Newton-Raphson Method

Chapter 7: Sequences and Series Part A: Sequences

(日)

ъ

Newton-Raphson Method

Table of Contents

• Limit of a Sequence

Sequences and Functions

Newton-Raphson Method

Newton-Raphson Method

э

Sequences of Real Numbers

A sequence is an unending list of real numbers, such as:

Amber Habib

Calculus

1, 2, 3, 4, ... 1, 1, 1, 1, 1, ... 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ...

- **4** $\sqrt{1}, -\sqrt{2}, \sqrt{3}, -\sqrt{4}, \dots$
- **5** 3, 1, 4, 1, 5, 9, . . .
- **6** 0.1, $-0.23, \pi, \sqrt{2}, e, \ldots$

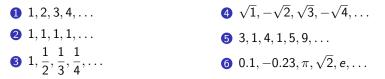
イロト イポト イヨト イヨト

Newton-Raphson Method

CAMBRIDGE

Sequences of Real Numbers

A sequence is an unending list of real numbers, such as:



These examples were chosen to illustrate certain features:

1 A sequence may follow a simple pattern, as in examples (1) to (4).

< ロ > < 同 > < 三 > < 三 > 、

Newton-Raphson Method

Sequences of Real Numbers

A sequence is an unending list of real numbers, such as:

1 1,2,3,4,... **2** 1,1,1,1,... **3** 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$,... **4** $\sqrt{1}$, $-\sqrt{2}$, $\sqrt{3}$, $-\sqrt{4}$,... **5** 3,1,4,1,5,9,... **6** 0.1, -0.23, π , $\sqrt{2}$, e,...

These examples were chosen to illustrate certain features:

- **1** A sequence may follow a simple pattern, as in examples (1) to (4).
- 2 The entries may be any mix of positive and negative, rational and irrational, as in (4) and (6). They may repeat, as in (2).

< ロ > < 同 > < 三 > < 三 > 、

Newton-Raphson Method

・ロト ・回ト ・ヨト ・ヨト

Sequences of Real Numbers

A sequence is an unending list of real numbers, such as:

1 1, 2, 3, 4, ... **2** 1, 1, 1, 1, ... **3** 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ... **4** $\sqrt{1}$, $-\sqrt{2}$, $\sqrt{3}$, $-\sqrt{4}$, ... **5** 3, 1, 4, 1, 5, 9, ... **6** 0.1, -0.23, π , $\sqrt{2}$, e, ...

These examples were chosen to illustrate certain features:

- 1 A sequence *may* follow a simple pattern, as in examples (1) to (4).
- 2 The entries may be any mix of positive and negative, rational and irrational, as in (4) and (6). They may repeat, as in (2).
- 3 All the entries should be known, in principle. For example, (5) consists of the digits in the decimal representation of π. These are known in principle: if one wants to know the digit in the 10⁻¹⁵ place there is only one answer, even if it has not been worked out yet.

Newton-Raphson Method

Sequences of Real Numbers

A sequence is an unending list of real numbers, such as:

1 , 2, 3, 4,	4 $\sqrt{1}, -\sqrt{2}, \sqrt{3}, -\sqrt{4}, \dots$
2 1, 1, 1, 1,	5 3, 1, 4, 1, 5, 9,
3 $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$	6 0.1, $-0.23, \pi, \sqrt{2}, e, \dots$

These examples were chosen to illustrate certain features:

- **1** A sequence may follow a simple pattern, as in examples (1) to (4).
- 2 The entries may be any mix of positive and negative, rational and irrational, as in (4) and (6). They may repeat, as in (2).
- 3 All the entries should be known, in principle. For example, (5) consists of the digits in the decimal representation of π. These are known in principle: if one wants to know the digit in the 10⁻¹⁵ place there is only one answer, even if it has not been worked out yet.
- Example (6) is acceptable only if it is part of some complete assignment of real numbers to positions in the sequence.

Newton-Raphson Method

Describing a Sequence

э

The general notation for a sequence is to label its members by their position, such as: a_1, a_2, a_3, \ldots A more compact representation is $(a_n)_{n=1}^{\infty}$ or even just (a_n) .

Amber Habib

Calculus

< ロ > < 同 > < 三 > < 三 >

Describing a Sequence

The general notation for a sequence is to label its members by their position, such as: a_1, a_2, a_3, \ldots A more compact representation is $(a_n)_{n=1}^{\infty}$ or even just (a_n) .

Example 1

Here are some examples of describing a sequence by giving the form of its $n^{\rm th}$ term:

$$\begin{array}{ll} 1,2,3,4,\ldots & a_n=n \\ 1,1,1,1,\ldots & a_n=1 \\ 1,-1,1,-1,\ldots & a_n=(-1)^{n+1} \\ 1,1/2,1/3,1/4,\ldots & a_n=1/n \\ \sqrt{1},\sqrt{2},\sqrt{3},\sqrt{4},\ldots & a_n=\sqrt{n} \end{array}$$

This is the most satisfactory way of describing a sequence, although it is not always possible.

Describing a Sequence

The general notation for a sequence is to label its members by their position, such as: a_1, a_2, a_3, \ldots A more compact representation is $(a_n)_{n=1}^{\infty}$ or even just (a_n) .

Example 1

Here are some examples of describing a sequence by giving the form of its $n^{\rm th}$ term:

This is the most satisfactory way of describing a sequence, although it is not always possible.

Formally, a sequence is a function $f: \mathbb{N} \to \mathbb{R}$. Such a function generates numbers $a_1 = f(1)$, $a_2 = f(2)$, $a_3 = f(3)$, ...

 $\underset{00000}{\mathsf{Newton-Raphson}} \mathsf{Method}$

< ロ > < 同 > < 三 > < 三 > 、

Limit of A Sequence

Let (a_n) be a sequence of real numbers, and L a real number. We say that (a_n) converges to L if for every real number $\epsilon > 0$ there is $N \in \mathbb{N}$ such that $n \ge N$ implies $|a_n - L| < \epsilon$. The number L is called the **limit** of the sequence.

Amber Habib

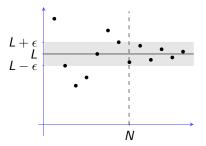
Calculus

Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 >

Limit of A Sequence

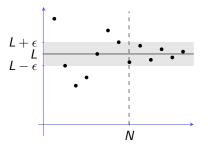
Let (a_n) be a sequence of real numbers, and L a real number. We say that (a_n) converges to L if for every real number $\epsilon > 0$ there is $N \in \mathbb{N}$ such that $n \ge N$ implies $|a_n - L| < \epsilon$. The number L is called the **limit** of the sequence.



Newton-Raphson Method

Limit of A Sequence

Let (a_n) be a sequence of real numbers, and L a real number. We say that (a_n) converges to L if for every real number $\epsilon > 0$ there is $N \in \mathbb{N}$ such that $n \ge N$ implies $|a_n - L| < \epsilon$. The number L is called the **limit** of the sequence.



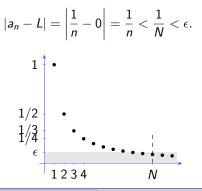
If (a_n) converges to L we say $a_n \to L$ as $n \to \infty$, or $\lim_{n \to \infty} a_n = L$. More briefly, we may just say $a_n \to L$ or $\lim_{n \to \infty} a_n = L$. If a sequence does not converge, we say it **diverges**.

Newton-Raphson Method

Example

Example 2

Let us show that $\lim_{n\to\infty} \frac{1}{n} = 0$. Consider any $\epsilon > 0$. Then $1/\epsilon > 0$. By the Archimedean Property, there is a natural number N such that $N > 1/\epsilon$. Hence $\frac{1}{N} < \epsilon$. This N works for us: If n > N then



Newton-Raphson Method

-1

æ

Example

Example 3

Let us show that
$$\lim_{n \to \infty} r^n = 0$$
 if $|r| < 1$. Note that $|r| < 1$ implies $\frac{1}{|r|} > 1$.
So we can write $\frac{1}{|r|} = 1 + h$ with $h > 0$. Hence $\frac{1}{|r|^n} = (1 + h)^n > nh$ and
so $|r|^n < \frac{1}{nh}$. Consider any $\epsilon > 0$. By the Archimedean Property, there is
a natural number N such that $\frac{1}{N} < h\epsilon$. This N works: If $n > N$ then
 $|a_n - L| = |r^n - 0| = |r|^n < \frac{1}{nh} < \frac{1}{Nh} < \epsilon$.

Amber Habib Calculus

Newton-Raphson Method

-1

э

Example

Example 3

Let us show that
$$\lim_{n \to \infty} r^n = 0$$
 if $|r| < 1$. Note that $|r| < 1$ implies $\frac{1}{|r|} > 1$.
So we can write $\frac{1}{|r|} = 1 + h$ with $h > 0$. Hence $\frac{1}{|r|^n} = (1 + h)^n > nh$ and
so $|r|^n < \frac{1}{nh}$. Consider any $\epsilon > 0$. By the Archimedean Property, there is
a natural number N such that $\frac{1}{N} < h\epsilon$. This N works: If $n > N$ then
 $|a_n - L| = |r^n - 0| = |r|^n < \frac{1}{nh} < \frac{1}{Nh} < \epsilon$.

Task 1

Show that the limit of a sequence is unique, if it exists.

Newton-Raphson Method

-

Example

Example 3

Let us show that
$$\lim_{n \to \infty} r^n = 0$$
 if $|r| < 1$. Note that $|r| < 1$ implies $\frac{1}{|r|} > 1$.
So we can write $\frac{1}{|r|} = 1 + h$ with $h > 0$. Hence $\frac{1}{|r|^n} = (1 + h)^n > nh$ and
so $|r|^n < \frac{1}{nh}$. Consider any $\epsilon > 0$. By the Archimedean Property, there is
a natural number N such that $\frac{1}{N} < h\epsilon$. This N works: If $n > N$ then
 $|a_n - L| = |r^n - 0| = |r|^n < \frac{1}{nh} < \frac{1}{Nh} < \epsilon$.

Task 1

Show that the limit of a sequence is unique, if it exists.

Task 2

Let $a_n = c$ be a constant sequence. Show that $a_n \rightarrow c$.

Newton-Raphson Method

Example of Divergence

Example 4

Consider the sequence given by $a_n = (-1)^n$. The entries -1, 1, -1, 1, ... keep switching between ± 1 so the sequence does not settle down and does not have a limit. How do we establish this formally?

Example of Divergence

Example 4

Consider the sequence given by $a_n = (-1)^n$. The entries -1, 1, -1, 1, ... keep switching between ± 1 so the sequence does not settle down and does not have a limit. How do we establish this formally?

We use the idea that if the sequence entries approach a certain number L, then they also approach each other. For example, if some numbers are each within 1 unit of L, then they are also all within 2 units of each other.

< ロ > < 同 > < 三 > < 三 >

Example of Divergence

Example 4

Consider the sequence given by $a_n = (-1)^n$. The entries -1, 1, -1, 1, ... keep switching between ± 1 so the sequence does not settle down and does not have a limit. How do we establish this formally?

We use the idea that if the sequence entries approach a certain number L, then they also approach each other. For example, if some numbers are each within 1 unit of L, then they are also all within 2 units of each other.

Suppose $a_n \to L$. Take $\epsilon = 1$. There will be an N such that $n \ge N$ implies $|a_n - L| < 1$. In particular, $|a_N - L| < 1$ and $|a_{N+1} - L| < 1$. Therefore, $|a_N - a_{N+1}| \le |a_N - L| + |a_{N+1} - L| < 2$, which is false as consecutive entries actually have a gap of 2. This contradiction informs us that the sequence diverges.

Newton-Raphson Method

э

Exercises

Task 3

Show that the sequence given by $a_n = n$ diverges.



イロト イヨト イヨト イヨト

< ロ > < 同 > < 三 > < 三 >

Exercises

Task 3

Show that the sequence given by $a_n = n$ diverges.

Task 4

Let (a_n) be a given sequence and k a fixed natural number. Define a sequence (b_n) by $b_n = a_{n+k}$. (That is, we drop the first k terms of the given sequence to create a new sequence) Show that $\lim b_n = L$ if and only if $\lim a_n = L$.

< ロ > < 同 > < 三 > < 三 >

Exercises

Task 3

Show that the sequence given by $a_n = n$ diverges.

Task 4

Let (a_n) be a given sequence and k a fixed natural number. Define a sequence (b_n) by $b_n = a_{n+k}$. (That is, we drop the first k terms of the given sequence to create a new sequence) Show that $\lim b_n = L$ if and only if $\lim a_n = L$.

Task 5

Suppose (a_n) is a converging sequence and $m \le a_n \le M$ for every n. Then $m \le \lim_{n \to \infty} a_n \le M$.

Exercises

Task 3

Show that the sequence given by $a_n = n$ diverges.

Task 4

Let (a_n) be a given sequence and k a fixed natural number. Define a sequence (b_n) by $b_n = a_{n+k}$. (That is, we drop the first k terms of the given sequence to create a new sequence) Show that $\lim b_n = L$ if and only if $\lim a_n = L$.

Task 5

Suppose (a_n) is a converging sequence and $m \le a_n \le M$ for every n. Then $m \le \lim_{n \to \infty} a_n \le M$.

Task 6

Let $|a_n| \to 0$. Show that $a_n \to 0$.

Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 > 、

Sandwich or Squeeze Theorem

Theorem 5 (Sandwich or Squeeze Theorem)

Let (a_n) , (b_n) , (c_n) be sequences such that for every n, $a_n \le b_n \le c_n$. If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ then $\lim_{n \to \infty} b_n = L$.

Amber Habib

Calculus

Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 > 、

Sandwich or Squeeze Theorem

Theorem 5 (Sandwich or Squeeze Theorem) Let (a_n) , (b_n) , (c_n) be sequences such that for every n, $a_n \le b_n \le c_n$. If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$ then $\lim_{n\to\infty} b_n = L$.

Proof. Consider any $\epsilon > 0$. Then

 $a_n \rightarrow L \implies$ there is N_a such that if $n > N_a$ then $L - \epsilon < a_n < L + \epsilon$,

 $c_n \rightarrow L \implies$ there is N_c such that if $n > N_c$ then $L - \epsilon < c_n < L + \epsilon$.

Newton-Raphson Method

Sandwich or Squeeze Theorem

Theorem 5 (Sandwich or Squeeze Theorem) Let (a_n) , (b_n) , (c_n) be sequences such that for every n, $a_n \le b_n \le c_n$. If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$ then $\lim_{n\to\infty} b_n = L$.

Proof. Consider any $\epsilon > 0$. Then

 $a_n \rightarrow L \implies$ there is N_a such that if $n > N_a$ then $L - \epsilon < a_n < L + \epsilon$,

 $c_n \rightarrow L \implies$ there is N_c such that if $n > N_c$ then $L - \epsilon < c_n < L + \epsilon$.

Define $N = \max\{N_a, N_c\}$. This N works for (b_n) .

Newton-Raphson Method

Sandwich or Squeeze Theorem

CAMBRIDGE UNIVERSITY PRESS

Theorem 5 (Sandwich or Squeeze Theorem) Let (a_n) , (b_n) , (c_n) be sequences such that for every n, $a_n \le b_n \le c_n$. If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$ then $\lim_{n\to\infty} b_n = L$.

Proof. Consider any $\epsilon > 0$. Then

 $a_n \rightarrow L \implies$ there is N_a such that if $n > N_a$ then $L - \epsilon < a_n < L + \epsilon$,

 $c_n \rightarrow L \implies$ there is N_c such that if $n > N_c$ then $L - \epsilon < c_n < L + \epsilon$.

Define $N = \max\{N_a, N_c\}$. This N works for (b_n) .

Example 6

Consider $a_n = r^n/n!$ where r > 0 is fixed. Fix $M \in \mathbb{N}$ such that M > r.

For
$$n > M$$
, $0 < \frac{r^n}{n!} = \frac{r}{n} \cdots \frac{r}{M+1} \cdot \frac{r^M}{M!} < \frac{1}{n} \cdot \frac{r^{M+1}}{M!} \rightarrow 0.$

Hence $\frac{r^n}{n!} \to 0$.

< ロ > < 同 > < 三 > < 三 > 、

Algebra of Limits

Theorem 7Let $a_n \to L$ and $b_n \to M$. Also, let $c \in \mathbb{R}$. Then:1 $|a_n| \to |L|$.2 $c a_n \to c L$.3 $a_n + b_n \to L + M$.3 $a_n + b_n \to L + M$.4 $a_n / b_n \to L / M$ if $M \neq 0$.

Proof. The proofs are similar to the algebra of limits for functions.

Algebra of Limits

Theorem 7Let $a_n \to L$ and $b_n \to M$. Also, let $c \in \mathbb{R}$. Then:1) $|a_n| \to |L|$.4) $a_n - b_n \to L - M$.2) $c a_n \to c L$.5) $a_n b_n \to L M$.3) $a_n + b_n \to L + M$.6) $a_n/b_n \to L/M$ if $M \neq 0$.

Proof. The proofs are similar to the algebra of limits for functions.

Task 7

Find the following limits.

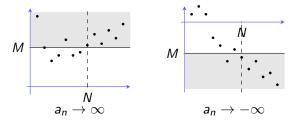
1
$$\lim_{n \to \infty} \frac{5n^2 - 1}{n^2 + 3n - 1000}$$
2
$$\lim_{n \to \infty} \frac{\sin n}{n}$$
Amber Habib Calculus

Newton-Raphson Method

(日)

Infinite Limits

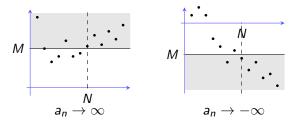
We say that $\lim_{n\to\infty} a_n = \infty$ if for every real number M there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $a_n > M$. Similarly, we say $\lim_{n\to\infty} a_n = -\infty$ if for every real number M there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $a_n < M$.



Newton-Raphson Method

Infinite Limits

We say that $\lim_{n\to\infty} a_n = \infty$ if for every real number M there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $a_n > M$. Similarly, we say $\lim_{n\to\infty} a_n = -\infty$ if for every real number M there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $a_n < M$.



Example 8

We'll show $2^n/n \to \infty$. We have $\frac{2^n}{n} = \frac{(1+1)^n}{n} > \frac{n(n-1)}{2n} = \frac{n-1}{2}$. So, for any given M, choose N = 2M + 1.

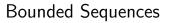
Amber Habib Calculus

< ロ > < 同 > < 三 > < 三 > 、

Task 8

Prove the following.

- 1 lim $n = \infty$.
- 2 If $a_n \ge b_n$ for every n, and $b_n \to \infty$, then $a_n \to \infty$.
- **3** Suppose $a_n \neq 0$ for every *n*. Then $a_n \rightarrow 0$ if and only if $|1/a_n| \rightarrow \infty$.



э

Consider a sequence (a_n) . It is called

Bounded above if there is a real number U such that a_n ≤ U for every n (U is called an upper bound),

Bounded Sequences

э

Consider a sequence (a_n) . It is called

- Bounded above if there is a real number U such that a_n ≤ U for every n (U is called an upper bound),
- Bounded below if there is a real number L such that a_n ≥ L for every n (L is called a lower bound),

イロト イポト イヨト イヨト

Bounded Sequences

Consider a sequence (a_n) . It is called

- Bounded above if there is a real number U such that a_n ≤ U for every n (U is called an upper bound),
- Bounded below if there is a real number L such that a_n ≥ L for every n (L is called a lower bound),
- Bounded if it is both bounded above and bounded below, and

< ロ > < 同 > < 回 > < 回 > < □ > <

Bounded Sequences

Consider a sequence (a_n) . It is called

- Bounded above if there is a real number U such that a_n ≤ U for every n (U is called an upper bound),
- Bounded below if there is a real number L such that a_n ≥ L for every n (L is called a lower bound),
- Bounded if it is both bounded above and bounded below, and
- **Unbounded** if it is not bounded.

・ロト ・四ト ・ヨト ・ヨト

Task 9

For each given sequence, put a \checkmark in each correct category and a \thickapprox in each incorrect category:

Bounded Above	Bounded Below	Bounded	Unbounded
	Bounded Above	Bounded Above Bounded Below	Bounded Above Bounded Below Bounded

Newton-Raphson Method

イロト イポト イヨト ・

Convergent Sequences are Bounded

Theorem 9

Every convergent sequence is bounded.

Proof. Take $\epsilon = 1$.

There will be an N such that $n \ge N$ implies $|a_n - L| < 1$ and so $L - 1 < a_n < L + 1$.

< ロ > < 同 > < 三 > < 三 > 、

Convergent Sequences are Bounded

Theorem 9

Every convergent sequence is bounded.

Proof. Take $\epsilon = 1$.

There will be an N such that $n \ge N$ implies $|a_n - L| < 1$ and so $L - 1 < a_n < L + 1$.

In addition, the entries a_1, \ldots, a_{N-1} are finitely many and have a maximum value M and a minimum value m.

Convergent Sequences are Bounded

Theorem 9

Every convergent sequence is bounded.

Proof. Take $\epsilon = 1$.

There will be an N such that $n \ge N$ implies $|a_n - L| < 1$ and so $L - 1 < a_n < L + 1$.

In addition, the entries a_1, \ldots, a_{N-1} are finitely many and have a maximum value M and a minimum value m.

Then the entire sequence (a_n) lies between min $\{m, L-1\}$ and max $\{M, L+1\}$.

Newton-Raphson Method

イロト イヨト イヨト イヨト

Monotone Sequences

Consider a sequence (a_n) . It is called

• **Increasing** if $a_{n+1} \ge a_n$ for every n,

э

Newton-Raphson Method

《曰》《聞》《臣》《臣》。

Monotone Sequences

Consider a sequence (a_n) . It is called

- Increasing if $a_{n+1} \ge a_n$ for every n,
- **Decreasing** if $a_{n+1} \leq a_n$ for every *n*, and

э

Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 > 、

Monotone Sequences

Consider a sequence (a_n) . It is called

- Increasing if $a_{n+1} \ge a_n$ for every n,
- **Decreasing** if $a_{n+1} \leq a_n$ for every *n*, and
- Monotone if it is either increasing or decreasing.

э

MBRIDGE

Monotone Sequences

Consider a sequence (a_n) . It is called

- Increasing if $a_{n+1} \ge a_n$ for every n,
- **Decreasing** if $a_{n+1} \leq a_n$ for every *n*, and
- Monotone if it is either increasing or decreasing.

Task 10

For each given sequence, put a \checkmark in each correct category and a \thickapprox in each incorrect category:

$ \begin{array}{c c} n \\ -n \\ (-1)^n \\ 1 \\ 1/n \end{array} $	an	Increasing	Decreasing	Monotone
$(-1)^n$ 1	п			
	— <i>n</i>			
1 1/n	$(-1)^{n}$			
1/n	1			
	1/n			

Newton-Raphson Method

Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

・ロト ・四ト ・ヨト ・ヨト

Newton-Raphson Method

Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

Proof. Suppose (a_n) is increasing and bounded. We'll show it converges to $L = \sup\{a_n : n \in \mathbb{N}\}.$

Image: A matrix and a matrix

글 🕨 🖌 글 🕨

< ロ > < 同 > < 三 > < 三 > <

Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

Proof. Suppose (a_n) is increasing and bounded. We'll show it converges to $L = \sup\{a_n : n \in \mathbb{N}\}$. Consider any $\epsilon > 0$. Then $L - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$. Hence there is $N \in \mathbb{N}$ such that $L - \epsilon < a_N \leq L$. This N works.

< ロ > < 同 > < 三 > < 三 > <

Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

Proof. Suppose (a_n) is increasing and bounded. We'll show it converges to $L = \sup\{a_n : n \in \mathbb{N}\}$. Consider any $\epsilon > 0$. Then $L - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$. Hence there is $N \in \mathbb{N}$ such that $L - \epsilon < a_N \leq L$. This N works. Similarly, if (a_n) is decreasing and bounded, it converges to $\inf\{a_n : n \in \mathbb{N}\}$.

Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

Proof. Suppose (a_n) is increasing and bounded. We'll show it converges to $L = \sup\{a_n : n \in \mathbb{N}\}$. Consider any $\epsilon > 0$. Then $L - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$. Hence there is $N \in \mathbb{N}$ such that $L - \epsilon < a_N \leq L$. This N works. Similarly, if (a_n) is decreasing and bounded, it converges to $\inf\{a_n : n \in \mathbb{N}\}$.

Example 11

We offer another proof that $r^n \to 0$ if |r| < 1.

Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

Proof. Suppose (a_n) is increasing and bounded. We'll show it converges to $L = \sup\{a_n : n \in \mathbb{N}\}$. Consider any $\epsilon > 0$. Then $L - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$. Hence there is $N \in \mathbb{N}$ such that $L - \epsilon < a_N \leq L$. This N works. Similarly, if (a_n) is decreasing and bounded, it converges to $\inf\{a_n : n \in \mathbb{N}\}$.

Example 11

We offer another proof that $r^n \to 0$ if |r| < 1. It is enough to show that $|r|^n \to 0$. Since |r| < 1, the sequence $|r|^n$ is a decreasing sequence, and it is bounded below by 0. So it converges. Suppose it converges to L.

Monotone Convergence Theorem

Theorem 10

Every bounded and monotone sequence is convergent.

Proof. Suppose (a_n) is increasing and bounded. We'll show it converges to $L = \sup\{a_n : n \in \mathbb{N}\}$. Consider any $\epsilon > 0$. Then $L - \epsilon$ is not an upper bound for $\{a_n : n \in \mathbb{N}\}$. Hence there is $N \in \mathbb{N}$ such that $L - \epsilon < a_N \leq L$. This N works. Similarly, if (a_n) is decreasing and bounded, it converges to $\inf\{a_n : n \in \mathbb{N}\}$.

Example 11

We offer another proof that $r^n \to 0$ if |r| < 1. It is enough to show that $|r|^n \to 0$. Since |r| < 1, the sequence $|r|^n$ is a decreasing sequence, and it is bounded below by 0. So it converges. Suppose it converges to *L*. Now $|r|^{n+1}$ will have the same limit *L*. But $|r|^{n+1} = |r||r|^n \to |r|L$. This gives L = |r|L and hence L = 0.

イロト イポト イヨト イヨト

Example

Example 12

Let (a_n) be a decreasing sequence that converges to 0. We shall show that $2^{a_n} \rightarrow 1$.

First, since (a_n) is decreasing, so is 2^{a_n} .

Second, since $a_n \ge 0$, $2^{a_n} \ge 1$. Hence $2^{a_n} \rightarrow L \ge 1$.

To complete the proof we need to show that 1 is the greatest lower bound of the set $\{2^{a_n}\}$. We already know that it is a lower bound.

So consider any number $1 + \epsilon$ with $\epsilon > 0$. Then $\log_2(1 + \epsilon) > 0$. Since $a_n \to 0$ we have an N such that $a_N < \log_2(1 + \epsilon)$. Hence $2^{a_N} < 1 + \epsilon$. Therefore $1 + \epsilon$ is not an upper bound for $\{2^{a_n}\}$.

Newton-Raphson Method

э

Example 13

Consider the sequence defined recursively by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2a_n}$. We shall consider two approaches to investigate its limit. In the first approach, we try to obtain a direct formula for a_n . The first few terms are

$$\begin{aligned} &a_1 = 2^{1/2}, \\ &a_2 = \sqrt{2}\sqrt{a_1} = 2^{3/4}, \\ &a_3 = \sqrt{2}\sqrt{a_2} = 2^{7/8}. \end{aligned}$$

Amber Habib Calculus

イロト イボト イヨト イヨト

Newton-Raphson Method

イロト イボト イヨト イヨト

Example

Example 13

Consider the sequence defined recursively by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2a_n}$. We shall consider two approaches to investigate its limit. In the first approach, we try to obtain a direct formula for a_n . The first few terms are

$$\begin{aligned} &a_1 = 2^{1/2}, \\ &a_2 = \sqrt{2}\sqrt{a_1} = 2^{3/4}, \\ &a_3 = \sqrt{2}\sqrt{a_2} = 2^{7/8}. \end{aligned}$$

The pattern is $a_n = 2^{1-1/2^n}$. We leave it for you to verify this by mathematical induction. We can now calculate, using the previous example and the fact that $1/2^n \rightarrow 0$, that

$$\lim a_n = \lim 2^{1-1/2^n} = \frac{2}{\lim 2^{1/2^n}} = 2.$$

Amber Habib Calculus

Newton-Raphson Method

Example 14

In the second approach to the sequence of the previous example, we try to establish that it is monotone and bounded. We have

$$\frac{a_{n+1}}{a_n} = \sqrt{\frac{2}{a_n}}$$

Newton-Raphson Method

Example

Example 14

In the second approach to the sequence of the previous example, we try to establish that it is monotone and bounded. We have

$$\frac{a_{n+1}}{a_n} = \sqrt{\frac{2}{a_n}}$$

We need to compare a_n with 2. Since the first few terms were less than 2, we conjecture that all are less than 2.

Newton-Raphson Method

Example

Example 14

In the second approach to the sequence of the previous example, we try to establish that it is monotone and bounded. We have

$$\frac{a_{n+1}}{a_n} = \sqrt{\frac{2}{a_n}}$$

We need to compare a_n with 2. Since the first few terms were less than 2, we conjecture that all are less than 2.

This can be proved by mathematical induction:

Newton-Raphson Method

Example

Example 14

In the second approach to the sequence of the previous example, we try to establish that it is monotone and bounded. We have

$$\frac{a_{n+1}}{a_n} = \sqrt{\frac{2}{a_n}}$$

We need to compare a_n with 2. Since the first few terms were less than 2, we conjecture that all are less than 2. This can be proved by mathematical induction:

This can be proved by mathematical induction:

(a)
$$a_1 = \sqrt{2} < 2$$
, (b) $a_n < 2 \implies a_{n+1} = \sqrt{2a_n} < \sqrt{2 \times 2} = 2$.

Newton-Raphson Method

Example

Example 14

In the second approach to the sequence of the previous example, we try to establish that it is monotone and bounded. We have

$$\frac{a_{n+1}}{a_n} = \sqrt{\frac{2}{a_n}}$$

We need to compare a_n with 2. Since the first few terms were less than 2, we conjecture that all are less than 2. This can be proved by mathematical induction:

(a)
$$a_1 = \sqrt{2} < 2$$
, (b) $a_n < 2 \implies a_{n+1} = \sqrt{2a_n} < \sqrt{2 \times 2} = 2$.

Hence the sequence is increasing as well as bounded above (by the number 2). Therefore it is convergent. Suppose it converges to L.

Newton-Raphson Method

Example

Example 14

In the second approach to the sequence of the previous example, we try to establish that it is monotone and bounded. We have

$$\frac{a_{n+1}}{a_n} = \sqrt{\frac{2}{a_n}}$$

We need to compare a_n with 2. Since the first few terms were less than 2, we conjecture that all are less than 2.

This can be proved by mathematical induction:

(a)
$$a_1 = \sqrt{2} < 2$$
, (b) $a_n < 2 \implies a_{n+1} = \sqrt{2a_n} < \sqrt{2 \times 2} = 2$.

Hence the sequence is increasing as well as bounded above (by the number 2). Therefore it is convergent. Suppose it converges to *L*. From the defining relation $a_{n+1} = \sqrt{2a_n}$, we get $a_{n+1}^2 = 2a_n$ and hence $L^2 = 2L$. This implies L = 0 or 2. As the sequence has positive and increasing terms it cannot have 0 as a limit. Hence L = 2.

Newton-Raphson Method

Subsequences

э

Given a sequence, a **subsequence** is created by dropping some of the terms of the sequence, as long as infinitely many terms still remain.

Amber Habib Calculus

Newton-Raphson Method

< ロ > < 同 > < 回 > < 回 > .

Subsequences

Given a sequence, a **subsequence** is created by dropping some of the terms of the sequence, as long as infinitely many terms still remain.

Thus, consider a sequence (a_n) . Let the first term which is retained be a_{n_1} . Let the second term which is retained be a_{n_2} , with $n_2 > n_1$. In this way we create a new sequence with terms $b_i = a_{n_i}$, and call it a subsequence of the original one.

Newton-Raphson Method

Subsequences

Given a sequence, a **subsequence** is created by dropping some of the terms of the sequence, as long as infinitely many terms still remain.

Thus, consider a sequence (a_n) . Let the first term which is retained be a_{n_1} . Let the second term which is retained be a_{n_2} , with $n_2 > n_1$. In this way we create a new sequence with terms $b_i = a_{n_i}$, and call it a subsequence of the original one.

Theorem 15

If a sequence converges to L, then each of its subsequences also converges to L.

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

Newton-Raphson Method

< ロ > < 同 > < 回 > < 回 > .

Subsequences

Given a sequence, a **subsequence** is created by dropping some of the terms of the sequence, as long as infinitely many terms still remain.

Thus, consider a sequence (a_n) . Let the first term which is retained be a_{n_1} . Let the second term which is retained be a_{n_2} , with $n_2 > n_1$. In this way we create a new sequence with terms $b_i = a_{n_i}$, and call it a subsequence of the original one.

Theorem 15

If a sequence converges to L, then each of its subsequences also converges to L.

Proof. Let $a_n \to L$. Consider a subsequence $b_k = a_{n_k}$ with $n_1 < n_2 < \cdots$. First, note that $n_k \ge k$. Now, for any $\epsilon > 0$, there is $N \in \mathbb{N}$ such that $n \ge N$ implies $|a_n - L| < \epsilon$. Then $k \ge N$ implies $n_k \ge k \ge N$ implies $|b_k - L| = |a_{n_k} - L| < \epsilon$.

Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 > 、

Subsequences

It may happen that a sequence involves two or more different patterns. For example, the odd terms a_1, a_3, \ldots may follow one rule while the even terms a_2, a_4, \ldots follow another rule. The concept of subsequences helps in such situations.

< ロ > < 同 > < 三 > < 三 >

Subsequences

It may happen that a sequence involves two or more different patterns. For example, the odd terms a_1, a_3, \ldots may follow one rule while the even terms a_2, a_4, \ldots follow another rule. The concept of subsequences helps in such situations.

Example 16

Consider $1, 1, 2, 1/2, 3, 1/3, 4, 1/4, \ldots$ The subsequence $1, 2, 3, 4, \ldots$ diverges and so the original sequence diverges. Again, consider $1, -1, 1, -1, \ldots$ The subsequence $1, 1, \ldots$ converges to 1. The subsequence $-1, -1, \ldots$ converges to -1. Since the two subsequences have different limits, the original sequence diverges.

Subsequences

It may happen that a sequence involves two or more different patterns. For example, the odd terms a_1, a_3, \ldots may follow one rule while the even terms a_2, a_4, \ldots follow another rule. The concept of subsequences helps in such situations.

Example 16

Consider $1, 1, 2, 1/2, 3, 1/3, 4, 1/4, \ldots$ The subsequence $1, 2, 3, 4, \ldots$ diverges and so the original sequence diverges. Again, consider $1, -1, 1, -1, \ldots$ The subsequence $1, 1, \ldots$ converges to 1. The subsequence $-1, -1, \ldots$ converges to -1. Since the two subsequences have different limits, the original sequence diverges.

Task 11

1 Show that
$$\lim a_n = L$$
 if and only if $\lim a_{2n+1} = \lim a_{2n} = L$.

2 Evaluate
$$\lim_{n \to \infty} \frac{(-1)^n n}{n+1}$$
.

イロト イボト イヨト イヨト

Newton-Raphson Method

Table of Contents

• Limit of a Sequence

Sequences and Functions

Newton-Raphson Method

Amber Habib Calculus

< ロ > < 同 > < 三 > < 三 >

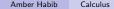
Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 > 、

Functions Applied to Sequences

Theorem 17

Let f(x) be continuous at x = L and let $a_n \to L$. Then $f(a_n) \to f(L)$.



Functions Applied to Sequences

Theorem 17

Let f(x) be continuous at x = L and let $a_n \to L$. Then $f(a_n) \to f(L)$.

Proof. Take $\epsilon > 0$. First, by the continuity of f there is a $\delta > 0$ such that $|x - L| < \delta$ implies $|f(x) - f(L)| < \epsilon$.

< ロ > < 同 > < 三 > < 三 > 、

Functions Applied to Sequences

Theorem 17

Let f(x) be continuous at x = L and let $a_n \to L$. Then $f(a_n) \to f(L)$.

Proof. Take $\epsilon > 0$. First, by the continuity of f there is a $\delta > 0$ such that $|x - L| < \delta$ implies $|f(x) - f(L)| < \epsilon$. Next, by the convergence of (a_n) there is N such that $n \ge N$ implies $|a_n - L| < \delta$, and so $|f(a_n) - f(L)| < \epsilon$.

Functions Applied to Sequences

Theorem 17

Let f(x) be continuous at x = L and let $a_n \to L$. Then $f(a_n) \to f(L)$.

Proof. Take $\epsilon > 0$. First, by the continuity of f there is a $\delta > 0$ such that $|x - L| < \delta$ implies $|f(x) - f(L)| < \epsilon$. Next, by the convergence of (a_n) there is N such that $n \ge N$ implies $|a_n - L| < \delta$, and so $|f(a_n) - f(L)| < \epsilon$.

Example 18

Take a positive number c and consider the sequence $(c^{1/n})$. Now, the function $f(x) = c^x$ is continuous at every x. Hence,

$$\lim c^{1/n} = \lim f(1/n) = f(\lim 1/n) = f(0) = c^0 = 1.$$

Functions Applied to Sequences

Theorem 17

Let f(x) be continuous at x = L and let $a_n \to L$. Then $f(a_n) \to f(L)$.

Proof. Take $\epsilon > 0$. First, by the continuity of f there is a $\delta > 0$ such that $|x - L| < \delta$ implies $|f(x) - f(L)| < \epsilon$. Next, by the convergence of (a_n) there is N such that $n \ge N$ implies $|a_n - L| < \delta$, and so $|f(a_n) - f(L)| < \epsilon$.

Example 18

Take a positive number c and consider the sequence $(c^{1/n})$. Now, the function $f(x) = c^x$ is continuous at every x. Hence,

$$\lim c^{1/n} = \lim f(1/n) = f(\lim 1/n) = f(0) = c^0 = 1.$$

Task 12

Show that $\log a_n \to L \implies a_n \to e^L$.

イロト イヨト イヨト イヨト

Sequences and Derivatives

э

Theorem 19

Let f(x) be differentiable at x = L. Then

$$\lim_{n\to\infty}n\big(f(L+1/n)-f(L)\big)=f'(L).$$

Amber Habib

Calculus

< ロ > < 同 > < 三 > < 三 > 、

Sequences and Derivatives

Theorem 19

Let f(x) be differentiable at x = L. Then

$$\lim_{n\to\infty}n\big(f(L+1/n)-f(L)\big)=f'(L).$$

Proof. The function g defined below is continuous at h = 0.

$$g(h) = \begin{cases} \frac{f(L+h) - f(L)}{h} & \text{if } h \neq 0, \\ f'(L) & \text{if } h = 0. \end{cases}$$

<ロト < 同ト < ヨト < ヨト

Sequences and Derivatives

Theorem 19

Let f(x) be differentiable at x = L. Then

$$\lim_{n\to\infty}n\big(f(L+1/n)-f(L)\big)=f'(L).$$

Proof. The function g defined below is continuous at h = 0.

$$g(h) = \begin{cases} \frac{f(L+h) - f(L)}{h} & \text{if } h \neq 0, \\ f'(L) & \text{if } h = 0. \end{cases}$$

Now, n(f(L+1/n) - f(L)) = g(1/n).

< ロ > < 同 > < 三 > < 三 >

Sequences and Derivatives

Theorem 19

Let f(x) be differentiable at x = L. Then

$$\lim_{n\to\infty}n\big(f(L+1/n)-f(L)\big)=f'(L).$$

Proof. The function g defined below is continuous at h = 0.

$$g(h) = \begin{cases} \frac{f(L+h) - f(L)}{h} & \text{if } h \neq 0, \\ f'(L) & \text{if } h = 0. \end{cases}$$

Now, n(f(L+1/n) - f(L)) = g(1/n). Hence, $\lim_{n \to \infty} n(f(L+1/n) - f(L)) = \lim_{n \to \infty} g(1/n) = g(0) = f'(L)$.

글 🖌 🔺 글 🕨

Sequences and Derivatives

Example 20

Consider the sequence $(1 + 1/n)^n$. First, we apply the log function to convert it into a product which we can evaluate by the last theorem.

$$\lim \log(1+1/n)^n = \lim n(\log(1+1/n) - \log 1) = \log' 1 = 1.$$

And now, by the continuity of the exponential function,

$$\lim (1+1/n)^n = \lim e^{n \log(1+1/n)} = e^{\lim n \log(1+1/n)} = e^1 = e.$$

< ロ > < 同 > < 三 > < 三 >

Sequences and Derivatives

CAMBRIDGE UNIVERSITY PRESS

Example 20

Consider the sequence $(1 + 1/n)^n$. First, we apply the log function to convert it into a product which we can evaluate by the last theorem.

$$\lim \log(1+1/n)^n = \lim n(\log(1+1/n) - \log 1) = \log' 1 = 1.$$

And now, by the continuity of the exponential function,

$$\lim (1+1/n)^n = \lim e^{n \log(1+1/n)} = e^{\lim n \log(1+1/n)} = e^1 = e.$$

Task 13

Show that $\lim(1+2/n)^n = e^2$ and $\lim(1-1/n)^n = e^{-1}$.

イロト イボト イヨト イヨト

Sequences and Derivatives

CAMBRIDGE UNIVERSITY PRESS

Example 20

Consider the sequence $(1 + 1/n)^n$. First, we apply the log function to convert it into a product which we can evaluate by the last theorem.

$$\lim \log(1+1/n)^n = \lim n(\log(1+1/n) - \log 1) = \log' 1 = 1.$$

And now, by the continuity of the exponential function,

$$\lim (1+1/n)^n = \lim e^{n \log(1+1/n)} = e^{\lim n \log(1+1/n)} = e^1 = e.$$

Task 13

Show that
$$\lim(1+2/n)^n = e^2$$
 and $\lim(1-1/n)^n = e^{-1}$.

Task 14

True or False: If $f(x) \rightarrow L$ as $x \rightarrow a$, and $a_n \rightarrow a$, then $f(a_n) \rightarrow L$.

Newton-Raphson Method

Sequences from Real Functions

Theorem 21

Let f(x) be a real function with domain $[1, \infty)$ and let $\lim_{x \to \infty} f(x) = L$. Suppose $a_n = f(n)$ for $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n = L$.

< ロ > < 同 > < 三 > < 三 > 、

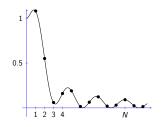
Newton-Raphson Method

(日)

Sequences from Real Functions

Theorem 21

Let f(x) be a real function with domain $[1, \infty)$ and let $\lim_{x \to \infty} f(x) = L$. Suppose $a_n = f(n)$ for $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n = L$.

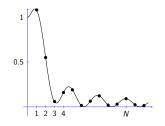


Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 >

Sequences from Real Functions

Theorem 21 Let f(x) be a real function with domain $[1, \infty)$ and let $\lim_{x \to \infty} f(x) = L$. Suppose $a_n = f(n)$ for $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n = L$.

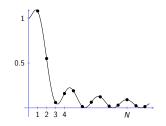


Proof. Consider any $\epsilon > 0$. There is a $c \in \mathbb{R}$ such that x > c implies $|f(x) - L| < \epsilon$. Define N = [c] + 1.

Newton-Raphson Method

Sequences from Real Functions

Theorem 21 Let f(x) be a real function with domain $[1, \infty)$ and let $\lim_{x \to \infty} f(x) = L$. Suppose $a_n = f(n)$ for $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n = L$.



Proof. Consider any $\epsilon > 0$. There is a $c \in \mathbb{R}$ such that x > c implies $|f(x) - L| < \epsilon$. Define N = [c] + 1. Then $n \ge N$ implies $|a_n - L| = |f(n) - L| < \epsilon$.

Examples

Example 22

We will calculate the limit of $a_n = n \sin(1/n)$.

《曰》《聞》《臣》《臣》

э

Example 22

We will calculate the limit of $a_n = n \sin(1/n)$. Consider $f(x) = x \sin(1/x)$. Then $f(n) = a_n$ and

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x\sin(1/x) = \lim_{y\to 0+} \frac{\sin y}{y} = 1.$$

Therefore, $\lim_{n\to\infty} a_n = 1$.

Example 22

We will calculate the limit of $a_n = n \sin(1/n)$. Consider $f(x) = x \sin(1/x)$. Then $f(n) = a_n$ and

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \sin(1/x) = \lim_{y \to 0+} \frac{\sin y}{y} = 1.$$

Therefore, $\lim_{n\to\infty} a_n = 1$.

Example 23

Consider the sequence $1/(\arctan n)^n$. First, we note that $\liminf_{x \to \infty} \arctan x = \pi/2$. Hence $1/(\arctan n) \to 2/\pi < 1$.

Amber Habib

イロト 人間 とくほ とくほう

Example 22

We will calculate the limit of $a_n = n \sin(1/n)$. Consider $f(x) = x \sin(1/x)$. Then $f(n) = a_n$ and

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x\sin(1/x) = \lim_{y\to 0+} \frac{\sin y}{y} = 1.$$

Therefore, $\lim_{n\to\infty} a_n = 1$.

Example 23

Consider the sequence $1/(\arctan n)^n$. First, we note that lim $\arctan n = \lim_{x \to \infty} \arctan x = \pi/2$. Hence $1/(\arctan n) \to 2/\pi < 1$. Choose any real number r such that $2/\pi < r < 1$. There is an N such that $n \ge N$ implies $1/(\arctan n) < r$ and hence $0 < 1/(\arctan n)^n < r^n$. Now, $r^n \to 0$ and the Sandwich Theorem gives us $1/(\arctan n)^n \to 0$.

イロト イボト イヨト イヨト

| 4 同 ト 4 ヨ ト 4 ヨ ト

L'Hôpital's Rule

A major gain from the last theorem is that the results for functions, such as L'Hôpital's Rule, can be applied to sequences.

Example 24

Consider the sequence $(n^{1/n})$. We start by applying log to convert to a ratio: $a_n = \log(n^{1/n}) = \frac{\log n}{n}$. Since $\lim_{x \to \infty} \frac{\log x}{x} = 0$, we have $\lim \frac{\log n}{n} = 0$. Hence, $\lim n^{1/n} = e^0 = 1$.

L'Hôpital's Rule

A major gain from the last theorem is that the results for functions, such as L'Hôpital's Rule, can be applied to sequences.

Example 24

Consider the sequence
$$(n^{1/n})$$
. We start by applying log to convert to a ratio: $a_n = \log(n^{1/n}) = \frac{\log n}{n}$. Since $\lim_{x \to \infty} \frac{\log x}{x} = 0$, we have $\lim \frac{\log n}{n} = 0$. Hence, $\lim n^{1/n} = e^0 = 1$.

Task 15

Find the limits of the following sequences.

$$\frac{e^n}{n^{100}}.$$

Limit of a Sequence

Sequences and Functions

Newton-Raphson Method

・ロト ・回ト ・ヨト ・ヨト

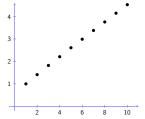
Stirling's Approximation

3

Our later study of 'infinite series' will bring up the sequence $(n!)^{1/n}$.

Stirling's Approximation

Our later study of 'infinite series' will bring up the sequence $(n!)^{1/n}$. Let's plot it:



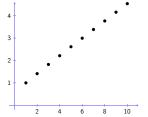
It looks very close to a straight line!

Image: A mathematical states of the state

'문▶' ★ 문≯

Stirling's Approximation

Our later study of 'infinite series' will bring up the sequence $(n!)^{1/n}$. Let's plot it:



It looks very close to a straight line! Let us tabulate the slopes $(n!)^{1/n}/n$.

п	10	100	1000	10000
slope	0.453	0.3799	0.3695	0.3681
1/slope	2.12	2.63	2.706	2.717

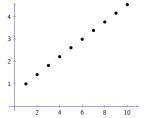
Image: A matrix and a matrix

∃ ► < ∃ ►</p>

Newton-Raphson Method

Stirling's Approximation

Our later study of 'infinite series' will bring up the sequence $(n!)^{1/n}$. Let's plot it:



It looks very close to a straight line! Let us tabulate the slopes $(n!)^{1/n}/n$.

п	10	100	1000	10000
slope	0.453	0.3799	0.3695	0.3681
1/slope	2.12	2.63	2.706	2.717

The reciprocals could be approaching $e \approx 2.718...$

Stirling's Approximation

æ

Theorem 25

$$\lim_{n\to\infty}\frac{(n!)^{1/n}}{n/e}=1, \text{ i.e. } (n!)^{1/n}\approx \frac{n}{e} \text{ for large } n.$$

Amber Habib

Calculus

Stirling's Approximation

э

Theorem 25

$$\lim_{n\to\infty}\frac{(n!)^{1/n}}{n/e}=1, \text{ i.e. } (n!)^{1/n}\approx \frac{n}{e} \text{ for large } n.$$

Proof. Consider $\log n! = \sum_{k=1}^{n} \log k$.

イロト イヨト イヨト イヨト

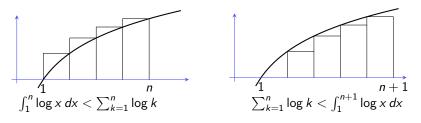
イロト イポト イヨト イヨト

Stirling's Approximation

Theorem 25

$$\lim_{n\to\infty}\frac{(n!)^{1/n}}{n/e}=1, \text{ i.e. } (n!)^{1/n}\approx \frac{n}{e} \text{ for large } n.$$

Proof. Consider $\log n! = \sum_{k=1}^{n} \log k$. It is an upper sum for $\int_{1}^{n} \log x \, dx$ and a lower sum for $\int_{1}^{n+1} \log x \, dx$.



(continued...)

Stirling's Approximation

 \square

イロト イポト イヨト イヨト

(... continued)

$$\int_{1}^{n} \log x \, dx < \log n! < \int_{1}^{n+1} \log x \, dx$$

$$\implies n \log n - n + 1 < \log n! < (n+1) \log(n+1) - n$$

$$\implies \log\left(\frac{n^{n}}{e^{n-1}}\right) < \log n! < \log\left(\frac{(n+1)^{n+1}}{e^{n}}\right)$$

$$\implies \frac{n^{n}}{e^{n-1}} < n! < \frac{(n+1)^{n+1}}{e^{n}}$$

$$\implies e^{1/n} < \frac{(n!)^{1/n}}{n/e} < (1+1/n)(n+1)^{1/n}.$$

Now, $e^{1/n} \to 1$ and $(1 + \frac{1}{n})^{1+1/n} \to 1$ and $n^{1/n} \to 1$. Apply Sandwich theorem to finish the proof.

Example 26

Here is an application of Stirling's Approximation.

$$(n!)^{1/n^2} = \left(\frac{n!^{1/n}}{n/e}\right)^{1/n} \left(\frac{n}{e}\right)^{1/n} = \left(\frac{n!^{1/n}}{n/e}\right)^{1/n} \frac{n^{1/n}}{e^{1/n}}.$$

Now $a_n = \frac{n!^{1/n}}{n/e} \to 1$. Hence $a_n^{1/n} \to 1$ (To prove this, apply log).

We already know that $n^{1/n}
ightarrow 1$ and $e^{1/n}
ightarrow 1.$ Hence, $(n!)^{1/n^2}
ightarrow 1.$

Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 >

Table of Contents

• Limit of a Sequence

Sequences and Functions

8 Newton-Raphson Method

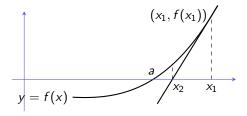
Amber Habib Calculus

Newton-Raphson Method

< ロ > < 同 > < 三 > < 三 >

Newton-Raphson Method

Suppose we have an equation such as $x^3 - 3 = x^2 + x$ which we have to solve for x. We move every term to the left side to put it in the form f(x) = 0.



We wish to estimate the point *a* where f(a) = 0. Imagine you are at a point $(x_1, f(x_1))$ on the graph of the function *f*. In which direction should you move to move towards *a*? One idea is to generate the tangent line at $(x_1, f(x_1))$ and see where it cuts the *x*-axis. If it does so at x_2 , we repeat the process from the point $(x_2, f(x_2))$.

Newton-Raphson Method $\circ \circ \bullet \circ \circ$

Newton-Raphson Method

The equation of the tangent line at $(x_1, f(x_1))$ is

$$y = f(x_1) + f'(x_1)(x - x_1).$$

3

Newton-Raphson Method $\circ \circ \bullet \circ \circ$

Newton-Raphson Method

The equation of the tangent line at $(x_1, f(x_1))$ is

$$y = f(x_1) + f'(x_1)(x - x_1).$$

To see where it cuts the *x*-axis we put y = 0.

э

Newton-Raphson Method

Newton-Raphson Method

The equation of the tangent line at $(x_1, f(x_1))$ is

$$y = f(x_1) + f'(x_1)(x - x_1).$$

To see where it cuts the x-axis we put y = 0. This gives $x_2 = x_1 - f(x_1)/f'(x_1)$. Therefore the general iterative step is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

< ロ > < 同 > < 三 > < 三 > 、

Newton-Raphson Method

Newton-Raphson Method

UNIVERSITY PRESS

< ロ > < 同 > < 三 > < 三 > 、

The equation of the tangent line at $(x_1, f(x_1))$ is

$$y = f(x_1) + f'(x_1)(x - x_1).$$

To see where it cuts the x-axis we put y = 0. This gives $x_2 = x_1 - f(x_1)/f'(x_1)$. Therefore the general iterative step is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

We have created a sequence x_1, x_2, x_3, \ldots . Does it converge? And does it converge to *a*?

Newton-Raphson Method

Newton-Raphson Method

The equation of the tangent line at $(x_1, f(x_1))$ is

$$y = f(x_1) + f'(x_1)(x - x_1).$$

To see where it cuts the x-axis we put y = 0. This gives $x_2 = x_1 - f(x_1)/f'(x_1)$. Therefore the general iterative step is

$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}.$$

We have created a sequence x_1, x_2, x_3, \ldots . Does it converge? And does it converge to *a*?

The good news is that if it converges at all, then it converges to a solution. If $x_n \to L$ then

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \implies L = L - \frac{f(L)}{f'(L)} \implies f(L) = 0.$$

イロト イポト イヨト ・

< ロ > < 同 > < 三 > < 三 >

Example 27

Suppose the equation we wish to solve is $x^2 = N$, that is, we want to estimate a square root.

We rearrange this as f(x) = 0, where $f(x) = x^2 - N$.

Then f'(x) = 2x, and the Newton-Raphson iteration is

$$x_{n+1} = x_n - \frac{x_n^2 - N}{2x_n} = \frac{x_n^2 + N}{2x_n} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right).$$

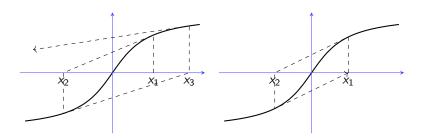
Let N = 2. If we start with $x_1 = 1$, we get $x_2 = 3/2 = 1.5$, $x_3 = 17/12 = 1.417$, and so on.

Limit of a Sequence

Sequences and Functions

Newton-Raphson Method ○○○○●

Failure of Convergence



In the first example, the sequence moves away from the solution of f(x) = 0. In the second example, it cycles repeatedly through the same two values.

Image: Image:

▶ ∢ ⊒ ▶