Credit Risk

Marek Capiński and Tomasz Zastawniak

Solutions to Exercises

Chapter 1

1.1. If $V(0)(1+U)(1+D) < F < V(0)(1+U)^2$, then

$$F = V(0)(1+U)^2 - \frac{1}{q^2}E(0)(1+R)^2.$$

If $V(0)(1+D)^2 < F < V(0)(1+U)(1+D)$, then

$$F = \frac{q^2 V(0)(1+U)^2 + 2q(1-q)V(0)(1+U)(1+D) - E(0)(1+R)^2}{q^2 + 2q(1-q)}.$$

The expected return on equity is 100.45%, and the standard deviation is 88.29%. For debt the corresponding values are 48.03% and 7.64%.

1.2. In the Black-Scholes model the value of a call option increases as a the volatility σ of the underlying asset increases, all other parameters being constant. This is because the partial derivative of the option price with respect to σ , i.e. the vega of the option is positive,

vega =
$$V(0)\sqrt{\frac{T}{2\pi}}e^{-d_+^2/2} > 0;$$

see [BSM]. Moreover, the value of a call option decreases if the strike price increases, all remaining parameters being constant.

As a result, since initial equity E(0) is the value of a call option with strike F, to keep E(0) fixed F must increase when σ increases. It follows that

$$k_D = \frac{1}{T} \ln \frac{F}{D(0)}$$

is an increasing function of σ .

For instance, for the data in Example 1.8 the value of k_D increases from 5.15% to 5.45% as σ increases from 30% to 35%.

1.3. For a company with $w_E = 40\%$ equity financing we obtain F =

63.5453 and compute the expected returns on equity and debt $\mu_E = 18.22\%$, $\mu_D = 5.38\%$.

For one with $w_E = 60\%$ equity financing, the corresponding values are F = 42.0571 and $\mu_E = 14.11\%$, $\mu_D = 5.13\%$.

- 1.4. For a company with 40% financing by equity we get $\sigma_E = 83.54\%$ and $\sigma_D = 3.18\%$. For one with 60% equity, $\sigma_E = 56.51\%$ and $\sigma_D = 0.35\%$.
- 1.5. From portfolio theory we have the formula

$$\sigma_V^2 = w_F^2 \sigma_F^2 + w_D^2 \sigma_D^2 + 2w_E w_D \sigma_E \sigma_E \rho_{ED}$$

for the variance of the return on the value of the company assets. It follows that the correlation between the returns on equity and debt can be written as

$$\rho_{ED} = \frac{\sigma_V^2 - w_E^2 \sigma_E^2 - w_D^2 \sigma_D^2}{2w_E w_D \sigma_E \sigma_E}.$$

Formulae for σ_E and σ_D are derived in Chapter 1. To use the formula

$$\sigma_V^2 = \mathbb{E}_P \left(\left(\frac{V(T) - V(0)}{D(0)} \right)^2 \right) - \mu_V^2$$
$$= \frac{\mathbb{E}_P(V(T)^2)}{V(0)^2} - \frac{2\mathbb{E}_P(V(T))}{V(0)} + 1 - \mu_V^2$$

for σ_V we find

$$\mathbb{E}_{P}(V(T)) = V(0)e^{(\mu - \frac{1}{2}\sigma^{2})T} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} e^{\sigma\sqrt{T}x} dx$$

$$= V(0)e^{(\mu - \frac{1}{2}\sigma^{2})T} e^{\frac{1}{2}\sigma^{2}T} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - \sigma\sqrt{T})^{2}} dx$$

$$= V(0)e^{\mu T}$$

and

$$\mathbb{E}_{P}(V(T)^{2}) = V(0)^{2} e^{(2\mu - \sigma^{2})T} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} e^{2\sigma\sqrt{T}x} dx$$

$$= V(0)^{2} e^{(2\mu - \sigma^{2})T} e^{2\sigma^{2}T} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - 2\sigma\sqrt{T})^{2}} dx$$

$$= V(0)^{2} e^{(2\mu + \sigma^{2})T}.$$

This makes it possible to compute the correlation for various levels

of the debt ratio w_D using the data from Example 1.9:

$$w_D$$
 0.8 0.7 0.6 0.5 0.4 0.3 ρ_{ED} 0.4162 0.3364 0.2359 0.1316 0.0496 0.0091

1.6. We start with the case when l = 1. In this case

$$d_{+}(T) = \frac{1}{2}\sqrt{T}\sigma, \quad d_{-}(T) = -\frac{1}{2}\sqrt{T}\sigma$$

and

$$\lim_{T\to 0}d_+(T)=\lim_{T\to 0}\frac{1}{2}\sqrt{T}\sigma=0,\quad \lim_{T\to 0}d_-(T)=-\lim_{T\to 0}\frac{1}{2}\sqrt{T}\sigma=0.$$

As a result,

$$\lim_{T \to 0} \left(N(-d_+(T)) + N(d_-(T)) \right) = N(0) + N(0) = \frac{1}{2} + \frac{1}{2} = 1$$

and

$$\lim_{T \to 0} \ln \left(N(-d_+(T)) + N(d_-(T)) \right) = 0.$$

It means that we can apply l'Hôpital's rule to compute the limit

$$\begin{split} \lim_{T \to 0} s(T) &= -\lim_{T \to 0} \frac{\frac{d}{dT} \left(\ln \left(N(-d_{+}(T)) + N(d_{-}(T)) \right) \right)}{\frac{d}{dT}(T)} \\ &= -\lim_{T \to 0} \frac{\frac{d}{dT} \left(N(-d_{+}(T)) + N(d_{-}(T)) \right)}{N(-d_{+}(T)) + N(d_{-}(T))} \\ &= -\lim_{T \to 0} \frac{d}{dT} \left(N(-d_{+}(T)) \right) - \lim_{T \to 0} \frac{d}{dT} \left(N(d_{-}(T)) \right) \\ &= \lim_{T \to 0} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}d_{+}(T)^{2}} \frac{1}{4\sqrt{T}} \sigma + \lim_{T \to 0} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}d_{-}(T)^{2}} \frac{1}{4\sqrt{T}} \sigma = \infty. \end{split}$$

Finally, we take l > 1. In this case

$$\lim_{T \to 0} d_+(T) = \lim_{T \to 0} \frac{-\ln l + \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}} = -\infty,$$

$$\lim_{T \to 0} d_-(T) = \lim_{T \to 0} \frac{-\ln l - \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}} = -\infty.$$

As a result,

$$\lim_{T \to 0} \ln \left(\frac{1}{l} N(-d_{+}(T)) + N(d_{-}(T)) \right) = \ln \frac{1}{l} = -\ln l$$

and

$$\lim_{T \to 0} s(T) = \lim_{T \to 0} \frac{-\ln\left(\frac{1}{l}N(-d_{+}(T)) + N(d_{-}(T))\right)}{T} = \infty$$

since the limit in the numerator is $\ln l$, a finite positive number, and the limit in the denominator is ∞ .

1.7. Default occurs when $L + \Pi(T) < F$. The probability of this event is

$$P(L + \Pi(T) < F) = P(X < a_2) = N(a_2).$$

1.8. Since,

$$D(T) = F \mathbf{1}_{\{L+\Pi(T) \geq F\}} + (L+\Pi(T)) \mathbf{1}_{\{0 \leq L+\Pi(T) < F\}}.$$

we have

$$\mathbb{E}_{P}(D(T)^{2}) = \mathbb{E}_{P}(F^{2}\mathbf{1}_{\{L+\Pi(T)\geq F\}} + (L+\Pi(T))^{2}\mathbf{1}_{\{0\leq L+\Pi(T)< F\}}).$$

Here $\Pi(T) = \frac{1}{q} (G(T) - G(0))$ and $G(T) = G(0)e^{(\mu - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}X}$, where X is a random variable with the standard normal distribution under the real-life probability P. When -qL + G(0) > 0, we get

$$\mathbb{E}_{P}(D(T)^{2}) = \mathbb{E}_{P}\left(F^{2}\mathbf{1}_{\{X\geq a_{2}\}} + \left(L - \frac{1}{q}G(0) + \frac{1}{q}G(T)\right)^{2}\mathbf{1}_{\{a_{1}\leq X< a_{2}\}}\right) \\
= F^{2}P\left(X \geq a_{2}\right) + \left(L - \frac{1}{q}G(0)\right)^{2}P\left(a_{1} \leq X < a_{2}\right) \\
+ \frac{2}{q}\left(L - \frac{1}{q}G(0)\right)G(0)\mathbb{E}_{P}\left(e^{\left(\mu - \frac{1}{2}\sigma^{2}\right)T + \sigma\sqrt{T}X}\mathbf{1}_{\{a_{1}\leq X< a_{2}\}}\right) \\
+ \frac{1}{q^{2}}G(0)^{2}\mathbb{E}_{P}\left(e^{\left(2\mu - \sigma^{2}\right)T + 2\sigma\sqrt{T}X}\mathbf{1}_{\{a_{1}\leq X< a_{2}\}}\right) \\
= F^{2}N(-a_{2}) + \left(L - \frac{1}{q}G(0)\right)^{2}\left(N(a_{2}) - N(a_{1})\right) \\
+ \frac{2}{q}\left(L - \frac{1}{q}G(0)\right)G(0)e^{\mu T}\left(N\left(a_{2} - \sigma\sqrt{T}\right) - N\left(a_{1} - \sigma\sqrt{T}\right)\right) \\
+ \frac{1}{q^{2}}G(0)^{2}e^{\left(2\mu + \sigma^{2}\right)T}\left(N\left(a_{2} - 2\sigma\sqrt{T}\right) - N\left(a_{1} - 2\sigma\sqrt{T}\right)\right),$$

where a_1 , a_2 are given by (1.5) and (1.6). When $-qL + G(0) \le 0$, the

inequality $0 \le L + \Pi(T)$ is always satisfied, and we get

$$\mathbb{E}_{P}\left(D(T)^{2}\right) = \mathbb{E}_{P}\left(F^{2}\mathbf{1}_{\{X\geq a_{2}\}} + \left(L - \frac{1}{q}G(0) + \frac{1}{q}G(T)\right)^{2}\mathbf{1}_{\{X< a_{2}\}}\right) \\
= F^{2}P\left(X \geq a_{2}\right) + \left(L - \frac{1}{q}G(0)\right)^{2}P\left(X < a_{2}\right) \\
+ \frac{2}{q}\left(L - \frac{1}{q}G(0)\right)G(0)\mathbb{E}_{P}\left(e^{\left(\mu - \frac{1}{2}\sigma^{2}\right)T + \sigma\sqrt{T}X}\mathbf{1}_{\{X< a_{2}\}}\right) \\
+ \frac{1}{q^{2}}G(0)^{2}\mathbb{E}_{P}\left(e^{\left(2\mu - \sigma^{2}\right)T + 2\sigma\sqrt{T}X}\mathbf{1}_{\{X< a_{2}\}}\right) \\
= F^{2}N(-a_{2}) + \left(L - \frac{1}{q}G(0)\right)^{2}N(a_{2}) \\
+ \frac{2}{q}\left(L - \frac{1}{q}G(0)\right)G(0)e^{\mu T}N\left(a_{2} - \sigma\sqrt{T}\right) \\
+ \frac{1}{q^{2}}G(0)^{2}e^{\left(2\mu + \sigma^{2}\right)T}N\left(a_{2} - 2\sigma\sqrt{T}\right).$$

Combining these formulae with (1.4) and (1.7) gives

$$\operatorname{Var}_P(D(T)) = \mathbb{E}_P(D(T)^2) - \mathbb{E}_P(D(T))^2.$$

1.9. For any positive integer n,

$$\{t \in [0,T] : V(t) \le Fe^{-\gamma(T-t)} + \frac{1}{n} \} \supseteq \{t \in [0,T] : V(t) \le Fe^{-\gamma(T-t)} + \frac{1}{n+1} \}$$

$$\supseteq \{t \in [0,T] : V(t) \le Fe^{-\gamma(T-t)} \},$$

hence

$$\tau_n \leq \tau_{n+1} \leq \tau$$
.

It follows that the non-decreasing sequence τ_n has a limit $\lim_{n\to\infty} \tau_n = \sigma$ and $\sigma \le \tau$. Since *V* has continuous paths,

$$V(\sigma) = \lim_{n \to \infty} V(\tau_n) = \lim_{n \to \infty} \left(F e^{-\gamma (T - \tau_n)} + \frac{1}{n} \right) = F e^{-\gamma (T - \sigma)},$$

which means that $\tau \leq \sigma$. As a result, $\tau = \sigma$. It remains to verify that $\tau_n < \tau$ for each n when $\tau < \infty$. Because V has continuous paths, for any positive integer n there is an $\varepsilon > 0$ (which may depend on $\omega \in \Omega$) such that

$$V(\tau - \varepsilon) \le V(\tau) + \frac{1}{n} = Fe^{-\gamma(T-\tau)} + \frac{1}{n}$$

which means that

$$\tau_n \leq \tau - \varepsilon < \tau$$
.

This shows that τ is a predictable stopping time.

1.10. The time T debt payoff is

$$F_{\mathbf{M}} \mathbf{1}_{\{V(T) \geq F_{\mathbf{M}}\}} + V(T) \mathbf{1}_{\{V(T) < F_{\mathbf{M}}\}}$$

in the Merton model, and

$$F_{\mathrm{B}}e^{(r-\gamma)(T-\tau)}\mathbf{1}_{\{\tau\leq T\}}+F_{\mathrm{B}}\mathbf{1}_{\{\tau>T\}}$$

in the barrier model. Hence

$$D(0) = e^{-rT} \mathbb{E}_{Q}(F_{\mathbf{M}} \mathbf{1}_{\{V(T) \ge F_{\mathbf{M}}\}} + V(T) \mathbf{1}_{\{V(T) < F_{\mathbf{M}}\}})$$

and

$$D(0) = e^{-rT} \mathbb{E}_{Q}(F_{\mathbf{B}} e^{(r-\gamma)(T-\tau)} \mathbf{1}_{\{\tau \le T\}} + F_{\mathbf{B}} \mathbf{1}_{\{\tau > T\}}).$$

It follows that

$$\begin{split} F_{\mathsf{M}} &\geq \mathbb{E}_{Q}(F_{\mathsf{M}}\mathbf{1}_{\{V(T)\geq F_{\mathsf{M}}\}} + V(T)\mathbf{1}_{\{V(T)< F_{\mathsf{M}}\}}) \\ &= \mathbb{E}_{Q}(F_{\mathsf{B}}e^{(r-\gamma)(T-\tau)}\mathbf{1}_{\{\tau\leq T\}} + F_{\mathsf{B}}\mathbf{1}_{\{\tau>T\}}) \\ &\geq F_{\mathsf{B}}\mathbb{E}_{Q}(\mathbf{1}_{\{\tau\leq T\}} + \mathbf{1}_{\{\tau>T\}}) \\ &= F_{\mathsf{B}}. \end{split}$$

1.11. When $\gamma = r + \frac{1}{2}\sigma^2$, we have

$$\alpha = \frac{1}{\sigma^2} \left(r - \gamma - \frac{1}{2} \sigma^2 \right) = -1,$$

$$\beta = -\sigma (\alpha + 1) = 0,$$

and

$$d_3 = \frac{\ln L + \sigma \beta T}{\sigma \sqrt{T}} = \frac{\ln L}{\sigma \sqrt{T}} = -\frac{a}{\sqrt{T}},$$
$$d_4 = \frac{\ln L - \sigma \beta T}{\sigma \sqrt{T}} = \frac{\ln L}{\sigma \sqrt{T}} = -\frac{a}{\sqrt{T}},$$

where

$$a = -\frac{\ln L}{\sigma}$$
.

The distribution function of τ is

$$Q(\tau \leq t) = N\left(\frac{-a + \sigma t}{\sqrt{t}}\right) + e^{2\sigma a}N\left(\frac{-a - \sigma t}{\sqrt{t}}\right),\,$$

and the left-hand side of (1.9) becomes

$$\begin{split} &\mathbb{E}_{Q}(e^{(\gamma-r)\tau}\mathbf{1}_{\{\tau\leq T\}}) \\ &= \mathbb{E}_{Q}(e^{\frac{1}{2}\sigma^{2}\tau}\mathbf{1}_{\{\tau\leq T\}}) \\ &= \int_{0}^{T} e^{\frac{1}{2}\sigma^{2}t}dQ(\tau\leq t) \\ &= \int_{0}^{T} e^{\frac{1}{2}\sigma^{2}t}dN\left(\frac{-a+\sigma t}{\sqrt{t}}\right) + e^{2\sigma a} \int_{0}^{T} e^{\frac{1}{2}\sigma^{2}t}dN\left(\frac{-a-\sigma t}{\sqrt{t}}\right). \end{split}$$

On the other hand, the right-hand side of (1.9) can be written as

$$L^{-1}N(d_3) + L^{2\alpha+1}N(d_4) = 2e^{\sigma a}N\left(-\frac{a}{\sqrt{T}}\right).$$

We compute and compare the derivatives of these two expressions with respect to T. We have

$$\begin{split} &\frac{d}{dT}\mathbb{E}_{\mathcal{Q}}(e^{(\gamma-r)\tau}\mathbf{1}_{\{\tau\leq T\}})\\ &=e^{\frac{1}{2}\sigma^{2}T}N'\left(\frac{-a+\sigma T}{\sqrt{T}}\right)\frac{a+\sigma T}{2\sqrt{T^{3}}}+e^{2\sigma a}e^{\frac{1}{2}\sigma^{2}T}N'\left(\frac{-a-\sigma T}{\sqrt{T}}\right)\frac{a-\sigma T}{2\sqrt{T^{3}}}\\ &=\frac{1}{\sqrt{2\pi}}e^{\frac{1}{2}\sigma^{2}T}e^{-\frac{(-a+\sigma T)^{2}}{2T}}\frac{a+\sigma T}{2\sqrt{T^{3}}}+\frac{1}{\sqrt{2\pi}}e^{2\sigma a}e^{\frac{1}{2}\sigma^{2}T}e^{-\frac{(-a-\sigma T)^{2}}{2T}}\frac{a-\sigma T}{2\sqrt{T^{3}}}\\ &=\frac{1}{\sqrt{2\pi}}e^{a\sigma}e^{-\frac{a^{2}}{2T}}\frac{a}{\sqrt{T^{3}}}. \end{split}$$

On the other hand.

$$\frac{d}{dT}\left(2e^{\sigma a}N\left(-\frac{a}{\sqrt{T}}\right)\right) = 2e^{\sigma a}N'\left(-\frac{a}{\sqrt{T}}\right)\frac{a}{2\sqrt{T^3}} = \frac{1}{\sqrt{2\pi}}e^{\sigma a}e^{-\frac{a^2}{2T}}\frac{a}{\sqrt{T^3}}.$$

We can see that these derivatives are the same, hence the left- and right-hand sides of (1.9) can differ only by a constant. To see that this constant is 0 we take the left-limit as $T \searrow 0$ on both sides of (1.9). The left-hand side of (1.9) clearly tends to 0. The right-hand side also tends to 0 because $-\frac{a}{\sqrt{T}}$ tends to $-\infty$ (since L < 1 so a = $-\frac{1}{\sigma} \ln L > 0$), and so $N\left(-\frac{a}{\sqrt{T}}\right)$ tends to 0. 1.12. According to Theorem 1.29,

$$D(0) = Fe^{-rT} \left(N(-d_1) - L^{2\alpha}N(d_2) \right) + V(0) \left(N(d_3) + L^{2\alpha+2}N(d_4) \right),$$

8

where

$$L = \frac{Fe^{-\gamma T}}{V(0)},$$

$$\alpha = \frac{r - \gamma - \frac{1}{2}\sigma^2}{\sigma^2},$$

and

$$d_{1} = \frac{\ln L - (r - \gamma - \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}} = \frac{\ln \frac{F}{V(0)} - (r - \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}},$$

$$d_{2} = \frac{\ln L + (r - \gamma - \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}} = \frac{\ln \frac{F}{V(0)} + (r - 2\gamma - \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}},$$

$$d_{3} = \frac{\ln L - (r - \gamma + \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}} = \frac{\ln \frac{F}{V(0)} - (r + \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}},$$

$$d_{4} = \frac{\ln L + (r - \gamma + \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}} = \frac{\ln \frac{F}{V(0)} + (r - 2\gamma + \frac{1}{2}\sigma^{2})T}{\sigma\sqrt{T}}.$$

To show that D(0) is a decreasing function of γ when the remaining parameters $F, V(0), r, \sigma, T$ are fixed, we shall show that the partial derivative of D(0) with respect to γ is negative. Since d_1 and d_2 do not depend on γ ,

$$\begin{split} \frac{\partial}{\partial \gamma} D(0) &= \frac{\partial}{\partial \gamma} \left(-F e^{-rT} L^{2\alpha} N\left(d_{2}\right) + V(0) L^{2\alpha+2} N\left(d_{4}\right) \right) \\ &= -F e^{-rT} \frac{\partial}{\partial \gamma} \left(L^{2\alpha} \right) N\left(d_{2}\right) + V(0) \frac{\partial}{\partial \gamma} \left(L^{2\alpha+2} \right) N\left(d_{4}\right) \\ &- F e^{-rT} L^{2\alpha} \frac{\partial}{\partial \gamma} N\left(d_{2}\right) + V(0) L^{2\alpha+2} \frac{\partial}{\partial \gamma} N\left(d_{4}\right). \end{split}$$

Observe that the expression in the last line is 0,

$$\begin{split} &-Fe^{-rT}L^{2\alpha}\frac{\partial}{\partial\gamma}N(d_{2})+V(0)L^{2\alpha+2}\frac{\partial}{\partial\gamma}N(d_{4})\\ &=-Fe^{-rT}L^{2\alpha}N'(d_{2})\frac{\partial d_{2}}{\partial\gamma}+V(0)L^{2\alpha+2}N'(d_{4})\frac{\partial d_{4}}{\partial\gamma}\\ &=-Fe^{-rT}L^{2\alpha}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}d_{2}^{2}}\left(-\frac{2\sqrt{T}}{\sigma}\right)+V(0)L^{2\alpha+2}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}d_{4}^{2}}\left(-\frac{2\sqrt{T}}{\sigma}\right)\\ &=\frac{2\sqrt{T}}{\sigma\sqrt{2\pi}}FL^{2\alpha}\left(e^{-rT}e^{-\frac{\left(\ln L+(r-\gamma-\frac{1}{2}\sigma^{2})T\right)^{2}}{2\sigma^{2}T}}-e^{-\gamma T}Le^{-\frac{\left(\ln L+(r-\gamma+\frac{1}{2}\sigma^{2})T\right)^{2}}{2\sigma^{2}T}}\right)\\ &=\frac{2\sqrt{T}}{\sigma\sqrt{2\pi}}FL^{2\alpha}e^{-\frac{\left(\ln L+rT-\gamma T\right)^{2}+\left(\frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}}\left(e^{-rT}e^{\frac{\ln L+rT-\gamma T}{2}}-e^{-\gamma T}Le^{-\frac{\ln L+rT-\gamma T}{2}}\right)\\ &=\frac{2\sqrt{T}}{\sigma\sqrt{2\pi}}FL^{2\alpha}e^{-\frac{\left(\ln L+rT-\gamma T\right)^{2}+\left(\frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}}\left(e^{\frac{\ln L-rT-\gamma T}{2}}-e^{\frac{\ln L-rT-\gamma T}{2}}\right)\\ &=0. \end{split}$$

Hence

$$\begin{split} \frac{\partial}{\partial \gamma}D(0) &= -Fe^{-rT}\frac{\partial}{\partial \gamma}\left(L^{2\alpha}\right)N\left(d_2\right) + V(0)\frac{\partial}{\partial \gamma}\left(L^{2\alpha+2}\right)N\left(d_4\right) \\ &= -Fe^{-rT}\left(\frac{\partial\left(2\alpha\right)}{\partial \gamma}L^{2a}\ln L + 2\alpha\frac{\partial L}{\partial \gamma}L^{2\alpha-1}\right)N\left(d_2\right) \\ &+ V(0)\left(\frac{\partial\left(2\alpha+2\right)}{\partial \gamma}L^{2\alpha+2}\ln L + \left(2\alpha+2\right)\frac{\partial L}{\partial \gamma}L^{2\alpha+1}\right)N\left(d_4\right) \\ &= \frac{2}{\sigma^2}Fe^{-rT}L^{2a}\left(\ln L + \left(r-\gamma-\frac{1}{2}\sigma^2\right)T\right)N\left(d_2\right) \\ &- \frac{2}{\sigma^2}V(0)L^{2a+2}\left(\ln L + \left(r-\gamma+\frac{1}{2}\sigma^2\right)T\right)N\left(d_4\right) \\ &= \frac{2}{\sigma^2}\left(\ln L + \left(r-\gamma\right)T\right)L^{2a}e^{-rT}F\left(N\left(d_2\right) - e^{\ln L + \left(r-\gamma\right)T}N\left(d_4\right)\right) \\ &- Fe^{-rT}L^{2a}TN\left(d_2\right) - V(0)L^{2a+2}TN\left(d_4\right) \\ &< \frac{2}{\sigma^2}\left(\ln L + \left(r-\gamma\right)T\right)L^{2a}e^{-rT}F\left(N\left(d_2\right) - e^{\ln L + \left(r-\gamma\right)T}N\left(d_4\right)\right). \end{split}$$

It remains to show that

$$N(d_2) - e^{\ln L + (r - \gamma)T} N(d_4) < 0.$$

With $x = \frac{\ln L + (r - \gamma)T}{\sigma \sqrt{T}}$ and $a = \frac{1}{2}\sigma \sqrt{T}$ this can be written as

$$N(x-a) - e^{2ax}N(x+a) < 0.$$

In fact, the last inequality holds for every $x \in \mathbb{R}$ and a > 0. This is so because the limit of the left-hand side as $x \to -\infty$ is 0, and the derivative with respect to x is negative,

$$\frac{d}{dx} \left(N(x-a) - e^{2ax} N(x+a) \right)$$

$$= N'(x-a) - e^{2ax} N'(x+a) - 2ae^{2ax} N(x+a)$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2}} - e^{2ax} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+a)^2}{2}} - 2ae^{2ax} N(x+a)$$

$$= \frac{1}{\sqrt{2\pi}} \left(e^{-\frac{x^2+a^2-2ax}{2}} - e^{2ax} e^{-\frac{x^2+a^2+2ax}{2}} \right) - 2ae^{2ax} N(x+a)$$

$$= -2ae^{2ax} N(x+a) < 0.$$

1.13. To show that D(0) is an increasing function of F when the remaining parameters γ , V(0), r, σ , T are fixed, we shall show that the partial derivative of D(0) with respect to F is negative. Differentiating the expression for D(0) in Theorem 1.29, we get

$$\begin{split} \frac{\partial}{\partial F}D(0) &= \frac{\partial}{\partial F} \left(Fe^{-rT} \left(N \left(-d_1 \right) - L^{2\alpha} N \left(d_2 \right) \right) + V(0) \left(N \left(d_3 \right) + L^{2\alpha + 2} N \left(d_4 \right) \right) \right) \\ &= e^{-rT} \left(N \left(-d_1 \right) - L^{2\alpha} N \left(d_2 \right) \right) \\ &+ Fe^{-rT} \left(\frac{\partial}{\partial F} N \left(-d_1 \right) - \frac{\partial L^{2\alpha}}{\partial F} N \left(d_2 \right) - L^{2\alpha} \frac{\partial}{\partial F} N \left(d_2 \right) \right) \\ &+ V(0) \left(\frac{\partial}{\partial F} N \left(d_3 \right) + \frac{\partial L^{2\alpha + 2}}{\partial F} N \left(d_4 \right) + L^{2\alpha + 2} \frac{\partial}{\partial F} N \left(d_4 \right) \right) \\ &= e^{-rT} \left(N \left(-d_1 \right) - L^{2\alpha} N \left(d_2 \right) \right) - Fe^{-rT} \frac{\partial L^{2\alpha}}{\partial F} N \left(d_2 \right) + V(0) \frac{\partial L^{2\alpha + 2}}{\partial F} N \left(d_4 \right) \\ &= e^{-rT} N \left(-d_1 \right) - \left(2\alpha + 1 \right) e^{-rT} L^{2\alpha} N \left(d_2 \right) + \left(2\alpha + 2 \right) \frac{V(0)}{F} L^{2\alpha + 2} N \left(d_4 \right) \\ &= e^{-rT} N \left(-d_1 \right) + \frac{V(0)}{F} L^{2\alpha + 2} N \left(d_4 \right) \\ &+ \left(2\alpha + 1 \right) \left(-e^{-rT} L^{2\alpha} N \left(d_2 \right) + \frac{V(0)}{F} L^{2\alpha + 2} N \left(d_4 \right) \right) \\ &> \left(2\alpha + 1 \right) \left(-e^{-rT} L^{2\alpha} N \left(d_2 \right) + \frac{V(0)}{F} L^{2\alpha + 2} N \left(d_4 \right) \right). \end{split}$$

This is because

$$\begin{split} Fe^{-rT} \frac{\partial}{\partial F} N \left(-d_1 \right) + V(0) \frac{\partial}{\partial F} N \left(d_3 \right) \\ &= -\frac{1}{\sigma \sqrt{2\pi T}} \left(e^{-rT} e^{-\frac{1}{2}d_1^2} - \frac{V(0)}{F} e^{-\frac{1}{2}d_3^2} \right) \\ &= -\frac{1}{\sigma \sqrt{2\pi T}} \left(e^{-rT} e^{-\frac{\left(\ln \frac{F}{V(0)} - rT + \frac{1}{2}\sigma^2 T \right)^2}{2\sigma^2 T}} - \frac{V(0)}{F} e^{-\frac{\left(\ln \frac{F}{V(0)} - rT - \frac{1}{2}\sigma^2 T \right)^2}{2\sigma^2 T}} \right) \\ &= -\frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{\left(\ln \frac{F}{V(0)} - rT \right)^2 + \left(\frac{1}{2}\sigma^2 T \right)^2}{2\sigma^2 T}} \left(e^{-rT} e^{-\frac{\ln \frac{F}{V(0)} + rT}{2}} - e^{-\ln \frac{F}{V(0)}} e^{\frac{\ln \frac{F}{V(0)} - rT}{2}} \right) \\ &= 0 \end{split}$$

and

$$\begin{split} &-Fe^{-rT}L^{2\alpha}\frac{\partial}{\partial F}N\left(d_{2}\right)+V(0)L^{2\alpha+2}\frac{\partial}{\partial F}N\left(d_{4}\right)\\ &=\frac{1}{\sigma\sqrt{2\pi T}}L^{2\alpha}\left(-e^{-rT}e^{-\frac{1}{2}d_{2}^{2}}+\frac{V(0)}{F}L^{2}e^{-\frac{1}{2}d_{4}^{2}}\right)\\ &=\frac{1}{\sigma\sqrt{2\pi T}}L^{2\alpha}\left(-e^{-rT}e^{-\frac{\left(\ln\frac{F}{V(0)}-2\gamma T+rT-\frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}}+\frac{V(0)}{F}L^{2}e^{-\frac{\left(\ln\frac{F}{V(0)}-2\gamma T+rT+\frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}}\right)\\ &=\frac{1}{\sigma\sqrt{2\pi T}}L^{2\alpha}e^{-\frac{\left(\ln\frac{F}{V(0)}-2\gamma T+rT\right)^{2}+\left(\frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}}\left(-e^{-rT}e^{\frac{\ln\frac{F}{V(0)}-2\gamma T+rT}{2}}+e^{\ln\frac{F}{V(0)}-2\gamma T}e^{-\frac{\ln\frac{F}{V(0)}+2\gamma T-rT}{2}}\right)\\ &=0. \end{split}$$

Next, putting $x = \frac{\ln \frac{F}{V(0)} - 2\gamma T + rT}{\sigma \sqrt{T}}$ and $a = \frac{1}{2}\sigma \sqrt{T}$, we can write

$$\begin{split} \frac{\partial}{\partial F} D(0) &> (2\alpha + 1) \left(-e^{-rT} L^{2\alpha} N(d_2) + \frac{V(0)}{F} L^{2\alpha + 2} N(d_4) \right) \\ &= (2\alpha + 1) L^{2\alpha} e^{-rT} \left(-N(x - a) + e^{2ax} N(x + a) \right) \\ &> 0. \end{split}$$

where the inequality

$$-N(x-a) + e^{2ax}N(x+a) > 0$$

was proved in Solution 1.12. Hence, we have demonstrated that $\frac{\partial D(0)}{\partial F} > 0$, which shows that D(0) increases as F increases (with the other parameters fixed).

1.14. According to Theorems 1.29 and 1.30,

$$\begin{split} D(0) &= F e^{-rT} \left(N(-d_1) - L^{2\alpha} N(d_2) \right) + V(0) \left(N(d_3) + L^{2\alpha + 2} N(d_4) \right), \\ E(0) &= V(0) \left((N(-d_3) - L^{2\alpha + 2} N(d_4) \right) - e^{-rT} F \left(N(-d_1) - L^{2\alpha} N(d_2) \right), \end{split}$$

where

$$d_1 = \frac{\ln \frac{F}{V(0)} - \left(r - \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}},$$

$$d_2 = \frac{\ln \frac{F}{V(0)} + \left(r - 2\gamma - \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}},$$

$$d_3 = \frac{\ln \frac{F}{V(0)} - \left(r + \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}}$$

$$d_4 = \frac{\ln \frac{F}{V(0)} + \left(r - 2\gamma + \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}}$$

Hence, in the limit as $\gamma \to \infty$ we have $d_2 \to -\infty$ and $d_4 \to -\infty$, and so $N(d_2) \to 0$ and $N(d_4) \to 0$. It follows that

$$D(0) \to Fe^{-rT}N(-d_1) + V(0)N(d_3),$$

 $E(0) \to V(0)N(-d_3) - e^{-rT}FN(-d_1)$

as $\gamma \to \infty$, which is consistent with the formulae for the Merton model in Section 1.2.

1.15. Consider the function of two variables

$$\Phi(F,\gamma) = F e^{-rT} \left(N \left(-d_1 \right) - L^{2\alpha} N \left(d_2 \right) \right) + V(0) \left(N \left(d_3 \right) + L^{2\alpha + 2} N \left(d_4 \right) \right),$$

where $L, \alpha, d_1, d_2, d_3, d_4$ (which also depend on F, γ) are given in Solution 1.12, with the parameters $V(0), r, \sigma, T$ fixed. According to Theorem 1.29,

$$\Phi(F, \gamma) = D(0).$$

In Exercises 1.12 and 1.13 we saw that

$$\frac{\partial \Phi}{\partial \gamma} < 0$$
 and $\frac{\partial \Phi}{\partial F} > 0$.

Now consider F as a function of γ such that

$$\Phi(F(\gamma), \gamma) = D(0)$$

for a fixed value of D(0). It follows that

$$\frac{dF}{d\gamma}\frac{\partial\Phi}{\partial F} + \frac{\partial\Phi}{\partial\gamma} = 0,$$

hence

$$\frac{dF}{d\gamma} = -\frac{\frac{\partial \Phi}{\partial \gamma}}{\frac{\partial \Phi}{\partial F}} > 0.$$

This means that F, and therefore $s = \frac{1}{T} \ln \frac{F}{D(0)} - r$, is an increasing function of γ when the parameters D(0), V(0), r, σ , T are fixed.

Chapter 2

2.1. If $\bar{\tau}$ is defined as $\bar{\tau}(\omega) = \sup\{t \ge 0 : F(t) < \omega\}$, then

$$\{\bar{\tau} \le t\} = \{\omega \in [0, 1] : \tau(\omega) \le t\} = [0, F(t)].$$

It follows that

$$P(\bar{\tau} \le t) = m([0, F(t)]) = F(t),$$

hence τ and $\bar{\tau}$ have the same probability distribution.

2.2. For any $a \in [0, 1)$ take $b = F(a) = 1 - e^{-\lambda a}$. Then

$$[0,a] = \{\bar{\tau} \le b\} \in \sigma(\bar{\tau}).$$

Because the intervals [0,a] for $a \in [0,1)$ generate the σ -field of Borel sets in [0,1], it follows that $\sigma(\bar{\tau})$ contains all such Borel sets.

Next, for any $b \ge 0$ take $a = \bar{\tau}(b) = -\frac{1}{4} \ln(1-b)$. Then

$$\{\bar{\tau} \leq b\} = [0,a]$$

is a Borel set on [0,1]. Because sets of the form $\{\bar{\tau} \leq b\}$ for $b \geq 0$ generate the σ -field $\sigma(\bar{\tau})$, it follows that $\sigma(\bar{\tau})$ is contained in the family of Borel sets in [0,1].

We conclude that $\sigma(\bar{\tau})$ is equal to the family of Borel sets in [0, 1].

2.3. The expected default time within the 20-year period is

$$\mathbb{E}(\tau \mathbf{1}_{\{\tau \leq 20\}}) = \int_0^{20} t \lambda e^{-\lambda t} dt = -20e^{-20\lambda} - \frac{1}{\lambda}e^{-20\lambda} + \frac{1}{\lambda}.$$

If 10 companies have been observed over 20 years, among which 2 companies defaulted in year 5 and 3 companies defaulted in year 12,

then an estimate of the expected default time $\tau \mathbf{1}_{\{\tau \leq 2\}}$ within the 20 year period is

$$\frac{2}{10} \times 5 + \frac{3}{10} \times 12 = 4.6.$$

This gives

$$-20e^{-20\lambda} - \frac{1}{\lambda}e^{-20\lambda} + \frac{1}{\lambda} = 4.6.$$

Solving this equation numerically, we get $\lambda = 0.19626$.

For this value of λ we can compute the probability that a given company will survive beyond 5 years as

$$P(5 < \tau) = e^{-5\lambda} = e^{-5 \times 0.19626} = 0.37482.$$

The expected time of default is

$$\mathbb{E}(\tau) = \frac{1}{\lambda} = \frac{1}{0.19626} = 5.0953.$$

2.4. Since

$$\{\tau \le t\} = \{I(t) = 1\} \in \mathcal{I}_t$$

for each $t \ge 0$, it follows that τ is a stopping time with respect to the filtration $(I_t)_{t\ge 0}$.

Now suppose that τ is a stopping time with respect to some filtration $(\mathcal{F}_t)_{t\geq 0}$. It means that $\{\tau \leq s\} \in \mathcal{F}_s \subset \mathcal{F}_t$ and therefore also $\{s < \tau\} \in \mathcal{F}_t$ for each $s \in [0,t]$. This in turn means that I(s) is \mathcal{F}_t -measurable for each $s \in [0,t]$. Because I_t is the smallest σ -field such that I(s) is I_t -measurable for each $s \in [0,t]$, it follows that $I_t \subset \mathcal{F}_t$ for each $t \geq 0$.

This proves that $(I_t)_{t\geq 0}$ is the smallest filtration with respect to which τ is a stopping time.

2.5. The random variable I(t) can take two values only, namely 1 or 0. We have

$${I(t) = 1} = {\tau \le t},$$

 ${I(t) = 0} = {t < \tau}.$

It follows that the σ -field $\sigma(I(t))$ consist of four events \emptyset , Ω , $\{\tau \le t\}$, $\{t < \tau\}$ when t > 0. For t = 0 we have $\{\tau \le 0\} = \emptyset$ and $\{0 < \tau\} = \Omega$, so $\sigma(I(0))$ consists of just two events \emptyset , Ω .

2.6. Take a sequence of sets $B_1, B_2, \ldots \in \mathcal{D}_1$. By the definition of the family \mathcal{D}_1 , each of these sets is of the form $B_n = A_n \cap \{\tau \leq t\}$ for

some $A_n \in \sigma(\tau)$, where n = 1, 2, Then $A_1 \cup A_2 \cup \cdots \in \sigma(\tau)$, hence

$$B_1 \cup B_2 \cup \cdots = (A_1 \cup A_2 \cup \cdots) \cap \{\tau \leq t\} \in \mathcal{D}_1.$$

Similarly, for a sequence of sets $B_1, B_2, \ldots \in \mathcal{D}_2$, which by the definition of \mathcal{D}_2 are of the form $B_n = A_n \cup \{t < \tau\}$, where $A_n \in \sigma(\tau)$ for each $n = 1, 2, \ldots$, we have $A_1 \cup A_2 \cup \cdots \in \sigma(\tau)$, and so

$$B_1 \cup B_2 \cup \cdots = (A_1 \cup A_2 \cup \cdots) \cup \{t < \tau\} \in \mathcal{D}_2.$$

2.7. Suppose that $C_1, C_2, \ldots \in \mathcal{D}$. By the definition of \mathcal{D} , we have $C_n \cap \{\tau \leq t\} \in I_t$ for each $n = 1, 2, \ldots$. Then

$$(C_1 \cap C_2 \cap \cdots) \cap \{\tau \leq t\} = (C_1 \cap \{\tau \leq t\}) \cap (C_2 \cap \{\tau \leq t\}) \cap \cdots \in \mathcal{I}_t,$$

which means that $C_1 \cap C_2 \cap \cdots \in \mathcal{D}$.

2.8. Take any $s \in \mathbb{R}$. Then $\{\tau \land t \le s\} = \Omega \in I_t$ if $t \le s$, and $\{\tau \land t \le s\} = \{\tau \le s\}$ if t > s. In either case $\{\tau \land t \le s\} \in I_t$. Because the sets $\{\tau \land t \le s\}$ for $s \in \mathbb{R}$ generate the σ -field $\sigma(\tau \land t)$, it follows that $\sigma(\tau \land t) \subset I_t$. Moreover, since $\{t < \tau\} \in I_t$, it follows that

$$\sigma(\{t < \tau\}, \sigma(\tau \wedge t)) \subset I_t$$
.

Now suppose that \mathcal{G} is a σ -field such that $\{t < \tau\} \in \mathcal{G}$ and $\sigma(\tau \wedge t) \subset \mathcal{G}$. We will show that $\{\tau \leq s\} \in \mathcal{G}$ for every $s \in [0,t]$. Because I_t is the smallest σ -field containing $\{\tau \leq s\}$ for every $s \in [0,t]$, this implies that $I_t \subset \mathcal{G}$. Hence I_t is the smallest σ -field such that $\{t < \tau\} \in I_t$ and $\sigma(\tau \wedge t) \subset I_t$. As a result,

$$\sigma(\{t < \tau\}, \sigma(\tau \wedge t)) = I_t.$$

It remains to show that $\{\tau \le s\} \in \mathcal{G}$ for every $s \in [0, t]$. If $s \in [0, t)$, then $\{\tau \le s\} = \{\tau \land t \le s\} \in \mathcal{G}$ since $\sigma(\tau \land t) \subset \mathcal{G}$. For s = t we have $\{\tau \le t\} \in \mathcal{G}$ since $\{t < \tau\} \in \mathcal{G}$, which completes the argument.

2.9. By Corollary 2.20, $I_t \subset \sigma(\tau)$ for each $t \geq 0$, so $I_\infty \subset \sigma(\tau)$.

We are going to show that $\{\tau \leq t\} \in I_{\infty}$ for every $t \in \mathbb{R}$. Indeed, $\{\tau \leq t\} = \emptyset \in I_{\infty}$ for any t < 0, and $\{\tau \leq t\} \in I_{t} \subset I_{\infty}$ for any $t \geq 0$. Because $\sigma(\tau)$ is the smallest σ -field containing the sets $\{\tau \leq t\}$ for all $t \in \mathbb{R}$, it follows that $\sigma(\tau) \subset I_{\infty}$.

We have proved that $\sigma(\tau) = I_{\infty}$.

2.10. Let 0 < t < u. Then, clearly, $\{t < \tau \le u\} \in \sigma(\tau)$. However, since $\{t < \tau\}$ is an atom in \mathcal{I}_t containing $\{t < \tau \le u\}$ and (under the assumptions adopted in Chapter 2) $\{t < \tau \le u\}$ is non-empty and differs from $\{t < \tau\}$, it follows that $\{t < \tau \le u\} \notin \mathcal{I}_t$.

2.11. Since σ is a stopping time with respect to the filtration $(\mathcal{I}_t)_{t\geq 0}$ and $0 \leq \sigma \leq T$, it follows that $\sigma = \sigma \wedge T$ is \mathcal{I}_T -measurable, hence by Proposition 2.22 it can be written as

$$\sigma = \eta(\tau) \mathbf{1}_{\{\tau < T\}} + c \mathbf{1}_{\{T < \tau\}}$$

for some Borel function $\eta : \mathbb{R} \to \mathbb{R}$ and some constant $c \in \mathbb{R}$. Since $0 \le \sigma \le T$, we have $c \in [0, T]$.

Now suppose that $\tau \land c \leq \sigma$ does not hold, that is, the set $\{\sigma < \tau \land c\}$ is non-empty. Then there is a $t \in \mathbb{R}$ such that $\{\sigma \leq t\} \cap \{t < \tau\} \supset \{\sigma \leq t < \tau \land c\}$ is non-empty. Because $\{\sigma \leq t\} \in I_t$ and $\{t < \tau\}$ is an atom in I_t , it follows that $\{t < \tau\} \subset \{\sigma \leq t\}$. Since $t < c \leq T$, we therefore have $\{T < \tau\} \subset \{t < \tau\} \subset \{\sigma \leq t\} \subset \{\sigma < c\}$. But $\sigma = c$ on the non-empty set $\{T < \tau\}$, a contradiction, which proves that $\tau \land c \leq \sigma$.

Finally, suppose that $c < \sigma$ on $\{c < \tau\}$, that is, $\{c < \sigma\} \cap \{c < \tau\}$ is non-empty. Because $\{c < \sigma\} \in I_c$ and $\{c < \tau\}$ is an atom in I_c , it follows that $\{c < \tau\} \subset \{c < \sigma\}$. But this is impossible because $c \le T$, so $\{T < \tau\} \subset \{c < \tau\} \subset \{c < \sigma\}$ and $\sigma = c$ on the non-empty set $\{T < \tau\}$. It proves that $\sigma \le c$ on $\{c < \tau\}$. Because $\tau \land c \le \sigma$, it follows that $\sigma = c$ on $\{c < \tau\}$.

- 2.12. By definition, the σ -field I_{σ} consists of all events $A \subset \Omega$ such that $A \cap \{\sigma \leq t\} \in I_t$ for each $t \geq 0$. From Exercise 2.11 we know that there is a deterministic constant $c \in [0,T]$ such that $\tau \wedge c \leq \sigma$ and $\sigma = c$ on $\{c < \tau\}$. It follows that $\{\sigma < \tau\} = \{c < \tau\}$. It also follows that $\{c < \tau\} \cap \{\sigma \leq t\} = \emptyset \in I_t$ if t < c, and $\{c < \tau\} \cap \{\sigma \leq t\} = \{c < \tau\} \in I_c \subset I_t$ if $c \leq t$. This means that $\{c < \tau\} \in I_\sigma$. Now suppose that $A \in I_\sigma$ and $A \subset \{c < \tau\}$. Since $\{c < \tau\} \subset \{\sigma \leq c\}$, we have $A = A \cap \{\sigma \leq c\} \in I_c$. Because $\{c < \tau\}$ is an atom in I_c , we therefore have $A = \emptyset$ or $A = \{c < \tau\}$, proving that $\{c < \tau\}$ is an atom in I_σ .
- 2.13. Let $\varphi = (\varphi_B, \varphi_D)$ be a strategy such that there is a sequence $0 = \sigma_0 < \sigma_1 < \cdots < \sigma_n = T$ of $(\mathcal{I}_t)_{t \ge 0}$ -stopping times with the following properties:
 - (i) the processes $\varphi_B(t)$, $\varphi_D(t)$ are constant on $(\sigma_{k-1}, \sigma_k]$ for each k = 1, ..., n;
 - (ii) the random variables $\varphi_B(\sigma_k)$, $\varphi_D(\sigma_k)$ are $\mathcal{I}_{\sigma_{k-1}}$ -measurable for each $k = 1, \ldots, n$, and $\varphi_B(0)$, $\varphi_D(0)$ are \mathcal{I}_0 -measurable.

Moreover, suppose that the strategy satisfies the self-financing con-

dition

$$V_{\varphi}(\sigma_k) = \varphi_B(\sigma_{k+1})B(\sigma_k, T) + \varphi_D(\sigma_{k+1})D(\sigma_k, T)$$

for each k = 0, ..., n - 1, where

$$V_{\varphi}(t) = \varphi_B(t)B(t,T) + \varphi_D(t)D(t,T)$$

is the value of the strategy at any time $t \in [0, T]$.

We are going to show that if $V_{\varphi}(0) = 0$ and $V_{\varphi}(T) \neq 0$ with positive probability, then $V_{\varphi}(T) > 0$ with positive probability and $V_{\varphi}(T) < 0$ with positive probability, proving that arbitrage is impossible to achieve using this kind of strategy.

Take the smallest k such that $V_{\varphi}(\sigma_k) \neq 0$ on a set of positive probability. Clearly, such k exists because $V_{\varphi}(T) \neq 0$ with positive probability. We have k > 1 because $V_{\varphi}(0) = 0$. The self-financing condition at time σ_{k-1} gives

$$0 = V_{\varphi}(\sigma_{k-1}) = \varphi_B(\sigma_k)B(\sigma_{k-1}, T) + \varphi_D(\sigma_k)D(\sigma_{k-1}, T).$$

On $\{\tau \leq \sigma_{k-1}\}$ we therefore have $\varphi_B(\sigma_k) = 0$ because $D(\sigma_{k-1}, T) = 0$. Since $\varphi_B(\sigma_k)$ is $I_{\sigma_{k-1}}$ -measurable, it must be constant on $\{\sigma_{k-1} < \tau\}$, which is an atom in $I_{\sigma_{k-1}}$ according to Exercise 2.12. This constant must be non-zero or else $\varphi_B(\sigma_k) = 0$, hence $\varphi_D(\sigma_k) = 0$ and so $V_{\varphi}(\sigma_k) = 0$ everywhere, contradicting the choice of k. There are two possibilities:

Case 1: $\varphi_B(\sigma_k) > 0$ on $\{\sigma_{k-1} < \tau\}$.

On $\{\sigma_{k-1} < \tau \le \sigma_k\}$ we have $D(\sigma_k,T) = 0$, and it follows that $V_{\varphi}(\sigma_k) = \varphi_B(\sigma_k)B(\sigma_k,T) > 0$. For all later times the defaultable bonds remain worthless, so the value of the strategy must remain positive on $\{\sigma_{k-1} < \tau \le \sigma_k\}$. In particular, $V_{\varphi}(T) > 0$ on the event $\{\sigma_{k-1} < \tau \le \sigma_k\}$, which we can show to have positive probability. Indeed, according to Exercise 2.11, there are deterministic constants $c_{k-1}, c_k \in [0, T]$ such that $\sigma_i \ge \tau$ on $\{\tau \le c_i\}$ and $\sigma_i = c_i$ on $\{c_i < \tau\}$ for i = k - 1, k. From Exercise 2.12 it follows that $\{\sigma_{k-1} < \tau\} = \{c_{k-1} < \tau\}$ and $\{\sigma_k < \tau\} = \{c_k < \tau\}$. By taking complements, we can write the last equality as $\{\tau \le \sigma_k\} = \{\tau \le c_k\}$. As a result, we have $\{\sigma_{k-1} < \tau \le \sigma_k\} = \{c_{k-1} < \tau \le c_k\}$ has positive probability in view of the assumptions about τ adopted in Chapter 2.

On $\{\sigma_k < \tau\}$ the long position $\varphi_B(\sigma_k) > 0$ in non-defaultable bonds is balanced by the short position $\varphi_D(\sigma_k) = -\frac{B(\sigma_{k-1},T)}{D(\sigma_{k-1},T)}\varphi_B(\sigma_k) < 0$

in defaultable bonds so that $V_{\varphi}(\sigma_{k-1})=0$ at time σ_{k-1} . Prior to a default the defaultable bond grows faster than the non-defaultable one, so at time σ_k the long position will become dominated by the short one, hence $V_{\varphi}(\sigma_k)<0$ on $\{\sigma_k<\tau\}$. If k=n, then $\sigma_k=T$, so $V_{\varphi}(T)<0$ on the set $\{T<\tau\}$ of positive probability. If k< n, then by the self-financing condition $\varphi_B(\sigma_{k+1})B(\sigma_k,T)=V_{\varphi}(\sigma_k)<0$ on the event $\{\sigma_k<\tau\leq\sigma_{k+1}\}$, so $\varphi_B(\sigma_{k+1})<0$ and $V_{\varphi}(\sigma_{k+1})=\varphi_B(\sigma_{k+1})B(\sigma_{k+1},T)<0$ on $\{\sigma_k<\tau\leq\sigma_{k+1}\}$. For all times later than σ_{k+1} the defaultable bonds remain worthless, hence the value of the strategy must remain negative on the event $\{\sigma_k<\tau\leq\sigma_{k+1}\}$. In particular, $V_{\varphi}(T)<0$ on $\{\sigma_k<\tau\leq\sigma_{k+1}\}$, which we have shown to have positive probability. This completes the argument in Case 1.

Case 2:
$$\varphi_B(\sigma_k) < 0$$
 on $\{\sigma_{k-1} < \tau\}$.

Taking the self-financing simple strategy $-\varphi(t) = (-\varphi_B(t), -\varphi_D(t))$ for $t \in [0, T]$ reduces this to Case 1.

2.14. For any *t* ∈ $(-\infty, 0)$

$$\begin{split} F_{\mathcal{Q}}(t) &= Q(\bar{\tau} \leq t) = Q(\tau \leq t) = 0, \\ G_{\mathcal{Q}}(t) &= 1 - F_{\mathcal{Q}}(t) = 1, \\ \Gamma_{\mathcal{Q}}(t) &= -\ln G_{\mathcal{Q}}(t) = 0. \end{split}$$

For any $t \in [0, T]$

$$\begin{split} F_{Q}(t) &= Q(\bar{\tau} \le t) = Q(\tau \le t) = 1 - e^{-g(0) + g(t)} = 1 - e^{-\lambda t}, \\ G_{Q}(t) &= 1 - F_{Q}(t) = e^{-\lambda t}, \\ \Gamma_{O}(t) &= -\ln G_{O}(t) = \lambda t. \end{split}$$

For any $t \in (T, \infty)$

$$F_{Q}(t) = Q(\bar{\tau} \le t) = 1 - Q(t < \bar{\tau}) = 1 - Q(T < \tau) = 1 - e^{-\lambda T},$$

 $G_{Q}(t) = 1 - F_{Q}(t) = e^{-\lambda T},$
 $\Gamma_{O}(t) = -\ln G_{O}(t) = \lambda T.$

Chapter 3

3.1. For
$$r = 0.05$$
, $T_0 = 0$, $T_1 = \frac{1}{2}$, $T_2 = \frac{3}{4}$, $T_3 = 1$ and $D(0, T_0) = 1$, $D(0, T_1) = 0.9268$, $D(0, T_2) = 0.8487$, $D(0, T_3) = 0.7635$ we obtain

the following piecewise linear expression for D(0, T):

$$D(0,T) = \begin{cases} \frac{T_1 - T}{T_1 - T_0} D(0, T_0) + \frac{T - T_0}{T_1 - T_0} D(0, T_1) & \text{for } T_0 \leq T \leq T_1, \\ \frac{T_2 - T}{T_2 - T_1} D(0, T_1) + \frac{T - T_1}{T_2 - T_1} D(0, T_2) & \text{for } T_1 < T \leq T_2, \\ \frac{T_3 - T}{T_3 - T_2} D(0, T_2) + \frac{T - T_2}{T_3 - T_2} D(0, T_3) & \text{for } T_2 < T \leq T_3. \end{cases}$$

$$= \begin{cases} 1 - 0.1464T & \text{for } 0 \leq T \leq \frac{1}{2}, \\ 1.083 - 0.3124T & \text{for } \frac{1}{2} < T \leq \frac{3}{4}, \\ 1.1043 - 0.3408T & \text{for } \frac{3}{4} < T \leq 1. \end{cases}$$

Since

$$D(0,T) = e^{-rT}e^{-\Gamma(T)},$$

we have

$$\Gamma(T) = -rT - \ln D(0, T)$$

and

$$\begin{split} \gamma(T) &= \frac{d\Gamma(T)}{dT} = -r - \frac{1}{D(0,T)} \frac{dD(0,T)}{dT} \\ &= \begin{cases} -0.05 + \frac{0.1462}{1-0.1464T} & \text{for } 0 \leq T \leq \frac{1}{2}, \\ -0.05 + \frac{0.3124}{1.083-0.3124T} & \text{for } \frac{1}{2} < T \leq \frac{3}{4}, \\ -0.05 + \frac{0.3408}{1.1043-0.3408T} & \text{for } \frac{3}{4} < T \leq 1. \end{cases} \end{split}$$

3.2. If τ is exponentially distributed under Q with parameter λ , then

$$F(T) = 1 - e^{-\lambda T}.$$

On the other hand,

$$F(T) = 1 - e^{rT}D(0, T).$$

Hence

$$\lambda = -\frac{1}{T} \ln D(0, T) - r = -\frac{1}{\frac{1}{2}} \ln 0.9133 - 0.05 = 0.1314.$$

We can now compute

$$D(0, \frac{1}{4}) = e^{-\frac{1}{4}r}Q(\frac{1}{4} < \tau) = e^{-\frac{1}{4}(r+\lambda)} = e^{-\frac{1}{4}(0.05+0.1314)} = 0.9557.$$

3.3. With $T_1 = \frac{1}{2}$, $T_2 = 1$ and $D(0, T_1) = 0.8679$, $D(0, T_2) = 0.7055$, the system of equations

$$aT_1^2 + bT_1 = -\ln D(0, T_1) - rT_1,$$

$$aT_2^2 + bT_2 = -\ln D(0, T_2) - rT_2,$$

becomes

$$\frac{1}{4}a + \frac{1}{2}b = 0.11668,$$
$$a + b = 0.29885.$$

which gives

$$a = 0.13098$$
, $b = 0.16787$.

We can now compute $D(0, T_3)$ for $T_3 = \frac{3}{4}$:

$$D(0, T_3) = e^{-rT_3}e^{-\Gamma(T_3)} = e^{-rT_3}e^{-aT_3^2 - bT_3}$$
$$= e^{-0.05 \times \frac{3}{4}}e^{-0.13098 \times (\frac{3}{4})^2 - 0.16787 \times \frac{3}{4}} = 0.7889.$$

3.4. Let $T_1 = \frac{1}{2}$ and $T_2 = 1$. Suppose the hazard rate is constant on $(0, T_1], (T_1, T_2]$ with values γ_1, γ_2 , respectively. Then

$$\begin{split} \gamma_1 &= \frac{1}{T_1} \ln \frac{1}{D(0,T_1)} - r = \frac{1}{\frac{1}{2}} \ln \frac{1}{0.85} - 0.05 = 0.2750, \\ \gamma_2 &= \frac{1}{T_2 - T_1} \ln \frac{D(0,T_1)}{D(0,T_2)} - r = \frac{1}{1 - \frac{1}{2}} \ln \frac{0.85}{0.80} - 0.05 = 0.0712. \end{split}$$

Since $T = \frac{3}{4}$ belongs to the interval $(T_1, T_2]$,

$$\Gamma(T) = \int_0^T \gamma(t)dt = \gamma_1 T_1 + \gamma_2 (T - T_1)$$
$$= 0.2750 \times \frac{1}{2} + 0.0712(\frac{3}{4} - \frac{1}{2}) = 0.1553,$$

and so

$$D(0,T) = e^{-rT}e^{-\Gamma(T)} = e^{-0.05 \times \frac{3}{4}}e^{-0.1553} = 0.8247.$$

3.5. Let $T_1 = \frac{1}{2}$, $T_2 = \frac{3}{4}$ and $T_3 = 1$. Suppose the hazard rate is constant on $(0, T_1]$, $(T_1, T_2]$, $(T_2, T_3]$ with values $\gamma_1, \gamma_2, \gamma_3$, respectively. Then

$$\begin{split} \gamma_1 &= \frac{1}{T_1} \ln \frac{1}{D(0,T_1)} - r = \frac{1}{\frac{1}{2}} \ln \frac{1}{0.9037} - 0.05 = 0.1525, \\ \gamma_2 &= \frac{1}{T_2 - T_1} \ln \frac{D(0,T_1)}{D(0,T_2)} - r = \frac{1}{\frac{3}{4} - \frac{1}{2}} \ln \frac{0.9037}{0.8609} - 0.05 = 0.1441, \\ \gamma_3 &= \frac{1}{T_3 - T_2} \ln \frac{D(0,T_2)}{D(0,T_3)} - r = \frac{1}{1 - \frac{3}{2}} \ln \frac{0.8609}{0.7724} - 0.05 = 0.3839. \end{split}$$

3.6. We found in Exercise 3.4 that

$$\gamma(t) = \begin{cases} 0.2750 & \text{on } [0, \frac{1}{2}], \\ 0.0712 & \text{on } (\frac{1}{2}, 1]. \end{cases}$$

It follows that

$$\hat{D}(t,1) = e^{-\int_t^1 (r + \gamma(s)) ds} = \begin{cases} e^{0.3250t - 0.2231} & \text{for } t \in [0, \frac{1}{2}], \\ e^{0.1212t - 0.1212} & \text{for } t \in (\frac{1}{2}, 1]. \end{cases}$$

3.7. Let $0 \le s < t$. Since the Poisson process has independent increments, N(t) - N(s) is independent of the σ -field \mathcal{N}_s . It follows that

$$\mathbb{E}\left(N(t)-N(s)|\mathcal{N}_s\right)=\mathbb{E}\left(N(t)-N(s)\right)=\lambda\left(t-s\right).$$

The last equality holds because N(t) - N(s) has the Poisson distribution with parameter $\lambda(t - s)$. As a result,

$$\mathbb{E}\left(N(t) - \lambda t | \mathcal{N}_s\right) = N(s) - \lambda s,$$

that is, $N(t) - \lambda s$ is a martingale with respect to the filtration $(\mathcal{N}_t)_{t \geq 0}$.

3.8. Take any $t \ge 0$ and let τ be the time of the first jump of the Poisson process N(t). Observe that $t < \tau$ means that the first jump hasn't yet occurred at time t, which is equivalent to N(t) = 0 given that the Poisson process starts with N(0) = 0. As a result,

$$Q(t < \tau) = Q(N(t) = 0) = e^{-\lambda t}.$$

Hence τ is exponentially distributed with parameter λ .

3.9. Let $0 \le s < t$. Since $I(t) = \mathbf{1}_{\{\tau \le t\}}$ and τ has the exponential distribution, by Proposition 2.27 applied to the risk-neutral probability Q, we have

$$\mathbb{E}\left(I(t)|I_{s}\right) = \mathbb{E}\left(\mathbf{1}_{\{\tau \leq t\}}|I_{s}\right)$$

$$= \mathbf{1}_{\{\tau \leq s\}} \mathbb{E}\left(\mathbf{1}_{\{\tau \leq t\}}|\sigma(\tau)\right) + \mathbf{1}_{\{s < \tau\}} \frac{\mathbb{E}\left(\mathbf{1}_{\{s < \tau\}}\mathbf{1}_{\{\tau \leq t\}}\right)}{Q\left(s < \tau\right)}$$

$$= \mathbf{1}_{\{\tau \leq s\}}\mathbf{1}_{\{\tau \leq t\}} + \mathbf{1}_{\{s < \tau\}} \frac{Q\left(s < \tau \leq t\right)}{Q\left(s < \tau\right)}$$

$$= I(s) + \mathbf{1}_{\{s < \tau\}}\left(1 - e^{-\lambda(t - s)}\right).$$

On the other hand, using Proposition 2.27 once again, we have

$$\mathbb{E}(\lambda(t \wedge \tau) | \mathcal{I}_{s}) = \lambda \mathbf{1}_{\{\tau \leq s\}} \mathbb{E}(t \wedge \tau | \sigma(\tau)) + \lambda \mathbf{1}_{\{s < \tau\}} \frac{\mathbb{E}(\mathbf{1}_{\{s < \tau\}}(t \wedge \tau))}{Q(s < \tau)}$$

$$= \lambda \mathbf{1}_{\{\tau \leq s\}}(t \wedge \tau) + \lambda \mathbf{1}_{\{s < \tau\}} \frac{se^{-\lambda s} + \frac{1}{\lambda}(e^{-\lambda s} - e^{-\lambda t})}{e^{-\lambda s}}$$

$$= \lambda \mathbf{1}_{\{\tau \leq s\}}\tau + \lambda \mathbf{1}_{\{s < \tau\}}s + \mathbf{1}_{\{s < \tau\}}(1 - e^{-\lambda(t - s)})$$

$$= \lambda(s \wedge \tau) + \mathbf{1}_{\{s < \tau\}}(1 - e^{-\lambda(t - s)})$$

since

$$\mathbb{E}\left(\mathbf{1}_{\{s<\tau\}}(t\wedge\tau)\right) = \int_{s}^{\infty} (t\wedge u)\,\lambda e^{-\lambda u}du$$
$$= \lambda \int_{s}^{t} u e^{-\lambda u}du + \lambda t \int_{t}^{\infty} e^{-\lambda u}du$$
$$= se^{-\lambda s} + \frac{1}{\lambda}\left(e^{-\lambda s} - e^{-\lambda t}\right)$$

and $Q(s < \tau) = e^{-\lambda s}$. It follows that

$$\mathbb{E}\left(I(t) - \lambda\left(t \wedge \tau\right) \middle| \mathcal{I}_{s}\right) = I(s) - \lambda\left(s \wedge \tau\right).$$

Because $\lambda(t \wedge \tau)$ is an $(I_t)_{t \geq 0}$ -adapted process with continuous trajectories, it follows that it is a compensator of I(t).

3.10. We have

$$\mathbb{E}(\Gamma(t \wedge \tau)) = \int_0^\infty \Gamma(t \wedge u) f(u) du$$

$$= \int_0^t \Gamma(u) f(u) du + \Gamma(t) \int_t^\infty f(u) du$$

$$= \int_0^t \Gamma(u) f(u) du + \Gamma(t) G(t)$$

$$= F(t)$$

since integration by parts gives

$$\Gamma(t)G(t) = \Gamma(t)G(t) - \Gamma(0)G(0)$$

$$= \int_0^t \gamma(u)G(u)du - \int_0^t \Gamma(u)f(u)du$$

$$= \int_0^t f(u)du - \int_0^t \Gamma(u)f(u)du$$

$$= F(t) - \int_0^t \Gamma(u)f(u)du.$$

3.11. By Proposition 2.13

$$\gamma(t) = \frac{f(t)}{1 - F(t)}$$

and from Corollary 3.16 we have

$$\Gamma(t \wedge \tau) = \int_0^{t \wedge \tau} \gamma(u) du = \int_0^t (1 - I(u)) \gamma(u) du,$$

hence it follows immediately that

$$\Gamma(t \wedge \tau) = \int_0^{t \wedge \tau} \frac{1}{1 - F(u)} f(u) du = \int_0^t \frac{1 - I(u)}{1 - F(u)} f(u) du.$$

3.12. Since

$$L(t) = (1 - I(t)) e^{\Gamma(t)} = \mathbf{1}_{\{t < \tau\}} e^{\Gamma(t)}$$

is a martingale with respect to the filtration $(I_t)_{t\geq 0}$, it follows that

$$\begin{split} \mathbb{E}\left(\mathbf{1}_{\{T<\tau\}}|I_{t}\right) &= e^{-\Gamma(T)}\mathbb{E}\left(L(T)|I_{t}\right) \\ &= e^{-\Gamma(T)}L(t) \\ &= \mathbf{1}_{\{t<\tau\}}e^{\Gamma(t)-\Gamma(T)} \\ &= \mathbf{1}_{\{t<\tau\}}e^{-\int_{t}^{T}\gamma(s)ds}. \end{split}$$

3.13. Let $X(t) = \mathbf{1}_{[0,c]}(t)$ for some $c \ge 0$. By (3.4), we have

$$\int_0^t X(u)dM(u) = \mathbf{1}_{\{\tau \le t\}} \mathbf{1}_{[0,c]}(\tau) - \int_0^{t \wedge \tau} \mathbf{1}_{[0,c]}(u) \gamma(u) du$$
$$= \mathbf{1}_{\{\tau \le t \wedge c\}} - \int_0^{t \wedge c \wedge \tau} \gamma(u) du.$$

Now take any $0 \le s < t$ and consider two cases:

Case 1: s < c. Then

$$\mathbb{E}\left(\int_{0}^{t} X(u)dM(u) \middle| I_{s}\right) = \mathbb{E}\left(\mathbf{1}_{\{\tau \leq t \wedge c\}} - \int_{0}^{t \wedge c \wedge \tau} \gamma(u)du \middle| I_{s}\right)$$

$$= \mathbf{1}_{\{\tau \leq s\}} \mathbb{E}\left(\mathbf{1}_{\{\tau \leq t \wedge c\}} - \int_{0}^{t \wedge c \wedge \tau} \gamma(u)du \middle| \sigma(\tau)\right) + \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \mathbb{E}\left(\mathbf{1}_{\{s < \tau\}} \left(\mathbf{1}_{\{\tau \leq t \wedge c\}} - \int_{0}^{t \wedge c \wedge \tau} \gamma(u)du\right)\right)$$

$$= \mathbf{1}_{\{\tau \leq s\}} \left(\mathbf{1}_{\{\tau \leq t \wedge c\}} - \int_{0}^{t \wedge c \wedge \tau} \gamma(u)du + \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \mathbb{E}\left(\mathbf{1}_{\{s < \tau \leq t \wedge c\}} - \int_{0}^{t \wedge c} \mathbf{1}_{\{s \vee u < \tau\}} \gamma(u)du\right)\right)$$

$$= \mathbf{1}_{\{\tau \leq s \wedge c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du + \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \left(F(t \wedge c) - F(s) - \int_{0}^{t \wedge c} G(s \vee u)\gamma(u)du\right)$$

$$= \mathbf{1}_{\{\tau \leq s \wedge c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du$$

$$+ \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \left(F(t \wedge c) - F(s) - \int_{0}^{s} G(s)\gamma(u)du - \int_{s}^{t \wedge c} G(u)\gamma(u)du\right)$$

$$= \mathbf{1}_{\{\tau \leq s \wedge c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du - \mathbf{1}_{\{s < \tau\}} \int_{0}^{s} \gamma(u)du$$

$$= \mathbf{1}_{\{\tau \leq s \wedge c\}} - \int_{0}^{s \wedge c \wedge \tau} \gamma(u)du - \int_{s}^{s} X(u)dM(u).$$

Case 2: $c \le s$. Then

$$\mathbb{E}\left(\int_{0}^{t} X(u)dM(u) \middle| I_{s}\right) = \mathbb{E}\left(\mathbf{1}_{\{\tau \leq t \wedge c\}} - \int_{0}^{t \wedge c \wedge \tau} \gamma(u)du \middle| I_{s}\right)$$

$$= \mathbb{E}\left(\mathbf{1}_{\{\tau \leq c\}} - \int_{0}^{c \wedge \tau} \gamma(u)du \middle| I_{s}\right)$$

$$= \mathbf{1}_{\{\tau \leq s\}} \mathbb{E}\left(\mathbf{1}_{\{\tau \leq c\}} - \int_{0}^{c \wedge \tau} \gamma(u)du \middle| \sigma(\tau)\right) + \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \mathbb{E}\left(\mathbf{1}_{\{s < \tau\}} \left(\mathbf{1}_{\{\tau \leq c\}} - \int_{0}^{c \wedge \tau} \gamma(u)du\right)\right)$$

$$= \mathbf{1}_{\{\tau \leq c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du + \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \mathbb{E}\left(\mathbf{1}_{\{s < \tau\}} \mathbf{1}_{\{\tau \leq c\}} - \mathbf{1}_{\{s < \tau\}} \int_{0}^{c} \mathbf{1}_{\{u < \tau\}} \gamma(u)du\right)$$

$$= \mathbf{1}_{\{\tau < c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du - \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \int_{0}^{c} \mathbb{E}\left(\mathbf{1}_{\{s < \tau\}}\right) \gamma(u)du$$

$$= \mathbf{1}_{\{\tau < c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du - \mathbf{1}_{\{s < \tau\}} e^{\Gamma(s)} \int_{0}^{c} G(s) \gamma(u)du$$

$$= \mathbf{1}_{\{\tau < c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du - \mathbf{1}_{\{s < \tau\}} \int_{0}^{c \wedge \tau} \gamma(u)du$$

$$= \mathbf{1}_{\{\tau < c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du - \mathbf{1}_{\{s < \tau\}} \int_{0}^{c \wedge \tau} \gamma(u)du$$

$$= \mathbf{1}_{\{\tau < c\}} - \mathbf{1}_{\{\tau \leq s\}} \int_{0}^{c \wedge \tau} \gamma(u)du - \mathbf{1}_{\{s < \tau\}} \int_{0}^{c \wedge \tau} \gamma(u)du$$

$$= \mathbf{1}_{\{\tau < c\}} - \int_{0}^{c \wedge \tau} \gamma(u)du - \mathbf{1}_{\{\tau < s \wedge c\}} - \int_{0}^{c \wedge \tau} \gamma(u)du - \int_{0}^{s} X(u)dM(u).$$

3.14. Let

$$X(t) = Z\mathbf{1}_{(a,b)}(t)$$

for some $0 \le a < b$ and some I_a -measurable random variable Z. By Proposition 2.22,

$$Z = \eta(\tau) \mathbf{1}_{\{\tau \le a\}} + c \mathbf{1}_{\{a < \tau\}}$$

for some Borel function $\eta:\mathbb{R}\to\mathbb{R}$ and a deterministic number $c\in\mathbb{R}$. Then

$$\begin{split} X(t) &= \left(\eta(\tau) \mathbf{1}_{\{\tau \le a\}} + c \mathbf{1}_{\{a < \tau\}} \right) \mathbf{1}_{(a,b]}(t) \\ &= \eta(\tau) \mathbf{1}_{(a,b]}(t) \mathbf{1}_{\{\tau \le a\}} + c \mathbf{1}_{(a,b]}(t) \mathbf{1}_{\{a < \tau\}} \end{split}$$

and

$$\int_{0}^{t} X(u)dM(u) = \mathbf{1}_{\{\tau \leq t\}} X(\tau) - \int_{0}^{t \wedge \tau} X(u)\gamma(u)du$$

$$= \mathbf{1}_{\{\tau \leq t\}} Z\mathbf{1}_{(a,b]}(\tau) - \int_{0}^{t \wedge \tau} Z\mathbf{1}_{(a,b]}(u)\gamma(u)du$$

$$= \mathbf{1}_{\{\tau \leq t\}} (\eta(\tau)\mathbf{1}_{\{\tau \leq a\}} + c\mathbf{1}_{\{a < \tau\}}) \mathbf{1}_{(a,b]}(\tau)$$

$$- \int_{0}^{t \wedge \tau} (\eta(\tau)\mathbf{1}_{\{\tau \leq a\}} + c\mathbf{1}_{\{a < \tau\}}) \mathbf{1}_{(a,b]}(u)\gamma(u)du$$

$$= c\mathbf{1}_{\{a < \tau \leq t \wedge b\}} - c \int_{0}^{t \wedge \tau} \mathbf{1}_{(a,b]}(u)\gamma(u)du$$

$$= \mathbf{1}_{\{\tau \leq t\}} c\mathbf{1}_{(a,b]}(\tau) - \int_{0}^{t \wedge \tau} c\mathbf{1}_{(a,b]}(u)\gamma(u)du$$

$$= \int_{0}^{t} Y(u)dM(u),$$

where

$$Y(t) = c\mathbf{1}_{(a,b]}(t)$$

is a deterministic function. It follows by Lemma 3.19 that

$$\int_0^t X(u)dM(u) = \int_0^t Y(u)dM(u)$$

is a is a martingale with respect to the filtration $(\mathcal{I}_t)_{t\geq 0}$.

Chapter 4

4.1. We have

$$H(t) = e^{-rt}D(t,T) = \mathbb{E}\left(e^{-rT}D(T,T)|\mathcal{I}_t\right) = \mathbb{E}\left(e^{-rT}\mathbf{1}_{\{T<\tau\}}|\mathcal{I}_t\right),$$

so taking

$$h(t) = e^{-rT} \mathbf{1}_{\{T < t\}}$$

gives

$$H(t) = e^{-rt}D(t,T) = \mathbb{E}\left(h(\tau)|\mathcal{I}_t\right).$$

Substituting the expression for h into the formula for J gives

$$J(t) = \mathbb{E}\left(h(\tau)|t < \tau\right) = \mathbb{E}\left(e^{-rT}\mathbf{1}_{\{T < t\}}|t < \tau\right)$$
$$= e^{-rT}\frac{Q\left(T < \tau\right)}{Q\left(t < \tau\right)} = e^{-rT}e^{-\Gamma\left(T\right)}e^{\Gamma\left(t\right)}.$$

Now can we substitute the expressions for h and J into right-hand side of (4.1) and apply formula (3.4) to get for any $t \le T$

$$\mathbb{E}(h(\tau)) + \int_{0}^{t} (h(s) - J(s)) dM(s)$$

$$= \mathbb{E}\left(e^{-rT}\mathbf{1}_{\{T < \tau\}}\right) + \int_{0}^{t} \left(e^{-rT}\mathbf{1}_{\{T < s\}} - e^{-rT}e^{-\Gamma(T)}e^{\Gamma(s)}\right) dM(s)$$

$$= e^{-rT}e^{-\Gamma(T)} + \mathbf{1}_{\{\tau \le t\}}\left(e^{-rT}\mathbf{1}_{\{T < \tau\}} - e^{-rT}e^{-\Gamma(T)}e^{\Gamma(\tau)}\right)$$

$$- \int_{0}^{t \wedge \tau} \left(e^{-rT}\mathbf{1}_{\{T < s\}} - e^{-rT}e^{-\Gamma(T)}e^{\Gamma(s)}\right)\gamma(s)ds$$

$$= e^{-rT}e^{-\Gamma(T)} - \mathbf{1}_{\{\tau \le t\}}e^{-rT}e^{-\Gamma(T)}e^{\Gamma(\tau)} + e^{-rT}e^{-\Gamma(T)}\int_{0}^{t \wedge \tau} d\left(e^{\Gamma(s)}\right)$$

$$= e^{-rT}e^{-\Gamma(T)} - \mathbf{1}_{\{\tau \le t\}}e^{-rT}e^{-\Gamma(T)}e^{\Gamma(\tau)} + e^{-rT}e^{-\Gamma(T)}\left(e^{\Gamma(t \wedge \tau)} - e^{\Gamma(0)}\right)$$

$$= -\mathbf{1}_{\{\tau \le t\}}e^{-rT}e^{-\Gamma(T)}e^{\Gamma(\tau)} + \mathbf{1}_{\{\tau \le t\}}e^{-rT}e^{-\Gamma(T)}e^{\Gamma(\tau)} + \mathbf{1}_{\{t < \tau\}}e^{-rT}e^{-\Gamma(T)}e^{\Gamma(t)}$$

$$= \mathbf{1}_{\{t < \tau\}}e^{-rT}e^{-\Gamma(T)}e^{\Gamma(t)}$$

$$= e^{-rt}D(t, T).$$

4.2. By linearity, it is enough to show that if ϕ is a left-continuous deterministic function such that

$$\int_0^t \phi(s) dM(s) = 0$$

for each $t \ge 0$, then $\phi = 0$ on $(0, \infty)$.

By formula (3.4),

$$\int_0^t \phi(s)dM(s) = \mathbf{1}_{\{\tau \le t\}}\phi(\tau) - \int_0^{t \wedge \tau} \phi(s)\gamma(s)ds = 0.$$

On $\{t < \tau\}$ we have

$$\int_0^t \phi(s)dM(s) = -\int_0^t \phi(s)\gamma(s)ds = 0.$$

As a result,

$$\int_0^t \phi(s)\gamma(s)ds = 0$$

for every $t \ge 0$ since $\{t < \tau\}$ has non-zero probability and $\int_0^t \phi(s) \gamma(s) ds$ is deterministic. Because $\gamma(t) = e^{\Gamma(t)} f(t) > 0$ for almost every $t \in [0, \infty)$, it follows that $\phi(t) = 0$ for almost every $t \in [0, \infty)$. By left-continuity, we can conclude that $\phi = 0$ on $(0, \infty)$.

4.3. Using the self-financing condition

$$V_{\varphi}(t) = V_{\varphi}(0) + \int_0^t \varphi_B(u) dB(u, T) + \int_0^t \varphi_B(u) dD(u, T),$$

by Theorem A.9 (the integration-by-parts formula for Lebesgue–Stieltjes integrals) and Theorems A.10 and A.11, we obtain

$$\begin{split} \tilde{V}_{\varphi}(t) - V_{\varphi}(0) \\ &= e^{-rt} V_{\varphi}(t) - V_{\varphi}(0) \\ &= \int_{0}^{t} e^{-ru} dV_{\varphi}(u) + \int_{0}^{t} V_{\varphi}(u_{-}) d\left(e^{-ru}\right) \\ &= \int_{0}^{t} e^{-ru} \varphi_{B}(u) dB(u, T) + \int_{0}^{t} e^{-ru} \varphi_{D}(u) dD(u, T) + \int_{0}^{t} V_{\varphi}(u_{-}) d\left(e^{-ru}\right) \\ &= r \int_{0}^{t} e^{-ru} \varphi_{B}(u) B(u, T) du + r \int_{0}^{t} e^{-ru} \varphi_{D}(u) D(u, T) du \\ &- \int_{0}^{t} e^{-ru} \varphi_{D}(u) D(u_{-}, T) dM(u) - r \int_{0}^{t} e^{-ru} V_{\varphi}(u_{-}) du \\ &= r \int_{0}^{t} e^{-ru} V_{\varphi}(u) du - \int_{0}^{t} e^{-ru} \varphi_{D}(u) D(u_{-}, T) dM(u) - r \int_{0}^{t} e^{-ru} V_{\varphi}(u_{-}) du \\ &= - \int_{0}^{t} \varphi_{D}(u) \tilde{D}(u_{-}, T) dM(u) \\ &= \int_{0}^{t} \varphi_{D}(u) d\tilde{D}(u, T). \end{split}$$

Here we use the fact that

$$V_{\omega}(t) = \varphi_{R}(t)B(t,T) + \varphi_{D}(t)D(t,T) = V_{\omega}(t_{-})$$

for almost all $t \in [0, T]$ and apply Proposition 3.23 in the last equality.

4.4. Using the identities $f(t) = \gamma(t)e^{-\Gamma(t)}$ and $G(T) = e^{-\Gamma(t)}$, we compute

$$\begin{split} \mathbb{E}(\tilde{V}_{\varphi}(T)) &= e^{-rT} e^{-\Gamma(T)} \mathbb{E}(e^{\Gamma(T \wedge \tau)} - 1) \\ &= e^{-rT} e^{-\Gamma(T)} \left(\int_0^T e^{\Gamma(u)} f(u) du + e^{\Gamma(T)} \int_T^{\infty} f(u) du - 1 \right) \\ &= e^{-rT} e^{-\Gamma(T)} \left(\int_0^T \gamma(u) du + e^{\Gamma(T)} G(T) - 1 \right) \\ &= e^{-rT} e^{-\Gamma(T)} \Gamma(T), \end{split}$$

which is greater than 0.

4.5. Suppose that $\varphi(t) = (\varphi_B(t), \varphi_D(t))$ is an admissible self-financing strategy such that $V_{\varphi}(0) = 0$. Admissibility means that $\tilde{V}_{\varphi}(t)$ is a martingale under the risk-neutral probability Q. It follows that

$$\mathbb{E}\left(V_{\varphi}(T)\right) = e^{rT} \mathbb{E}\left(\tilde{V}_{\varphi}(T)\right) = e^{rT} \tilde{V}_{\varphi}(0) = e^{rT} V_{\varphi}(0) = 0.$$

It is therefore impossible for $V_{\varphi}(T)$ to be non-negative almost surely and positive with positive probability. There is no admissible arbitrage strategy.

4.6. Using Proposition 2.27, for any $t \in [0, T]$ we compute

$$\begin{split} &e^{-r(T-t)}\mathbb{E}\left(D_{\delta}(T,T)|I_{t}\right)\\ &=e^{-r(T-t)}\mathbb{E}\left(\delta+(1-\delta)\mathbf{1}_{\{T<\tau\}}|I_{t}\right)\\ &=\delta e^{-r(T-t)}+(1-\delta)\,e^{-r(T-t)}\mathbb{E}\left(\mathbf{1}_{\{T<\tau\}}|I_{t}\right)\\ &=\delta e^{-r(T-t)}+(1-\delta)\,e^{-r(T-t)}\bigg(\mathbf{1}_{\{\tau\leq t\}}\mathbb{E}\left(\mathbf{1}_{\{T<\tau\}}|\sigma(\tau)\right)+\mathbf{1}_{\{t<\tau\}}\frac{\mathbb{E}\left(\mathbf{1}_{\{T<\tau\}}\mathbf{1}_{\{t<\tau\}}\right)}{Q\left(t<\tau\right)}\bigg)\\ &=\delta e^{-r(T-t)}+(1-\delta)\,e^{-r(T-t)}\mathbf{1}_{\{t<\tau\}}\frac{Q\left(T<\tau\right)}{Q\left(t<\tau\right)}\\ &=\delta e^{-r(T-t)}+(1-\delta)\,e^{-r(T-t)}\mathbf{1}_{\{t<\tau\}}e^{-(\Gamma(T)-\Gamma(t))}.\end{split}$$

This agrees with the formula for $D_{\delta}(t, T)$ in Example 4.10.

4.7. In Example 4.10 we saw that

$$D_{\delta}(t,T) = \delta B(t,T) + (1-\delta)D(t,T).$$

Hence

$$D(t,T) = \frac{1}{1-\delta}D_{\delta}(t,T) - \frac{\delta}{1-\delta}B(t,T).$$

This means that the zero-recovery bond D(t,T) can be replicated by a portfolio consisting of $\frac{1}{1-\delta}$ positive recovery bonds $D_{\delta}(t,T)$ and $-\frac{\delta}{1-\delta}$ non-defaultable bonds B(t,T).

4.8. Using (4.4) and Proposition 3.23 with

$$\varphi_D(t) = e^{\Gamma(T) - \Gamma(t)} \left(J(t) - h(t) \right)$$

and

$$\tilde{D}(t,T) = \mathbf{1}_{\{t < \tau\}} e^{-rT} e^{-(\Gamma(T) - \Gamma(t))},$$

we obtain

$$\begin{split} \varphi_B(t) &= \frac{1}{e^{-rt}B(t,T)} \bigg(V_{\varphi}(0) + \int_0^t \varphi_D(u)d\tilde{D}(u,T) - \varphi_D(t)\tilde{D}(t,T) \bigg) \\ &= \frac{1}{e^{-rT}} \bigg(V_{\varphi}(0) - \int_0^t \varphi_D(u)\tilde{D}(u_-,T)dM(u) - \varphi_D(t)\tilde{D}(t,T) \bigg) \\ &= \mathbb{E}\left(h(\tau)\right) - \int_0^t \left(J(u) - h(u)\right) \mathbf{1}_{\{u \leq \tau\}} dM(u) - \left(J(t) - h(t)\right) \mathbf{1}_{\{t < \tau\}} \\ &= \mathbb{E}\left(h(\tau)\right) - \left(J(\tau) - h(\tau)\right) \mathbf{1}_{\{\tau \leq t\}} \\ &+ \int_0^{t \wedge \tau} \left(J(u) - h(u)\right) \gamma(u) du - \left(J(t) - h(t)\right) \mathbf{1}_{\{t < \tau\}} \\ &= \mathbb{E}\left(h(\tau)\right) - \left(J(t \wedge \tau) - h(t \wedge \tau)\right) + \int_0^{t \wedge \tau} \left(J(u) - h(u)\right) \gamma(u) du. \end{split}$$

In the proof of Theorem 4.1 (i.e. the martingale representation theorem) it is shown that

$$\int_{0}^{t \wedge \tau} J(u)\gamma(u)du = e^{\Gamma(t \wedge \tau)} \int_{t \wedge \tau}^{\infty} h(u)f(u)du - \int_{0}^{\infty} h(u)f(u)du + \int_{0}^{t \wedge \tau} e^{\Gamma(u)}h(u)f(u)du$$
$$= J(t \wedge \tau) - \mathbb{E}(h(\tau)) + \int_{0}^{t \wedge \tau} h(u)\gamma(u)du.$$

It follows that

$$\varphi_B(t) = \mathbb{E}(h(\tau)) - (J(t \wedge \tau) - h(t \wedge \tau)) + \int_0^{t \wedge \tau} (J(u) - h(u)) \gamma(u) du$$

= $h(t \wedge \tau)$.

4.9. The payoff of a defaultable bond with constant recovery can be expressed as

$$D_{\delta}(T,T) = h(\tau),$$

where

$$h(t) = \begin{cases} \delta & \text{if } t \le T, \\ 1 & \text{if } T < t. \end{cases}$$

According to Theorem 4.11, the replicating strategy is given by

$$\varphi_B(t) = h(t \wedge \tau),$$

 $\varphi_D(t) = e^{\Gamma(T) - \Gamma(t)} (J(t) - h(t))$

for any $t \in [0, T]$. It follows that

$$\varphi_B(t) = h(t \wedge \tau) = \delta$$

since $t \wedge \tau \leq T$ when $t \leq T$. Moreover,

$$\begin{split} J(t) &= \mathbb{E}\left(h(\tau)|t<\tau\right) = \frac{\mathbb{E}\left(\mathbf{1}_{\{t<\tau\}}h(\tau)\right)}{Q(t<\tau)} \\ &= \frac{\delta Q(t<\tau\leq T) + Q(T<\tau)}{Q(t<\tau)} = \frac{\delta\left(e^{-\Gamma(t)} - e^{-\Gamma(T)}\right) + e^{-\Gamma(T)}}{e^{-\Gamma(t)}}, \end{split}$$

so for any $t \leq T$

$$\begin{split} \varphi_D(t) &= e^{\Gamma(T) - \Gamma(t)} \left(J(t) - h(t) \right) \\ &= e^{\Gamma(T) - \Gamma(t)} \left(\frac{\delta \left(e^{-\Gamma(t)} - e^{-\Gamma(T)} \right) + e^{-\Gamma(T)}}{e^{-\Gamma(t)}} - \delta \right) \\ &= 1 - \delta. \end{split}$$

4.10. From Proposition 4.12 we have

$$\begin{split} D_{\eta}(t,T) &= \eta(\tau) \mathbf{1}_{\{\tau \leq t\}} \\ &+ \mathbf{1}_{\{t < \tau\}} \left(e^{-r(T-t)} e^{-(\Gamma(T) - \Gamma(t))} + e^{-r(T-t)} e^{\Gamma(t)} \int_{t}^{T} \eta(s) e^{r(T-s)} f(s) ds \right). \end{split}$$

For t = 0 this gives

$$\begin{split} D_{\eta}(0,T) &= e^{-rT} e^{-\Gamma(T)} + e^{-rT} \int_{0}^{T} \eta(s) e^{r(T-s)} f(s) ds \\ &= e^{-rT} G(T) + \int_{0}^{T} \eta(s) e^{-rs} f(s) ds. \end{split}$$

4.11. Let

$$h(\tau) = \mathbf{1}_{\{T < \tau\}} + \eta(\tau)e^{r(T-\tau)}\mathbf{1}_{\{\tau \le T\}}.$$

By Proposition 2.27, for any $t \in [0, T]$ we have

$$\begin{split} D_{\eta}(t,T) &= e^{-r(T-t)} \mathbb{E}\left(h(\tau)|\mathcal{I}_{t}\right) \\ &= e^{-r(T-t)} \mathbf{1}_{\{\tau \leq t\}} \mathbb{E}\left(h(\tau)|\sigma(\tau)\right) + e^{-r(T-t)} \mathbf{1}_{\{t < \tau\}} \frac{\mathbb{E}\left(h(\tau)\mathbf{1}_{\{t < \tau\}}\right)}{Q(t < \tau)} \\ &= e^{-r(T-t)} \mathbf{1}_{\{\tau \leq t\}} h(\tau) + e^{-r(T-t)} \mathbf{1}_{\{t < \tau\}} \frac{\mathbb{E}\left(h(\tau)\mathbf{1}_{\{t < \tau\}}\right)}{Q(t < \tau)} \\ &= \mathbf{1}_{\{\tau \leq t\}} e^{r(t-\tau)} \eta(\tau) + e^{-r(T-t)} \mathbf{1}_{\{t < \tau\}} \frac{\mathbb{E}\left(\mathbf{1}_{\{T < \tau\}}\right)}{Q(t < \tau)} \\ &+ e^{-r(T-t)} \mathbf{1}_{\{t < \tau\}} \frac{\mathbb{E}\left(\eta(\tau)e^{r(T-\tau)}\mathbf{1}_{\{t < \tau \leq T\}}\right)}{Q(t < \tau)} \\ &= \mathbf{1}_{\{\tau \leq t\}} e^{r(t-\tau)} \eta(\tau) + e^{-r(T-t)} \mathbf{1}_{\{t < \tau\}} e^{-(\Gamma(T)-\Gamma(t))} \\ &+ e^{-r(T-t)} \mathbf{1}_{\{t < \tau\}} e^{\Gamma(t)} \int_{t}^{T} \eta(s)e^{r(T-s)} f(s) ds. \end{split}$$

4.12. Let

$$H(t) = \mathbb{E}(h(\tau)|\mathcal{I}_t).$$

By the martingale representation theorem (Theorem 4.1),

$$H(t) = H(0) + \int_0^t (h(s) - J(s)) dM(s)$$

= $H(0) + (h(\tau) - J(\tau)) \mathbf{1}_{\{\tau \le t\}} - \int_0^{t \wedge \tau} (h(s) - J(s)) \gamma(s) ds.$

It follows that

$$\begin{split} &D_{\eta}(t,T) - D_{\eta}(0,T) \\ &= e^{-r(T-t)}H(t) - e^{-rT}H(0) \\ &= \int_{0}^{t} e^{-r(T-s)}dH(s) + \int_{0}^{t} H(s_{-})d\left(e^{-r(T-s)}\right) \\ &= \int_{0}^{t} e^{-r(T-s)}h(s)dM(s) - \int_{0}^{t} e^{-r(T-s)}J(s)dM(s) \\ &+ r \int_{0}^{t} H(s_{-})e^{-r(T-s)}ds. \end{split}$$

On $\{t < \tau\}$ we have

$$\int_0^t \eta(s)dM(s) = -\int_0^t \eta(s)\gamma(s) (1 - I(s)) ds$$

and

$$H(t) = H(0) - \int_0^{t \wedge \tau} (h(s) - J(s)) \gamma(s) ds = H(t_-),$$

so

$$\begin{split} &D_{\eta}(t,T) - D_{\eta}(0,T) \\ &= -\int_{0}^{t} \eta(s)\gamma(s) \left(1 - I(s)\right) ds - \int_{0}^{t} e^{-r(T-s)} J(s) dM(s) \\ &+ r \int_{0}^{t} H(s) e^{-r(T-s)} ds \\ &= -\int_{0}^{t} \eta(s)\gamma(s) \left(1 - I(s)\right) ds - \int_{0}^{t} \hat{D}_{\eta}(s,T) dM(s) \\ &+ r \int_{0}^{t} D_{\eta}(s,T) ds \end{split}$$

since

$$\hat{D}_{\eta}(t,T) = e^{-r(T-t)} \left(e^{-(\Gamma(T)-\Gamma(t))} - e^{\Gamma(t)} \int_{t}^{T} \eta(s) e^{r(t-s)} f(s) ds \right)$$
$$= e^{-r(T-t)} J(t).$$

and

$$D_{\eta}(t,T) = e^{-r(T-t)}\mathbb{E}(h(\tau)|\mathcal{I}_t) = e^{-r(T-t)}H(t).$$

This shows that

$$dD_{\eta}(t,T) = -\eta(t)\gamma(t) (1 - I(t)) dt - \hat{D}_{\eta}(s,T)dM(t) + rD_{\eta}(t,T)dt$$

on $\{t < \tau\}$.

4.13. The payoff of a defaultable zero-coupon bond maturing at time S, where 0 < S < T, is equivalent to a payoff at time T of the form $h(\tau)$, where

$$h(t) = \mathbf{1}_{\{S < t\}} e^{r(T-S)}.$$

By Theorem 4.11, for any $t \in [0, S]$,

$$\varphi_B(t) = h(t \wedge \tau) = \mathbf{1}_{\{S < t \wedge \tau\}} e^{r(T-S)} = 0$$

since $t \wedge \tau \leq t \leq S$. It means that the bond D(t, S) can be replicated by the D(t, T) bond alone. Since

$$\begin{split} D(t,S) &= \mathbf{1}_{\{t < \tau\}} e^{-r(S-t)} e^{-(\Gamma(S) - \Gamma(t))} \\ &= e^{r(T-S)} e^{(\Gamma(T) - \Gamma(S))} \mathbf{1}_{\{t < \tau\}} e^{-r(T-t)} e^{-(\Gamma(T) - \Gamma(t))} \\ &= e^{r(T-S)} e^{(\Gamma(T) - \Gamma(S))} D(t,T), \end{split}$$

we have

$$\varphi_D(t) = e^{r(T-S)}e^{(\Gamma(T)-\Gamma(S))}$$
.

4.14. By Exercise 4.13, for each k = 1, ..., N the zero-coupon bond $D(t, T_k)$ with maturity T_k can be replicated by $e^{r(T-T_k)}e^{(\Gamma(T)-\Gamma(T_k))}$ zero-coupon bonds D(t, T) with maturity T. Hence, to replicate the coupon bond we need to buy

$$\sum_{k=1}^{N} C_k e^{r(T-T_k)} e^{(\Gamma(T)-\Gamma(T_k))} + F e^{r(T-T_D)} e^{(\Gamma(T)-\Gamma(T_N))}$$

of the zero-coupon bonds maturing at time T. Then, at time T_k for each $k = 1, ..., T_N$ we need to sell $C_k e^{r(T-T_k)} e^{(\Gamma(T)-\Gamma(T_k))}$ of the zero-coupon bonds maturing at T, which produces the defaultable coupon payment

$$C_k e^{r(T-T_k)} e^{(\Gamma(T)-\Gamma(T_k))} D(T_k, T) = C_k \mathbf{1}_{\{T_k < \tau\}}.$$

At time T_N we also need to sell the remaining holdings amounting to $Fe^{r(T-T_N)}e^{(\Gamma(T)-\Gamma(T_N))}$ of the zero-coupon bonds maturing at T, which pays

$$Fe^{r(T-T_N)}e^{(\Gamma(T)-\Gamma(T_N))}D(T_N,T)=F\mathbf{1}_{\{T_N<\tau\}},$$

i.e. the face value of the defaultable coupon bond.

4.15. Consider a CDS on a defaultable bond $D_{\delta}(t,T)$ with constant recovery $\delta \in (0,1)$ paid at maturity T. The recovery leg payment of the CDS is $(1-\delta)\mathbf{1}_{\{\tau \leq T\}}$ at time T. The premium leg payments are $\alpha \mathbf{1}_{\{t_k < T\}}$ at times t_k for $k = 1, \ldots, N$. Equating the time 0 values of the two legs, we get

$$\mathbb{E}\left(e^{-rT}(1-\delta)\mathbf{1}_{\{\tau\leq T\}}\right) = \sum_{k=1}^{N} \mathbb{E}\left(\alpha e^{-rt_{k}}\mathbf{1}_{\{t_{k}< T\}}\right).$$

Hence

$$\alpha = \frac{\mathbb{E}\left(e^{-rT}(1-\delta)\mathbf{1}_{\{\tau \leq T\}}\right)}{\sum_{k=1}^{N} \mathbb{E}\left(e^{-rt_{k}}\mathbf{1}_{\{t_{k} < T\}}\right)}$$

$$= \frac{\mathbb{E}\left(e^{-rT}(1-\delta)(1-\mathbf{1}_{\{T < \tau\}})\right)}{\sum_{k=1}^{N} \mathbb{E}\left(e^{-rt_{k}}\mathbf{1}_{\{t_{k} < T\}}\right)} = (1-\delta)\frac{B(0,T) - D(0,T)}{\sum_{k=1}^{N} D(0,t_{k})}.$$

4.16. The CDS spread is given by

$$\alpha = \frac{B(0,T) - D(0,T)}{\sum_{k=1}^{N} D(0,t_k)} = \frac{e^{-rT} - e^{-rT}e^{-\Gamma(T)}}{\sum_{k=1}^{N} e^{-rt_k}e^{-\Gamma(t_k)}}.$$

When τ is exponentially distributed under Q, we have

$$e^{-\Gamma(t)} = G(t) = Q(t < \tau) = e^{-\lambda t}$$
.

This gives

$$\alpha = \frac{e^{-rT} - e^{-rT}e^{-\lambda T}}{\sum_{k=1}^{N} e^{-rt_k}e^{-\lambda t_k}}.$$

For r = 0.05, $\lambda = 0.02$, T = 1 and N = 12 we get

$$\alpha = \frac{e^{-0.05 \times 1} - e^{-0.05 \times 1} e^{-0.02 \times 1}}{\sum_{k=1}^{12} e^{-0.05 \times \frac{k}{12}} e^{-0.02 \times \frac{k}{12}}} = 0.00163.$$

4.17. If the hazard rate γ is constant, then we have $\Gamma(t) = \gamma t$, so

$$\alpha = \frac{B(0,T) - D(0,T)}{\sum_{k=1}^{N} D(0,t_k)} = \frac{e^{-rT} - e^{-rT}e^{-\Gamma(T)}}{\sum_{k=1}^{N} e^{-rt_k}e^{-\Gamma(t_k)}} = \frac{e^{-rT} - e^{-rT}e^{-\gamma T}}{\sum_{k=1}^{N} e^{-rt_k}e^{-\gamma t_k}}.$$

This nonlinear equation can be solved numerically for γ . When r = 0.06, T = 2, N = 24 and $\alpha = 0.1$, we get $\gamma = 0.127$. This yields the defaultable bond price

$$D(0,T) = e^{-rT}e^{-\Gamma(T)} = e^{-rT}e^{-\gamma T} = 0.6880.$$

4.18. For each n = 1, ..., N we have $t_n = \frac{nT}{N}$ and

$$\alpha_n = \frac{e^{-rt_n} (1 - G(t_n))}{\sum_{k=1}^n e^{-rt_k} G(t_k)},$$

hence

$$G(t_n) = \frac{1 - \alpha_n \sum_{k=1}^{n-1} e^{r(t_n - t_k)} G(t_k)}{\alpha_n + 1} = \frac{1 - \alpha_n \sum_{k=1}^{n-1} e^{r \frac{(n-k)T}{N}} G(t_k)}{\alpha_n + 1}.$$

Moreover, the piecewise linear hazard function can be written as

$$\Gamma(t_n) = \sum_{k=1}^n \gamma_k (t_k - t_{k-1}) = \sum_{k=1}^n \gamma_k \frac{T}{N},$$

where $\gamma_1, \dots, \gamma_N$ are positive constants, so

$$G(t_n) = e^{-\Gamma(t_n)} = e^{-\sum_{k=1}^n \gamma_k \frac{T}{N}}.$$

For
$$T = 1$$
, $N = 4$, $r = 0.05$ and

$$\alpha_1 = 0.012$$
, $\alpha_2 = 0.009$, $\alpha_3 = 0.011$, $\alpha_4 = 0.010$,

we get

$$G(t_1) = \frac{1}{\alpha_1 + 1} = 0.98814,$$

$$G(t_2) = \frac{1 - \alpha_2 e^{r_N^T} G(t_1)}{\alpha_2 + 1} = 0.98216,$$

$$G(t_3) = \frac{1 - \alpha_3 \left(e^{r_A^{2T}} G(t_1) + e^{r_A^T} G(t_2) \right)}{\alpha_3 + 1} = 0.96728,$$

$$G(t_4) = \frac{1 - \alpha_4 \left(e^{r_A^{2T}} G(t_1) + e^{r_A^{2T}} G(t_2) + e^{r_A^T} G(t_1) \right)}{\alpha_4 + 1} = 0.96027.$$

It follows that

$$\gamma_1 = -\frac{N}{T} \ln G(t_1) = 0.047724,$$

$$\gamma_2 = -\frac{N}{T} \ln \frac{G(t_2)}{G(t_1)} = 0.024281,$$

$$\gamma_3 = -\frac{N}{T} \ln \frac{G(t_3)}{G(t_2)} = 0.061065,$$

$$\gamma_4 = -\frac{N}{T} \ln \frac{G(t_4)}{G(t_3)} = 0.029094.$$

Chapter 5

5.1. Since τ is an $(I_t)_{t\geq 0}$ -stopping time and $I_t \subset \mathcal{G}_t$ for each $t\geq 0$, it follows that τ is a $(\mathcal{G}_t)_{t\geq 0}$ -stopping time.

Now let $(\mathcal{H}_t)_{t\geq 0}$ be a filtration such that τ is an $(\mathcal{H}_t)_{t\geq 0}$ -stopping time and $\mathcal{F}_t \subset \mathcal{H}_t$ for each $t\geq 0$. Fix any $t\geq 0$. Then, for any $s\leq t$, we have $\{\tau\leq s\}\in\mathcal{H}_s\subset\mathcal{H}_t$ and so $I(s)=\mathbf{1}_{\{\tau\leq s\}}$ is \mathcal{H}_t -measurable. As a result, $I_t\subset\mathcal{H}_t$. It follows that $\mathcal{G}_t\subset\mathcal{H}_t$ since $\mathcal{G}_t=\sigma(\mathcal{F}_t\cup I_t)$ and $\mathcal{F}_t\cup I_t\subset\mathcal{H}_t$.

This proves that $(\mathcal{G}_t)_{t\geq 0}$ is the smallest filtration such that τ is an $(\mathcal{G}_t)_{t\geq 0}$ -stopping time and $\mathcal{F}_t \subset \mathcal{G}_t$ for each $t\geq 0$.

5.2. Let $0 \le s < t$. Then $\mathbf{1}_{\{\tau \le s\}} \le \mathbf{1}_{\{\tau \le t\}}$, which gives the result:

$$\mathbb{E}(F(t)|\mathcal{F}_s) = \mathbb{E}(\mathbb{E}(\mathbf{1}_{\{\tau \le t\}}|\mathcal{F}_t)|\mathcal{F}_s)$$

$$= \mathbb{E}(\mathbf{1}_{\{\tau \le t\}}|\mathcal{F}_s)$$

$$\geq \mathbb{E}(\mathbf{1}_{\{\tau \le s\}}|\mathcal{F}_s)$$

$$= F(s).$$

5.3. For any $0 \le s \le t$ we have $\{\tau \le s\} \subset \{\tau \le t\}$, and so $\mathbf{1}_{\{\tau \le s\}} \le \mathbf{1}_{\{\tau \le t\}}$. By Lemma 5.15,

$$F(s) = \mathbb{E}(\mathbf{1}_{\{\tau < s\}} | \mathcal{F}_t) \le \mathbb{E}(\mathbf{1}_{\{\tau < t\}} | \mathcal{F}_t) = F(t),$$

hence F(t) is non-decreasing.

5.4. The process Γ has increasing paths, so for every $t \ge s \ge 0$ we have $\Gamma(t) \ge \Gamma(s)$, which implies that

$$\mathbb{E}(\Gamma(t)|\mathcal{F}_s) \geq \mathbb{E}(\Gamma(s)|\mathcal{F}_s) = \Gamma(s)$$

since $\Gamma(s)$ is \mathcal{F}_s -measurable. It follows that Γ is a supermartingale with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$.

5.5. Let

$$X(t) = vt + \sigma W_O(t),$$

where

$$v = r - \frac{1}{2}\sigma^2.$$

Then

$$\Gamma(t) = \max_{u \in [0,t]} \left(-\ln \frac{S(t)}{S(0)} \right) = -\min_{u \in [0,t]} X(t).$$

It follows from Lemma A.16 that the cumulative distribution function of $\Gamma(t)$ is

$$F_{\Gamma(t)}(x) = Q(\Gamma(t) \le x)$$

$$= Q(\min_{u \in [0,t]} X(t) \ge -x)$$

$$= N\left(\frac{x + vt}{\sigma\sqrt{t}}\right) - e^{-\frac{2vx}{\sigma^2}} N\left(\frac{-x + vt}{\sigma\sqrt{t}}\right)$$

for any $x \ge 0$, and $F_{\Gamma(t)}(x) = 0$ for x < 0. Hence the density of $\Gamma(t)$ is

$$f_{\Gamma(t)}(x) = \frac{1}{\sigma \sqrt{2\pi t}} e^{-\frac{(x+vt)^2}{2\sigma^2 t}} + e^{-\frac{2\nu x}{\sigma^2}} \frac{1}{\sigma \sqrt{2\pi t}} e^{-\frac{(-x+vt)^2}{2\sigma^2 t}} + \frac{2\nu}{\sigma^2} e^{-\frac{2\nu x}{\sigma^2}} N\left(\frac{-x+\nu t}{\sigma \sqrt{t}}\right)$$

for any $x \ge 0$, and $f_{\Gamma(t)}(x) = 0$ for x < 0. It follows that for each $t \ge 0$

$$Q(\tau \leq t) = \mathbb{E}(\mathbf{1}_{\{\tau \leq t\}}) = \mathbb{E}(\mathbb{E}(\mathbf{1}_{\{\tau \leq t\}}|\mathcal{F}_t)) = \mathbb{E}(F(t)) = \mathbb{E}(e^{-\Gamma(t)})$$

$$= \int_{-\infty}^{\infty} e^{-x} f_{\Gamma(t)}(x) dx$$

$$= \frac{1}{\sigma \sqrt{2\pi t}} \int_{0}^{\infty} e^{-x} e^{-\frac{(x+vt)^2}{2\sigma^2 t}} dx + \frac{1}{\sigma \sqrt{2\pi t}} \int_{0}^{\infty} e^{-x} e^{-\frac{2vx}{\sigma^2}} e^{-\frac{(-x+vt)^2}{2\sigma^2 t}} dx$$

$$+ \frac{2v}{\sigma^2} \int_{0}^{\infty} e^{-x} e^{-\frac{2vx}{\sigma^2}} N\left(\frac{-x+vt}{\sigma \sqrt{t}}\right) dx$$

$$= e^{vt + \frac{1}{2}\sigma^2 t} N\left(-\frac{vt+\sigma^2 t}{\sigma \sqrt{t}}\right) + e^{vt + \frac{1}{2}\sigma^2 t} N\left(-\frac{vt+\sigma^2 t}{\sigma \sqrt{t}}\right)$$

$$+ \frac{2v}{\sigma^2} \frac{\sigma^2}{2v+\sigma^2} N\left(\frac{vt}{\sigma \sqrt{t}}\right) - \frac{2v}{2v+\sigma^2} e^{vt + \frac{1}{2}\sigma^2 t} N\left(-\frac{vt+\sigma^2 t}{\sigma \sqrt{t}}\right)$$

$$= 2e^{vt + \frac{1}{2}\sigma^2 t} \frac{v+\sigma^2}{2v+\sigma^2} N\left(-\frac{vt+\sigma^2 t}{\sigma \sqrt{t}}\right) + \frac{2v}{2v+\sigma^2} N\left(\frac{vt}{\sigma \sqrt{t}}\right)$$

$$= e^{rt} \frac{2r+\sigma^2}{2r} N\left(-\frac{rt+\frac{1}{2}\sigma^2 t}{\sigma \sqrt{t}}\right) + \frac{2r+\sigma^2}{2r} N\left(\frac{rt-\frac{1}{2}\sigma^2 t}{\sigma \sqrt{t}}\right),$$

which gives the probability distribution of τ under Q.

5.6. Suppose that *Y* is a random variable with the unit exponential distribution. Then for any $x \in [0, 1]$

$$O(e^{-Y} \le x) = O(Y \ge -\ln x) = 1 - F_Y(-\ln x) = e^{\ln x} = x,$$

so e^{-Y} is uniformly distributed in [0, 1].

Conversely, suppose that e^{-Y} is uniformly distributed in [0, 1]. Then for any $x \in [0, \infty)$

$$Q(Y \le x) = Q(e^{-Y} \ge e^{-x}) = 1 - e^{-x},$$

hence *Y* has the unit exponential distribution.

5.7. Let

$$\tau_1 = \inf\{t \ge 0 : e^{-\Gamma(t)} \le X\},\,$$

where X is a random variable uniformly distributed in [0,1] and independent of \mathcal{F}_{∞} , and let

$$\tau_2 = \inf\{t \ge 0 : \Gamma(t) \ge Y\}$$

where Y is a random variable with the unit exponential distribution and independent of \mathcal{F}_{∞} . By Exercise 5.6, e^{-Y} is uniformly distributed

in [0, 1]. It follows that

$$\tau_2 = \inf\{t \ge 0 : \Gamma(t) \ge Y\} = \inf\{t \ge 0 : e^{-\Gamma(t)} \le e^{-Y}\}\$$

has the same distribution as τ_1 .

5.8. Since $\emptyset \cap \{\tau \le t\} = \emptyset$ and $\Omega \cap \{\tau \le t\} = \{\tau \le t\}$ belong to \mathcal{G}_t , both \emptyset and Ω belong to \mathcal{A} . Suppose that $A, B \in \mathcal{A}$. Since $A \cap \{\tau \le t\}$ and $B \cap \{\tau \le t\}$ belong to \mathcal{G}_t ,

$$(A \setminus B) \cap \{\tau \le t\} = (A \cap \{\tau \le t\}) \setminus (B \cap \{\tau \le t\})$$

also belongs to G_t , so $A \setminus B \in \mathcal{A}$. Next, if $A_n \in \mathcal{A}$ and so $A_n \cap \{\tau \leq t\} \in G_t$ for n = 1, 2, ..., then

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap \{\tau \le t\} = \bigcup_{n=1}^{\infty} \left(A_n \cap \{\tau \le t\}\right)$$

belongs to \mathcal{G}_t , so $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. This shows that \mathcal{A} is a σ -field.

To see that $\sigma(\tau) \subset \mathcal{A}$ we only need to verify that $\{\tau \leq s\} \in \mathcal{A}$ for each $s \geq 0$ since events of the form $\{\tau \leq s\}$ for $s \geq 0$ generate the σ -field $\sigma(\tau)$. Indeed, for any $s \geq 0$ the event $\{\tau \leq s\} \cap \{\tau \leq t\} = \{\tau \leq s \land t\}$ belongs to $I_{s \land t} \subset I_t \subset \mathcal{G}_t$, so $\{\tau \leq s\} \in \mathcal{A}$.

Finally, we take any $A \in \mathcal{F}_t$. Since $\{\tau \le t\} \in \mathcal{I}_t$, we find that $A \cap \{\tau \le t\} \in \mathcal{G}_t$, hence $A \in \mathcal{A}$. We have shown that $\mathcal{F}_t \subset \mathcal{A}$.

- 5.9. Take any t > 0. By left-continuity, for any $\varepsilon > 0$ there is a $\delta > 0$ such that $|h(u) h(t)| < \varepsilon$ when $u \in (t \delta, t]$. Then for any $n > \max(\frac{s}{\delta}, \frac{t}{s})$ we have $|h_n(t) h(t)| < \varepsilon$. This proves that $h(t) = \lim_{n \to \infty} h_n(t)$.
- **5.10.** Since $\tau > 0$, we have $\mathbf{1}_{\{\tau \le 0\}} = 0$ and $\mathbf{1}_{\{0 < \tau\}} = 1$, so we just need to show that

$$\mathbb{E}(h(\tau)) = \mathbb{E}\left(\int_0^\infty h(u)f(u)du\right).$$

Since h has left-continuous paths, we have, almost surely,

$$h(t) = \lim_{n \to \infty} h_n(t)$$
 for each $t > 0$,

where

$$h_n(t) = \sum_{i=1}^{n^2} h(s_n^{i-1}) \mathbf{1}_{(s_n^{i-1}, s_n^i)}(t)$$

with $s_n^i = \frac{i}{n}$ for each n, i = 1, 2, ... (see Exercise 5.9 with s = 1). It follows that, almost surely,

$$h(\tau) = \lim_{n \to \infty} h_n(\tau).$$

First we verify the desired equality for $h_n(t)$. Indeed,

$$\mathbb{E}(h_{n}(\tau)) = \sum_{i=1}^{n^{2}} \mathbb{E}(h(s_{n}^{i-1})\mathbf{1}_{(s_{n}^{i-1},s_{n}^{i}]}(\tau))$$

$$= \sum_{i=1}^{n^{2}} \mathbb{E}(\mathbb{E}(h(s_{n}^{i-1})\mathbf{1}_{(s_{n}^{i-1},s_{n}^{i}]}(\tau)|\mathcal{F}_{s_{n}^{i}}))$$

$$= \sum_{i=1}^{n^{2}} \mathbb{E}(h(s_{n}^{i-1})\mathbb{E}(\mathbf{1}_{(s_{n}^{i-1},s_{n}^{i}]}(\tau)|\mathcal{F}_{s_{n}^{i}}))$$

$$= \sum_{i=1}^{n^{2}} \mathbb{E}(h(s_{n}^{i-1})(\mathbb{E}(\mathbf{1}_{\{\tau \leq s_{n}^{i}\}}|\mathcal{F}_{s_{n}^{i}}) - \mathbb{E}(\mathbf{1}_{\{\tau \leq s_{n}^{i-1}\}}|\mathcal{F}_{s_{n}^{i}})))$$

$$= \sum_{i=1}^{n^{2}} \mathbb{E}(h(s_{n}^{i-1})(F(s_{n}^{i}) - F(s_{n}^{i-1})))$$

$$= \mathbb{E}\left(\int_{0}^{\infty} h_{n}(u)f(u)du\right),$$

where we use Lemma 5.15 in the fifth equality. Hence, by dominated convergence, for a bounded h we find that

$$\mathbb{E}(h(\tau)) = \lim_{n \to \infty} \mathbb{E}(h_n(\tau))$$

$$= \lim_{n \to \infty} \mathbb{E}\left(\int_0^\infty h_n(u)f(u)du\right)$$

$$= \mathbb{E}\left(\int_0^\infty h(u)f(u)du\right).$$

Then, for a non-negative h we obtain the formula by approximating h by a monotone sequence of bounded processes. Finally, for a general h we use the positive and negative parts h^+ and h^- together with the assumption that $h(\tau)$ is integrable, just like in the proof of Theorem 5.34 in the case when s > 0.

5.11. Note that

$$L(t) = (1 - \mathbf{1}_{\{\tau \le t\}})e^{\Gamma(t)} = \mathbf{1}_{\{t < \tau\}}e^{\Gamma(t)}.$$

By Theorem 5.35 with $Y = e^{\Gamma(t)}$,

$$\mathbb{E}(L(t)|\mathcal{G}_s) = \mathbb{E}(e^{\Gamma(t)}\mathbf{1}_{\{t<\tau\}}|\mathcal{G}_s)$$

$$= \mathbf{1}_{\{s<\tau\}}\mathbb{E}(e^{\Gamma(t)}e^{-(\Gamma(t)-\Gamma(s))}|\mathcal{F}_s)$$

$$= \mathbf{1}_{\{s<\tau\}}e^{\Gamma(s)}$$

$$= L(s).$$

5.12. This is again a simple consequence of Theorem 5.35. For $Y = X(t)e^{\Gamma(t)}$, it gives

$$\mathbb{E}(X(t)L(t)|\mathcal{G}_s) = \mathbb{E}(X(t)e^{\Gamma(t)}\mathbf{1}_{\{t<\tau\}}|\mathcal{G}_s)$$

$$= \mathbf{1}_{\{s<\tau\}}e^{\Gamma(s)}\mathbb{E}(X(t)|\mathcal{F}_s)$$

$$= L(s)X(s).$$

Chapter 6

6.1. It is shown in Section 6.1 that

$$\hat{D}(t,T) = D(0,T) + \int_0^t (r + \gamma(u))\hat{D}(u,T)du + \int_0^t e^{-r(T-u)}e^{\Gamma(u)}X_{G(T)}(u)dW_Q(u).$$

By Itô's product rule (see [SCF]), it follows that

$$e^{-rt}\hat{D}(t,T) = D(0,T) + \int_0^t \gamma(u)e^{-ru}\hat{D}(u,T)du + \int_0^t e^{-rT}e^{\Gamma(u)}X_{G(T)}(u)dW_Q(u).$$

Hence

$$\begin{split} e^{-r(t\wedge\tau)}\hat{D}(t\wedge\tau,T) &= D(0,T) + \int_0^{t\wedge\tau} \gamma(u)e^{-ru}\hat{D}(u,T)du \\ &+ \int_0^{t\wedge\tau} e^{-rT}e^{\Gamma(u)}X_{G(T)}(u)dW_Q(u) \\ &= D(0,T) + \int_0^t \gamma(u)\tilde{D}(u,T)du \\ &+ \int_0^{t\wedge\tau} e^{-rT}e^{\Gamma(u)}X_{G(T)}(u)dW_Q(u). \end{split}$$

On the left-hand side we have

$$\begin{split} e^{-r(t\wedge\tau)}\hat{D}(t\wedge\tau,T) &= \mathbf{1}_{\{\tau\leq t\}}e^{-r\tau}\hat{D}(\tau,T) + \mathbf{1}_{\{t<\tau\}}e^{-rt}\hat{D}(t,T) \\ &= \mathbf{1}_{\{\tau\leq t\}}e^{-r\tau}\hat{D}(\tau,T) + \tilde{D}(t,T). \end{split}$$

By formula (5.11),

$$\int_0^t \tilde{D}(u_-, T) dM(u) = \mathbf{1}_{\{\tau \le t\}} \tilde{D}(\tau_-, T) - \int_0^{t \wedge \tau} \tilde{D}(u_-, T) \gamma(u) du$$
$$= \mathbf{1}_{\{\tau \le t\}} e^{-r\tau} \hat{D}(\tau, T) - \int_0^t \tilde{D}(u, T) \gamma(u) du.$$

Combining the last three formulae gives

$$\begin{split} \tilde{D}(t,T) &= D(0,T) - \int_0^t \tilde{D}(u_-,T) dM(u) \\ &+ \int_0^{t \wedge \tau} e^{-rT} e^{\Gamma(u)} X_{G(T)}(u) dW_{\mathcal{Q}}(u). \end{split}$$

6.2. As shown in the proof of Proposition 6.9,

$$V_{\varphi}(\tau_{-}) = V_{\varphi}(\tau) + \varphi_{D}(\tau)D(\tau_{-}, T).$$

Taking the left limit as $t \nearrow \tau$ in the expression for $V_{\varphi}(t)$ in the predefault region $\{t < \tau\}$ in Definition 6.7, we get

$$\begin{split} V_{\varphi}(\tau_{-}) &= V_{\varphi}(0) + \int_{0}^{\tau} \varphi_{B}(u)rB(u,T)du \\ &+ \int_{0}^{\tau} \varphi_{S}(u)rS(u)du + \int_{0}^{\tau} \varphi_{S}(u)\sigma S(u)dW_{Q}(u) \\ &+ \int_{0}^{\tau} \varphi_{D}(u)rD(u,T)du + \int_{0}^{\tau} \varphi_{D}(u)\gamma(u)D(u,T)du \\ &+ \int_{0}^{\tau} \varphi_{D}(u)e^{-r(T-u)}e^{\Gamma(u)}X_{G(T)}(u)dW_{Q}(u) \\ &= V_{\varphi}(0) + \int_{0}^{\tau} rV_{\varphi}(u)du + \int_{0}^{\tau} \varphi_{S}(u)\sigma S(u)dW_{Q}(u) \\ &+ \int_{0}^{\tau} \varphi_{D}(u)\gamma(u)D(u,T)du \\ &+ \int_{0}^{\tau} \varphi_{D}(u)e^{-r(T-u)}e^{\Gamma(u)}X_{G(T)}(u)dW_{Q}(u). \end{split}$$

It follows that

$$\begin{split} V_{\varphi}(\tau) &= V_{\varphi}(\tau_{-}) - \varphi_{D}(\tau)D(\tau_{-},T) \\ &= V_{\varphi}(0) + \int_{0}^{\tau} rV_{\varphi}(u)du + \int_{0}^{\tau} \varphi_{S}(u)\sigma S(u)dW_{Q}(u) \\ &+ \int_{0}^{\tau} \varphi_{D}(u)\gamma(u)D(u,T)du - \varphi_{D}(\tau)D(\tau_{-},T) \\ &+ \int_{0}^{\tau} \varphi_{D}(u)e^{-r(T-u)}e^{\Gamma(u)}X_{G(T)}(u)dW_{Q}(u). \end{split}$$

By inserting this into the expression for $V_{\varphi}(t)$ in the post-default region $\{\tau \leq \tau\}$ in Definition 6.7, we get

$$\begin{split} V_{\varphi}(t) &= V_{\varphi}(\tau) + \int_{\tau}^{t} r V_{\varphi}(u) du + \int_{\tau}^{t} \varphi_{S}(u) \sigma S(u) dW_{Q}(u) \\ &= V_{\varphi}(0) + \int_{0}^{t} r V_{\varphi}(u) du + \int_{0}^{t} \varphi_{S}(u) \sigma S(u) dW_{Q}(u) \\ &+ \int_{0}^{\tau} \varphi_{D}(u) \gamma(u) D(u, T) du - \varphi_{D}(\tau) D(\tau_{-}, T) \\ &+ \int_{0}^{\tau} \varphi_{D}(u) e^{-r(T-u)} e^{\Gamma(u)} X_{G(T)}(u) dW_{Q}(u). \end{split}$$

Combining this with the expression for $V_{\varphi}(t)$ in the pre-default region $\{t < \tau\}$ in Definition 6.7, we finally get

$$\begin{split} V_{\varphi}(t) &= V_{\varphi}(0) + \int_{0}^{t} r V_{\varphi}(u) du + \int_{0}^{t} \varphi_{S}(u) \sigma S(u) dW_{Q}(u) \\ &- \int_{0}^{t} \varphi_{D}(u) D(u-, T) dM(u) \\ &+ \int_{0}^{t \wedge \tau} \varphi_{D}(u) e^{-r(T-u)} e^{\Gamma(u)} X_{G(T)}(u) dW_{Q}(u). \end{split}$$

for all $t \in [0, T]$.

6.3. Suppose that φ is a self-financing strategy such that V_{φ} is non-negative, hence \tilde{V}_{φ} is non-negative. In the expression (6.4) for the discounted value $\tilde{V}_{\varphi}(t) = e^{-rt}V_{\varphi}(t)$ of the strategy in Proposition 6.9 the integrals with respect to W_Q are local martingales. By Remark 5.41, the integral with respect to M in (6.4) is also a local martingale. It follows that $\tilde{V}_{\varphi}(t)$ is a local martingale. As a non-negative local martingale, \tilde{V}_{φ} must be a supermartingale, hence

$$0 \le \mathbb{E}(V_{\omega}(T)) \le V_{\omega}(0).$$

If φ were an arbitrage strategy, we would have $V_{\varphi}(0)=0$ and $\mathbb{E}(V_{\varphi}(T))>0$, so

$$0 < \mathbb{E}(V_{\varphi}(T)) \le V_{\varphi}(0) = 0,$$

a contradiction.

6.4. We need to show that

$$(r + \gamma(t))e^{\Gamma(t)}V_{\beta}(t) = re^{\Gamma(t)}V_{\beta}(t) + \varphi_{D}(t)\gamma(t)D(t, T),$$

that is

$$e^{\Gamma(t)}V_{\beta}(t) = \varphi_D(t)D(t,T),$$

in the pre-default region $\{t < \tau\}$. The last equality holds because

$$D(t,T) = e^{-r(T-t)}e^{\Gamma(t)}\mathbb{E}(e^{-\Gamma(T)}|\mathcal{F}_t) = e^{\Gamma(t)}V_\alpha(t)$$

in $\{t < \tau\}$, and

$$\varphi_D(u) = \frac{V_{\beta}(u)}{V_{\alpha}(u)}.$$

6.5. By Proposition A.15, the joint density of the logarithmic return

$$R(T) = \ln \frac{S(t)}{S(0)} = rt - \frac{1}{2}\sigma^2 t + \sigma W_Q(t)$$

and its minimum $\min_{u \in [0,T]} R(u)$ is

$$f(x,y) = \frac{1}{\sigma \sqrt{2\pi T}} \frac{2(x-2y)}{T\sigma^2} e^{\frac{2y(r-\frac{1}{2}\sigma^2)}{\sigma^2}} e^{-\frac{(2y-x+rT-\frac{1}{2}\sigma^2T)^2}{2\sigma^2T}}.$$

when $y \le 0$ and $y \le x$, and f(x, y) = 0 otherwise. According to Example 6.17, the vulnerable call price can be computed as

$$\begin{split} H(0) &= e^{-rT} \mathbb{E}((S(T) - K)^{+} e^{-\Gamma(T)}) \\ &= e^{-rT} \mathbb{E}((S(0) e^{R(T)} - K)^{+} e^{\min_{u \in [0,T]} R(t)}) \\ &= e^{-rT} \int_{\ln \frac{K}{S(0)}}^{\infty} \left(\int_{-\infty}^{0 \wedge x} (S(0) e^{x} - K) e^{y} f(x, y) dy \right) dx \\ &= e^{-rT} \int_{\ln \frac{K}{S(0)}}^{\infty} (S(0) e^{x} - K) \left(\int_{-\infty}^{0 \wedge x} e^{y} f(x, y) dy \right) dx. \end{split}$$

We shall compute H(0) in the case when in the case when $K \ge S(0)$. In this case the upper limit in the inner integral is simply 0, and this

integral can be computed as follows:

$$\begin{split} & \int_{-\infty}^{0} e^{y} f(x,y) dy \\ &= \frac{1}{\sigma \sqrt{2\pi T}} \int_{-\infty}^{0} e^{y} \frac{2 (x-2y)}{\sigma^{2} T} e^{\frac{2y(r-\frac{1}{2}\sigma^{2})}{\sigma^{2}}} e^{-\frac{(2y-x+rT-\frac{1}{2}\sigma^{2}T)^{2}}{2\sigma^{2}T}} dy \\ &= \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{r(r-\sigma^{2})T}{2\sigma^{2}}} e^{\frac{rx}{\sigma^{2}}} \int_{-\infty}^{0} \frac{2 (x-2y)}{\sigma^{2} T} e^{-\frac{(2y-x-\frac{1}{2}\sigma^{2}T)^{2}}{2\sigma^{2}T}} dy \\ &= \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{r(r-\sigma^{2})T}{2\sigma^{2}}} e^{\frac{rx}{\sigma^{2}}} \int_{-\infty}^{0} \left(\frac{d}{dy} \left(e^{-\frac{(2y-x-\frac{1}{2}\sigma^{2}T)^{2}}{2\sigma^{2}T}} \right) - e^{-\frac{(2y-x-\frac{1}{2}\sigma^{2}T)^{2}}{2\sigma^{2}T}} \right) dy \\ &= \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{r(r-\sigma^{2})T}{2\sigma^{2}}} e^{\frac{rx}{\sigma^{2}}} e^{-\frac{(x-\frac{1}{2}\sigma^{2}T)^{2}}{2\sigma^{2}T}} - e^{-\frac{r(r-\sigma^{2})T}{2\sigma^{2}}} e^{\frac{rx}{\sigma^{2}}} N \left(\frac{-x-\frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}} \right) \\ &= \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{(x-(r-\frac{1}{2}\sigma^{2})T)^{2}}{2\sigma^{2}T}} - e^{-\frac{r(r-\sigma^{2})T}{2\sigma^{2}}} e^{\frac{rx}{\sigma^{2}}} N \left(\frac{-x-\frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}} \right). \end{split}$$

Hence, we get

$$\begin{split} & \int_{\ln \frac{K}{S(0)}}^{\infty} \left(\int_{-\infty}^{0} e^{y} f(x,y) dy \right) dx \\ & = \int_{\ln \frac{K}{S(0)}}^{\infty} \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{\left(x - \left(r - \frac{1}{2}\sigma^{2}\right)T\right)^{2}}{2\sigma^{2}T}} dx - e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \int_{\ln \frac{K}{S(0)}}^{\infty} e^{\frac{rx}{\sigma^{2}}} N\left(\frac{-x - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) dx \\ & = N\left(\frac{\ln \frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}}\right) - e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} \int_{\ln \frac{K}{S(0)}}^{\infty} \frac{d}{dx} \left(e^{\frac{rx}{\sigma^{2}}}\right) N\left(\frac{-x - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) dx \\ & = N\left(\frac{\ln \frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}}\right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} e^{\frac{r\ln \frac{K}{S(0)}}{\sigma^{2}}} N\left(\frac{-\ln \frac{K}{S(0)} - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) \\ & + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} \int_{\ln \frac{K}{S(0)}}^{\infty} e^{\frac{rx}{\sigma^{2}}} \frac{d}{dx} N\left(\frac{-x - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) dx \\ & = N\left(\frac{\ln \frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}}\right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} \left(\frac{K}{S(0)}\right)^{\frac{r}{\sigma^{2}}} N\left(\frac{\ln \frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) \\ & - e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} \int_{\ln \frac{K}{S(0)}}^{\infty} e^{\frac{rx}{\sigma^{2}}} \frac{1}{\sigma\sqrt{2\pi T}} e^{-\frac{\left(-x - \frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}} dx \end{split}$$

and so

$$\begin{split} &\int_{\ln\frac{K}{S(0)}}^{\infty} \left(\int_{-\infty}^{0} e^{y} f(x, y) dy \right) dx \\ &= N \left(\frac{\ln\frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}} \right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} \left(\frac{K}{S(0)} \right)^{\frac{r}{\sigma^{2}}} N \left(\frac{\ln\frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}} \right) \\ &- \frac{\sigma^{2}}{r} \int_{\ln\frac{K}{S(0)}}^{\infty} \frac{1}{\sigma\sqrt{2\pi T}} e^{-\frac{\left(x - rT + \frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}} dx \\ &= N \left(\frac{\ln\frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}} \right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} \left(\frac{K}{S(0)} \right)^{\frac{r}{\sigma^{2}}} N \left(\frac{\ln\frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}} \right) \\ &- \frac{\sigma^{2}}{r} N \left(\frac{\ln\frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}} \right) \\ &= \frac{r - \sigma^{2}}{r} N \left(\frac{\ln\frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}} \right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r} \left(\frac{K}{S(0)} \right)^{\frac{r}{\sigma^{2}}} N \left(\frac{\ln\frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}} \right). \end{split}$$

We also get

$$\begin{split} & \int_{\ln\frac{K}{S(0)}}^{\infty} e^{x} \left(\int_{-\infty}^{0} e^{y} f(x,y) dy \right) dx \\ & = \int_{\ln\frac{K}{S(0)}}^{\infty} e^{x} \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{\left(x - \left(r - \frac{1}{2}\sigma^{2}\right)T\right)^{2}}{2\sigma^{2}T}} dx - e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \int_{\ln\frac{K}{S(0)}}^{\infty} e^{x} e^{\frac{rx}{\sigma^{2}}} N\left(\frac{-x - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) dx \\ & = e^{rT} \int_{\ln\frac{K}{S(0)}}^{\infty} \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{\left(x - \left(r + \frac{1}{2}\sigma^{2}\right)T\right)^{2}}{2\sigma^{2}T}} dx - e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} \int_{\ln\frac{K}{S(0)}}^{\infty} \frac{d}{dx} \left(e^{\frac{\left(r + \sigma^{2}\right)x}{\sigma^{2}}}\right) N\left(\frac{-x - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) dx \\ & = e^{rT} N\left(\frac{\ln\frac{S(0)}{K} + \left(r + \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}}\right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} e^{\frac{\left(r + \sigma^{2}\right)\ln\frac{K}{S(0)}}{\sigma^{2}}} N\left(\frac{-\ln\frac{K}{S(0)} - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) \\ & + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} \int_{\ln\frac{K}{S(0)}}^{\infty} e^{\frac{\left(r + \sigma^{2}\right)x}{\sigma^{2}}} \frac{d}{dx} N\left(\frac{-x - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) dx \\ & = e^{rT} N\left(\frac{\ln\frac{S(0)}{K} + \left(r + \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}}\right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} \left(\frac{K}{S(0)}\right)^{\frac{r + \sigma^{2}}{\sigma^{2}}} N\left(\frac{\ln\frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}\right) \\ & - e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} \int_{\ln\frac{K}{S(0)}}^{\infty} e^{\frac{\left(r + \sigma^{2}\right)x}{\sigma^{2}}} \frac{1}{\sigma\sqrt{2\pi T}} e^{-\frac{\left(x - \frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}} dx \end{split}$$

and so

$$\begin{split} & \int_{\ln \frac{K}{S(0)}}^{\infty} e^{x} \left(\int_{-\infty}^{0} e^{y} f(x,y) dy \right) dx \\ &= e^{rT} N \left(\frac{\ln \frac{S(0)}{K} + \left(r + \frac{1}{2}\sigma^{2}\right) T}{\sigma \sqrt{T}} \right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} \left(\frac{K}{S(0)} \right)^{\frac{r + \sigma^{2}}{\sigma^{2}}} N \left(\frac{\ln \frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma \sqrt{T}} \right) \\ &- e^{rT} \frac{\sigma^{2}}{r + \sigma^{2}} \int_{\ln \frac{K}{S(0)}}^{\infty} \frac{1}{\sigma \sqrt{2\pi T}} e^{-\frac{\left(x - rT - \frac{1}{2}\sigma^{2}T\right)^{2}}{2\sigma^{2}T}} dx \\ &= e^{rT} N \left(\frac{\ln \frac{S(0)}{K} + \left(r + \frac{1}{2}\sigma^{2}\right) T}{\sigma \sqrt{T}} \right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} \left(\frac{K}{S(0)} \right)^{\frac{r + \sigma^{2}}{\sigma^{2}}} N \left(\frac{\ln \frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma \sqrt{T}} \right) \\ &- e^{rT} \frac{\sigma^{2}}{r + \sigma^{2}} N \left(\frac{\ln \frac{S(0)}{K} + rT + \frac{1}{2}\sigma^{2}T}{\sigma \sqrt{T}} \right) \\ &= e^{rT} \frac{r}{r + \sigma^{2}} N \left(\frac{\ln \frac{S(0)}{K} + \left(r + \frac{1}{2}\sigma^{2}\right) T}{\sigma \sqrt{T}} \right) + e^{-\frac{r(r - \sigma^{2})T}{2\sigma^{2}}} \frac{\sigma^{2}}{r + \sigma^{2}} \left(\frac{K}{S(0)} \right)^{\frac{r + \sigma^{2}}{\sigma^{2}}} N \left(\frac{\ln \frac{S(0)}{K} - \frac{1}{2}\sigma^{2}T}{\sigma \sqrt{T}} \right). \end{split}$$

It follows that in the case when $K \ge S(0)$

$$\begin{split} H(0) &= e^{-rT} \int_{\ln \frac{K}{S(0)}}^{\infty} (S(0)e^x - K) \left(\int_{-\infty}^{0} e^y f(x, y) dy \right) dx \\ &= e^{-rT} S(0) \left[e^{rT} \frac{r}{r + \sigma^2} N \left(\frac{\ln \frac{S(0)}{K} + \left(r + \frac{1}{2}\sigma^2\right)T}{\sigma \sqrt{T}} \right) + e^{-\frac{r(r - \sigma^2)T}{2\sigma^2}} \frac{\sigma^2}{r + \sigma^2} \left(\frac{K}{S(0)} \right)^{\frac{r + \sigma^2}{\sigma^2}} N \left(\frac{\ln \frac{S(0)}{K} - \frac{1}{2}\sigma^2T}{\sigma \sqrt{T}} \right) \right] \\ &- e^{-rT} K \left[\frac{r - \sigma^2}{r} N \left(\frac{\ln \frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^2\right)T}{\sigma \sqrt{T}} \right) + e^{-\frac{r(r - \sigma^2)T}{2\sigma^2}} \frac{\sigma^2}{r} \left(\frac{K}{S(0)} \right)^{\frac{r}{\sigma^2}} N \left(\frac{\ln \frac{S(0)}{K} - \frac{1}{2}\sigma^2T}{\sigma \sqrt{T}} \right) \right] \\ &= S(0) \frac{r}{r + \sigma^2} N \left(\frac{\ln \frac{S(0)}{K} + \left(r + \frac{1}{2}\sigma^2\right)T}{\sigma \sqrt{T}} \right) - e^{-rT} K \frac{r - \sigma^2}{r} N \left(\frac{\ln \frac{S(0)}{K} + \left(r - \frac{1}{2}\sigma^2\right)T}{\sigma \sqrt{T}} \right) \right. \\ &- K \frac{\sigma^4}{r \left(r + \sigma^2\right)} e^{-\frac{r(r + \sigma^2)T}{2\sigma^2}} \left(\frac{K}{S(0)} \right)^{\frac{r}{\sigma^2}} N \left(\frac{\ln \frac{S(0)}{K} - \frac{1}{2}\sigma^2T}{\sigma \sqrt{T}} \right). \end{split}$$

6.6. Since the discounted defaultable bond price process is a $(G_t)_{t\geq 0}$ -martingale,

$$H(t) = e^{-rt}D(t,T) = \mathbb{E}(e^{-rT}D(T,T)|\mathcal{G}_t) = \mathbb{E}(e^{-rT}\mathbf{1}_{\{T<\tau\}}|\mathcal{G}_t)$$

for each $t \in [0, T]$. Hence, putting

$$h(t) = e^{-rT} \mathbf{1}_{\{T < t\}},$$

we have

$$H(t) = e^{-rt}D(t,T) = \mathbb{E}(h(\tau)|\mathcal{G}_t).$$

Next,

$$\begin{split} J(t) &= e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{t < \tau\}} h(\tau) | \mathcal{F}_t) \\ &= e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{t < \tau\}} e^{-rT} \mathbf{1}_{\{T < \tau\}} | \mathcal{F}_t) \\ &= e^{-rT} e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{T < \tau\}} | \mathcal{F}_t) \\ &= e^{-rT} e^{\Gamma(t)} \mathbb{E}(\mathbb{E}(\mathbf{1}_{\{T < \tau\}} | \mathcal{F}_T) | \mathcal{F}_t) \\ &= e^{-rT} e^{\Gamma(t)} \mathbb{E}(e^{-\Gamma(T)} | \mathcal{F}_t) \\ &= e^{-rT} e^{\Gamma(t)} \mathbb{E}(G(T) | \mathcal{F}_t). \end{split}$$

This can be expressed in terms of the value $V_{\alpha}(t) = \alpha_B(t)B(t,T) + \alpha_S(t)S(t)$ of the admissible self-financing strategy (α_B,α_S) replicating a derivative security with payoff G(T) and exercise time T in the Black–Scholes model consisting of the assets B,S. Namely,

$$e^{-rt}\mathbb{E}(G(T)|\mathcal{F}_t) = V_{\alpha}(t),$$

so

$$J(t) = e^{-r(T-t)}e^{\Gamma(t)}V_{\alpha}(t).$$

6.7. We take

$$h(t) = X \mathbf{1}_{\{T < t\}},$$

so that

$$H(t) = \mathbb{E}(X\mathbf{1}_{\{T<\tau\}}|\mathcal{G}_t) = \mathbb{E}(h(\tau)|\mathcal{G}_t).$$

Moreover,

$$J(t) = e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{t<\tau\}} h(\tau) | \mathcal{F}_t)$$

$$= e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{t<\tau\}} X \mathbf{1}_{\{T<\tau\}} | \mathcal{F}_t)$$

$$= e^{\Gamma(t)} \mathbb{E}(X \mathbf{1}_{\{T<\tau\}} | \mathcal{F}_t)$$

$$= e^{\Gamma(t)} \mathbb{E}(X \mathbb{E}(\mathbf{1}_{\{T<\tau\}} | \mathcal{F}_T) | \mathcal{F}_t)$$

$$= e^{\Gamma(t)} \mathbb{E}(X e^{-\Gamma(T)} | \mathcal{F}_t)$$

$$= e^{\Gamma(t)} \mathbb{E}(X G(T) | \mathcal{F}_t).$$

This can be expressed in terms of the value $V_{\beta}(t) = \beta_B(t)B(t,T) + \beta_S(t)S(t)$ of the admissible self-financing strategy (β_B,β_S) replicating a derivative security with payoff XG(T) and exercise time T in

the Black–Scholes model consisting of the assets B, S. Namely,

$$e^{-r(T-t)}\mathbb{E}(XG(T)|\mathcal{F}_t) = V_{\beta}(t),$$

so

$$J(t) = e^{r(T-t)}e^{\Gamma(t)}V_{\beta}(t).$$

6.8. Let (α_B, α_S) and (β_B, β_S) be the admissible self-financing strategies that replicate the derivative securities with exercise time T and payoff G(T) and, respectively, XG(T) in the Black–Scholes model consisting of the assets B, S. From Exercise 6.7, for any $t \in [0, T]$ we have

$$h(t) = X \mathbf{1}_{\{T < t\}} = 0,$$

 $J(t) = e^{r(T-t)} e^{\Gamma(t)} V_{\beta}(t).$

By Theorem 6.20, tt follows that

$$\begin{split} \varphi_D(t) &= \frac{e^{-r(T-t)} \left(J(t) - h(t)\right)}{e^{\Gamma(u)} V_\alpha(t)} \\ &= \frac{V_\beta(t)}{V_\alpha(t)}. \end{split}$$

Further,

$$\begin{split} \varphi_S(t) &= \mathbf{1}_{\{t \leq \tau\}} \left(e^{\Gamma(t)} \beta_S(t) - \frac{e^{-r(T-t)} \left(J(t) - h(t)\right)}{V_\alpha(t)} \alpha_S(t) \right) \\ &= \mathbf{1}_{\{t \leq \tau\}} e^{\Gamma(t)} \left(\beta_S(t) - \frac{V_\beta(t)}{V_\alpha(t)} \alpha_S(t) \right) \\ &= \mathbf{1}_{\{t \leq \tau\}} e^{\Gamma(t)} \left(\beta_S(t) - \varphi_D(t) \alpha_S(t) \right). \end{split}$$

Finally,

$$\varphi_B(t) = h(t \wedge \tau) - e^{r(T-t)} \varphi_S(t) S(t)$$

= $-e^{r(T-t)} \varphi_S(t) S(t)$.

These are the same formulae as (6.7), (6.8) and (6.11) in Section 6.3. 6.11. Since

$$D_n(0,T) = D(0,T) + V_{\omega}(0),$$

where $(\varphi_B, \varphi_S, \varphi_D)$ is the strategy in Theorem 6.21, we just need to compute $V_{\omega}(0)$. By Corollary 6.22,

$$V_{\omega}(0) = V_{\beta}(0),$$

where (β_B, β_S) is the strategy replicating the payoff $\mathbb{E}(h(\tau)|\mathcal{F}_T)$ with

$$h(t) = \mathbf{1}_{\{t \le T\}} e^{r(T-t)} \eta(t).$$

It follows that

$$V_{\varphi}(0) = V_{\beta}(0) = e^{-rT} \mathbb{E}(h(\tau))$$
$$= e^{-rT} \mathbb{E}\left(\int_{0}^{\infty} h(u)f(u)du\right) = \mathbb{E}\left(\int_{0}^{T} e^{-ru} \eta(u)f(u)du\right).$$

6.9. The payoff of a zero-recovery defaultable bond with maturity S, where 0 < S < T, is $\mathbf{1}_{\{S < \tau\}}$, which will grow to become $e^{r(T-S)}\mathbf{1}_{\{S < \tau\}}$ at time T if invested in the non-defaultable bond at time S. Hence we put

$$h(t) = e^{r(T-S)} \mathbf{1}_{\{S < t\}}.$$

The corresponding processes m(t) and J(t) are

$$m(t) = \mathbb{E}(h(\tau)|\mathcal{F}_t)$$

$$= e^{r(T-S)} \mathbb{E}(\mathbf{1}_{\{S < \tau\}}|\mathcal{F}_t)$$

$$= e^{r(T-S)} e^{-\Gamma(S)} \mathbf{1}_{\{S < t\}} + e^{r(T-S)} \mathbb{E}(e^{-\Gamma(S)}|\mathcal{F}_t) \mathbf{1}_{\{t \le S\}}$$

and

$$J(t) = e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{t < \tau\}} h(\tau) | \mathcal{F}_t)$$

$$= e^{r(T-S)} e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{t < \tau\}} \mathbf{1}_{\{S < \tau\}} | \mathcal{F}_t)$$

$$= e^{r(T-S)} e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{t < \tau\}} | \mathcal{F}_t) \mathbf{1}_{\{S < t\}} + e^{r(T-S)} e^{\Gamma(t)} \mathbb{E}(\mathbf{1}_{\{S < \tau\}} | \mathcal{F}_t) \mathbf{1}_{\{t \le S\}}$$

$$= e^{r(T-S)} \mathbf{1}_{\{S < t\}} + e^{r(T-S)} e^{\Gamma(t)} \mathbb{E}(e^{-\Gamma(S)} | \mathcal{F}_t) \mathbf{1}_{\{t \le S\}}.$$

By Theorem 6.20, for any $t \in [0, S]$, this gives

$$\varphi_D(t) = \frac{e^{-r(T-t)}\left(J(t) - h(t)\right)}{e^{\Gamma(t)}V_\alpha(t)} = \frac{e^{-r(S-t)}\mathbb{E}(e^{-\Gamma(S)}|\mathcal{F}_t)}{V_\alpha(t)}.$$

Taking (β_B, β_S) to be the admissible self-financing strategy that replicates the derivative security with payoff $m(T) = e^{r(T-S)}e^{-\Gamma(S)}$ and exercise time T in the Black–Scholes model consisting of the assets B and S, we then obtain, for any $t \in [0, S]$,

$$\varphi_{S}(t) = \mathbf{1}_{\{t \le \tau\}} e^{\Gamma(t)} \left(\beta_{S}(t) - \varphi_{D}(t) \alpha_{S}(t) \right),$$

$$\varphi_{B}(t) = h(t \wedge \tau) - e^{r(T-t)} \varphi_{S}(t) S(t) = -e^{r(T-t)} \varphi_{S}(t) S(t),$$

which implies that

$$\varphi_B(t)B(t,T) + \varphi_S(t)S(t) = 0.$$

It follows that

$$\begin{split} D(t,S) &= V_{\varphi}(t) \\ &= \varphi_B(t)B(t,T) + \varphi_S(t)S(t) + \varphi_D(t)D(t,T) \\ &= \frac{e^{-r(S-t)}\mathbb{E}(e^{-\Gamma(S)}|\mathcal{F}_t)}{V_{\alpha}(t)}D(t,T) \\ &= \frac{e^{-r(S-t)}\mathbb{E}(e^{-\Gamma(S)}|\mathcal{F}_t)}{V_{\alpha}(t)}\mathbf{1}_{\{t<\tau\}}e^{\Gamma(t)}V_{\alpha}(t) \\ &= e^{-r(S-t)}\mathbf{1}_{\{t<\tau\}}e^{\Gamma(t)}\mathbb{E}(e^{-\Gamma(S)}|\mathcal{F}_t) \end{split}$$

for any $t \in [0, S]$. It is the same formula as (6.1) for D(t, T), with T replaced by S.

6.10. The payoff of a zero-recovery defaultable bond with maturity S, where 0 < S < T, is $\mathbf{1}_{\{S < \tau\}}$. Hence, by using Theorem 5.35, we get

$$D(t,S) = e^{-r(S-t)} \mathbb{E}(\mathbf{1}_{\{S<\tau\}}|\mathcal{G}_t)$$

= $e^{-r(S-t)} \mathbf{1}_{\{t<\tau\}} e^{\Gamma(t)} \mathbb{E}(e^{-\Gamma(S)}|\mathcal{F}_t)$

for any $t \in [0, S]$, that is, the same result as in Exercise 6.9.

6.11. The payoff of the defaultable bond is

$$D_{\eta}(T,T) = \mathbf{1}_{\{T < \tau\}} + \mathbf{1}_{\{\tau \le T\}} e^{r(T-\tau)} \eta(\tau)$$
$$= D(T,T) + h(\tau),$$

where

$$h(t) = \mathbf{1}_{\{t \le T\}} e^{r(T-t)} \eta(t).$$

It follows that

$$\begin{split} D_{\eta}(0,T) &= D(0,T) + e^{-rT} \mathbb{E}\left(h(\tau)\right) \\ &= D(0,T) + e^{-rT} \mathbb{E}\left(\int_0^\infty h(u)f(u)du\right) \\ &= D(0,T) + e^{-rT} \mathbb{E}\left(\int_0^\infty \mathbf{1}_{\{u \leq T\}} e^{r(T-u)} \eta(u)f(u)du\right) \\ &= D(0,T) + \mathbb{E}\left(\int_0^T e^{-ru} \eta(u)f(u)du\right). \end{split}$$

6.12. In Example 6.25 it is shown that

$$\begin{split} D(0,T) &= F e^{-(\lambda+r)T} \left(1 - F_{\theta}(T)\right) + R e^{-rT} \left(1 - e^{-\lambda T} + e^{-\lambda T} F_{\theta}(T)\right) \\ &- R e^{-rT} \int_0^T e^{-\lambda t} dF_{\theta}(t) + F e^{-\gamma T} \int_0^T e^{-(\lambda+r-\gamma)t} dF_{\theta}(t) \\ &= R e^{-rT} + (F-R) \, e^{-(\lambda+r)T} \left(1 - F_{\theta}(T)\right) \\ &- R e^{-rT} \int_0^T e^{-\lambda t} dF_{\theta}(t) + F e^{-\gamma T} \int_0^T e^{-(\lambda+r-\gamma)t} dF_{\theta}(t), \end{split}$$

where

$$F_{\theta}(t) = N(d_1(t)) + L^{2\alpha}N(d_2(t))$$

with

$$\begin{split} L &= \frac{Fe^{-\gamma T}}{V(0)} < 1, \\ \alpha &= \frac{r - \gamma - \frac{1}{2}\sigma^2}{\sigma^2}, \\ d_1(t) &= \frac{\ln L - \left(r - \gamma - \frac{1}{2}\sigma^2\right)t}{\sigma\sqrt{t}} = \frac{\sigma^{-1}\ln L - \sigma\alpha t}{\sqrt{t}}, \\ d_2(t) &= \frac{\ln L + \left(r - \gamma - \frac{1}{2}\sigma^2\right)t}{\sigma\sqrt{t}} = \frac{\sigma^{-1}\ln L + \sigma\alpha t}{\sqrt{t}}. \end{split}$$

We use formula (A.1) in Exercise A.12 to compute the integrals with respect to $F_{\theta}(t)$. Namely,

$$\begin{split} \int_0^T e^{-\lambda t} dF_\theta(t) &= \int_0^T e^{-\lambda t} dN(d_1(t)) + L^{2\alpha} \int_0^T e^{-\lambda t} dN(d_2(t)) \\ &= \int_0^T e^{ct} dN \left(\frac{-a - bt}{\sqrt{t}} \right) + e^{-2ab} \int_0^T e^{ct} dN \left(\frac{-a + bt}{\sqrt{t}} \right), \end{split}$$

where

$$a = -\sigma^{-1} \ln L$$
, $b = \sigma \alpha$, $c = -\lambda$.

We have a > 0 and $d = \sqrt{b^2 - 2c}$, where

$$b^2 - 2c = \sigma^2 \alpha^2 + 2\lambda > 0$$
.

and formula (A.1) gives

$$\begin{split} &\int_0^T e^{-\lambda t} dF_\theta(t) \\ &= \frac{d+b}{2d} e^{-a(b-d)} N \left(\frac{-a-dT}{\sqrt{T}} \right) + \frac{d-b}{2d} e^{-a(b+d)} N \left(\frac{-a+dT}{\sqrt{T}} \right) \\ &+ e^{-2ab} \left(\frac{d-b}{2d} e^{-a(-b-d)} N \left(\frac{-a-dT}{\sqrt{T}} \right) + \frac{d+b}{2d} e^{-a(-b+d)} N \left(\frac{-a+dT}{\sqrt{T}} \right) \right) \\ &= e^{-a(b-d)} N \left(\frac{-a-dT}{\sqrt{T}} \right) + e^{-a(b+d)} N \left(\frac{-a+dT}{\sqrt{T}} \right) \\ &= L^{\alpha - \sqrt{\alpha^2 + 2\lambda/\sigma^2}} N \left(\frac{\ln L - T \sqrt{\alpha^2 + 2\lambda/\sigma^2}}{\sigma \sqrt{T}} \right) \\ &+ L^{\alpha + \sqrt{\alpha^2 + 2\lambda/\sigma^2}} N \left(\frac{\ln L + T \sqrt{\alpha^2 + 2\lambda/\sigma^2}}{\sigma \sqrt{T}} \right). \end{split}$$

We also have

$$\begin{split} &\int_0^T e^{-(\lambda+r-\gamma)t} dF_{\theta}(t) \\ &= \int_0^T e^{-(\lambda+r-\gamma)t} dN(d_1(t)) + L^{\alpha} \int_0^T e^{-(\lambda+r-\gamma)t} dN(d_2(t)) \\ &= \int_0^T e^{ct} dN \left(\frac{-a-bt}{\sqrt{t}}\right) + e^{-2ab} \int_0^T e^{ct} dN \left(\frac{-a+bt}{\sqrt{t}}\right), \end{split}$$

where

$$a = -\sigma^{-1} \ln L$$
, $b = \sigma \alpha$, $c = -(\lambda + r - \gamma)$.

We have $\alpha > 0$ and $d = \sqrt{b^2 - 2c}$, where

$$b^{2} - 2c = \sigma^{2}\alpha^{2} + 2(\lambda + r - \gamma)$$

$$= \sigma^{-2}\left(r - \gamma - \frac{1}{2}\sigma^{2}\right)^{2} + 2(\lambda + r - \gamma)$$

$$= \sigma^{-2}\left(r - \gamma + \frac{1}{2}\sigma^{2}\right)^{2} + 2\lambda$$

$$= \sigma^{-2}\left(\alpha + 1\right)^{2} + 2\lambda > 0.$$

Formula (A.1) gives

$$\begin{split} &\int_0^T e^{-(\lambda+r-\gamma)t} dF_\theta(t) \\ &= e^{-a(b-d)} N \left(\frac{-a-dT}{\sqrt{T}} \right) + e^{-a(b+d)} N \left(\frac{-a+dT}{\sqrt{T}} \right) \\ &= L^{\alpha-\sqrt{(\alpha+1)^2+2\lambda/\sigma^2}} N \left(\frac{\ln L - T \sqrt{(\alpha+1)^2+2\lambda/\sigma^2}}{\sigma \sqrt{T}} \right) \\ &+ L^{\alpha+\sqrt{(\alpha+1)^2+2\lambda/\sigma^2}} N \left(\frac{\ln L + T \sqrt{(\alpha+1)^2+2\lambda/\sigma^2}}{\sigma \sqrt{T}} \right). \end{split}$$

It follows that

$$\begin{split} &=Re^{-rT}+(F-R)\,e^{-(\lambda+r)T}\left(1-N\left(\frac{\ln L-\sigma^2\alpha T}{\sigma\,\sqrt{T}}\right)-L^{2\alpha}N\left(\frac{\ln L+\sigma^2\alpha T}{\sigma\,\sqrt{T}}\right)\right)\\ &-Re^{-rT}L^\alpha\left(L^{-\sqrt{\alpha^2+2\lambda/\sigma^2}}N\left(\frac{\ln L-T\,\sqrt{\alpha^2+2\lambda/\sigma^2}}{\sigma\,\sqrt{T}}\right)\right)\\ &+L^{\sqrt{\alpha^2+2\lambda/\sigma^2}}N\left(\frac{\ln L+T\,\sqrt{\alpha^2+2\lambda/\sigma^2}}{\sigma\,\sqrt{T}}\right)\right)\\ &+Fe^{-\gamma T}L^\alpha\left(L^{-\sqrt{(\alpha+1)^2+2\lambda/\sigma^2}}N\left(\frac{\ln L-T\,\sqrt{(\alpha+1)^2+2\lambda/\sigma^2}}{\sigma\,\sqrt{T}}\right)\right)\\ &+L^{\sqrt{(\alpha+1)^2+2\lambda/\sigma^2}}N\left(\frac{\ln L+T\,\sqrt{(\alpha+1)^2+2\lambda/\sigma^2}}{\sigma\,\sqrt{T}}\right)\right). \end{split}$$

Appendix A

A.1. Let a > 0, and take a sequence $x_n > 0$ such that $x_n \nearrow a$ and so $F(x_n) \nearrow F(a_-)$ as $n \to \infty$. Since

$${a} = \bigcap_{n=1}^{\infty} (x_n, a]$$

and $(x_{n+1}, a] \subset (x_n, a]$ for each n, it follows that

$$\mu_F(\{a\}) = \lim_{n \to \infty} \mu_F((x_n, a]) = \lim_{n \to \infty} (F(a) - F(x_n)) = F(a) - F(a_-).$$

A.2. Using Exercise A.1, we obtain

$$\mu_F([a,b]) = \mu_F(\{a\} \cup (a,b])$$

$$= \mu_F(\{a\}) + \mu_F((a,b])$$

$$= (F(a) - F(a_-)) + (F(b) - F(a))$$

$$= F(b) - F(a_-)$$

since $\{a\} \cap (a, b] = \emptyset$. Next,

$$\begin{split} \mu_F([a,b)) &= \mu_F([a,b] \setminus \{b\}) \\ &= \mu_F([a,b]) - \mu_F(\{b\}) \\ &= (F(b) - F(a_-)) - (F(b) - F(b_-)) \\ &= F(b_-) - F(a_-) \end{split}$$

since $\{b\} \subset [a, b]$. Finally, if b > a, then $\{a\} \subset [a, b)$ and so

$$\mu_F((a,b)) = \mu_F([a,b) \setminus \{a\})$$

$$= \mu_F([a,b)) - \mu_F(\{a\})$$

$$= (F(b_-) - F(a_-)) - (F(a) - F(a_-))$$

$$= F(b_-) - F(a).$$

A.3. To show that for each $a \in \mathbb{R}$, b > 0 and y > 0

$$\int_{0}^{y} x dN \left(\frac{\ln x + a}{b} \right) = e^{\frac{1}{2}b^{2} - a} N \left(\frac{\ln y + a - b^{2}}{b} \right)$$

we start by computing the derivative of the right-hand side with respect to *y*:

$$\frac{d}{dy}e^{\frac{1}{2}b^2 - a}N\left(\frac{\ln y + a - b^2}{b}\right) = e^{\frac{1}{2}b^2 - a}N'\left(\frac{\ln y + a - b^2}{b}\right)\frac{1}{yb}$$

$$= \frac{1}{\sqrt{2\pi}}e^{\frac{1}{2}b^2 - a}e^{-\frac{1}{2}\left(\frac{\ln y + a - b^2}{b}\right)^2}\frac{1}{yb}$$

$$= \frac{1}{\sqrt{2\pi}}e^{-\frac{(\ln y + a)^2}{2b^2}}\frac{1}{b}$$

$$= N'\left(\frac{\ln y + a}{b}\right)\frac{1}{b},$$

which is clearly equal to the derivative of the left-hand side with respect to y. Hence, the expressions on either side of the equality differ just by a constant. To see that this constant is 0, hence the

equality holds, observe that the right-limit as $y \searrow 0$ of either side of the equality is the same (namely 0).

In the same manner, we can show that

$$\int_0^y x dN\left(\frac{-\ln x + a}{b}\right) = -e^{\frac{1}{2}b^2 + a}N\left(\frac{\ln y - a - b^2}{b}\right).$$

Alternatively, this formula can be verified by using the equality already proved above:

$$\int_0^y x dN \left(\frac{-\ln x + a}{b} \right) = \int_0^y x d\left(1 - N \left(\frac{\ln x - a}{b} \right) \right)$$
$$= -\int_0^y x dN \left(\frac{\ln x - a}{b} \right)$$
$$= -e^{\frac{1}{2}b^2 + a} N \left(\frac{\ln y - a - b^2}{b} \right).$$