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Solutions to Exercises

Chapter 1

1.1.

1.2.

1.3.

If V(O)(1 + U)(1 + D) < F < V(0)(1 + U)?, then
F=V0O)1+U)y>- %E(O)(l +R)%.

If V(0)(1 + D)? < F < V(0)(1 + U)(1 + D), then

3 g*V(0)(1 + U)* +2g(1 — q)V(0)(1 + U)(1 + D) — E(0)(1 + R)*

q* +2q(1 - q) ’
The expected return on equity is 100.45%, and the standard deviation
is 88.29%. For debt the corresponding values are 48.03% and 7.64%.
In the Black-Scholes model the value of a call option increases as a
the volatility o of the underlying asset increases, all other parameters
being constant. This is because the partial derivative of the option
price with respect to o, i.e. the vega of the option is positive,

[T _,
vega = V(0) 2—e_d+/2 > 0;
JT

see [BSM]. Moreover, the value of a call option decreases if the
strike price increases, all remaining parameters being constant.

As a result, since initial equity £(0) is the value of a call option
with strike F, to keep E(0) fixed F must increase when o increases.
It follows that

F

1 F
kp = =In——
T D)
is an increasing function of o-.
For instance, for the data in Example 1.8 the value of kp increases
from 5.15% to 5.45% as o increases from 30% to 35%.

For a company with wg = 40% equity financing we obtain F =

1
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63.5453 and compute the expected returns on equity and debt yug =
18.22%, up = 5.38%.

For one with wy = 60% equity financing, the corresponding val-
ues are ' = 42.0571 and ug = 14.11%, up = 5.13%.
For a company with 40% financing by equity we get o = 83.54%
and op = 3.18%. For one with 60% equity, o = 56.51% and op =
0.35%.
From portfolio theory we have the formula

0'%, = wéo-é + wf,a'%, + 2WEWpO EOEPED

for the variance of the return on the value of the company assets. It
follows that the correlation between the returns on equity and debt
can be written as

2 2 2 o 9
Oy —WgO0g —Wp0op

PED =
ZWEWDO'EO'E

Formulae for o¢ and o are derived in Chapter 1. To use the formula
V(T) = V(0)\?
2 2
=Byl ———Z2 |-
O—V P (( D(O) /’lV

_Ep(V(TY)  2Ep(V(T))
V(02 V(0)

+1-py
for oy we find
1 2 > 1 |
Ep(V(T)) = V(())e(ﬂ—w )Tf e 3 o7 VTx gy
oo 271

1.2 1,2 <1 1 2
= V(O)e(ﬂ_io_ )Teia_ Tf _e_i(x_o—ﬁ) dx
—o 271

= V(0)eT
and
1
e
\2r

2 2 <1 | 2
— V(O)Ze(Zu—o' )TeZD' T f e—f(x—ZO' \ﬁ) dx
—e \271

_1,2
3 X eZo‘ﬁxdx

Ep(V(T)?) = V(0)2e-o)T f )

— V(O)Ze(Z/ﬁ-az)T .

This makes it possible to compute the correlation for various levels
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of the debt ratio wp using the data from Example 1.9:

Wp 0.8 0.7 0.6 0.5 0.4 0.3
pep 04162 03364 0.2359 0.1316 0.0496 0.0091

1.6. We start with the case when [/ = 1. In this case
1 1
dy(T) = 5 VTo, d.(T)= -5 VTo
and
1 1
limd,(T) = lim = VTo =0, limd_(T) = —1lim = VTo = 0.
T—0 T—0 2 T—0 T—0 2
As a result,
=1

lim (N(=d+(T) + N(d-(T))) = N(0) + N(0) = - +

N =
N =

and

lim In (N(~d, () + N(d-(T))) = 0.

It means that we can apply I’Hopital’s rule to compute the limit

47 (In (N(=d.(T)) + N(d_(T))))
(D)

- 7 (N(=dy(T)) + N(d_(T)))

7-0  N(=d.(T)) + N(d_(T))

lim s(T) = — lim
T—0 T—-0

. d . d
= —lim — (N(=d.(T))) - lim — (N(d_(T)))

= lim et L gy L e 1

— e
=0 271 ANT 720 \2x 4NT

Finally, we take [ > 1. In this case

g = 00,

) . —Inl+30°T
}‘]_Ig d+(T) = ;‘]Eg) O_—\/T = —00,
. . —Inl-lo?T
}lil'(l)d_(T) = ;lil'(l) 0_—\/7 = —00,

As a result,

. 1 1
%1_r)r(1) In (YN(—dJr(T)) +N(d_(T))]=1n 7 =—In/
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and

' . —In(4N(=d.(T) + N(d(T)))
lim s(7T) = lim =00
T—0 T—0 T

since the limit in the numerator is In/, a finite positive number, and
the limit in the denominator is co.
Default occurs when L + II(T') < F. The probability of this event is

P(L+1II(T)< F)=P(X <ay) = Na).
Since,
D(T) = Flipinnysry + (L + II(T)) Lo<rimir)<Fy-
we have
EP<D(T)2) = EP(le(LH'I(T)zF} + (L +IKT)) 1{05L+H(T)<F}) .
Here I(T) = 1 (G(T) - G(0)) and G(T) = G(0)e(r=27)T+7VTX wwhere

X is a random variable with the standard normal distribution under
the real-life probability P. When —gL + G(0) > 0, we get

2
Bp(D(TY?) = EP(FZIM] + (L - 260+ éG(T)) 1[a1<X<az})
2
= FPP(X > ay) + (L - %]G(O)) P(a) <X <ay)
+ 2 (L - éG(O)) GO)Ep(el 27T+ VTX Y, )
+ %G(O)ZEP(e(ZIu—g—Z)T+2(T ﬁxl{alsx<a2})
1 2
= F°N(-a) + (L - gG(O)) (N(az) — N(a1))
+ 2 (L - lG(O)) G(0)¢" (N (ay = o NT) = N (a1 - o VT))
a\" q
+ %G(O)ze(z‘”"z)T (N (az - 20 \/7) -N (al -20 ‘/7)) ,

where ay, a, are given by (1.5) and (1.6). When —gL + G(0) < 0, the



1.9.

Solutions to Exercises 5

inequality 0 < L + II(T) is always satisfied, and we get
1 1 ?
Ep(D(T)*) = EP(le[mz, + (L - —G(0) + —G(T)) 1{X<a2})
q q

2
=FPX>a)+ (L - ;]G(O)) P(X < ay)

2 1 12
+;Q—;mﬂ6@&&WNV”ﬁﬁmm)

+ %G(O)ZEP(e(Zy—o—z)T+20' \/TXI{X<L12])
1 2
= F°N(-a,) + (L - EG(O)) N(ay)
+ 2 (L - %]G(O)) G(O)e”TN(a2 e «/T)

1 :
+ =G0 )N (a4, - 20VT).
q

Combining these formulae with (1.4) and (1.7) gives
Varp(D(T)) = Ep (D(T)’) = Ep(D(T))’.
For any positive integer n,

{tel0,T1: V()< Fe? "™+ 1) 0 (1€ [0,T]: V(1) < Fe """ + L}

n+1
2{re[0,T]: V() < Fe T},
hence
Ty < Tpel < T.

It follows that the non-decreasing sequence 7, has a limit lim,_,., 7,, =
o and o < 7. Since V has continuous paths,

V(o) = lim V(t,,) = lim (Fe‘V(T_m + %) = Fe? 779,

which means that 7 < 0. As aresult, 7 = o. It remains to verify that
7, < 7 for each n when 7 < co. Because V has continuous paths, for
any positive integer n there is an € > 0 (which may depend on w € Q)
such that

Vir-e)<V(r)+ % = Fe7T-0 4 %,
which means that

T, <T—€<T.
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This shows that 7 is a predictable stopping time.
1.10. The time T debt payoff is

Fyvlyayzrg + V(DL vay<ry)
in the Merton model, and
Fge" T 1 epy + Fplieor
in the barrier model. Hence
D(0) = e TEg(Frmlyvrysry + V(D) Lviry<ry)

and

D) = e TEo(Fpe" " 1, cr) + Flirar)).
It follows that

Fy > EQ(FMI{V(T)ZFM) + V(T)IIV(T)<FM})
= Eo(Fpe" " 1 or) + Fplisry)
> FgEo(lr<ry + Lis1y)
= Fg.

1.11. Wheny = r + 102, we have

1 1,
azoj(r—y—zcr)z—l,
B=—-0c(@+1)=0,

and
J InL+ oBT InL a
3 = = = -,
o \NT o\NT \NT
d _InL-0oBT InL  a
YUUoNT  oNT  NT
where
InL
a=-—.
o

The distribution function of 7 is

Or<n-= N(_a\-;;o-t) + ez"“N(_a\;;o-t),
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and the left-hand side of (1.9) becomes

Eo(e” " 1rery)

12
=Egp(e?” "1i<ry)

T 1.2
:f e2”'dO(t < 1)

0

- fT eé”zde(_“ - m) + e fT eéﬂzldzv(_“ — m) .
0 Vi 0 Vi

On the other hand, the right-hand side of (1.9) can be written as

- Yo% oa a
L7 'N(d3) + L**'N(d,) = 2¢ N(—ﬁ).

We compute and compare the derivatives of these two expressions
with respect to 7. We have

d
d_TEQ(e(y_r)Tl{TST})

_ T (—a + O'T) a+oT L Q2rag kT g (—a - O'T) a-oT
NT | 2NT? NT | 2NT?
1 17 _cworra+oT 1 o tp2p _ceerra—oT
= —ez e 2T + e ez e 2T
\2r 2NT3  \2n 213
1 ao _2 a
= e e 2T .
\V2r V13
On the other hand,

d a a a 1 2 da
— 2eO—aN _—— = 2ea—aN, _—— = —eo— e T .
dr ( ( \/T)) ( \/7) 2NT3  Vo2n VT3

We can see that these derivatives are the same, hence the left- and
right-hand sides of (1.9) can differ only by a constant. To see that
this constant is O we take the left-limit as 7 \, 0 on both sides of
(1.9). The left-hand side of (1.9) clearly tends to 0. The right-hand
side also tends to O because _\/LT tends to —co (since L < 1 soa =

—<1InL > 0), and so N(—%) tends to 0.
1.12. According to Theorem 1.29,

D(0) = Fe'T (N(—dl) — 1N (d2)) +V(0) (N (d3) + L**2N (d4)),
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where
FeT
70N
a:r—y—%az
o? ’
and
) F 12
4 InL-(r—y—-30)T Ingg—©-309T
1: = b
oNT o NT
. L+ (r—y—-1io)T Ingly+ =2y - 30T
2: = 2
oNT oNT
J InL-(r—y+3c)T ln%o) —(r+ 30T
3= = ,
o NT o NT
. INL+(r—y+io)T Ingks + =2y + 50T
4: =
o\NT oNT

To show that D(0) is a decreasing function of y when the remaining
parameters F, V(0),r,o, T are fixed, we shall show that the partial
derivative of D(0) with respect to y is negative. Since d; and d, do
not depend on v,

2D(O) _9 (—Fe”TLZ”N (dy) + V(O)L¥2N (d4))
oy ay
-r a a a -+
= _Fe Ta(L2 )N(d2)+ V(O)a(Lz 2)1\7(014)

0 ]
—FeTL* —N (d,) + V(O)L***—N (dy) .
dy dy
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Observe that the expression in the last line is 0,

- Fe”TLZ"iN (dy) + V(O)Lza*ziN (dy)
oy oy

od ad
— _Fe—rTLZ(yN/ (dZ) _2 + V(O)L2(1+2N/ (d ) _4
dy

1 o 2NT 1 o 2NT
= _Fe —rTLZQ e—;dz ( \/_] V(O)L2a+2_e—§d4 (__\/_)
\2rn o \2n o
(1nL+(r—y—7<r2)T) (lnL+(r—y+%0‘2)T)z
= FL2(I ( T % - e_yTLe_z(rZT]
2 (nLrT—yT 2+ (%"'ZT) In L+rT—T In L+rT—T
= —\/_FLzae_T (e_’Tef —e"Le 7)
2
2 ““L*’T”/T’Z*(%"z”')z InL—rT—T InL—rT—yT
_ \/_FLZQ— i (M8 — o=
2

= 0.
Hence
iD(o) e (L) N (do) + V) (L2”+2)N(d4)
ady (9

22 oL
e’ ( ( “)LZ“ InL + 2aa—L2‘“)N(d2)
02 2
+V(0) (%Lm*2 InL+Qa+2) & de“) N(dy)
Y oy

2 1
OTZFe"TLZ“ (lnL + (r —y - 50'2) T) N (d,)

2 1
- FV(O)LZ‘”Z (ln L+ (r -y + 50'2) T) N (dy)

2
— (nL+(r=y)T) L F (N (dy) - "N (dy))
g
— Fe ' TL*TN (dy) — V(O)L**>TN (dy)

2

< S (nL+@r=)T)L*""F(N(dy) — ™ N (dy)).

g

It remains to show that

N (dy) — "IN (d,) < 0.
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With x = % anda = o VT this can be written as

N(x—a) - ®*N(x+a)<0.

In fact, the last inequality holds for every x € R and a > 0. This is so
because the limit of the left-hand side as x — —oo is 0, and the derivative
with respect to x is negative,

% (N (x —a) — €“N(x + a))

N'(x — a) — e®*N'(x + a) — 2ae***N (x + a)

] _ (x—a)z

1 (Hﬂ)z

2ax 2ax
= e 2 —e¢ e —2ae” N (x + a)
V2r V2n
1 12 +a?~2ax 12 +a?+2ax
= — (e_ T e ) —2ae**N (x + a)
V21

= —2a¢**N (x +a) < 0.

1.13. To show that D(0) is an increasing function of F when the remaining
parameters 7y, V(0),r, 0, T are fixed, we shall show that the partial
derivative of D(0) with respect to F is negative. Differentiating the
expression for D(0) in Theorem 1.29, we get

iFD(O) = BiF (Fe" (N (=dy) = LN (d)) + V(0) (N (d3) + LN (ds)))

=T (N(—dl) — L*N (d, ))

) a 2a 0
+Fe-’T( aFN( d)) - N(dz) Lz"a—FN(dz))
2a+2
+ V(O)( 9 N(d;) + oL oF N (d,) + L***? aa N(d4))

T , Ta 2 2a+2
=T (N (=d) = LN (dy)) = Fe™T—=N (do) + V(0)———N (d)
=e¢ "N (=d) - Qa+ 1) e TL**N(dy) + Qa + 2) ()sz”zN(d)
= TN () + L )L2‘”2N (dy)

( )

+Qa+1) (—e"TLZ"N (dy) + —=L**2N (d4 ))

V(O)

> Qa+1) (—e"TLz"N (dr) + —=L**>N (d4 ))
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This is because

Fe'" 0 —N(-d)) + V(O)—N (d3)

oF

- — 1 e—rTe—%df _ V(O) e_%dg

2nT F
- ¢ € 2021 - e 202T

2T F

1 (ln W*ﬂ) ( 2T)2 ( L V(O) T i Vﬁ)) In v(g)rr)
== e 202T e e —e e

o N2rnT

d ]
- Fe-’TLZ‘fa—FN (d)) + V(O)L2”+2—N (dy)

1 L2(1/ (_e—rTe—;d2 V(O) L2 —ld“)

o V2rT F

! Lza( A Vo) ())
—e e

= 202T — e 2027
o \V2nT F
n yT+r 152 HL,}, +r
_ 1 LZ[’ (] vy 2 Tz(:z ( T) ( e_rTel V() 22 T+rT + eln %_hTe h vl
o \V2nT
=0.
T )
Next, putting x = % and a = %0‘ VT, we can write
0 V(0
FpP0) > Qa+ 1)( e TL*N (dy) + ( )LZMN (dy ))
=Qa+ 1)L (—N (x—a)+ ez’”N (x+ a))
> 0.
where the inequality
“N(x—a)+e**N(x+a)>0
HD(O)

was proved in Solution 1.12. Hence, we have demonstrated that >
0, which shows that D(0) increases as F' increases (with the other pa—

rameters fixed).

+2yT—T
2

|
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1.14. According to Theorems 1.29 and 1.30,

1.15.

D(0) = Fe™" (N(=dy) = L**N(dy)) + V(0) (N(d3) + L***N(dy)).
E(0) = V(0) ((N(=d3) = L***N(dy)) = ¢ F (N(=dy) = L N(d)).
where

ln%—(r—%o-z)T
o NT ’
ln%+(r—2y—%o-2)T
oNT ,
—(r+%a’2)T
o NT
1n%+(r—27+%0'2)T

o NT

Hence, in the limit as y — oo we have d, — —co and dy — —o0, and
so N(d,) — 0 and N(d;) — 0. It follows that

2 =

F
lnm

4 =

D(0) —» Fe " N(=d,) + V(0)N(d5),
E(0) = V(0)N(~d3) — ¢”"" FN(=dy)
as y — oo, which is consistent with the formulae for the Merton

model in Section 1.2.
Consider the function of two variables

O(F,y) = Fe™" (N (=dy) = L*N (d))+V(0) (N (d3) + L**N (dy)),

where L,a,d;,d,,d;,ds (which also depend on F,7y) are given in
Solution 1.12, with the parameters V(0),r, o, T fixed. According to
Theorem 1.29,

O(F,y) = D(0).

In Exercises 1.12 and 1.13 we saw that

o) [}
g_y<0 and Z—F>O.

Now consider F as a function of y such that

O(F(y),y) = D(0)
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for a fixed value of D(0). It follows that

dF 0® 0D

——— +— =0,

dy OF 0Oy
hence

aF %

E——@>O.

oF

This means that F, and therefore s = 1 In % — r, is an increasing
function of y when the parameters D(0), V(0), r, o, T are fixed.

Chapter 2

2.1.

2.2.

2.3.

If 7 is defined as T(w) = sup {t > 0 : F(¢) < w}, then
t<t}={wel0,1]: 1(w) <1t} = [0, F(®)].

It follows that

P < 1) =m([0, F()]) = F(2),
hence 7 and T have the same probability distribution.
For any a € [0, 1) take b = F(a) = 1 — ¢™“. Then

[0,a] = {T < b} € (7).
Because the intervals [0,a] for a € [0, 1) generate the o-field of
Borel sets in [0, 1], it follows that o(T) contains all such Borel sets.
Next, for any b > 0 take a = 7(b) = —% In(1 — b). Then
{T<b}=10,d]

is a Borel set on [0, 1]. Because sets of the form {T < b} for b > 0
generate the o-field o (7), it follows that o(7) is contained in the
family of Borel sets in [0, 1].
We conclude that o7(T) is equal to the family of Borel sets in [0, 1].
The expected default time within the 20-year period is
20 1 1
E(TI{TSZO’) = f t/le_/“dt = —206_20/1 - —6_20/1 + —.
0 A A
If 10 companies have been observed over 20 years, among which
2 companies defaulted in year 5 and 3 companies defaulted in year 12,
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2.4.

2.5.

2.6.

Solutions to Exercises

then an estimate of the expected default time 71;,<,) within the 20 year
period is

2 3
— — x12=4.6.
10 X5+ 0 X 6
This gives
1 1
—20e72 — —_e™01 4 _ = 4.6.
A A

Solving this equation numerically, we get 4 = 0.19626.
For this value of 4 we can compute the probability that a given
company will survive beyond 5 years as

P(5 < 1) = e = ¢ = 0.37482.

The expected time of default is

1 1
E(1) = -

17 019606 ~ 09

Since
fr<t}={It) =1} e 1,

for each t > 0, it follows that 7 is a stopping time with respect to the
filtration () ,»0.

Now suppose that 7 is a stopping time with respect to some fil-
tration (F;)so. It means that {r < s} € ¥, C ¥, and therefore also
{s <1} € ¥, for each s € [0,¢]. This in turn means that I(s) is F;-
measurable for each s € [0, t]. Because 7, is the smallest o-field
such that I(s) is J,-measurable for each s € [0,1], it follows that
I, c ¥, foreacht > 0.

This proves that (Z,),5( is the smallest filtration with respect to
which 7 is a stopping time.

The random variable I(f) can take two values only, namely 1 or O.
We have

() =1} ={r <1},
() =0} = {r < 1}.

It follows that the o-field o(1(¢)) consist of four events @, Q, {t <}, {t < 7}
when r > 0. For t = 0 we have {t <0} = @ and {0 <7} = Q, so

o (1(0)) consists of just two events @, Q.

Take a sequence of sets By, B,,... € D;. By the definition of the
family 9, each of these sets is of the form B, = A, N {r < ¢} for
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some A, € (1), wheren = 1,2,... . Then Ay UA, U --- € o(7),
hence

BiUByU---= (A, UAU--)Nir<tleD,.

Similarly, for a sequence of sets By, B,,... € D,, which by the
definition of D, are of the form B, = A, U {t < 7}, where A,, € o(7)
foreachn =1,2,...,wehave Ay UA, U--- € 0(7), and so

BiUB,U---=(A1UAU---)U{t<T1}€D).

Suppose that Cy, Cs, ... € D. By the definition of D, we have C,, N
{r<t}et,foreachn=1,2,....Then

CinGn--nfrs=Cinfr<thn(Cni{r<hn--- e 1,

which means that Cy N C, N --- € D.

Take any s e R. Then{tAt<s}=Qe I, ifr<s,and{t At < s} =
{t <s}ift > s. In either case {T At < s} € I,. Because the sets
{t At < s} for s € R generate the o-field o (7 A ?), it follows that
o(t A t) C I,. Moreover, since {t < 7} € 1,, it follows that

o{t<t},o0(tAt)C T,

Now suppose that G is a o-field such that {t < 7} € Gand o (T A f) C
G. We will show that {t < s} € G for every s € [0,¢]. Because 7,
is the smallest o-field containing {7 < s} for every s € [0, ], this
implies that 7, ¢ G. Hence 7, is the smallest o-field such that
{t<t}ed,ando(r At) C I,. As aresult,

o{t<t},0(tAt) =1,

It remains to show that {t < s} € G forevery s € [0,¢]. If s € [0, 1),
then{t < s} ={rAt< s} e Gsince o(t At) C G. For s = t we have
{r <t} € G since {t < 7} € G, which completes the argument.

By Corollary 2.20, 7, c o(t) foreach ¢t > 0, so 7, C o(7).

We are going to show that {r < #} € 7, for every ¢ € R. Indeed,
fr<t}=0el,foranytr<0,and{r<t}eJ,Cc I, foranyz>0.
Because o (1) is the smallest o~-field containing the sets {r < 7} for all
t € R, it follows that o-(7) C 1.

We have proved that o7(7) = 7.

Let 0 < # < u. Then, clearly, {r < 7 < u} € o(r). However, since
{t < 7} is an atom in 7, containing {t < 7 < u} and (under the assump-
tions adopted in Chapter 2) {# < T < u} is non-empty and differs from
{t <1}, it follows that {t <7 < u} ¢ 1,.
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2.11.

2.12.

2.13.
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Since o is a stopping time with respect to the filtration (Z;),. and
0 < o < T, it follows that o = o A T is Ir-measurable, hence by
Proposition 2.22 it can be written as

0 = (M) p<ry + clipay

for some Borel function 7 : R — R and some constant ¢ € R. Since
0<o<T,wehavece]0,T].

Now suppose that 7Ac < o does not hold, that is, the set {o- < 7 A ¢}
is non-empty. Then there is a + € R such that {oc <t} N {r<7} D
{o <t <1 Ac}isnon-empty. Because {o- <t} € 7, and {t < 7} is an
atom in J,, it follows that { <7} C {oc <t}. Sincet < ¢ < T, we
therefore have (T <7} Cc {t<t} C{o <t} C{o<c}.Buto =c¢
on the non-empty set {7 < 7}, a contradiction, which proves that
TAc<O.

Finally, suppose that ¢ < o on {c < 7}, that is, {c < o} N {c < 7}

is non-empty. Because {c < 0} € 7, and {c < 7} is an atom in J, it
follows that {c¢ < 7} C {c < o}. But this is impossible because ¢ < T,
so{T <71} C {c<1} C {c<0o}and o = c on the non-empty set
{T < 7}. It proves that o < c on {c < 7}. Because T A ¢ < o, it
follows that o = c on {c < 7}.
By definition, the o-field 7, consists of all events A C Q such that
ANn{o <t} € I, for each r > 0. From Exercise 2.11 we know that
there is a deterministic constant ¢ € [0, T'] such that 7 A ¢ < o and
o = c on {c < 7}. It follows that {o < 7t} = {c < 7}. It also follows
that {c<tiN{oc <t} =@ e I,ift <c,and {c<t}N{oc <t} =
{c<t} € I. c I,if ¢ < t. This means that {c <71} € 7,. Now
suppose that A € 7, and A C {c < 7}. Since {c < 7} C {0 < ¢}, we
have A = AN{o <c} € I.. Because {c <7} is an atom in 7., we
therefore have A = @ or A = {c < 7}, proving that {¢ < 7} is an atom
in 1.

Let ¢ = (¢p, ¢p) be a strategy such that there is a sequence 0 = oy <

o1 < - <0, =T of (,)59-stopping times with the following
properties:
(1) the processes @p(t), ¢p(t) are constant on (o1, 07y] for each
k=1,...,n

(i1) the random variables @g(0), ¢p(0o) are 1, -measurable for
eachk =1,...,n, and ¢g(0), ¢p(0) are J-measurable.
Moreover, suppose that the strategy satisfies the self-financing con-



Solutions to Exercises 17
dition
V(o) = ep(0ike1)B(oi, T) + op(oi1)D(o, T)
foreachk =0,...,n— 1, where
V(1) = es()B(, T) + op()D(t, T)

is the value of the strategy at any time ¢ € [0, T].

We are going to show that if V,(0) = 0 and V,(T) # 0 with
positive probability, then V,(T) > 0 with positive probability and
V,(T) < 0 with positive probability, proving that arbitrage is impos-
sible to achieve using this kind of strategy.

Take the smallest k such that V(o) # 0 on a set of positive prob-
ability. Clearly, such k exists because V,(T') # 0 with positive prob-
ability. We have k > 1 because V,,(0) = 0. The self-financing condi-
tion at time o gives

0= Vy(or-1) = op(o)B(o-1, T) + op(oi)D(0k-1, T).

On {1t < 04_} we therefore have ¢g(0) = 0 because D(oy_1,T) = 0.
Since @g(oy) is 1, ,-measurable, it must be constant on {0 < 7},
which is an atom in 7, , according to Exercise 2.12. This constant
must be non-zero or else pg(oy) = 0, hence ¢p(oy) = 0 and so
V(o) = 0 everywhere, contradicting the choice of k. There are two
possibilities:

Case 1: pg(oy) > 0on {0y < T}

On {01 <7 <0y} we have D(oy, T) = 0, and it follows that
Vo(o) = @p(o)B(oy, T) > 0. For all later times the defaultable
bonds remain worthless, so the value of the strategy must remain
positive on {o-; < 7 < 0%}. In particular, V,(T) > 0 on the event
{or-1 < T < 0y}, which we can show to have positive probability. In-
deed, according to Exercise 2.11, there are deterministic constants
Cr—1,¢k € [0,T] such that o; > T on {r < ¢;} and o; = ¢; on {¢; < 7}
for i = k — 1,k. From Exercise 2.12 it follows that {0y < 7} =
{ck-1 < 7} and {0} < 1} = {c < 7}. By taking complements, we can
write the last equality as {7 < o3} = {7 < ¢}. As a result, we have
{o1 <t <0y} = {cre1 <1 < c). Because o1 < o0y, we have
cr-1 < ¢, and so the event {0 < T < 0y} = {cio1 <7 < ¢} has
positive probability in view of the assumptions about 7 adopted in

Chapter 2.
On {0 < 7} the long position ¢g(o) > 0 in non-defaultable bonds
is balanced by the short position ¢p(oy) = —M(,DB(O'k) <0

D(o4-1,T)
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in defaultable bonds so that V,(o4-1) = 0 at time oy_;. Prior to a
default the defaultable bond grows faster than the non-defaultable
one, so at time o the long position will become dominated by the
short one, hence V (o) < Oon {oy <7} If k = n,then oy = T,
so V(T) < 0 on the set {T" < 7} of positive probability. If k < n,
then by the self-financing condition @g(oi1)B(ok, T) = V(o) <
0 on the event {0y <7 < 0pe1}, 80 @p(ois1) < 0 and Vy(ops1) =
wp(0r11)B(oks1, T) < 0 on {0 < T < 041}. For all times later than
041 the defaultable bonds remain worthless, hence the value of the
strategy must remain negative on the event {0y < T < 041} In par-
ticular, V,(T) < 0 on {0 < 7 £ 041}, which we have shown to have
positive probability. This completes the argument in Case 1.

Case 2: pp(0y) < 0on {0y < T}

Taking the self-financing simple strategy —¢(f) = (—@p(?), —¢p(t))
for t € [0, T] reduces this to Case 1.

2.14. For any t € (—00,0)
Fo() =0T <n=0(x=<1=0,
Go(t) =1-Fy(®) =1,
To(f) = —InGy(t) = 0.
For any 1 € [0, T]
Fo) = 0@ <) =Q(r <) =1 - 8040 = | _ o7,
Go(t) =1 = Fp(t) = e,
FQ(t) =—In GQ(t) = At.
For any ¢ € (T, )
Fo)=0F <N =1-00t<®)=1-0T <1t)=1-¢",
Go(t) =1 = Fp(t) = e,
FQ([) =—In GQ(I) = AT.
Chapter 3
3.1. Forr = 005, Ty = 0,7y = 1, T, = 2, T3 = 1 and D(0,T) = 1,

D(0,T;) = 0.9268, D(0,T,) = 0.8487, D(0, T5) = 0.7635 we obtain
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the following piecewise linear expression for D(0, T'):

r;‘__r; D(0, T,) + TT*_T;; D(,T,) forTy<T<T,,
DO, T) = ?2_*@ D0, T)) + T:TTII D(0,T,) forT, <T <T,,
77 D(0, T>) + T;_T;z D(0,T5;) forT, <T < Ts.

1 -0.1464T for0<T < 3,

={ 1.083-0.3124T fori<T <3,

1.1043 - 0.34087 for3 < T < 1.

Since

DO, T) =™,

we have

I(T) = =T — In D(0, T)

and
dr(T) 1  dD(,T)
W) = —= = —r = —
dr DO, T) dT
{ —0.05 + Q462 forO0<T

1-0.1464T

<3

_ 0.3124 1 3
0.05 + T083-0 31247 for; <T <3,
1

_ 0.3408 3
0.05 + gz o5a0sr forz <T <L

If 7 is exponentially distributed under Q with parameter A, then
F(T)=1-¢".
On the other hand,
F(T)=1-¢TD(,T).
Hence

1 1
A= -7 InD(O,T) - r=-71n0.9133 - 0.05 = 0.1314.
2

We can now compute

D(0, 411) — €74rQ(i <7)= e—%(rwl) — efg(o.os+o.1314) =0.9557.

With T, = %’ T, =1and D(0,T;) = 0.8679, D(0,T,) = 0.7055, the
system of equations

aT12 +bT, = —-InD(0,T) — T},

aT? +bT, = —In D0, T,) — T,
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34.

3.5.
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becomes
ta+1b=0.11668,
a+ b =0.29885,
which gives
a=0.13098, b =0.16787.
We can now compute D(0, T3) for T3 = %:

DO, T3) = e T3 TTs) — =T e—arg—bn
b <

- 3 3y 3
= 0.05%3 ,=0.13098x(3) -0.16787x3 _ () 7889

Let T, = % and 7, = 1. Suppose the hazard rate is constant on
(0,T1]1,(Ty, T,] with values y1, y,, respectively. Then

1 1

11
= I —— —r=~In—— —0.05 = 0.2750,
e pory T T T 083
1 DO, T)) 1 085
= 1 = In =22~ 0.05 = 0.0712.
e T, " Doy T 121" 080

2

Since T = % belongs to the interval (T, 7],

T
I(T) = f y@Odt =yi Ty + 7T = Th)
0
=0.2750 x % + 0.0712(%1 - %) = 0.1553,
and so

D@, T) = e T T — e—0A05x%6—0.1553 = 0.8247.

Let Ty = 3, T, = 2 and T3 = 1. Suppose the hazard rate is constant
on (0, T1],(Ty, T;], (T, T3] with values vy, v», ¥3, respectively. Then

1 1 11
-1y =1 ~0.05 = 0.1525,
= b,y T T " 0.9037
I DO,T) 1 09037
- 1 _r= -2l 0,05 =0.1441,
I Do) T 31 M 0.8609
1 DO,T 1 0.860
ys = O.T) _,_ 1 0 0.05 = 0.3839.

n r=——In———
T:-T, D(0,T5) 1-30.7724

3.6. We found in Exercise 3.4 that

(5= | 02750 on [0, 51,
7W=1 00712 on (410,
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It follows that

0.3250¢-0.2231 1
e forz € [0, 51,

Fay 1
D t, 1) = e_f, (r+y(s))ds —
1) 1220122 for p e (L1],

Let0 < s < t. Since the Poisson process has independent increments,
N(t) — N(s) is independent of the o-field N,. It follows that

E(N(@) - N($INy) = E(N(@) = N(s)) = A1 = 5).

The last equality holds because N(t) — N(s) has the Poisson distribu-
tion with parameter A (¢ — s). As a result,

E(N() — AtIN;) = N(s) — 4s,

that is, N(¢) — As is a martingale with respect to the filtration (N,);so.
Take any # > 0 and let 7 be the time of the first jump of the Poisson
process N(z). Observe that t < 7 means that the first jump hasn’t yet
occurred at time ¢, which is equivalent to N() = 0 given that the
Poisson process starts with N(0) = 0. As a result,

Qr<7)= QN =0) = e,

Hence 7 is exponentially distributed with parameter A.

Let 0 < s < t. Since I(¢#) = 17«4 and 7 has the exponential distri-
bution, by Proposition 2.27 applied to the risk-neutral probability Q,
we have

EUMIL,) = E1<ylLs)
E (1<) 1<)

O(s<1)
O(s<t<0H)

O(s<1)
= I(S) + 1{s<‘r] (1 - e_A(H)> .

= l{TSle (ll‘rst}|0-(7-)) + 1[s<‘r}

= Lecg ey + 1<)

On the other hand, using Proposition 2.27 once again, we have

E (1{S<T] ([ AN T))
EAEAT) L) = Mgy BE@ATIO(T)) + Ay ———————

O(s<1)
se™ + 4 (e‘“ - e—/u)
= AI[TSS} ([ A T) + /l]-[s<‘r} e_/lg

= AI[TSS,T + AI{S<T}S + 1[s<‘r} (1 - 6_/1([_S))

= A(S A T) + 1{s<‘r| (1 — €_/l(t_s))
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since

E(ljyer 0 AT)) = f (t A u) e du

3 00
= /lf ue Mdu + /ltf e Mdu
Ky t

1
_ -As -As —At
=se 4o (e —e )
and O (s < 7) = e~ It follows that
EU)—AtAT)|L)=1(s)—A(SAT).

Because A (¢ A 7) is an (I,);»p-adapted process with continuous tra-
jectories, it follows that it is a compensator of I(z).
3.10. We have

ET(EAT) = foo I'(t Au)f(w)du

0

= f I'(u) f(w)du + T'(t) f"" fu)du
0 t

= f I'(u) f(w)du + T()G(1)
0

= F(1)

since integration by parts gives
I'OG@E) =T G —T(0)G(0)

:fy(u)G(u)du—le(u)f(u)d”
0 0

= f [ F(u)du - f tF(u)f(u)du
0 0

=F(t) - ft I'(u) f(u)du.
0

3.11. By Proposition 2.13

S
1-F()

() =

and from Corollary 3.16 we have

IrtAnt)= f Ty(u)du = f (1 = I(w)) y(w)du,
0 0
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hence it follows immediately that

B INT 1 B ! 1 _ I(M)
IrtAnt)= fo‘ T-Fn F(u)f(u)du = fov = F(u)f(u)du.

. Since
L(t) = (1 = 1(1)) "? = Ljcqye®
is a martingale with respect to the filtration (Z,),»¢, it follows that

E(Lir<nl)) = e " DEWLDI)
=e DL
= 1jer) el O-T(M)

T
- d.
= 1{,<T}€ f' Y 5

. Let X(#) = 1jo(¢) for some ¢ > 0. By (3.4), we have

AT

fo X(u)dM(u) = eyl o(7) - fo Lio.o)(u)y(u)du

IANCAT
= 1[‘r£l/\cl - f )’(M)du

0

Now take any 0 < s < ¢ and consider two cases:

Case 1: s < ¢. Then

f IACAT
E( f X(u)d M (u) L) = E( Lrcina — f Yw)du L)
0 0
IACAT
O-(T)) + 1{S<T]er(S)E (1{s<‘r] (I{Tst/\c} - f Y(M)du))
0

IACAT
= 1{TSS}E(1{T§M0} - f y(u)du
0
tACAT ne
= 1[73"} (1{"'9/\“] - f y(u)d“) + 1[s<T}er(S)E (1(S<TSI/\€} - f l{s\/u<‘r}7(u)du)
0 0

IAC

CAT
= 1[T§s/\c} - 1{T§s} ﬁ V(M)du + 1{s<‘r}er(‘v) (F(t A C) - F(S) - L G(S \ u)y(u)du)

CAT
= l{TSS/\C} - 1{T§s} j(; )’(M)du

N IAC
+1eqe (F(r Ac)—F(s) - f G(s)y(u)du — f G(u)y(u)du)
0 s

CAT s

= 1{‘rSs/\c} - I{TSS} f )’(u)du - 1|S<T} f )’(u)du
0 0

SACAT A
= 1i7<nq) —f y(u)du =f X(w)dM(u).
0

0
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Case 2: ¢ < s. Then

E(f X(u)dM (u) Is) = E(I[Tg,\cl —f ) Ty(u)du
0 0

CAT
= E(l{‘rsv] - f Y(M)du -Z-s)
0

CAT
= I[TS‘V}E(I{TSC] - f y(u)du
0

zs)
CAT

O-(T)) + 1{s<7}er(3)E (1{s<‘r] (l{rsd - f 7(”)du))
0

CAT C
= 1[‘r£c} - IKTSS} L‘ )’(M)du + 1{s<‘r]er(S)E (1[s<‘r}1{r<c} - 1[s<‘r} L 1{u<r]y(u)du)

CAT C
= Lirce) = Lizsy) f(; yydu = 1jsne" j(; E (Ls<n) y()du
CAT C
= Ljree) — Lirey) f yw)du — 1jye'™ f G(s)y(u)du
0L‘/\T L‘/\T0
= Lprey — Liray fo Y 1y fo Y

CAT SACAT X
= 1[‘r<c} - f V(M)du = 1{‘r<s/\c} - f Y(M)du = f X(l/t)dM(l/l)
0 0 0

3.14. Let

X(1) = Z1 40

for some 0 < a < b and some 7 ,-measurable random variable Z. By
Proposition 2.22,

Z= U(T)I[‘rsa} + Cl{a<‘r}

for some Borel function 7 : R — R and a deterministic number ¢ €
R. Then

X(®) = (1) Ljr<a) + liger)) Lap (1)
= ()@ (Dir<q) + L (O lia<r
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and

f l X(w)dM(u) = 1<y X (1) - f l TX(M)V(M)du
0 0

INT
= LirenZ1 () (7) — f Z1 gy (u)y(u)du
0
= Lirsy (U(T)I{rsm + Cl{a<‘r}) Loy (1)

INT
- f (M) jr<ay + Ligeny) Lo () y(w)du
0 AT
= Cl{a<r§t/\b] - Cf l(tl,b](u)y(u)du
0 INT
~Lcpeln @ = [ eluntytd

= f Y(u)dM(u),
0
where
Y(®) = cligpm(D)

is a deterministic function. It follows by Lemma 3.19 that

f X(u)dM(u) = f Y(u)dM (u)
0 0

is a is a martingale with respect to the filtration (7).

Chapter 4

4.1. We have
H(t) = e"D(t,T) =E(e7"D(T, TIL,) = B (e 1izql L)),
so taking
h(t) = e 17y
gives
H@®) =e "D, T) =Eh(1)|L,).
Substituting the expression for % into the formula for J gives
J@O) =Bt <) =E (e Lpalt < 7)

T<Tt
_ 19 ) — o T T L)

B 0@t<1)
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Now can we substitute the expressions for 4 and J into right-hand
side of (4.1) and apply formula (3.4) to getforany t < T

E(h(T))+fO (h(s) = J(5)) dM(s)

= E(e"Tl(T<T}) + fr (e"Tl{Tq} - e"Te_r(T)em)) dM(s)
0

= o T T 4 Liey (e—rTl{T<T} _ e—rTe—F(T)eF(T))
INT
_ f (e—rT1[T<S} _ e—rTe—r(T)er(s)) y(s)ds
0

AT
— e—rT e—F(T) _ I{TS[} e—rT e—r(T) er(r) + e—rT e—F(T) f d( er(s))
0
= o T _ 1{@} e~ T T L@ | =rT ;=TT ( FUAT) _ er(()))

= 1y s (PR Liren o1 T I Lien P (PO

= Lyere e T

=e"'D(t,T).

4.2. By linearity, it is enough to show that if ¢ is a left-continuous deter-
ministic function such that

ft d(s)dM(s) =0
0

for each ¢t > 0, then ¢ = 0 on (0, c0).
By formula (3.4),

fo P($)dM(s) = Liz<y(7) — fo P(s)y(s)ds = 0.

On {t < 7} we have

j(; ¢(s)dM(s) = —](; #(s)y(s)ds = 0.
As a result,

f d(s)y(s)ds =0
0

forevery ¢ > 0O since {t < 7} has non-zero probability and fot d(s)y(s)ds
is deterministic. Because y(f) = '@ f(¢) > 0 for almost every ¢ €
[0, 00), it follows that ¢(f) = O for almost every ¢ € [0, o). By left-
continuity, we can conclude that ¢ = 0 on (0, c0).
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4.3. Using the self-financing condition

3

V(1) = V(0) + f ep(u)dB(u,T) + f ep(u)dD(u,T),
0 0

by Theorem A.9 (the integration-by-parts formula for Lebesgue—
Stieltjes integrals) and Theorems A.10 and A.11, we obtain

ch(t) - V¢(0)
= eV, (1) = V,(0)

= L t e AV, (u) + fo t Vo(u_)d (e™™)
= fo le_”‘gog(u)dB(u, T) + fo le_”’goD(u)dD(u, T) + fo l V,(u)d (e
=r fo [ ¢ op(u)Bu, T)du + r fo t ¢ "op(u)D(u, T)du
- fo l e "op)D(u_, T)AM(u) — r fo te‘”‘V(p(u,)du
=r fo [ eV, (u)du — fo te_”‘goD(u)D(u_,T)dM(u)—r fo te_”‘V‘p(u_)du
=- j(; I ¢p@)D(u_, T)dM (1)
= fo tgoD(u)df)(u,T).
Here we use the fact that

Ve(0) = op()B(1,T) + op()D(t, T) = V(1)

for almost all # € [0, T] and apply Proposition 3.23 in the last equal-

ity.
4.4, Using the identities f() = y(£)e™ '™ and G(T) = e, we compute

E(V,(T)) = e e TDEE" ™ — 1)
T 00
_ T T(D) ( f &Y fuydu + &P f Jfwdu - 1)
0 T
T
= T g TT) (f ywdu + " DG(T) - 1)
0

= e Te DT,

which is greater than 0.
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Suppose that ¢(f) = (pp(t), ¢p(t)) is an admissible self-financing
strategy such that V,(0) = 0. Admissibility means that V¢(t) is a
martingale under the risk-neutral probability Q. It follows that

E(Vy(T)) = ¢"E(V,(T)) = €7 V,(0) = € V,(0) = 0.

It is therefore impossible for V,(T') to be non-negative almost surely
and positive with positive probability. There is no admissible arbi-
trage strategy.

Using Proposition 2.27, for any ¢ € [0, T] we compute

e "B (Ds(T, T)|I,)
= e TPES + (1 - 6) 17qlT))
=6 T4 (1 - 6) e TE (1;7q|T))
E(1 T 1 <t
= 6¢ T4 (1= 6) " 1y E (Lranlor(@) + 1{,«}%
o<1
) o<1

— 6e—r(T—t)+ (1 _ 6) e—r(T—t)l{KT}e—(r(T)—l"(t))'

=0T+ (1-8) e " e,

This agrees with the formula for Ds(¢, T) in Example 4.10.
In Example 4.10 we saw that

Ds(t,T) = 6B(t,T) + (1 — 6)D(t, T).

Hence

D@, T) = Ds(t,T) — %B(r, 7).

1-9¢ -0

This means that the zero-recovery bond D(z, T') can be replicated by
a portfolio consisting of ﬁ positive recovery bonds Ds(t,T) and
—1% non-defaultable bonds B(z, T).

Using (4.4) and Proposition 3.23 with

ep(t) = " DO (@) - h(r))

and

D(t,T) = 1yeqye T MO0,
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we obtain

1 ! - -
@p(t) = BT (th(o) + jo‘ ep(w)dD(u, T) — ¢p(H)D(t, T))

1 ! - ~
i (Vp(o) - j(; @p()D(u_, T)dM(u) — ¢p(HD(1, T))

E (h(r)) — f ) = 7)) e dM(@) (IO = (D) Lper
0
— B(h(r)) - (J(T) = h(D) Lsen
" f () = h(w)) Y@ — (J() = h(D) Lyer
0

=EM(1)-(JEAT)—h(tAT)) + f ' (J(u) — h(w)) y(u)du.
0

In the proof of Theorem 4.1 (i.e. the martingale representation theo-
rem) it is shown that

f " Jw)yy(u)du = &' f ) h(u) f(u)du — f ) h(u) f (u)du
0 t

AT 0

+ f ' " On(u) f(uw)du
0

=JtAT)=E(h(7) + f ' h(u)y(u)du.
0
It follows that
o) =E (7)) —(JEAT)—h(t AT)) + f (J () — h(uw)) y(u)du
0
=h(t AT).

The payoff of a defaultable bond with constant recovery can be ex-
pressed as

Ds(T,T) = h(7),

where

6 ift<T,
hlt) ‘{ 1T <1,
According to Theorem 4.11, the replicating strategy is given by

pp(t) = h(t A7),
ep(®) = DO J(@) - h(t))
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for any ¢ € [0, T]. It follows that

s(t) = h(t A7) = 6

since t AT < T when t < T. Moreover,

= _ E (1{r<r}h(T )

JO)=Eh(t<71) = i<
_00t<Tt<H+ QT <71) _ (5((3’“’) - e*F(T)) 4 o T
B o<1 - YD) s

soforanyt < T

ep(t) = " VT (J(@0) ~ h(D))
5(6—F(r) _ e—r(T)) 4T
] 5]

T

= DT [

=1-6.
4.10. From Proposition 4.12 we have

Di](t7 T) = U(T)l{TSI}

T
+ Ljeny (e—r(T—l) o~ TDTWO) | (=r(T=1) 1) f ()" T £(s5)ds ).
1

For ¢ = 0 this gives

T
D,(0,T) = e Te D 4 e’Tf n(s)e" = f(s)ds
0

T
=e"TG(T) + f n(s)e™" f(s)ds.
0

4.11. Let

h(T) = Lir< + 0@ T 1er).
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By Proposition 2.27, for any ¢ € [0, T] we have

D,(t,T) = e " " PE (h(1)|I,)

E (W(1)1j1<r)
o@t<1)

E (M(1)1<r))
o<1

E (Lir<)

oit<1)

E (U(T)er(TfT)l[z«sT})

o<1

= l{TSt}er(tiT)r](T) + eir(Tit)1[,<T}67(F(T)7r(t))

T
+e Ty f n(s)e" =9 f(s)ds.
t

= ¢ T B (h(D)lo (7)) + e T ey
= ffr(T*t)l{rsr}h(T) + efr(Tft)l{r«)

= Lirey€ " n() + €T ey

+e~ T |

4.12. Let
H(t) = E(h(7)|1,).

By the martingale representation theorem (Theorem 4.1),
!
H(r) = HQO) + f (h(s) = J(s5)) dM(s)
0

= H(0) + (h(7) = J(7)) Ljz<y) — f (h(s) = J(s)) y(s)ds.
0
It follows that

D,(t,T) — D,(0,T)
= e " T DH(t) — e"TH(0)

5 5
= f e TVdH(s) + f H(s_)d (e ")
0 0
! !
= f e " T Ip(s)dM(s) — f eI J()dM(s)
0 0
15
+rf H(s_)e " T=9ds.
0
On {r < 7} we have

f’l(S)dM(S)=—fU(S))/(S)(l—l(S))ds
0 0
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4.13.

Solutions to Exercises

and
H(t) = H(0) - fo (h(s) — J(s) y(s)ds = H(t.),
SO
D,(,T)-D,(0,7T)
= —f n(s)y(s) (1 = 1(s))ds —f e T J(s)dM(s)
0 0
+r ft H(s)e " T9ds
0
= —f n(s)y(s) (1 = 1(s))ds —f D, (s, T)dM(s)
0 0
+rf D, (s, T)ds
0
since

Dn(t’ T) =T (e—<r<T>—r(t>> _ 0 f ! n(s)e" ™ f( s)ds)
‘
=T J(1).
and
Dy(t,T) = e T PE(h(r)|T,) = e """ H().
This shows that
dD,(t,T) = —n()y(t) (1 — [(H)) dt — D, (s, T)AM(t) + rD,(t, T)dt

on {r < 7}.
The payoft of a defaultable zero-coupon bond maturing at time S,
where 0 < § < T, is equivalent to a payoff at time 7 of the form Ah(7),
where
h(t) = 1[S<t}er(T—S).
By Theorem 4.11, for any ¢ € [0, S ],
ep(t) =h(tAT) = ]-[S<r/\‘r}er(T_S) =0

since t A T <t < §. It means that the bond D(¢, S) can be replicated
by the D(¢, T')) bond alone. Since

D(t, S) = 1[l<‘r}e_r(s —f)e—(]"(S Y=T(1))

= ' I=9) oM(D-TES) 1[KT}e—r(T—t)e—(l"(T)—l"(f))

= /T-9TOTE (s T,



4.14.

4.15.

4.16.
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we have

o) = & T=5)TDTEN

By Exercise 4.13, foreachk = 1,..., N the zero-coupon bond D(¢, T})
with maturity T can be replicated by e"7 70T M-TT0) zero-coupon
bonds D(¢, T) with maturity 7. Hence, to replicate the coupon bond
we need to buy

N
Z Ce/ T-T0TDTT0) o or(T=Tp) ((TT)-T(Tx)

k=1
of the zero-coupon bonds maturing at time 7'. Then, at time T} for
each k = 1,..., Ty we need to sell Cre 710 M-TTD) of the zero-
coupon bonds maturing at 7', which produces the defaultable coupon
payment

Cre T DTID DT, T = Cl g, <ay.
At time Ty we also need to sell the remaining holdings amounting to
Fe'T=Tw) g (M-TT) of the zero-coupon bonds maturing at 7, which
pays

Fer(T_TN)e(r(T)_F(TN))D(TN, T) = Fli,<,
i.e. the face value of the defaultable coupon bond.
Consider a CDS on a defaultable bond Ds(f, T) with constant re-
covery 8 € (0, 1) paid at maturity 7. The recovery leg payment of
the CDS is (1 — 6) 1jz<r; at time 7. The premium leg payments are

aly, .y attimes ¢, fork = 1,..., N. Equating the time O values of the
two legs, we get

N
E(e" (1= 0)lpzpy) = Z E (ae™™1y<r)) -
k=1

Hence
E(e"(1 - 8)1ieer)
a=— —
=1 B(e7 1y er))
_ E(e—rT(l -6)(1 - 1{T<T])) (-6 B0, T) - DO, T)
Yt E(eyer) Yiey DO, 1)
The CDS spread is given by
_ B(0,7)-DO,T) e’ —eTeTM
s DO, 1) SN et
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4.17.

4.18.

Solutions to Exercises
When 7 is exponentially distributed under Q, we have
=G =0@<1)=e"
This gives
e T — o= T AT

Forr =0.05,4=0.02,7 =1 and N = 12 we get

a =

6—0.05><1 _ 6—0.05X16—0.02><1

a= = 0.00163.

K K
ZIZI ¢~0-05% 15 p=0.02x 15

If the hazard rate y is constant, then we have I'(f) = 1, so

_BO,T)-DO,T) e —eeD T — e TenT

Zszl D(0, 1) Zszl e~e T Zszl eV

This nonlinear equation can be solved numerically for y. When r =
0.06, T =2, N =24 and a = 0.1, we get y = 0.127. This yields the
defaultable bond price

D, T) = e e ™D = 7T = (0.6880.

Foreachn =1,...,N we have 7, = % and
a. = e_”n (1 - G(tn))
Y e G
hence

(n=k)T

1 -, o) e G(h) 1 -a, e Gt
a, +1 a, +1 )

G(1y) =

Moreover, the piecewise linear hazard function can be written as

n n T
') = Z)’k (te — tim1) = Z')’kﬁ,
= =

where vy, ...,y are positive constants, so
G(t,) = e Tl — 6*22:1 n%_
ForT =1,N =4, r =0.05 and

a; =0.012, @ =0.009, a3=0.011, a4 =0.010,
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we get
1
G(n) = —— = 098814,
1

1 — are" "Gt
G(ty) = —22; 1 ) _ 98216,

1 —a; (e%G(tl) +e's G(fz))
G(t3) = — =0.96728,

as

1-ay (e’¥G(t.) + TGt + ef%G(t,))

G(ty) = — = 0.96027.
@y

It follows that

N
v = T InG(#;) = 0.047724,

N G(1)
AN = 0.024281
277 G ’
N G(5)
A = 0.061065
V3 T n G0 >
N Gt
- = 0.029094.
=TT G

Chapter 5

5.1. Since 7 is an (Z,),»-stopping time and J, C G, for each r > 0, it
follows that 7 is a (G,),»o-stopping time.

Now let (H;)»0 be a filtration such that 7 is an (H;)so-stopping
time and F, C H, for each ¢ > 0. Fix any ¢ > 0. Then, for any s < ¢,
we have {7 < s} € H, ¢ H, and so I(s) = 1.y is H;-measurable.
As aresult, 7, c ‘H,. It follows that G, c H, since G, = o (F, U I,)
and F,U I, Cc‘H,.

This proves that (G,),»o is the smallest filtration such that 7 is an
(G1)=0-stopping time and ¥, C G, for each ¢ > 0.

5.2. Let 0 < s <. Then 1,y < 1<, which gives the result:

E(F0IFs) = BBz FIIF)
= E(llrstllﬁ)
> E(ljr<)|F5)
= F(s).
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5.3.

5.4.

5.5.

Solutions to Exercises

Forany 0 < s <t we have {t < s} C {r <}, and 50 1jz<y < 1jz<y. By
Lemma 5.15,

F(s) = E(Lipey|F7) < Bl F) = F (1),
hence F(¢) is non-decreasing.
The process I has increasing paths, so for every ¢ > s > 0 we have
I'(#) > I'(s), which implies that
ET'@IF;) = BT (9)IF;) = I(s)

since I'(s) is ¥ ,-measurable. It follows that I" is a supermartingale
with respect to the filtration (7,),»-

Let
X(t) = vt + o Wy(2),
where
1
v=r— 50'2.
Then

_ SO\
r(t)_lfne[%,zx]( 1“5(0))_ min X(.

It follows from Lemma A.16 that the cumulative distribution func-
tion of I'(¥) is

Frp(x) = Q') < x)
= Q(gl[(i)r;] X(@®) = —x)

N(x+vt) _zvsz(—x+vt)
= — e o
o\t o\t

for any x > 0, and Fr((x) = 0 for x < 0. Hence the density of I'(¢) is

e 22 +e o2 e 2wk +—2e_(rZN
o V2nt o V2nt o

e w1 _cx? 2V o —Xx + vt
Jro(x) = ( )



5.6.

5.7.

Solutions to Exercises 37
forany x > 0, and fr(,)(x) = 0 for x < 0. It follows that for each > 0
O (1 < 1) = E(lirey) = BE(lr<|7) = E(F(1)) = E(e™ ")
f B e frp(x)dx

00

1 o0 Ly G2 1 0 Ly _Cawn?
e e 22 dx + e e e 2 dx
o V2rt Jo o N2nrt Jo

AV e _wm [—x+ vt
+— e e 2N dx
o= Jo 0'\/2
2 2
_ gty (_ vt + 0o t) L ity (_ vt + o t)
oVt o\t
v o’ RN 2v gk [_VEF o’t
022y + o2 2v + o2
1% a'\/; 1% O'\/l_‘

> 2
_ pprtien VT N(_vt+a‘t)+ 2v N( vt )

2v+ o2 oVi v+0r \ovr
2r + o2 rt+%0’2t 2+ o2 I’t—%o‘zl
:ert N _ y
2r a'\/; 2r g'\/;

which gives the probability distribution of 7 under Q.
Suppose that Y is a random variable with the unit exponential distri-
bution. Then for any x € [0, 1]

Qe <x)=0(Y > -Inx)=1-Fy(-Inx) = " = x,

so e”Y is uniformly distributed in [0, 1].
Conversely, suppose that ¢! is uniformly distributed in [0, 1].
Then for any x € [0, c0)

QY <x)= Q(e’Y > e”‘) =1-¢e",

hence Y has the unit exponential distribution.
Let

7, =inf{t > 0: e1? < X},

where X is a random variable uniformly distributed in [0, 1] and in-
dependent of ¥, and let

7 = inf{t > 0: [(r) > Y}

where Y is a random variable with the unit exponential distribution
and independent of F,. By Exercise 5.6, ¢™! is uniformly distributed
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5.8.

5.9.

5.10.

Solutions to Exercises
in [0, 1]. It follows that
T=inf{t>0:T() > Y} =inf{r>0:eT® < e}

has the same distribution as 7.

Since g N{r <t} = @and QN {7 <t} = {T <t} belong to G,, both
@ and Q belong to A. Suppose that A, B € A. Since A N {7 < ¢} and
BN {r <t} belong to G;,

A\B)Nn{r<g=An{tr<hH\BN{r=<1})

also belongs to G,, so A\B € A. Next,if A, € Aandso A,N{T <t} €
G, forn=1,2,...,then

(UA,,] N {T < l} = U(An N {T < t})
n=1 n=1

belongs to G;, so |- A, € A. This shows that A is a o-field.

To see that o(t) € A we only need to verify that {r < s} € A
for each s > 0 since events of the form {7 < s} for s > 0 generate
the o-field o(7). Indeed, for any s > O the event {Tr < s} N {r <t} =
{r<sAt}belongsto I\, C I, CGs0{T<s}eA

Finally, we take any A € ;. Since {r <t} € I,, we find that
AN{r <t} € G, hence A € A. We have shown that ¥, C ‘A.

Take any ¢ > 0. By left-continuity, for any € > 0 there is a § > 0 such
that |(u) — h(1)| < € when u € (¢ — 6,t]. Then for any n > max(3, f
we have |h,(¢) — h(?)| < €. This proves that h(?) = lim,,_,« h,(7).
Since T > 0, we have 1;;<p; = 0 and 1y, = 1, so we just need to
show that

E(h(r)) = E ( f ) h(u) f(u)du) .

0
Since £ has left-continuous paths, we have, almost surely,

h(t) = lim h,(t) foreacht > 0,

where
h(t) = Z h(sy, 1590
i=1

with sfq = i foreach n,i = 1,2,... (see Exercise 5.9 with s = 1). It
follows that, almost surely,

h(t) = lim h,(7).
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First we verify the desired equality for 4,(f). Indeed,

2

E(h(1) = ) B(h(si )1 (D)

i=1

= > E@E(h(sy Y g (DIF)
i=1

= > E(s; DB oy (DIF)
i=1

= D By YEW ey ) = B ey F))
i=1

= > B(h(sY(F(s)) = F(si )
i=1

—E ( f i hn(u)f(u)du),
0

where we use Lemma 5.15 in the fifth equality. Hence, by dominated
convergence, for a bounded /& we find that

E(h(r)) = lim E(h,(7))
=1limE (f‘x’ hn(u)f(u)du)
n—eo 0

= E(fm h(u)f(u)du).
0

Then, for a non-negative 7 we obtain the formula by approximat-
ing h by a monotone sequence of bounded processes. Finally, for a
general i we use the positive and negative parts h* and i~ together
with the assumption that A(7) is integrable, just like in the proof of
Theorem 5.34 in the case when s > 0.

5.11. Note that

L) = (1 = 1pe)e"™® = 1.
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By Theorem 5.35 with ¥ = €,

B(LOIG) = Ble""1,<)|G)
= 1{s<r}E(er(t)e_(r(t)_r(S)) IF>)

= 1{s<‘r}er(s)
= L(s).
5.12. This is again a simple consequence of Theorem 5.35. For Y = X(£)e'?,
it gives
EX()L1G,) = EX (e 1 1<n|Gy)
= 1y VEX(0)|F)
= L(5)X(s).
Chapter 6

6.1. It is shown in Section 6.1 that
!
D, T)=D(O,T) + f (r + y(u)D(u, T)du
0

!
+ f e T O X oo () d Wi (u).
0

By It&’s product rule (see [SCF]), it follows that
!
e "D, T) = D0, T) + f yw)e ™ D(u, T)du
0

!
+ f e " Xy (W dWo(u).
0

Hence
R INT R
e MNP AT, T) = DO, T) + f y(we " D(u, T)du

0

AT

+ f e " Xy (W) dWo(u)

0

!
=D,T) + f yw)D(u, T)du

0

AT
+ f e e X ey (W dWo(w).
0
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On the left-hand side we have

e—r(tA‘r)D(t AT, T) = l{TSt’e_”D(T, T)+ 1{,<T}€_rtb(l‘, T)
e DT+ DT

By formula (5.11),
! » » AT 5
f Du_,T)dM(u) = 1i;<yD(7_,T) — f D(u_, T)y(u)du
0 0
!
= lpee "D, T) - f D(u, T)y(u)du.
0
Combining the last three formulae gives
~ ! ~
D@, T) = D(, T)—f D(u_, T)dM(u)
0

INT
+ f e T e X g (W)d W (u).
0

6.2. As shown in the proof of Proposition 6.9,
Ve(12) = V(1) + @p(1)D(7_, T).

Taking the left limit as ¢ ' 7 in the expression for V,(¢) in the pre-
default region {r < 7} in Definition 6.7, we get

V,(12) = V,(0) + fo ' @s(u)rB(u, T)du
+ fo Tgog(u)rS(u)du+ fo Tnps(u)O'S(u)dWQ(u)
+ fo Tch(u)rD(u, T)du + fo TgoD(u)y(u)D(u, T)du
+ fo ) p()e” T X o (u)dWo(u)
= V,(0) + fo ' rV (u)du + fo T(pg(u)O'S(u)dWQ(u)
+ fo ) ep(u)y(w)D(u, T)du

.
+ f opW)e™ T X o (W) d W (u).
0
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It follows that

V(1) = Vo(72) = op(0)D(7_, T)

=V,(0) + fT rVe(uwdu + fT s (w)oS (u)dWo(u)
0 0
+ f epW)y(w)D(u, T)du — ¢p(t)D(7_, T)
0

+ f goD(u)e”(T"‘)er(“)XG(T)(u)dWQ(u).
0

By inserting this into the expression for V,(f) in the post-default re-
gion {7 < 7} in Definition 6.7, we get

V(1) = V(1) + f rVeo(uwdu + f ws (W)oS (u)dWeo(u)
= V¢(0)+f rVy(wdu + f s (W)aS (u)dWo(u)
0 0
+ f epW)y(w)D(u, T)du — op(T)D(7_,T)
0

T
+ f op(W)e™ "X (W) d W (u).
0

Combining this with the expression for V,(¢) in the pre-default region
{t < 7} in Definition 6.7, we finally get

t

V¢(t)=V¢(0)+f rV¢(u)du+fgog(u)O'S(u)dWQ(u)
0 0
- f ep)D(u—, T)dM(u)
0

AT
+ f op()e T X 6o (W) dWo(u).
0

forallr € [0,T].

6.3. Suppose that ¢ is a self-financing strategy such that V,, is non-negative,
hence Vw is non-negative. In the expression (6.4) for the discounted
value Vw(t) = eV, (1) of the strategy in Proposition 6.9 the integrals
with respect to Wy are local martingales. By Remark 5.41, the inte-
gral with respect to M in (6.4) is also a local martingale. It follows
that 17¢(t) is a local martingale. As a non-negative local martingale,
\7¢ must be a supermartingale, hence

0 < B(V,(T)) < V,(0).
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If ¢ were an arbitrage strategy, we would have V,,(0) = 0 and E(V,(T)) >
0, so

0 < E(V,(T)) < V,(0) = 0,

a contradiction.
6.4. We need to show that

(r +y(1)e" V(1) = re" V(1) + @p()y()D(, T),
that is
' Vy(t) = p()D(1, T),
in the pre-default region {# < 7}. The last equality holds because
D(t,T) = e """ VE(e™ V|F) = € OV, (1)

in {¢t < 7}, and

V()
Vo)

ep(u) =
6.5. By Proposition A.15, the joint density of the logarithmic return

S (1) 1,
RT)=In—==rt— =ot+ oWyt
(T) nS(O) r 20' oWy()
and its minimum min,eo 7 R(u) is

1 2(x-2y) 2(:d7) (o dery
o oe .

202T
o\2xT To?

Sy =

wheny < Oand y < x, and f(x,y) = O otherwise. According to
Example 6.17, the vulnerable call price can be computed as

H(0) = " TE(S(T) - K)*e™™)
— e_rTE((S (O)ER(T) _ K)+eminue[0.T] R([))
00 0AX
=T f ( f (S(0)e" - K)e' f(x, J’)dY) dx
1

K
n 3G —00

00 OAX
=7 f (S (0)e* — K) ( f & f(x, y)dy) dx.
In X _

K
50y ©

We shall compute H(0) in the case when in the case when K > S (0).
In this case the upper limit in the inner integral is simply 0, and this
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integral can be computed as follows:

e f(x,y)dy

fl
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Ja

2 (x 2y) 2»(r—;n’ ) B (2)‘—x+rT—%:r2T)2
— e 202T dy
(oa V
| f 2-2y) _(gn)’
= e 22 e<r2 — 2" 221 dy
2nT -0 O-ZT
1 _,(Hrzz)T o fﬂ d _(2> A—;U’ T) (2> A—fza— T) J
= — ¢ 22 ev — e 2027 2027 'y
a V27TT —00 dy
1 _z(,-,gzz)r s _(—r%;ﬂr)z _,(Hrzz)r %N(_)C - %O'ZT]
= ¢ 22 edle 2027 —e 2w e- _
o \2rT oNT
1 ( (,qu)r) T ”N(_x _ %O'ZT]
— 202T —e 22 eo? .
o V27r oNT
Hence, we get
00 0
f ( f e flx, y)dy) dx
In % -0
0 1 _(-**(*f%”z)r)z _rr=oHT d rx —-X — %(TZT
= - ¢ 2027 dx — e 22 e N| ——= |dx
n & o V2rT In <5 oVNT
N(ln S(O) +(l"— %O-Z)T) _,(,,(,-2)1 0'2 foo d ( ”)N(_x_%O-ZT
= —e 2 — 2
oNT r o dx oNT
In 32 + (r - %0'2) T _wowg? mdy (—Ingg —30°T
=N +¢ 202 —e & N|l—mMM———
o \/T r oNT
1.2
Hr=a2)T o0 wod -x— 50T
+e gl evz—N( 2 )dx
r Jnk  dx oNT
30)
N m3Q 4 (r=10)T) oy 2o (K P N In 32 — 12T
= + e 202
oNT S(0) oNT
rr=adr 0.2 00 - 1 _(7.&%”27)‘
—e 202 — e’ e 2027 dX
In 5 o \V2nT
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and so

o0 0
f ( f e f(x, y)dy) dx
In £~ \J -0

0 50y

0 o
:N[ln 50 +(r— %UZ)T]+6 to-car 0.2( K )lrz N[ln% - %O'ZT)

o NT r \S(0) oNT
0_2 00 1 (x ,T+Za—’r)
- e 2027 dx
n & o V21T

N lnS(O)+(r—%0'2)T Cwtr 2 [ K sz In32 - 1o2T
+ 202 — | —— - =
NT e SO -
o2 (i@ + (r - %0'2) T
TN
o NT

r
N} 1.2 = N 1 2
r_O.ZN[ln K +(r ZO—)T]+6 r(rz;rz)rol( K )”“N(IHT_EO- T)'

; T S(0)

We also get

00 0
f e’ ( f e f(x, y)dy) dx
In £ —00

S(0)

- (A_(,_ﬂ#)r) we (0w (—x—30°T
e w2 dx—e P e’ N| ————|dx
ns& o V2T I T

n 55 " 5o
i [ 1 )y _wedr o7 * ('*" )x —-x—10°T
=e e 2027 dx —e 27 5 e —— |dx
& o V2T r+o Al

d
d
S(0) 1.2
In e + (l" + EO' )T _r=adT 0-2 ’*"' )1" S((J) S(O) E T
+e 22
o\NT

1
=T o2 0 (’“’2) d —X = EO-ZT
o5 e L 220 gy
In K

erTN 2
r+ o

r+o? Jn & dx oNT
. In == S(O) + (I’ +1 )T et o2 K r:f In % - %O-ZT
=¢TN +e 22 e~ N|—————
oNT r+o2\S(0) oNT

—e 272 e 2 e 2027 dX

In 5 o N2nT

_rr=adT 0'2 foo (Ha'z),\ 1 ~ (,x,%(rzT)l

r+o?



46 Solutions to Exercises

and so
L[ e
ln% —0
nE2+(r+30?)T) w2 (K ne In2Q _ 1527
=€rTN +e 22 — | — N 2
oNT r+a2\S(0) oNT
2 0 er——(rT
_erTO——Zf 1 ( 2(;—%1 )dx
r+ o lnﬁ a—wlzﬂ-
. 1o? g SO _ 1.2
TN In =~ +(7‘+20')T +e,4’("2-(”22)7 o? K\~ N 1117—50' T
oNT r+ a2 \S(0) oNT
o O In 32 + /T + Lo?T
¢ r+0'2N T
o
f+(7'2
T N 1n5<0>+(,+%0.2)T .. o [ K\~ N In 20 _ 1527
o o NT - r+02\85(0) oNT :

It follows that in the case when K > S(0)

H@O)=e"T foo (S (0)e* - K) (f eyf(x,y)dy) dx
1 —00

nS(O)
)
In 22 S(O) +(r+ic?)T > 2 o In39 _ 1527
r 2 _rr=dhr g K o n o
ZN[ (3 A)T) | o ( ) N #)

— e—rTS (O) [erT

oNT r+02\S(0) oNT
e (MR (r=30?) T ewo?( K \F (IS - lo2T
- K N +e 202 —|—- N|l——=
r oNT r \S@Q) a\ﬁ
, ln$+(r+%0'2)T r— o2 lns(0)+(r—%0'2)T
=S(0)——=N -eTK N
r+o o\NT r o\NT

ot Gy (K \E (52 - LT
—K—— 7 27 N .
r(r+o?) S(0) o-«ﬁ

6.6. Since the discounted defaultable bond price process is a (G;)ro-
martingale,

H(t) = e"D(t,T) = E(e”" D(T, T)IG:) = B(e"" 117<1|G:)
for each ¢ € [0, T']. Hence, putting

h(t) = eirTl{T<t},
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we have
H(t) = ¢"'D(t,T) = E(h(7)|G)).
Next,

J(1) = "Bl h(7)IF7)

= " "E(lycre” Lr<r)|F7)

= e T E(l 7| F)

= e_rTer(t)E(E(l{T«J|TT)|Tt)

— efrTeF(t)E(efr(T)ly_ﬂt)

= e T VEG(T)IF).
This can be expressed in terms of the value V,(f) = ap(t)B(t,T) +
as (1)S (¢) of the admissible self-financing strategy (ap, as) replicat-

ing a derivative security with payoff G(T") and exercise time 7 in the
Black—Scholes model consisting of the assets B, S . Namely,

e "E(G(DIF) = Va(0),

o)
J(1) = e 0OV, (1),
6.7. We take
W) = X1irey,
so that
H(1) = E(XLi7)|G)) = E(W(D)IG)).
Moreover,

J(1) = "By i(7)|F7)
= " "E(1 < XLi7<r)|F7)
= " "E(X1 7<) F)
= " "EXEL 7<) F1)IF7)
= OEXe )
= OR(XG(T)IF)).
This can be expressed in terms of the value Vs(r) = B(0)B(,T) +

Bs(H)S () of the admissible self-financing strategy (85, 8s) replicat-
ing a derivative security with payoff XG(T') and exercise time 7 in
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the Black—Scholes model consisting of the assets B, S. Namely,
e TBXG(T)|F?) = Vp(0),
SO
J(t) = e T OVy(0).
Let (ap,as) and (Bp,Bs) be the admissible self-financing strategies
that replicate the derivative securities with exercise time 7 and pay-
off G(T') and, respectively, XG(T) in the Black—Scholes model con-
sisting of the assets B, S. From Exercise 6.7, for any ¢ € [0, T] we
have
h(t) = X1ir< =0,
J(t) = e T OVy(0).
By Theorem 6.20, tt follows that
eI (J(1) — (1))
FOV, (1)

20
Vo(t)'

@p(D)

Further,
eI (J(1) - h(r))

Vo(t)
Via(t
= 1jycqe'® (ﬁs () - Vﬁi t; as (f))

= 1<’ (Bs () — pp(Das (D) .

s (1) = 1<y (em)ﬁs () - as (t))

Finally,
@p(t) = h(t A7) — " T Vs (1)S (1)
= =5 (DS ().

These are the same formulae as (6.7), (6.8) and (6.11) in Section 6.3.
Since

D,(0,T) = DO, T) + V,(0),

where (@3, @s,¢p) is the strategy in Theorem 6.21, we just need to
compute V,(0). By Corollary 6.22,

Ve (0) = V5(0),
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where (83, 8s) is the strategy replicating the payoff E(h(7)|F ) with
h(t) = Lyery e ().

It follows that

Ve(0) = V5(0) = e TE(h(7))

. T
:e—rTE(f h(u)f(")d”):E(f ¢t (”)d”)'
0 0

The payoff of a zero-recovery defaultable bond with maturity S,
where 0 < S < T, is 1;5-,), which will grow to become e"7515_,,
at time 7 if invested in the non-defaultable bond at time S. Hence
we put

h(t) = er(T7S)1{5<t}.
The corresponding processes mi(t) and J(¢) are
m(1) = E(h(7)IF,)
= ' T VE1 5 |F7)
=T e Ny + & TIECET [ F) <)
and
J(0) = " VB h(DIF)
= " T VE1 eryLis < |F7)
= T VBN | F) s <y + €T VE 5 | F) 115
=T 5oy + TV VB |F) ).
By Theorem 6.20, for any ¢ € [0, S ], this gives
eI (J(1) = h()) e VE(eT)|F)
OV, (1) - Va(1)

Taking (85, 8s) to be the admissible self-financing strategy that repli-
cates the derivative security with payoff m(T) = ¢"7=5)¢™T®) and ex-
ercise time 7T in the Black—Scholes model consisting of the assets B
and S, we then obtain, for any ¢ € [0, S],

@s (1) = Lyce™ (Bs (1) — ep(Das (1)),
@) = h(t A7) — " TP (DS (1) = =" T 5 (DS (D),

which implies that

wsMB(, T) + ¢s(1)S (1) = 0.

ep(t) =
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It follows that
D(t,S) = V(1)

= pp()B(t,T) + s (DS (t) + ep()D(t, T)
e—r(S —t)E(e—F(S) |7_~t)

= D@, T
Va(2) D
e—r(S —t)E(e—F(S) |7_‘t)
= 1y OV, (1
Vo) ert€ " Vall)

= "M VB OIF)

for any ¢ € [0, S]. It is the same formula as (6.1) for D(¢,T), with T
replaced by S.

6.10. The payoff of a zero-recovery defaultable bond with maturity S,
where 0 < § < T, is 1is<r. Hence, by using Theorem 5.35, we
get

D, S) = e_r(s_')E(l{s |G
= e e VE(e |7

for any 7 € [0, S, that is, the same result as in Exercise 6.9.
6.11. The payoft of the defaultable bond is

Dy(T, T) = Lipery + Lirepye™ (1)
= D(T,T) + h(7),

where
h(t) = V<€ n().
It follows that
D,(0,T) = D(0,T) + ¢ E (h(1))

=D0O,T)+e¢'TE ( f ) h(u) f(u)du)

0

=DO,T)+eTE ( f ) L<rye ™ n(u) f(u)du)
0

T
=DO, T)+E (f e‘”‘n(u)f(u)du) .
0
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6.12. In Example 6.25 it is shown that
D0, T) = Fe™ ™" (1 = Fy(T)) + Re™" (1= e + e F(T))

T T
—ReT f e MdFy(f) + Fe T f e TNGF (1)
0 0

=ReT +(F=R) e T (1 — Fy(T))

T T
—ReT f e MdFy(f) + Fe T f e TINAE (1),
0 0

where
Fy(t) = N(di (1)) + L**N(d>(1))
with
Fe T
= <1,
V(0)
r—y-io?
T
(0 = lnL—(r—y— %0'2)1‘ o 'InL-ocat
1 O_\/; \/; )
() = hlL"‘(”_?’_ %0'2)1‘ o 'InL+oar
’ Y Vi

We use formula (A.1) in Exercise A.12 to compute the integrals with
respect to Fy(f). Namely,

T T T
f e YMdF,(t) = f e MdN(d, (1)) + L* f e MdN(d,(1))
0 0 0

T —a—-bt T —a+bt
:f e"dN( 4 )+e_2“bf e"dN( at ),
0 Vit 0 Vit

a=-0c"'lnL, b=ca, c=-A

where

We have a > 0 and d = Vb? — 2¢, where

b —2¢ =c%a* +21 >0,
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and formula (A.1) gives

T
f e MdF,(1)
0

- d+ be—a(b—d)N —a—dT N d- be“’(h+d)N —a+dT
2d \NT 2d T
re2a (420 o (44T L AHD icpra 29+ AT
_ ea(bd)N(—a - dT) N e“(’”d)N(_a + dT)
\ VT

~ L(,_‘/—azm,gzN(ln L-T+a?+ 24/(;2)
o\NT

+L“+WN[IHL+ T \a? + 2/1/0'2)
oNT '

We also have

T
f e HTGE (1)
0

T T
= f e WTNAN(, (1)) + LY f e BTNAN(dy(1))
0 0

— fTecth(_a_bt)+e—2ab fTecth(_a—ert)
0 Vi 0 Vi

where
a=-0c"'InL, b=o0aq, c=—A+r—vy).
We have @ > 0 and d = Vb? — 2¢, where
b2—2c:0'2a/2+2(/l+r—y)
1\
=0'_2(r—7—50'2) +2(l+r—7)
1\
:0'_2(}"—’}/4-50'2) + 24

=2 (@+1)*+21>0.
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Formula (A.1) gives
T
f e TIGF (1)
0

. ( —a- dT) by ( —a+ dT)

VT \T
_ LQ_WN(M— T\(a+1) +2A/az]
oNT
+LQ+WN(M+ T\(e+1) + msz
o NT
It follows that
D(0,T)
= Re™T + (F — R) ™77 (1 Y (—m L- ‘TZQT) _ [N (—m L+ (’2‘”))
oNT oNT
_ ReTLO (L‘ WN(lnL - T+a?+ 2/1/0-2]
oNT
. Lﬂ/—(,zm,gzN(lnL +T+Ja? + 24/02])
oNT
+ Fe*VTLa/ (L V(a/+1)2+2/1/0'2N(]nL -T \/(Q + ])2 + 2/1/O-2J
oNT
2
.\ LWN[InL+ Ty(a+1)7+ 2/1/02] ‘
oNT
Appendix A

A.l. Let a > 0, and take a sequence x, > 0 such that x, " a and so
F(x,) /" F(a.) as n — oo, Since

{a} = ﬁ(xn,a]
n=1

and (x,,41,a] C (x,, a] for each n, it follows that

ur(ta)) = Tim ur((xy,al) = Tim (F(@) = F(q)) = F(@ = F(a.).
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A.2. Using Exercise A.1, we obtain

ur(la,bl) = pr({a} U (a, b))
= ur({a}) + pr((a, b])
= (F(a) - F(a-)) + (F(b) - F(a))
= F(b) - F(a.)
since {a} N (a, b] = @. Next,
ur([a, b)) = pr(la, b1\ {b})
= ur(la, b)) — ur({b})

= (F(b) - F(a-)) — (F(b) - F(b))
= F(b_) - F(a.)

since {b} C [a, b]. Finally, if b > a, then {a} C [a, b) and so

ur((a,b)) = pr(la, b) \ {a})
= ur([a, b)) — ur(fa})
= (F(b-) — F(a-)) — (F(a) - F(a-))
= F(b_) - F(a).

A.3. To show that foreacha e R, b >0andy >0

f"de nx+a)_ iy Iny+a-b°
0 b b

we start by computing the derivative of the right-hand side with re-

spect to y:
i L oapy Iny +a— b? _ ptapy Iny +a - b? i
dy b b yb
1 o, —ifmee?) ]
— efb—ue z( b )
Var yb
1 _opa? 1
= e 2w —
V2r b
Iny+a)\l
=N -,
5);

which is clearly equal to the derivative of the left-hand side with
respect to y. Hence, the expressions on either side of the equality
differ just by a constant. To see that this constant is 0, hence the
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equality holds, observe that the right-limit as y N 0 of either side of
the equality is the same (namely 0).
In the same manner, we can show that

Y ~Inx+a 12 Iny—a— b?
g iy PEPTER) V] b At
[ (=) (=

Alternatively, this formula can be verified by using the equality al-
ready proved above:

) oo
_ _fo de(l“b“’)

12 Iny—a— b?
sb +a

= —e? N|————|.
‘ ( b )




