > N implies |a, — L| < e. The number L is called the limit of
the sequence.

L+Z '3. .
L—¢ . boe®
N
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Let (a,) be a sequence of real numbers, and L a real number. We say
that (a,) converges to L if for every real number € > 0 there is N € N
such that n > N implies |a, — L| < e. The number L is called the limit of
the sequence.

L+e ° i,
L —=
L—e¢ .

:
N

If (a,) converges to L we say a, — L as n — oo, or lim a, = L. More
n—o0

briefly, we may just say a, — L or lima, = L. If a sequence does not
converge, we say it diverges.
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Example 2

1
Let us show that lim = = 0. Consider any € > 0. Then 1/¢ > 0. By the

n—oo N

Archimedean Property, there is a natural number N such that N > 1/e.
Hence % < e. This N works for us: If n > N then

|a,,—L:',17—0‘:<<e
1]
1/2]
o

1234 N
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Example 3

1
Let us show that lim r” =0if |[r] < 1. Note that |r| < 1 implies — > 1.
n—oo

7]
1 1
So we can write B =1+ h with h > 0. Hence o =(1+h)" > nh and

1
so |r|" < e Consider any € > 0. By the Archimedean Property, there is
n

a natural number N such that % < he. This N works: If n > N then

1
|a,,fL|:|r"fO\:|r\"<nf<—<e.
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Example 3

1
Let us show that lim r” =0if |[r] < 1. Note that |r| < 1 implies — > 1.
n—oo

7]
1 1
So we can write B =1+ h with h > 0. Hence o =(1+h)" > nh and

1
so |r|" < e Consider any € > 0. By the Archimedean Property, there is
n

a natural number N such that % < he. This N works: If n > N then

1
|a,,fL|:|r"fO\:|r\"<nf<—<e.

Task 1

Show that the limit of a sequence is unique, if it exists.
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Example 3

1
Let us show that lim r” =0if |[r] < 1. Note that |r| < 1 implies — > 1.
n—oo

7]
1 1
So we can write B =1+ h with h > 0. Hence o =(1+h)" > nh and

1
so |r|" < e Consider any € > 0. By the Archimedean Property, there is
n

a natural number N such that % < he. This N works: If n > N then

1
|a,,fL|:|r"fO\:|r\"<nf<—<e.

Task 1

Show that the limit of a sequence is unique, if it exists.

Task 2

Let a, = c be a constant sequence. Show that a, — c.
Amber Habib Calculus
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Example 4

Consider the sequence given by a, = (—=1)". The entries —1,1,-1,1,...
keep switching between +1 so the sequence does not settle down and
does not have a limit. How do we establish this formally?
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Example 4

Consider the sequence given by a, = (—=1)". The entries —1,1,-1,1,...
keep switching between £1 so the sequence does not settle down and
does not have a limit. How do we establish this formally?

We use the idea that if the sequence entries approach a certain number
L, then they also approach each other. For example, if some numbers are
each within 1 unit of L, then they are also all within 2 units of each
other.
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Example 4

Consider the sequence given by a, = (—=1)". The entries —1,1,-1,1,...
keep switching between £1 so the sequence does not settle down and
does not have a limit. How do we establish this formally?

We use the idea that if the sequence entries approach a certain number
L, then they also approach each other. For example, if some numbers are
each within 1 unit of L, then they are also all within 2 units of each
other.

Suppose a, — L. Take e = 1. There will be an N such that n > N
implies |a, — L| < 1. In particular, |ay — L| < 1 and |ay4+1 — L| < 1.
Therefore, |ay — ant1| < |anv — L| + |an+1 — L] < 2, which is false as
consecutive entries actually have a gap of 2. This contradiction informs
us that the sequence diverges.
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Task 3

Show that the sequence given by a, = n diverges.

Task 4

Let (a,) be a given sequence and k a fixed natural number. Define a
sequence (b,) by b, = apyk. (That is, we drop the first k terms of the
given sequence to create a new sequence) Show that lim b, = L if and
only ifima, = L.
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Task 3

Show that the sequence given by a, = n diverges.

Task 4

Let (a,) be a given sequence and k a fixed natural number. Define a
sequence (b,) by b, = apyk. (That is, we drop the first k terms of the
given sequence to create a new sequence) Show that lim b, = L if and
only ifima, = L.

Task 5

Suppose (a,) is a converging sequence and m < a, < M for every n.
Then m < lim a, < M.
n—oo
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Task 3
Show that the sequence given by a, = n diverges.

Task 4

Let (a,) be a given sequence and k a fixed natural number. Define a
sequence (b,) by b, = apyk. (That is, we drop the first k terms of the
given sequence to create a new sequence) Show that lim b, = L if and
only ifima, = L.

Task 5

Suppose (a,) is a converging sequence and m < a, < M for every n.
Then m < lim a, < M.
n—oo

Task 6
Let |a,| — 0. Show that a, — 0.
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Let (a,), (bn), (cn) be sequences such that for every n, a, < b, < c,. If
lim a, =
n—oo

Sandwich or Squeeze Theorem
Theorem 5 (Sandwich or Squeeze Theorem)
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lim ¢, =L then lim b, = L.
n—oo n—oo
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Theorem 5 (Sandwich or Squeeze Theorem)

Let (a,), (bn), (cn) be sequences such that for every n, a, < b, < c,. If

lim a, = I|m ¢, = L then lim b, = L.
n— o0 n—oo

Proof. Consider any € > 0. Then

a, — L = there is N; such that if n > N, then L — e < a, < L+,
¢, — L = thereis N such that if n > N, then L —e < ¢, < L+ e.
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Theorem 5 (Sandwich or Squeeze Theorem)

Let (a,), (bn), (cn) be sequences such that for every n, a, < b, < c,. If

lim a, = I|m ¢, = L then lim b, = L.
n—oo n—oo

Proof. Consider any € > 0. Then

a, — L = there is N; such that if n > N, then L — e < a, < L+,
¢, — L = thereis N such that if n > N, then L —e < ¢, < L+ e.

Define N = max{N,, N.}. This N works for (b,). O
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Theorem 5 (Sandwich or Squeeze Theorem)

Let (a,), (bn), (cn) be sequences such that for every n, a, < b, < c,. If
lim a, = I|m ¢, = L then lim b, = L.
n— oo n—oo

Proof. Consider any € > 0. Then
a, — L = there is N; such that if n > N, then L — e < a, < L+,
¢, — L = thereis N such that if n > N, then L —e < ¢, < L+ e.
Define N = max{N,, N.}. This N works for (b,). O

Example 6

Consider a, = r"/n! where r > 0 is fixed. Fix M € N such that M > r.
noor r ™M1y
n

r M+1
E M — ...
or n > ,O<n! - M1

Mm!

M!

n

r
Hence — — 0.
n!

Amber Habib Calculus
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Theorem 7
Let a, — L and b, — M. Also, let c € R. Then:

® |a,| — [L]. ®a,—b,—L—M.

D ca,—cl. A a,b, — LM.

©®a,+b,—L+M. ® a,/b, = L/MifM#£0.

v

Proof. The proofs are similar to the algebra of limits for functions. O
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Theorem 7
Let a, — L and b, — M. Also, let c € R. Then:
O |a,| — |L| O a,—b,—L-—M.
D ca,—cl. A a,b, — LM.
© a,+b,— L+ M ® a,/b, = L/MifM#£0.
)
Proof. The proofs are similar to the algebra of limits for functions. O
Task 7

Find the following limits.

) .
lim L ® |lim smin.

n—oo n? 4+ 3n — 1000° n—oo N
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We say that Iim a, = oo if for every real number M there is an N € N
such that n > N implies a, > M. Similarly, we say I|m a, = —oo if for
every real number M there is an N € N such that n > N implies a, < M.

. N

M .

|
|
|
!
(]
!
|
:
N
an — 00 an — —00
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We say that Iim a, = oo if for every real number M there is an N € N
such that n > N implies a, > M. Similarly, we say I|m a, = —o if for
every real number M there is an N € N such that n > N implies a, < M.

. N

|
|
|
!
(]
!
|
|
N
an — 00 an — —00

Example 8

21 1+1)" -1 —1
We'll show 2"/n — c. Wehave—*(Jr) >n(n ):n .

n
So, for any given M, choose N = 2/\/7 + 1.
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Task 8

Prove the following.

O limn=o0.

® Ifa, > b, for every n, and b, — oo, then a, — oc.

© Suppose a, # 0 for every n. Then a, — 0 if and only if |1/a,| — oc.

u}
‘ o)
it

DA



Limit of a Sequence Sequences and Functions Newton-Raphson Method

000000000000 e000000000 00000000000 00000
BB CAMBRIDGE
Bounded Sequences WP Ve e

Consider a sequence (a,). It is called

® Bounded above if there is a real number U such that a, < U for
every n (U is called an upper bound),
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Consider a sequence (a,). It is called

® Bounded above if there is a real number U such that a, < U for
every n (U is called an upper bound),

® Bounded below if there is a real number L such that a, > L for
every n (L is called a lower bound),
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Consider a sequence (a,). It is called

® Bounded above if there is a real number U such that a, < U for
every n (U is called an upper bound),

® Bounded below if there is a real number L such that a, > L for
every n (L is called a lower bound),

® Bounded if it is both bounded above and bounded below, and

Amber Habib Calculus
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Consider a sequence (a,). It is called

® Bounded above if there is a real number U such that a, < U for
every n (U is called an upper bound),

® Bounded below if there is a real number L such that a, > L for
every n (L is called a lower bound),

® Bounded if it is both bounded above and bounded below, and

® Unbounded if it is not bounded.
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For each given sequence, put a v/ in each correct category and a X in
each incorrect category:

an Bounded Above Bounded Below Bounded Unbounded
n

—n

(-1)"

(=1)"n
1/n
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Theorem 9
Every convergent sequence is bounded. J

Proof. Take e = 1.

There will be an N such that n > N implies |a, — L| < 1 and so
L—-1<a,<L+1.
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Convergent Sequences are Bounded TP S
Theorem 9
Every convergent sequence is bounded. J

Proof. Take e = 1.

There will be an N such that n > N implies |a, — L| < 1 and so
L—-1<a,<L+1.

In addition, the entries ai,...,ay_1 are finitely many and have a
maximum value M and a minimum value m.
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Convergent Sequences are Bounded TP S
Theorem 9
Every convergent sequence is bounded. J

Proof. Take e = 1.

There will be an N such that n > N implies |a, — L| < 1 and so
L—-1<a,<L+1.

In addition, the entries ai,...,ay_1 are finitely many and have a
maximum value M and a minimum value m.

Then the entire sequence (a,) lies between min{m, L — 1} and
max{M, L +1}. O
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Consider a sequence (ap). It is called
® Increasing if a, 1 > a, for every n,
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Consider a sequence (a,). It is called
® Increasing if a, 1 > a, for every n,

® Decreasing if a,+1 < a, for every n, and
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Consider a sequence (a,). It is called
® Increasing if a, 1 > a, for every n,
® Decreasing if a,+1 < a, for every n, and

® Monotone if it is either increasing or decreasing.
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Consider a sequence (a,). It is called
® Increasing if a, 1 > a, for every n,
® Decreasing if a,+1 < a, for every n, and

® Monotone if it is either increasing or decreasing.

Task 10

For each given sequence, put a v/ in each correct category and a X in
each incorrect category:

an Increasing  Decreasing  Monotone
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Every bounded and monotone sequence is convergent.
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Theorem 10
Every bounded and monotone sequence is convergent. J

Proof. Suppose (a,) is increasing and bounded. We'll show it converges
to L =sup{a,: ne N}
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Theorem 10
Every bounded and monotone sequence is convergent. J

Proof. Suppose (a,) is increasing and bounded. We'll show it converges
to L =sup{a,: ne N}

Consider any € > 0. Then L — € is not an upper bound for {a, : n € N}.
Hence there is N € N such that L — e < ay < L. This N works.
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Theorem 10
Every bounded and monotone sequence is convergent. J

Proof. Suppose (a,) is increasing and bounded. We'll show it converges
to L =sup{a,: ne N}

Consider any € > 0. Then L — € is not an upper bound for {a, : n € N}.
Hence there is N € N such that L — e < ay < L. This N works.
Similarly, if (a,) is decreasing and bounded, it converges to

inf{a,: n e N} O
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Theorem 10
Every bounded and monotone sequence is convergent. J

Proof. Suppose (a,) is increasing and bounded. We'll show it converges
to L =sup{a,: ne N}

Consider any € > 0. Then L — € is not an upper bound for {a, : n € N}.
Hence there is N € N such that L — e < ay < L. This N works.
Similarly, if (a,) is decreasing and bounded, it converges to

inf{a,: n e N} O

Example 11
We offer another proof that r” — 0 if |r| < 1.
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Theorem 10 J

Every bounded and monotone sequence is convergent.

Proof. Suppose (a,) is increasing and bounded. We'll show it converges
to L =sup{a,: ne N}

Consider any € > 0. Then L — € is not an upper bound for {a, : n € N}.
Hence there is N € N such that L — e < ay < L. This N works.
Similarly, if (a,) is decreasing and bounded, it converges to

inf{a,: n e N} O

Example 11

We offer another proof that r” — 0 if |r| < 1.

It is enough to show that |r|” — 0. Since |r| < 1, the sequence |r|" is a
decreasing sequence, and it is bounded below by 0. So it converges.
Suppose it converges to L.
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Theorem 10
Every bounded and monotone sequence is convergent. J

Proof. Suppose (a,) is increasing and bounded. We'll show it converges
to L =sup{a,: ne N}

Consider any € > 0. Then L — € is not an upper bound for {a, : n € N}.
Hence there is N € N such that L — e < ay < L. This N works.
Similarly, if (a,) is decreasing and bounded, it converges to

inf{a,: n e N} O

Example 11

We offer another proof that r” — 0 if |r| < 1.

It is enough to show that |r|” — 0. Since |r| < 1, the sequence |r|" is a
decreasing sequence, and it is bounded below by 0. So it converges.
Suppose it converges to L.

Now |r|™*! will have the same limit L. But |r|™*! = |r||r|" — |r|L. This
gives L = |r|L and hence L = 0.

T = = =
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Example 12

Let (a,) be a decreasing sequence that converges to 0. We shall show
that 27" — 1.

First, since (a,) is decreasing, so is 2%
Second, since a, > 0, 2" > 1. Hence 2°» — [ > 1.

To complete the proof we need to show that 1 is the greatest lower
bound of the set {2%}. We already know that it is a lower bound.

So consider any number 1 + € with € > 0. Then log,(1 + €¢) > 0. Since
a, — 0 we have an N such that ay < log,(1 + €). Hence 2°¥ < 1+ .
Therefore 1 4 € is not an upper bound for {23}
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Example 13

Consider the sequence defined recursively by a; = v/2 and ap1 = +/2a,.
We shall consider two approaches to investigate its limit. In the first
approach, we try to obtain a direct formula for a,. The first few terms are

day = 21/2,
ay = \/Eﬁ = 23/47
a3z = \@\/5 = 27/8.

Amber Habib Calculus



Limit of a Sequence Sequences and Functions Newton-Raphson Method
©00000000000000000e000 00000000000 00000

BB CAMBRIDGE
EXa m ple "’ LC'NIVERSITY PRESS

Example 13

Consider the sequence defined recursively by a; = v/2 and ap1 = +/2a,.
We shall consider two approaches to investigate its limit. In the first
approach, we try to obtain a direct formula for a,. The first few terms are

d]p = 21/2,
ay = \fz\/g = 23/4
asz = \@\/5 = 27/8.
The pattern is a, = 2171/2". We leave it for you to verify this by

mathematical induction. We can now calculate, using the previous
example and the fact that 1/2" — 0, that
2

lima, = lim2!~Y%" = _——__ —2
ima im IR
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Example 14

In the second approach to the sequence of the previous example, we try
to establish that it is monotone and bounded. We have

a1 |2

an an

PEN G4
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Example 14

In the second approach to the sequence of the previous example, we try
to establish that it is monotone and bounded. We have

anyl 2

an an

We need to compare a, with 2. Since the first few terms were less than
2, we conjecture that all are less than 2.
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Example 14

In the second approach to the sequence of the previous example, we try
to establish that it is monotone and bounded. We have

anyl 2

an an

We need to compare a, with 2. Since the first few terms were less than
2, we conjecture that all are less than 2.
This can be proved by mathematical induction:
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Example 14

In the second approach to the sequence of the previous example, we try
to establish that it is monotone and bounded. We have

an an

anyl 2

We need to compare a, with 2. Since the first few terms were less than
2, we conjecture that all are less than 2.
This can be proved by mathematical induction:

(3)31:\@<27 (b) ap <2 = app1 =23, <V2x2=2.
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Example 14

In the second approach to the sequence of the previous example, we try
to establish that it is monotone and bounded. We have

anyl 2

an an

We need to compare a, with 2. Since the first few terms were less than
2, we conjecture that all are less than 2.
This can be proved by mathematical induction:

(a)‘al:\f2<27 (b) ap <2 = app1 =23, <V2x2=2.

Hence the sequence is increasing as well as bounded above (by the
number 2). Therefore it is convergent. Suppose it converges to L.
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Example 14

In the second approach to the sequence of the previous example, we try
to establish that it is monotone and bounded. We have

anyl 2

an an

We need to compare a, with 2. Since the first few terms were less than
2, we conjecture that all are less than 2.
This can be proved by mathematical induction:

(a) a=v2<2, (b) ap <2 = app1 =V2a,<V2x2=

Hence the sequence is increasing as well as bounded above (by the
number 2). Therefore it is convergent. Suppose it converges to L.
From the defining relation a,11 = v/2a,, we get af,H = 2a, and hence
L2 =2L. This implies L = 0 or 2. As the sequence has positive and
increasing terms it cannot have 0 as a limit. Hence L = 2.

= =
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Given a sequence, a subsequence is created by dropping some of the
terms of the sequence, as long as infinitely many terms still remain.
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Given a sequence, a subsequence is created by dropping some of the
terms of the sequence, as long as infinitely many terms still remain.

Thus, consider a sequence (a,). Let the first term which is retained be
an,. Let the second term which is retained be a,,, with n, > ny. In this
way we create a new sequence with terms b; = a,,, and call it a
subsequence of the original one.
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Given a sequence, a subsequence is created by dropping some of the
terms of the sequence, as long as infinitely many terms still remain.

Thus, consider a sequence (a,). Let the first term which is retained be
an,. Let the second term which is retained be a,,, with n, > ny. In this
way we create a new sequence with terms b; = a,,, and call it a
subsequence of the original one.

Theorem 15

If a sequence converges to L, then each of its subsequences also
converges to L.
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Given a sequence, a subsequence is created by dropping some of the
terms of the sequence, as long as infinitely many terms still remain.

Thus, consider a sequence (a,). Let the first term which is retained be
an,. Let the second term which is retained be a,,, with n, > ny. In this
way we create a new sequence with terms b; = a,,, and call it a
subsequence of the original one.

Theorem 15

If a sequence converges to L, then each of its subsequences also
converges to L.

Proof. Let a, — L. Consider a subsequence by = a,, with

n < np < ---. First, note that ny > k. Now, for any € > 0, there is
N € N such that n > N implies |a, — L| < €. Then k > N implies
ng > k > N implies |by — L| = |ap, — L| < e. O
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It may happen that a sequence involves two or more different patterns.
For example, the odd terms ai, az,... may follow one rule while the even
terms ap, ag, ... follow another rule. The concept of subsequences helps
in such situations.
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It may happen that a sequence involves two or more different patterns.
For example, the odd terms ai, az,... may follow one rule while the even
terms ap, ag, ... follow another rule. The concept of subsequences helps
in such situations.

Example 16

Consider 1,1,2,1/2,3,1/3,4,1/4,.... The subsequence 1,2,3,4,...
diverges and so the original sequence diverges.

Again, consider 1, —1,1, —1,.... The subsequence 1,1,... converges to
1. The subsequence —1,—1,... converges to —1. Since the two
subsequences have different limits, the original sequence diverges.

Amber Habib Calculus



Limit of a Sequence Sequences and Functions Newton-Raphson Method
©00000000000000000000e 00000000000 00000
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It may happen that a sequence involves two or more different patterns.
For example, the odd terms ai, az,... may follow one rule while the even
terms ap, ag, ... follow another rule. The concept of subsequences helps
in such situations.

Example 16

Consider 1,1,2,1/2,3,1/3,4,1/4,.... The subsequence 1,2,3,4,...
diverges and so the original sequence diverges.

Again, consider 1, —1,1, — . The subsequence 1,1,... converges to
1. The subsequence —1, —17 ... converges to —1. Smce the two
subsequences have different limits, the original sequence diverges.

Task 11
@ Show that lima, = L if and only iflim azp,1 = limay, = L.
(=1)"n
Evaluate lim ———
® Evaluate Lngo 1

Amber Habib Calculus



Table of Contents

mﬂw CAMBRIDGE

UNIVERSITY PRESS

® Limit of a Sequence
® Sequences and Functions

© Newton-Raphson Method



Functions Applied to Sequences
Theorem 17

CAMBRIDGE

UNIVERSITY PRESS

J

Let f(x) be continuous at x = L and let a, — L. Then f(a,) — f(L).
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Theorem 17

Let f(x) be continuous at x = L and let a, — L. Then f(a,) — f(L). J

Proof. Take € > 0. First, by the continuity of f there is a § > 0 such
that |x — L| < ¢ implies |f(x) — f(L)| < e.
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Theorem 17

Let f(x) be continuous at x = L and let a, — L. Then f(a,) — f(L). J

Proof. Take € > 0. First, by the continuity of f there is a § > 0 such
that |x — L| < ¢ implies |f(x) — f(L)| < e.

Next, by the convergence of (a,) there is N such that n > N implies

lan — L| < 4, and so |f(a,) — F(L)] <. O
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Theorem 17

Let f(x) be continuous at x = L and let a, — L. Then f(a,) — f(L). J

Proof. Take € > 0. First, by the continuity of f there is a § > 0 such
that |x — L| < ¢ implies |f(x) — f(L)| < e.

Next, by the convergence of (a,) there is N such that n > N implies

lan — L| < 4, and so |f(a,) — F(L)] <. O
Example 18

Take a positive number ¢ and consider the sequence (c*/"). Now, the
function f(x) = ¢* is continuous at every x. Hence,

lim c¥/" = lim £(1/n) = f(lim1/n) = f(0) = ® = 1.
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Theorem 17
Let f(x) be continuous at x = L and let a, — L. Then f(a,) — f(L). J

Proof. Take € > 0. First, by the continuity of f there is a § > 0 such
that |x — L| < ¢ implies |f(x) — f(L)| < e.

Next, by the convergence of (a,) there is N such that n > N implies

lan — L| < 4, and so |f(a,) — F(L)] <. O
Example 18

Take a positive number ¢ and consider the sequence (c*/"). Now, the
function f(x) = ¢* is continuous at every x. Hence,

lim c¥/" = lim £(1/n) = f(lim1/n) = f(0) = ® = 1.

Task 12
Show that loga, — L = a, — et.
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Let f(x) be differentiable at x = L. Then

lim n(F(L+1/n) = F(L)) = F(L).
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Theorem 19
Let f(x) be differentiable at x = L. Then

lim n(F(L+1/n)— £(L)) = F'(L).

n— oo

Proof. The function g defined below is continuous at h = 0.

f(L+ h) —f(L)

g(h) = h
F(L) if h=0.

if h#£0,
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Theorem 19
Let f(x) be differentiable at x = L. Then

lim n(F(L+1/n)— £(L)) = F'(L).

n— oo

Proof. The function g defined below is continuous at h = 0.

f(L+ h) —f(L)

g(h) = h
F(L) if h=0.

if h#£0,

Now, n(f(L+1/n) — f(L)) = g(1/n).
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Theorem 19
Let f(x) be differentiable at x = L. Then

lim n(F(L+1/n)— £(L)) = F'(L).

n— oo

Proof. The function g defined below is continuous at h = 0.

f(L+ h) —f(L)

g(h) = h
F(L) if h=0.

if h#£0,

Now, n(f(L+1/n) — f(L)) = g(1/n).
Hence, lim n(f(L+1/n)—f(L)) = nILmOOg(l/n) = g(0) = f'(L). O
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Example 20

Consider the sequence (1 + 1/n)". First, we apply the log function to
convert it into a product which we can evaluate by the last theorem.

limlog(1+ 1/n)" = limn(log(1+1/n) —log1) = log'1 = 1.

And now, by the continuity of the exponential function,

I|m(1 + 1/n)n = lim enlog(1+1/n) — elimnlog(1+1/n) _ el —e.
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Example 20

Consider the sequence (1 + 1/n)". First, we apply the log function to
convert it into a product which we can evaluate by the last theorem.

limlog(1+ 1/n)" = limn(log(1+1/n) —log1) = log'1 = 1.
And now, by the continuity of the exponential function,

I|m(1 + 1/n)n = lim enlog(1+1/n) — elimnlog(1+1/n) _ el —e.

Task 13
Show that lim(1+2/n)" = € and lim(1 — 1/n)" = e~L.
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Example 20

Consider the sequence (1 + 1/n)". First, we apply the log function to
convert it into a product which we can evaluate by the last theorem.

limlog(1 +1/n)" = lim n(log(1 + 1/n) — log1) = log' 1 = 1.
And now, by the continuity of the exponential function,

I|m(1 + 1/n)n = lim enlog(1+1/n) — elimnlog(1+1/n) _ el —e.

v
Task 13
Show that lim(1+2/n)" = € and lim(1 — 1/n)" = e~L.

£
Task 14
True or False: If f(x) — L as x — a, and a, — a, then f(a,) — L. )
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Let f(x) be a real function with domain [1,00) and let lim f(x) =L
—00
Suppose a, = f(n) for n € N. Then Ii)m a, = L.
n—oo
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Let f(x) be a real function with domain [1,00) and let lim f(x)
Suppose a, = f(n) forn € N. Then lim a, =1L

=L

0.5
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Theorem 21

Let f(x) be a real function with domain [1,00) and let ILm f(x) = L.

Suppose a, = f(n) for n € N. Then lim a, = L.
n—o0

0.5

D

1234 N

Proof. Consider any € > 0. There is a ¢ € R such that x > ¢ implies
|f(x) — L| < €. Define N = [c] + 1.
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Theorem 21

Let f(x) be a real function with domain [1,00) and let ILm f(x) = L.

Suppose a, = f(n) for n € N. Then lim a, = L.
n—o0

0.5

D

1234 N

Proof. Consider any € > 0. There is a ¢ € R such that x > ¢ implies
|f(x) — L| < €. Define N = [c] + 1.
Then n > N implies |a, — L| = |f(n) — L| <. O
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We will calculate the limit of a, = nsin(1/n).
Consider f(x) = xsin(1/x). Then f(n) = a, and

A, fl) =

= lim xsin(1/x) = lim Y —1
X—00 y—=0+ y
Therefore, lim a, = 1.
n—oo
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Examples

Example 22

We will calculate the limit of a, = nsin(1/n).
Consider f(x) = xsin(1/x). Then f(n) = a, and

siny

Jim £09 = Jim xsina/) = iy, 50

Therefore, lim a, = 1.
n—oo

1.

Newton-Raphson Method
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Example 23

Consider the sequence 1/(arctan n)". First, we note that

limarctann = lim arctanx = 7/2. Hence 1/(arctann) — 2/7 < 1.
X—>00
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Example 22

We will calculate the limit of a, = nsin(1/n).
Consider f(x) = xsin(1/x). Then f(n) = a, and

. L . . siny
lerT;o f(x)7xll>r'r;oxsm(1/x)fylLrQ+ =

1.

Therefore, lim a, = 1.
n—oo

Example 23

Consider the sequence 1/(arctan n)". First, we note that
limarctann = lim arctanx = 7/2. Hence 1/(arctann) — 2/7 < 1.
X—r00

Choose any real number r such that 2/m < r < 1. There is an N such
that n > N implies 1/(arctan n) < r and hence 0 < 1/(arctan n)” < r".
Now, r" — 0 and the Sandwich Theorem gives us 1/(arctan n)" — 0.
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A major gain from the last theorem is that the results for functions, such
as L'Hopital’s Rule, can be applied to sequences.

Example 24
Consider the sequence (n'/"). We start by applying log to convert to a
. 1 logn . . logx
ratio: a, = log(n'/") = —=—. Since lim =0, we have
n X—>00 X

log n
m —=

li = 0. Hence, limn'/" = 0 = 1.
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L'Hopital's Rule o SAAERREE

A major gain from the last theorem is that the results for functions, such
as L'Hopital’s Rule, can be applied to sequences.

Example 24
Consider the sequence (n'/"). We start by applying log to convert to a

. 1 logn . . logx
ratio: a, = log(n'/") = —=—. Since lim —= =0, we have

| n X—>00 X
lim =22 = 0. Hence, lim n'/" = ® = 1.

v

Task 15

Find the limits of the following sequences.

eI'I
0 % e

log n

N

Amber Habib Calculus



SRS onocee0  SESERARSOT SR
Stirling’s Approximation

CAMBRIDGE
Our later study of ‘infinite series’ will bring up the sequence (n!)l/".

UNIVERSITY PRESS

u}
‘ o)
1
it

DA



Limit of a Sequence Sequences and Functions Newton-Raphson Method
0000000000000000000000 0000000e000 00000

BB CAMBRIDGE

Stirling's Approximation WP Ve e

Our later study of ‘infinite series’ will bring up the sequence (n!)'/".
Let's plot it:

It looks very close to a straight line!
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Our later study of ‘infinite series’ will bring up the sequence (n!)'/".
Let's plot it:
\ .
3 .
, .
1 .
2 4 6 8 10

It looks very close to a straight line! Let us tabulate the slopes (n!)'/"/n.

n | 10 100 1000 10000
slope | 0.4563 0.3799 0.3695 0.3681
1/slope | 2.12 2.63 2706 2717

Amber Habib Calculus



Limit of a Sequence Sequences and Functions Newton-Raphson Method

000000000000 0000000000 00000008000 00000
C e . . - .
Stirling's Approximation TP S s
Our later study of ‘infinite series’ will bring up the sequence (n!)'/".
Let's plot it:
\ .
3 .
, .
1 .
2 4 6 8 10

It looks very close to a straight line! Let us tabulate the slopes (n!)'/"/n.

n | 10 100 1000 10000
slope | 0.4563 0.3799 0.3695 0.3681
1/slope | 2.12 2.63 2706 2717

The reciprocals could be approaching e =~ 2.718....
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=1,ie (n)/"~ 2 for large n.
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=1,ie (n)/"~ 2 for large n.

Proof. Consider logn! =", _; log k.
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Theorem 25
nl)t/n n
lim ()" _ 1, ie. (n)Y/" ~ = for large n.
n—soo  nje e

Proof. Consider logn! = 3", _, log k.

. 1
It is an upper sum for fln log x dx and a lower sum for f1"+ log x dx.

1 n 1 n+1
[ log x dx < Y"y_; log k Sroilogk < flnH log x dx

(continued. . .)
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(.. .continued)

n n+1
/ logxdx < logn! < / log x dx
1 1

= nlogn—n+1< logn < (n+1)log(n+1)—n

n" (n+ 1)t
= log o1 < logn! <log BT

— n” < nl < 7(’7 + 1)"+1
enfl . en
1\1/n
()" _ (1+1/n)(n+1)/7.

— el/”< —
n/e

Now, e'/" — 1 and (1 + %)1“/” — 1 and n*/" — 1. Apply Sandwich

theorem to finish the proof. O
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Example 26

Here is an application of Stirling’s Approximation.

( |)1/n2 B pll/n 1/"(n>1/"_ pl1/n 1/n nl/n

™ — \Un/e e — \n/e el/n’
|1/n

Now a, = n/e — 1. Hence a,

We already know that n*/" — 1 and e'/" — 1.

Un 1 (To prove this, apply log).

1,

Hence, (n!)
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Suppose we have an equation such as x3 — 3 = x? + x which we have to

solve for x. We move every term to the left side to put it in the form
f(x) = 0.

y = f(x)

We wish to estimate the point a where f(a) = 0. Imagine you are at a
point (xi, f(x1)) on the graph of the function f. In which direction
should you move to move towards a? One idea is to generate the tangent
line at (x1,f(x1)) and see where it cuts the x-axis. If it does so at x, we
repeat the process from the point (xz, f(x2)).
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The equation of the tangent line at (xq, f(x1)) is

y = f(x)+ f'(x1)(x — x1).

u}
‘ o)
it
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The equation of the tangent line at (x, f(x1)) is
y = f(x)+ f'(x)(x — x1)-

To see where it cuts the x-axis we put y = 0.
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The equation of the tangent line at (x, f(x1)) is
y = f(x)+ f'(x)(x — x1)-

To see where it cuts the x-axis we put y = 0.
This gives xo = x; — f(x1)/f’(x1). Therefore the general iterative step is

f(Xn)

Xpt1 = Xnp — f/(X )
n

Amber Habib Calculus



Limit of a Sequence Sequences and Functions Newton-Raphson Method
000000000000 0000000000 00000000000 00800

Newton-Raphson Method O SaMERIDSE

The equation of the tangent line at (x, f(x1)) is
y = f(x)+ f'(x)(x — x1)-

To see where it cuts the x-axis we put y = 0.
This gives xo = x; — f(x1)/f’(x1). Therefore the general iterative step is

f(Xn)

Xpt1 = Xnp — f/(X )
n

We have created a sequence xi, X2, X3, . ... Does it converge? And does
it converge to a?
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The equation of the tangent line at (x, f(x1)) is
y = f(x)+ f'(x)(x — x1)-

To see where it cuts the x-axis we put y = 0.
This gives xo = x; — f(x1)/f’(x1). Therefore the general iterative step is

f(Xn)

Xpt1 = Xnp — f/(X )
n

We have created a sequence xi, X2, X3, . ... Does it converge? And does
it converge to a?

The good news is that if it converges at all, then it converges to a
solution. If x, — L then

f (xn) f(L)

Xpi1 = Xp — 1) = L=1- (D) = f(L)=0.

Amber Habib Calculus



Limit of a Sequence Sequences and Functions Newton-Raphson Method
000000000000 0000000000 00000000000 000@0

BEH CAMBRIDGE
EXa m ple ‘7’ g\IIVERSITv PRESS

Example 27

Suppose the equation we wish to solve is x> = NN, that is, we want to
estimate a square root.

We rearrange this as f(x) = 0, where f(x) = x> — N.

Then f’(x) = 2x, and the Newton-Raphson iteration is

n
Xn+1 = Xn — = = Xp + —
n

2Xp, 2Xp, 2

x2—N_x§+N_1( N)

Let N = 2. If we start with x; = 1, we get x, = 3/2 = 1.5,
x3 = 17/12 = 1.417, and so on.
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In the first example, the sequence moves away from the solution of
f(x) = 0. In the second example, it cycles repeatedly through the same

two values.

Amber Habib Calculus



	Limit of a Sequence
	

	Sequences and Functions
	

	Newton-Raphson Method
	


