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Chapter 1. Basic concepts of thermodynamics 
 
Problem 1.1A. External state variables 
Problem 1.1B. External state variables 
Problem 1.2. Internal state variables 
Problem 1.3A. The first law of thermodynamics 
Problem 1.3B. The first law of thermodynamics 
Problem 1.4. Freezing-in conditions 
Problem 1.5. Reversible and irreversible processes 
Problem 1.6. The second law of thermodynamics 
Problem 1.7. Condition of internal equilibrium 
Problem 1.8. Driving force 
Problem 1.9. The combined first and second law 
Problem 1.10. General conditions of equilibrium 
 

1.1A. External state variables 
 
a) Consider a system of pure carbon. Define the conditions in sufficient detail to allow the 
state of equilibrium to be computed, using a thermodynamic data bank. Choose the conditions 
any way you like, except that P=1 bar should be chosen. Then, evaluate the volume. 
 
b) Use that volume when redefining the conditions and exclude another piece of information 
from the conditions. Then, evaluate the state of equilibrium, which should be the same as 
before. Check that by inspecting the value of the excluded property. It should be the same as 
before. 
 
Hint  
 
1) The conditions can be defined using the values of c+2=1+2=3 independent variables. So far 
we have discussed T, P and V but it is evident that another one is the amount of material, e.g. 
the number of moles of components (usually atoms), N. Since you are asked to evaluate V, it 
is evident that among those four variables you must give the values to all three of T, P and N 
to define the conditions. You may take 1000oC, 1 bar and 1 mol. 1 bar is 100000 Pa. 
 
2) There can never be more than c+1 independent intensive variables, in this case T and P, 
whereas V and N are extensive variables and at least one of them is required in order to have a 
complete definition of the conditions. It serves to define the size of the system. However, you 
could use more than one extensive variable. When including V in the new set of independent 
variables, you could exclude N but it may be more interesting instead to exclude one of the 
potentials, say T, and use two extensive variables, V and N, together with P. 
 



1.1B. External state variables  
 
Calculate and plot the function (V(P,T1,N1) for graphite between 1 bar and 1 kbar (i.e. 100000 
to 1E8 Pa) at 1000oC and for 1 mol. 
 
Hint 
 
The method of computing and plotting a curve depends on your particular data bank system. 
 

1.2. Internal state variables  
 
Consider an Ag-Cu alloy with 10 mass% Cu at 600oC and 1 atm (101325 Pa). Compute the 
equilibrium and find the values of some internal variables. Then, use one of those values 
when redefining the conditions and instead exclude one of the external variables. Again 
calculate the equilibrium and check that the excluded variable got the same value as it had 
before. 
 
Hint 
 
You can certainly make your program present the calculated state of equilibrium. It will then 
give a long list containing the external variables but also some internal variables, e.g. the 
fractions of phases and their compositions if there is more than one phase. Choose any of 
these values when redefining the conditions for a new computation of the same of 
equilibrium.  
 

1.3A. The first law of thermodynamics 
 
1 kg of a steel (Fe+0.8 mass% C) is heated from a state of equilibrium at 500oC to a new state 
of equilibrium at 800oC. The pressure is kept at 1 atm. How much heat was needed for this 
operation?   
 
Hint 
 
Since there is no change of P, you should use the first law for the enthalpy, which yields Q 
= H - VdP = H for constant P. You should thus compute the equilibria for the two sets of 
conditions, show the enthalpy and take the difference. It does not matter if you don’t 
understand what reference state the values refer to because that does not affect the difference. 

Δ ∫ Δ

 

1.3B. The first law of thermodynamics 
 
A mixture of 2 mol of H2 and 0.1 mol of O2 is kept in a very strong cylinder at 25oC. The 
cylinder has a moveable piston, working against an outside atmosphere of 1 atm. The mixture 
is ignited and reacts quickly to a state of equilibrium, containing mostly H2O molecules, and 
without giving time for any exchange of heat. Calculate the new temperature. In order to 
simplify the computation you may reject all species except for H2, O2 and H2O. 



 
Hint 
 
The internal energy is not directly affected by an internal reaction. It can be changed only by 
interactions with the surroundings as described by the first law, dU=dQ-PdV. In the present 
case dQ=0 but dV>0. It would thus be more convenient to consider the enthalpy, 
dH=dU+d(PV)=dQ+VdP=0 since dQ=0 and dP=0. One should thus evaluate H for the initial 
state (which is not at equilibrium) and then search for an equilibrium state that has the same H 
value. 
 

1.4. Freezing-in conditions  
 
0.5 kg of a white cast iron with 3.5 mass %C (which contains no graphite due to insufficient 
rate of reaction during fast cooling) has been heat treated at 1100oC to equilibrium (without 
graphite). Then it is cooled to 800oC. Calculate the amount of “liberated” heat during the 
cooling under two experimental conditions. (A) The state at 1100oC is completely frozen-in 
during the cooling. (B) A new state of full equilibrium has been established when 800oC is 
reached due to slow cooling. Also (C) evaluate the heat evolution if the frozen-in state 
equilibrates isothermally at 800oC if it were first retained during cooling to 800oC.  
 
Hint 
 
1) Suppose the pressure is the same. Then ΔH=Q+ VdP=Q, where ∫ ΔH is the difference of 
H between the initial and final states.  
 
2) After the equilibrium at 1100oC has been computed, you should like to freeze-in the 
constitution and only change T. Thus, you should not compute equilibrium before evaluating 
H of the frozen-in state at 800oC. The question is what facility your data bank system has for 
frozen-in states. 
 
3) For (B) it does not matter how close to equilibrium the system was at various temperatures 
during the cooling because H is a state function.   
 

1.5. Reversible and irreversible processes 
 
Consider a cylinder that can be in contact with any of two heat reservoirs of 20 and 50oC. 
There is a piston by which the volume can be changed. The cylinder contains pure N2 gas and 
is initially at a pressure of 1 atm. 
 
(a) Using the first heat reservoir one compresses the gas slowly and isothermally at 20oC to a 
pressure of 10 atm.      
(b) One continues by compressing adiabatically (i.e., with no heat exchange) until a 
temperature of 50oC has been reached.      
(c) Using the second heat reservoir one releases the pressure to a value P3 slowly and 
isothermally at 50oC.     
(d) One continues releasing the pressure to 1 atm adiabatically. The pressure P3 was chosen in 
such a way that the final temperature was 20oC. It is thus possible to repeat this cycle any 
number of times.  



 
Evaluate the heat and work received by the system for each one of the four steps. Then add up 
the net work, W, done by the system on the surroundings and calculate the ratio of that work 
and the heat drawn from the warm reservoir, Q3. Assume that all the four processes are 
carried out in a reversible fashion. 
 
Hint 
 
Let conditions of the initial state be T0,P0 and after the first, second and third step T0,P1, T2,P2 
and T2,P3, respectively. After the fourth step it is again T0,P0. P2 and P3 are not known but 
may be evaluated because the entropy is not changed by an adiabatic process. For the second 
step you thus have 12 SS = , i.e. ),(),( 1022 PTSPTS = , which yields P2. For the fourth step you 
have , i.e. , which yields P3. Denote the heat and work received 
by the system during the first step by Q1 and W1 etc. The heats received during the isothermal 
steps, i.e. the first and third steps, are according to the definition of entropy for a reversible 
and isothermal process  and 

. The change of internal energy for the 
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1.6. The second law of thermodynamics 
 
When you in problem 1.3B calculated the final temperature when a gas mixture of 2 mole of 
H2 and 0.1 mole of O2 was reacting adiabatically after being ignited, you relied on an 
algorithm hidden inside the program. Check that the final state was really the state expected 
from the second law. To make a decisive test you may now use 2 mole of H2 and 1 mole of O2 
but again under a constant pressure of 1 atm and with an initial temperature of 25oC. The 
adiabatic temperature would then be very high and, although all of H2 and O2 could in 
principle form H2O, some would be dissociated into H2 and O2 and one could easily introduce 
some deviation from the equilibrium constitution at one temperature by first computing the 
equilibrium at a different temperature. 
 
Hint 
 
1) Equilibria are usually computed by minimizing a function called Gibbs energy. However, it 
applies only under constant T and P and in the present case T varies during the reaction.  
 
2) For a closed system the second law gives dS=dQ/T+dipS and for adiabatic conditions 
dS=dipS. In Problem 1.5 you considered reversible, adiabatic processes, for which dipS=0 and 
the entropy does not change. The present process is adiabatic but not reversible because the 
formation of H2O molecules occurs spontaneously. For each H2O molecule formed, the 
temperature will rise and that should continue until dipS/dNH2O=0, i.e., until S reaches a 
maximum where dS/dNH2O=0. The problem is thus to examine if the amount of H2O, formed 



when the final temperature is reached, gives a higher S value than any other amount of H2O 
would do if evaluated at the temperature reached when that amount has formed. You should 
test a slightly higher amount and a slightly lower. 
 
3) The SER reference is based on the pure elements in their stable states, e.g. H2 and O2, and 
at 25oC and 1 atm. Furthermore, in ideal gases there is no heat of mixing. Thus H=0 for our 
initial gas mixture because no H2O has yet formed. The final state under adiabatic conditions 
and constant pressure can thus be obtained from the condition H=0.   
 

1.7. Condition of internal equilibrium 
 
Most programs for the computation of equilibria work by minimizing a function G, called 
Gibbs energy, under constant T and P. So far you have only learned that equilibrium is found 
where dipS has a maximum. Use that criterion in order to check that the state obtained from an 
available program is actually a state where dipS has a maximum. Make the test with an Al 
alloy with 50 mass% Si at 500oC and 1 atm. 
 
Hint 
 
The constitution of the alloy is varied when the program searches for the minimum of G. You 
should use the program to evaluate the equilibrium and examine how the equilibrium 
constitution is described. Then you can vary the constitution around the equilibrium 
constitution and check that dipS has a maximum there. You know that dipS=dS-dQ/T. From 
the first law you know dU=dQ+PdV and thus dipS=dS-dQ/T=dS-(dU+PdV)/T. For constant P 
you get dipS=d[S-(U+PV)/T]. You should thus define a function FUNC=S-(U+PV)/T and test 
if the equilibrium state obtained from the program actually is a maximum of FUNC when the 
constitution is varied around the equilibrium constitution. Since you are going to compare 
situations at the same temperature, 500oC, you could just as well multiply by T and define the 
function as FUNC=ST-U-PV. 
 

1.8. Driving force 
 
Consider an Fe alloy with 30 mol% Cr at 650oC and 1 atm. It is in a state of homogeneous bcc 
and is supersaturated with respect to the sigma phase of an approximate 50/50 composition. 
Evaluate the driving force for the precipitation of sigma, using the basic definition 

ξdSdTD ip /⋅= .  
 
Hint 
 
From Problem 1.7 you know that dipS=d[S-(U+PV)/T]. You may thus evaluate the function S-
(U+PV)/T for the initial state and for a state with a minute amount,ΔN, of sigma, measured 
per mole. Take the difference, multiply by T and divide by ΔN because the amount of sigma 
expressed in mole can be used to represent the progress of the process, ξ .  
 



 

1.9. The combined first and second law 
 
Evaluate the quantity VUNS ,)/( ∂∂  from a tabulation module that can list H and S for a series 
of temperatures. Choose Al2O3 at 1 atm. 
 
Hint 
 
1) The combined law can be written as ξdTDdNTGdVTPdUTdS m )/()/()/()/1( +−+=  
and . Thermodynamic tables usually give values under a given P and 
for a series of T and, as a consequence, they usually list values of H and S. It would have been 
nice to have a table of U and S but if that is not available one could usually approximate U 
with H for condensed materials. Use that approximation here. 

TGNS mVU /)/( , −=∂∂

 
2) Primarily one should expect both S and H to increase if the size, N, is increased because 
they are both extensive quantities. In order to vary S but keep H constant it seems necessary 
to allow T to decrease to a level where the tabulated value, which may be given for 1 mole of 
formula units, has decreased by a factor equal to the one by which N has increased. Denoting 
the two temperatures by 1 and 2, we get H=N1H1=N2H2 where N1=1. On the other hand, for 
the entropy we have S=N1S1-N2S2=N1(S1-S2N2/N1)=N1(H2S1-H1S2)/H2. However, N=N2-
N1=N1(N2/N1-1)=N1(H1/H2-1)=N1(H1-H2)/H2. We find 

Δ Δ
Δ S/ΔN=(H2S1-H1S2)/(H1-H2). From 

the table one should thus examine the H and S values for two neighbouring temperatures and 
evaluate )2/()(/)/( 12112, HSHSHNSNS U HV −−=ΔΔ≅∂∂ . That should be a reasonably 
correct value in the middle of the range of T. Make the test at 1000 and 1100 K. 
 
3) Sometimes a table also gives the values of G but all values given in a table of properties are 
molar quantities. G should thus be identical to Gm as given under (1), provided that N is 
expressed in the same kind of mole, in the present case mole of formula units. You may thus 
check your result by comparing with Gm/T at the two temperatures. 
 

1.10. General conditions of equilibrium 
 
At the melting point of a pure element the liquid and solid phases are in equilibrium with each 
other and each potential should thus have the same value in both phases. It should be possible 
to evaluate the melting point by comparing tables of properties of the two phases. Do that for 
molybdenum. 
 
Hint 
 
The combined law expressed in terms of dU shows that Gm is a potential and is conjugate to 
N, the amount of matter. There would thus be a driving force for the transfer of matter 
between the two phases if Gm did not have the same value in both phases. One of them would 
grow at the expense of the other. You should thus examine at what temperature the two 
phases have the same Gm value. 
 
 



Chapter 2. Manipulation of thermodynamic quantities 
 

Problem 2.1. Evaluation of one characteristic function from another 
Problem 2.2. Internal variables at equilibrium 
Problem 2.4A. Experimental conditions 
Problem 2.4B. Experimental conditions 
Problem 2.4C. Experimental conditions 
Problem 2.6A. Use of various derivatives 
Problem 2.6B. Use of various derivatives 
Problem 2.7. Comparison between CV and CP 
Problem 2.8. Changing independent variables 
Problem 2.9. Maxwell relation 
 

2.1. Evaluation of one characteristic function from another 
 
1) Test if your system can yield the value of a state variable that in principle could be used as 
a characteristic state function.  
 
2) Test if it can accept values of a set of variables that are the natural set for another 
characteristic state function.  
 
3) Try to use the value of a site fraction as condition.  
 
Hint 
 
An advanced data bank systems may be composed of modules, one of which stores 
thermodynamic properties of individual phases as fundamental equations representing some 
characteristic state function, usually the Gibbs energy, G, as function of its natural set of 
variables, e.g. T, P and N for G of a pure substance. However, since G is an extensive state 
function it can be expressed with the molar Gibbs energy, G = N.Gm, and it is sufficient to 
store Gm(T,P) for a pure substance. Multiplying with N is a trivial matter. For a phase with 
more components, G may be stored as a function of T, P, N1, N2 etc. and, in principle, one 
could then evaluate G for a set of values of these variables, the natural set for G. However, 
one still prefers to store the information on G as a function of the molar Gibbs energy. For a 
simple case one would use a function Gm(T,P,x1,x2,...) and it is a trivial matter to evaluate N 
and all the xi from the set of Ni values. For a phase with sublattices one prefers 
Gm(T,P,y1',y2'... y1",y2"...) where yi are the site fractions, i.e., mole fractions defined for each 
sublattice. In a simple case one can also evaluate the site fractions from the set of Ni values. In 
more complicated cases there is one or more degrees of freedom and there is not only one set 
of yi values that satisfies the set of Ni values. The equilibrium set of yi values is then found by 
minimizing the Gibbs energy. In the same way, when there is more than one phase and each 
has no degree of freedom, there is a degree of freedom for the material to be distributed 
between the phases. The equilibrium composition and amount of each phase are then again 
found by minimizing the Gibbs energy. 
 



To the customer all this is like a black box and he simply trusts that it contains information 
stored as a fundamental equation based on the Gibbs energy. He will thus give the values of 
T, P, N1, N2, etc. when setting the conditions or he will use T, P, N and x1, x2 etc. Your data 
bank system will probably accept the mass, Bi, instead of Ni and the mass fraction, wi, instead 
of xi. 
 
The above conditions are all based on the natural set of variables for G and it is an interesting 
question whether your data bank system can also accept other sets of variables as conditions. 
Could it even behave as if it were based on another characteristic state function? 
 
Start with a unary system of your choice and set conditions for the state to be studied. 
Evaluate S after computing equilibrium. Then, enter the S value as a condition and remove 
one of the initial conditions. First, remove the initial T value, which makes a conjugate pair 
with S. Compute equilibrium and evaluate T. Then, enter the T value and, instead, remove the 
initial P value, which is part of another conjugate pair. Compute equilibrium and evaluate P. 
Again you should obtain its initial value if the equilibrium module can accept a set of 
conditions that does not contain one variable from each pair of conjugate variables. 
 

2.2. Internal variables at equilibrium 
 
At equilibrium D=0 and the driving force, D, can be evaluated in different ways that all 
should give the same result. For instance, VTPT FGD ,, )/()/( ξξ ∂∂−=∂∂−=  where ξ  is an 
internal variable. Demonstrate this by a numerical calculation. 
 
Hint 
 
1) First you must choose a system with an internal variable. For systems with more than one 
phase, the fraction of a phase is such a variable. For one-phase systems with a variable degree 
of order, one can choose some site fraction as the internal variable. For a gas, there may be a 
variable constitution due to reactions between molecules. For the present demonstration it 
may be convenient to choose a binary system with two phases, which can both dissolve the 
two components.  
 
2) With a binary bcc+fcc alloy you may establish two slightly different constitutions by 
computing equilibrium at two temperatures, 1 K apart. Define this difference as 

12 NfccNfcc −=Δξ  where Nfcc is the amount of the fcc phase. Examine their properties at a 
quite different temperature where they are far from equilibrium. In order not to change their 
constitutions at that temperature you must evaluate the bcc and fcc phases separately and for 
extensive properties you can then add the contributions from the phases. 
 
3) For the first constitution you evaluate V1, G1 and F1. For the second one you evaluate G2 
and approximate the driving force according to G as DFG=-(G2-G1)/(Nfcc2-Nfcc1) for the 
values of T and P used as conditions. To get the corresponding quantity for the Helmholtz 
energy, F, you must compare two states of the same T and V, not P. When you first evaluate 
V2 for the second constitution you find that it differs from V1 because of the difference in 
constitution, mainly in the amounts of the phases. You must find a new pressure that makes 
the volume of the second constitution equal to V1. Just try a different P and evaluate its effect 
on V2. Then you may find the proper P by extrapolation. 



2.4A. Experimental conditions 
 
Evaluate CV and CP for pure Cr at 500oC and 1 atm. 
 
Hint 
 
The heat capacities can be obtained from the second derivatives of F and G with respect to T 
but can also be obtained from first derivatives, e.g. PPTTP TSTTHTGC )/()/( ∂∂=∂∂=−=  
and VVV TSTTUC )/()/( ∂∂=∂∂= . 
 

2.4B. Experimental conditions 
 
One mole of N2 gas at 400oC and 1 atm is compressed adiabatically and reversibly to 100 
kbar. Evaluate the new temperature. 
 
Hint 
 
Δ S=Q/T+ ipS=0+0=0. The final state should thus have the same entropy as the initial state. 
You should evaluate S for the initial state and then find the temperature where S has the same 
value at the higher P. 

Δ

 

2.4C. Experimental conditions 
 
One mole of diamond at 400oC and 1 atm is compressed adiabatically and reversibly to 100 
kbar. Evaluate the work. 
 
Hint 
 
ΔS=Q/T+ ipS=0+0=0. The final state should thus have the same entropy as the initial state. 
The work is equal to the change of U since there is no exchange of heat. 

Δ

 

2.6A. Use of various derivatives 
 
Evaluate α  and Tκ  for an Fe alloy with 0.5 mass% C at 850 and 750oC under 1 atm. 
 
Hint 
 
1) Expressed with first-order derivatives we find VTV P /)/( ∂∂=α  and 

VPV TT /)/( ∂∂−=κ . 
 
2) At 850oC the alloy is inside the fcc one-phase field. At 750oC it is inside the bcc+fcc two-
phase field. There you may evaluate the properties for the whole as well as for each phase. 
 



2.6B. Use of various derivatives 
 
Test numerically the relation PTPTVU VT −∂∂=∂∂ )/()/(  on two Cr alloys with 5 or 10 
mass% Fe, both kept at 800o C and 1 atm. 
 
Hint 
 
Both partial derivatives are based on the same two independent variables, T and V, but the 
experimental conditions are given through T and P. You should thus compute equilibrium and 
then introduce the computed V value as a condition for a new computation of equilibrium. 
Both partial derivatives can then be evaluated from the new description of the equilibrium 
based on the correct set of independent variables. 
 

2.7. Comparison between CV and CP 
 
Evaluate CV and CP for Cr at 500 K and 1 bar. 
 
Hint 
 
CP is usually measured at 1 atm and can be evaluated from a database as . For 
clarity it may be denoted CP(T,P0) where P0 represents 1 atm. For CV the situation is not quite 
so clear. Experimentally, one prefers to work under constant pressure and CV is usually 
obtained by calculation from other properties, mainly but not only from CP. CV may be 
evaluated from a database as  and it is evident that one must allow P to change in 
order to keep V constant when making the small variation of T. However, one could still be 
interested in the values of CV when starting from 1 atm at different temperatures. For each 
temperature one should then first compute the equilibrium at 1 atm as condition. Then one 
could instead introduce the current volume as condition and compute equilibrium, which 
should result in the same state of equilibrium. Then one could evaluate 

NPTH ,)/( ∂∂

NVTU ,)/ ∂

NVTU ,)/( ∂∂

(∂ . That 
quantity could be described as CV(T,P0). The alternative would be to keep V constant at its 
value from room temperature for all temperatures and that would require that P increases with 
temperature in order to balance the natural thermal expansion. That quantity could be 
described as CV(T,V0). Since all the experimental information usually used when CV is 
evaluated from CP has been obtained from 1 atm, the CV values usually reported would most 
probably be CV(T,P0).   
 

2.8. Changing independent variables 
 
Show numerically that SPTV CC κκ =  for Cr at 1500 K and 1 atm. 
 
Hint 
 
Remember that VV TUC )/( ∂∂= , PP THC )/( ∂∂= , TT PVV )/( ∂∂−=κ  and 

SP)S VV /( ∂∂−=κ . You have to be careful with the sets of independent variables that are not 
the same for all the partial derivatives. 



 

2.9. Maxwell relation 
 
Prove numerically that VT TPVS )/()/( ∂∂=∂∂ . Use an Fe alloy with 10 mass% Cr at 900 and 
700oC under 1 atm.  
 
Hint 
 
1) These partial derivatives use the same three independent variables, including N that is 
omitted.  
 
2) This alloy is bcc at those temperatures. 
 
 
 



Chapter 3. Systems with variable composition 
 

Problem 3.1. Chemical potential 
Problem 3.2. Molar and integral quantities 
Problem 3.3. Characteristic state functions 
Problem 3.4. Additivity of extensive quantities. Free energy and exergy. 
Problem 3.6A. Calculation of equilibrium 
Problem 3.6B. Calculation of equilibrium 
Problem 3.7. Evaluation of the driving force 
Problem 3.8. Driving force for molecular reactions 
 

3.1. Chemical potential 
 
Evaluate a chemical potential of a component in a state of equilibrium in a binary system with 
two phases, one of which is stoichiometric. Also, evaluate it for each one of the phases.  
 
Hint 
 
1) You may choose the Fe-C system with the Fe-rich fcc and the carbide called cementite, 
Fe3C, at 1200 K and 1 atm.  
 
2) You may define the conditions for a two-phase system in different ways. One way is to 
give the composition of the system but it will not fall into the two-phase field unless the 
composition is chosen within a certain range. It would be safer to give no condition regarding 
the composition but require that the two phases must be present. When the two-phase 
equilibrium has been computed, the composition of each phase will be known. In order to 
identify the equilibrium you may record its chemical potential of C. 
 
3) In order to study fcc you should remove cementite. Then you will find that you must add 
another condition and it should define the composition of fcc in some way. Test that you get 
the same result as before if you give system the same composition that fcc had before. 
 
4) Then take back cementite, remove fcc and give the system the composition of cementite, 
xC=0.25. Compute equilibrium and test if you get the same chemical potential of C as before. 
Comment the result. Remember that the chemical potential of a component j is defined by 
varying its content, Nj. 
 

3.2. Molar and integral quantities 
 
Gibbs defined size as mass, not as number of moles. Choose a simple binary solution of a 
given composition and at given T and P. Evaluate ii NμΣ  in both ways and check that the 
result is the same. 
 



Hint 
 
1) Denoting mass by B, you can evaluate Gibbs' chemical potential of j as U.Bj but only if 
you have used S, V, B1 and B2 when defining the conditions because 

2,,11 )/( BVSBU ∂∂=μ  
according to Gibbs, rather than 

2,,11 )/( NVSNU ∂∂=μ . 
 
2) You may choose an alloy of 200 gram Fe and 20 gram Cr in the bcc state at 800 K and 1 
bar. After computing the equilibrium, you can read the values of S and V and then use them 
for a new computation of the same equilibrium. 
 

3.3. Characteristic state functions 
 
There is a characteristic state function which can be defined as PVNTSU ii −=Σ−−=Ω μ  
and its natural state variables are T, V and iμ  because idd i dNPdVSdTPV μΣ−−−=−=Ω )(  
under reversible conditions. It is called "Grand Potential" and is much used in modelling, one 
advantage being that it is well suited for conditions under constant volume in simple models, 
which implies that the distances between atoms should stay constant. On the other hand, the 
Gibbs energy, ii NG μΣ= , is well suited for describing experimental results and applications 
because it is most easy to keep its natural variables, P and T, constant in experiments. 
Suppose the grand potential as function of its natural variables, T, V and iμ , is available. 
Evaluate Gibbs energy for a simple binary solution of a given composition. 
 
Hint 
 
1) For the user of a thermodynamic data bank system it may not be evident what characteristic 
state function is used for storing the thermodynamic information. What matters is the choice 
of variables in the definition of the conditions because they will thus become independent 
variables. One may thus mimic the grand potential by giving the values of T, V and iμ  as 
conditions.  
 
2) You may use the same system as in the preceding problem, i.e. an alloy of 200 gram Fe and 
20 gram Cr in the bcc state at 800 K and 1 bar.  
 
3) Accepting the preceding system and conditions it is necessary first to evaluate the values of 
V and iμ  to be used for mimicking the grand potential. As usual, it is necessary first to 
compute equilibrium for the conditions given primarily. 
 
4) The grand potential yields )(,,)(,, ))(/())(/()( CrmuVTCrmuVT FemuPVFemuFeN ∂∂=∂Ω∂−=  
since  and V is constant for this partial derivative. PV−=Ω
 



3.4. Additivity of extensive quantities. Free energy and exergy. 
 
Consider 1 m3 of pure H2 at 600oC and 1 atm being burned to H2O with air containing 20 
mol% O2 and 1.5 mol% H2O of 18oC and the resulting gas being cooled to 18oC. Evaluate the 
free energy that could theoretically be extracted from that system if the air can be regarded as 
an infinite reservoir of O2 and recipient of H2O, i.e., the exergy. Assume that one can neglect 
the minute amount of H2 that is not oxidized. 
 
Hint 
 
One way to solve this problem is to define an initial system with the final content of matter, 
i.e., including the oxygen required for oxidizing the H2 gas. Initially, there are thus two 
subsystems, the H2 gas and the proper amount of oxygen in the surrounding reservoir, and one 
should add the Gibbs energy of them. The value of the H2 gas must be evaluated from U(873 
K,101325 Pa) – 291*S(873 K,101325 Pa) + 101325*V(873 K,101325 Pa). The value of the 
oxygen is obtained directly from 

2Oμ  of the atmosphere. The Gibbs energy of the final state is 
obtained from the H2O gas at O2Hμ  of the atmosphere.  
 
In reality one would not be able to make use of all that exergy because the local conditions in 
the surroundings will change by the loss of O2 and the receipt of H2O. The most critical 
information would be the local H2O pressure. This is evident if one realizes that the decrease 
in Gibbs energy would be infinite if there were no moisture in the atmosphere initially and 
one would wait until the H2O would spread infinitely far away. Of course, there would be no 
practical method to utilize that part of the process. A method to obtain a value of the 
practically available Gibbs energy decrease could be to calculate the amount of air that is 
needed for oxidizing the H2 and assume that the H2O will stay in the amount of nitrogen left. 
However, now you are not required to consider that case. 
 

3.6A. Calculation of equilibrium 
 
Consider a ternary system with three solution phases, e.g. Fe-Cr-C with fcc, bcc and liquid. 
One may define the conditions by presenting the values of T and P and further require that all 
three phases take part in the equilibrium. Compute the compositions of the three phases at 
given values of T and P but without prescribing an average composition of the system. Then, 
define a composition within the three-phase triangle you have found and determine the solidus 
and liquidus temperatures for that alloy. 
 
Hint 
 
It is most common to store experimental information in the form of a fundamental equation 
for the Gibbs energy, using T, P and Ni as the independent state variables. The computation of 
equilibrium when the values of other state variables are prescribed as conditions must be 
made by iteration. However, when such a procedure is available in a data bank system, it is 
not necessarily evident to the user. 
 



There have already been a number of problems involving iteration and here is another one. It 
may serve to demonstrate the great flexibility that may be available in a data bank system. As 
an example, one could have evaluated at what temperature the liquid has a particular content 
or amount.  
 
In complicated cases it may be difficult for the program to locate the equilibrium 
compositions of the phases. It may then help to give reasonable start values if one has a 
feeling for the properties of the system. There may also be ways of making the system more 
efficient in finding good start values for the compositions of the phases. A final possibility 
could be to start with an alloy composition close to a lower-order system, in this case a binary 
system. 
 

3.6B. Calculation of equilibrium 
 
Compute and plot a curve showing what happens to the alloy considered in Problem 3.6A 
when cooled from pure liquid state down to 500oC. 
 
Hint 
 
Hopefully, your databank system has a special facility for this kind of plotting. The 
composition of your alloy may have been 0.05319 mass% Cr and 0.002913 mass% C. 
 

3.7. Evaluation of the driving force 
 
Calculate numerically the driving force for the precipitation of a phase from a supersaturated 
solid solution under three different conditions but all under constant T and P. (a) Consider the 
formation of the very first, minute amount of the new phase. (b) Consider the situation where 
the precipitation is halfway. (c) Consider the integrated driving force for the whole reaction. 
(d) You may finally evaluate the driving force per mole of the new phase averaged for the 
whole reaction.  
 
Hint 
 
a) This case was considered already in Problem 1.8. It was concluded that the driving force 
depends on the exact composition of the new phase. In order to predict the rate of nucleation 
of the new phase one is interested in the composition that yields the largest driving force. That 
was not done in Problem 1.8. Your data bank system may have a facility for evaluating the 
driving force for the most favourable composition directly.  
 
b) Here it is necessary first to compute the final equilibrium and evaluate the composition of 
the parent phase when the reaction is halfway. Then the problem is of the same kind as under 
(a). 
 



c) Here you should simply compare the Gibbs energy of the initial and the final states. The 
initial state can be treated as a state of equilibrium if you can require that the new phase 
cannot form, i.e., as you did under (a). 
 
For convenience you may solve this problem for the system used in Problem 1.8, the Fe-Cr 
system at 1 atm. 
 

3.8. Driving force for molecular reactions  
 
Consider a gas mixture of 60% H2, 30% O2 and 10% H2O at 2000 K and 1 bar. (a) What is the 
driving force for the formation of more H2O? (b) What is the average driving force per mole 
of H2O for the whole reaction.  
 
Hint 
 
Most data bank systems have a facility for the tabulation of properties as functions of 
temperature, e.g. the Gibbs energy of reaction. However, when applied to reactions such 
tables generally assume that all the species occur in their standard states, usually the pure 
form at 1 atm. You would here have to look for another way to obtain the information wanted 
but it could be different in different systems. Try to use your facility to solve this problem by 
comparing the Gibbs energy for two states. 
 
 
 



Chapter 4. Practical handling of multicomponent systems 
 

Problem 4.1. Partial quantities 
Problem 4.2. Relations for partial quantities 
Problem 4.3. Alternative variables for composition 
Problem 4.5. The tie-line rule 
Problem 4.6. Different sets of components 
Problem 4.7. Constitution and constituents 
Problem 4.8. Chemical potentials in a phase with sublattices 
 

4.1. Partial quantities 
 
Evaluate the diffusion potential in CuZn with 50 mass% Zn at 700oC and 1 atm. 
 
Hint 
 
It could be evaluated directly if it could be expressed as a partial derivative of G with respect 
to a state variable while a set of other state variables are kept constant. That is indeed 
possible. 
 
The diffusion potential is defined as the change of Gibbs energy when one component is 
exchanged for another. That may be accomplished by adding NZn and removing the same 
amount of Cu, dNCu = - dNZn. The total number of moles, N is thus constant. It should be easy 
to check the result if there is a facility for evaluating partial derivatives directly. 
 

4.2. Relations for partial quantities 
 
Evaluate HMg for an fcc alloy of Al-2 mass% Mg at 500oC and 1 atm. 
 
Hint 
 
From G = H – TS one can derive HMg = GMg + TSMg = μ Mg + TSMg. Remember to define the 
proper set of independent state variables when evaluating partial derivatives. 
 

4.3. Alternative variables for composition 
 
Calculate the fcc+cementite two-phase equilibrium for an Fe alloy with 4 mass% Cr and 3 
mass% C at 800oC and 1 atm, assuming that no other carbide forms. Then, calculate this two-
phase phase field in the phase diagram at 800oC and 1 atm. Plot the tie-lines in two diagrams 
with the axes xC,uCr and xC,zCr where uCr=xCr/(xFe+xCr) and zCr=xCr/xFe. 
 



Hint 
 
Each data bank system may have its own method of mapping boundaries between phase fields 
and also different facilities for plotting the results. 
 

4.5. The tie-line rule 
 
Calculate and plot diagrams similar to Figs. 4.7 (a) and (b) for the liquid Al-Mg phase at 
700oC and 1 atm. Furthermore, change the references for Al and Mg to their solid states. 
 
Hint 
 
To be able to use the solid states as references, you should fetch data for those phases from 
the database. 
 

4.6. Different sets of components 
 
Explore what facilities your data bank system has for changing the set of components and try 
it on the gas with the H2, O2 and H2O species.  
 
Hint 
 
In general, the atoms of the elements are defined as the components but there may be a 
possibility to change this choice. At equilibrium it would be a trivial change because the 
chemical potential of a species containing several atoms is equal to the sum of the chemical 
potentials of all the atoms. However, there may sometimes be a practical advantage, e.g. for a 
system containing a stoichiometric phase or for the gas phase where one may like to treat a 
species as a component. 
 

4.7. Constitution and constituents 
 
Consider an Fe alloy with 5 mass% Cr and 2 mass% C at 1000oC and 1 atm. Compute the 
equilibrium and evaluate all the state variables that are required to describe (1) the 
composition and (2) the constitution. 
 
Hint 
 
Of course, one must first compute the equilibrium. The method of showing the composition 
and the constitution may be different in different data bank systems. 
 



4.8. Chemical potentials in a phase with sublattices 
 
Evaluate the equilibrium distribution of Cu and Zn between the two sublattices in an ordered 
bcc alloy of Cu with 50 mass% Zn at 400oC and 1 atm. Then, apply this distribution to 500oC 
and evaluate the driving force for redistribution of the elements in the direction of the new 
equilibrium distribution by evaluating the diffusion potentials in each sublattice and taking the 
difference. 
 
Hint 
 
The method may be different in different data bank systems. 
 
 
 



Chapter 5. Thermodynamics of processes 
 

Problem 5.1A. Thermodynamic treatment of kinetics of internal processes 
Problem 5.1B. Thermodynamic treatment of kinetics of internal processes 
Problem 5.5. Chemical reaction 
 

5.1A. Thermodynamic treatment of kinetics of internal processes 

 
Evaluate the thermodynamic force for the solidification of pure liquid Mo to bcc at 2800 K 
and 1 atm. The melting point of Mo is 2896 K. Suppose the reaction is so rapid that there is 
no heat exchange with the surroundings. 
 
Hint  
 
1) The first law gives dH=dQ+VdP=0 in this case and the second law gives dS=dQ/T+dipS= 
dipS=(dipS/df)*df=X*df where X is the thermodynamic force. Suppose a small fraction, fΔ , 
solidifies. Some heat of melting will be deliberated and will heat the system to a temperature 
determined by the condition that H is constant. After finding that temperature you may 
evaluate fSdfdSdfSdX ip ΔΔ≅== /// . 
 
2) The new temperature may be found by introducing fΔ  and guessing a value of the 
adiabatic T and evaluating HΔ

0
 there. By extrapolation you can then find the correct 

temperature where . Then you can evaluate S at that temperature and obtain 
 

=ΔH
fSX ΔΔ≅ / .

 

5.1B. Thermodynamic treatment of kinetics of internal processes 
 
Do the same under isothermal conditions. Compare the results and explain. 
 
Hint 
 
For the isothermal case you can start by evaluating the driving force, DF, from the difference 
in Gibbs energy. Then you get the thermodynamic force TF=DF/T. 
 

5.5. Chemical reactions 
 
Evaluate the driving force for the formation of more H2O molecules in a gas with the 
constitution 5 mol% H2O, 40 mol% H2 and 55 mol% O2 at 1 atm and 2000 K.  
 
Hint  
 
The driving force for the formation per mole of more H2O is OHOH 222

5.0 μμμ −⋅+  according 
to Eq. 5.62. The question is how your data bank system can give you values for the chemical 
potentials of a non-equilibrium gas. 



 
 
 

Chapter 6. Stabiliy 
 

Problem 6.5A. Limit of stability 
Problem 6.5B. Limit of stability 
Problem 6.5C. Limit of stability 
Problem 6.6. Limit of stability of alloys 
Problem 6.9. Le Chatelier's principle 
 

6.5A. Limit of stability 
 
Compare numerically the values of NVST ,)/( ∂∂  and NPST ,)/( ∂∂  for pure diamond at 1000 K 
and 1 atm. Both expressions are use to define stability. 
 
Hint 
 
The only difference between the two partial derivatives is that different quantities are kept 
constant. They are thus based on different sets of independent state variables. 
 

6.5B. Limit of stability 
 
Evaluate the stability of a supersaturated fcc alloy of Fe with 20 mol% C at 1200 and 1000 K 
and 1 atm. 
 
Hint 
 
A system is least stable against fluctuations of one extensive state variable while all but one of 
the other conjugate pairs are represented by the potential. The exception is one that has been 
chosen to define the size of the system, e.g. Ni where i is the main component. The preferable 
expression for the stability of the system would thus be 

112 ,,....,,)/(2 NPTcc c
NB

−
∂∂= μμμ . 

However, it should be remembered that inside an unstable region this quantity may again turn 
positive while other expressions of stability have turned negative. It should thus be used only 
inside a stable region and when approaching an unstable region. 
 



6.5C. Limit of stability 
 
The stability can be defined in many ways. Each method expresses the stability in its own way 
and the resulting values for the same case may differ appreciably. However, there are two 
general principles. 1) A method using a set of independent variables containing a potential 
gives a lower value than a method using the conjugate extensive variable. 2) At the limit of 
stability all methods using potentials except for two extensive variables give the value zero. 
Test if your data bank system can confirm the first principle. The second one will be tested in 
Problem 6.5D.  
 
Hint 
 
You may consider the bcc phase in the Fe-Cr-C system at 1 atm and 700 K and for 1 mol% C 
and 5 mol% Cr.  
 

6.5D. Limit of stability 
 
Test the second principle defined in Problem 6.5C. 
 
Hint 
 
As for Problem 6.5C you may again consider the bcc phase in the Fe-Cr-C system at 1 atm 
and 700 K and for 1 mol% C. There is a bcc miscibility gap and the stability limit, i.e., the 
spinodal, falls close to 6 mol% Cr. You may thus examine the stability for 5, 6 and 7 mol% 
Cr. 
 

6.6. Limit of stability of alloys 
 

Compare the value of 
3332

2322

GG
GG

 with 
31 ,,,22 )/( μμ NPTN∂∂ and 

21 ,,,33 )/( μμ NPTN∂∂  for the fcc 

phase in an Fe alloy with 1 mol% C and 5 mol% Cr at 1200 K and 1 atm. 
 
Hint 
 
The determinant is equal to  where G2 is identical with  32233322 GGGG −

31 ,,,22 )/( NNPTNG ∂∂=μ . The set of independent variables are thus T, P, N1, N2 and N3 for all 
the quantities in the determinant. Each partial derivative involves a chemical potential. 
 



6.9. Le Chatelier's principle 
 
Consider the internal process 2H2 +O2 -> 2H2O when a gas with 2 mole of H and 1 mole of O 
from the equilibrium at 1800 K and 1 atm is (a) compressed adiabatically to 10 bar so rapidly 
that no reaction can occur. Evaluate T and the molar volume, Vm. Then, suppose (b) there is 
time for the process to go to a new equilibrium under 10 bar but still without any exchange of 
heat. Finally suppose (c) the temperature will eventually return to 1800 K but still under 10 
bar. Evaluate the final Vm. Compare the resulting T and Vm with initial values and discuss 
how the results can be used as examples of Le Chatelier’s principle. 
 
Hint 
 
For the adiabatic compression, S is not changed because there is no internal reaction. That can 
be used as a condition for finding the new state after compression. However, it is a frozen-in 
state and would have to be evaluated from a module that can handle states of non-equilibrium. 
S will change during (b) due to the internal process but not H because there is no exchange of 
enthalpy with the surroundings during an isobaric adiabatic change. The final state (c) is 
easily found as the state of equilibrium at 1800 K. 
 
 
 



Chapter 7. Applications of molar Gibbs energy diagrams 
 

Problem 7.2. Instability of binary solutions 
Problem 7.3. Illustration of the Gibbs-Duhem relation.  
Problem 7.4. Two-phase equilibria in binary systems  
Problem 7.5. Allotropic phase boundaries 
Problem 7.6. Effect of a pressure difference on a two-phase equilibrium 
Problem 7.7. Driving force for the formation of a new phase 
Problem 7.8. Partitionless transformation under local equilibrium 
 

7.2. Instability of binary solutions 
 
Calculate and plot a molar Gibbs energy diagram for the fcc phase in the Fe-Cr system at 
500oC under 1 atm.  
 
Hint 
 
1) Since pure Fe and Cr are both bcc, there will be only one phase to be fetched from the 
database. From your first run you may get a Gm curve with two minima. The bcc phase 
should thus have a miscibility gap at this low temperature and your equilibration module may 
have a procedure for identify two bcc phases, an Fe rich phase, bcc#1, and a Cr rich phase, 
bcc#2. Try to accomplish this if it does not happen automatically.  
 
2) On the other hand, it may be instructive to see the two minima. If you don't get them on 
your first run, try to inactivate the automatic procedure.  
 
3) Use the pure elements at the actual temperature as references. 
 

7.3. Illustration of the Gibbs-Duhem relation.  
 
Define a system at 1000 K and 1 atm, with the elements Fe, Cr and C and with the phases bcc, 
graphite and cementite, (Fe,Cr)3C. Then, define Fe3C1 and Cr3C1 as new components 
instead of Fe and Cr. Make bcc and graphite dormant and compute the equilibrium between 
cementite, with equal amounts of Fe and Cr, and graphite. Evaluate the potential of a 
hypothetical component Fe1Cr1. Finally, evaluate the same potential if the C activity is just 
half as high as for graphite. Evaluate the difference in Fe1Cr1 potential with what one should 
expect. Fig. 7.6 can be used as an illustration. 
 



Hint 
 
1) Equilibrium with graphite simply means that the C activity is 1, if graphite is used as 
reference. The second case can then be treated in exactly the same way but with a C activity 
of 0.5.  
 
2) The potential of Fe for an equilibrium is equal to the potential of Fe3C1 minus the potential 
of C and divided by 3. Similarly for Cr and the potential for Fe1Cr1 is the sum of the two. 
 

7.4. Two-phase equilibria in binary systems  
 
The database lists four carbides in the Cr-C system, Cr23C6, Cr3C Cr7C3 and Cr3C2, and 
together with the end-members, bcc-Cr and graphite, it makes six phases. Examine the phase 
equilibria by computing the equilibrium for alloy compositions in all the regions between 
phases. 
 
Hint 
   
For all the alloy compositions, let all the phases be present and note the degree of instability, 
i.e. the negative value of the driving force for formation, of all the phases not taking part in 
the equilibrium. 
 

7.5. Allotropic phase boundaries 
 
Fcc and bcc Fe have the same Gibbs energy at 1 atm and 911oC. That phase equlibrium 
represents an end-point of a To line that extends into all binary Fe-X phase diagram. Compute 
and plot that line for the Fe-C system up to 1 mass% C. 
 
Hint 
 
The To line is sometimes regarded as an allotropic phase boundary. In principle, it is evaluated 
from the condition Gm(fcc) = Gm(bcc) but different data bank systems may have different 
methods of computing that kind of equilibrium. 
 

7.6. Effect of a pressure difference on a two-phase equilibrium 
 
Compute the effect of a pressure increase of 100 atm on the bcc phase when in equilibrium 
with fcc of 1 atm in the Fe-C system at 1000oC. 
 
Hint 
 
One way to compute the equilibrium between two phases, when only one of them is under an 
increased pressure, would be to go to the module where the properties are stored and change 
the molar volume of the other phase to zero. With T-C one you have another possibility. 
 



7.7. Driving force for the formation of a new phase 
 
An fcc phase of Fe with 1.5 mass% C at 1000oC and 1 atm is supersaturated with respect to 
graphite and cementite. Compute the driving forces for their nucleation. Plot the driving 
forces as functions of the C content of fcc up to 2 mass% C. 
 
Hint 
 
You should remember the difference between the driving force for the first stage of formation, 
the so-called nucleation, and the driving force for the whole reaction until equilibrium has 
been established, i.e. the integrated driving force. 
 

7.8. Partitionless transformation under local equilibrium 
 
Consider the partitionless solidification of an Al-Mg alloy with 2 mass% Mg under 1 atm. 
Suppose heat conduction is very efficient and the system is thin enough to be kept at a 
homogeneous temperature, which is decreased until the right temperature for partitionless 
solidification has been established. Compute the driving force for diffusion in the liquid in 
front of the solidification front if there is local equilibrium. 
 
Hint 
 
You must first find the temperature where the conditions for partitionless solidification are 
fulfilled. It is required that the new phase should grow with the composition of the bulk of the 
liquid. You should thus start by computing at what temperature the solid phase with that 
composition is in equilibrium with liquid. That should also yield the composition of the liquid 
at the interface. Then it is easy to take the difference in Mg content inside the liquid, i.e., 
between the interface to solid and the bulk, which has the initial content.   
 

7.9. Problem on activation energy for a fluctuation 
 
Long ago one had the idea that a small coherent particle could precipitate by a fluctuation in 
the parent phase first reaching the correct composition and size for a nucleus and then 
transforming without any diffusion. Consider an fcc Fe alloy with 0.5 mass% C at 1000 K and 
1 bar and calculate the activation energy for such a fluctuation being a precursor of a critical 
nucleus of the new phase. 
 
Hint 
 
You have to know the composition and size of the fcc fluctuation. Suppose they have the 
same values as the critical nucleus of the new phase according to ordinary nucleation theory. 
You should then start by evaluating the critical nucleus. 1 J/m2 may be a reasonable value for 
the specific surface energy. 
 
 
 



Chapter 8. Phase equilibria and potential phase diagrams 
 

Problem 8.1. Gibbs' phase rule 
Problem 8.2. Fundamental property diagram 
Problem 8.4. Potential phase diagrams in binary and multinary systems 
Problem 8.5. Sections of potential phase diagrams 
Problem 8.7. Ternary systems 
 

8.1. Gibbs' phase rule 
 
CaO and MgO are both stoichiometric and they can form a solution (Ca,Mg)O. Evaluate the 
chemical potential of MgO in a 50/50 alloy at 1500 K and 1 atm, using pure MgO as the 
reference. 
 
Hint 
 
For a data bank specialized to oxide systems it would be possible to use only oxides bas 
components. The present system would then have two components. A more general kind of 
data bank should be capable of combining information on different kinds of systems. It is then 
essential also to describe chemical potentials of elements. It may be an advantage to build 
such a data bank on an algorithm based on the chemical potentials of the elements. That does 
not prevent the use of compounds as components but the number of components must be the 
same as the number of elements. 
 

8.2. Fundamental property diagram 
 
Plot the complete property diagram T,P, Feμ  for pure fcc Fe in order to show that it is convex. 
 
Hint 
 
In principle, it should be a trivial matter to compute equilibrium over a T,P area and to 
evaluate a property, e.g. Feμ , for each point. In order to plot the result one should place those 
points along a series of constant T or P values. One would thus get two series of more or less 
parallel curves but in order to see the shape of the surface in a two-dimensional diagram, one 
should redefine the axes. The result should resemble Fig. 8.2 or 8.4. Any point for ),( PTμ  
should be placed at (  where),YYXX PAATXX ⋅−=  and PBBYY Fe ⋅−= μ , and the values 
of AA and BB may be obtained by trial and error. Reasonable starting values could be 

 and )(2.0 minmax PTTAA mn−= /() Pmax( − )/() minmaxmin PP(9.0 maxBB −−= μμ . 
 



8.4. Potential phase diagrams in binary and multinary systems 
 
Examine if there is any combination (T,P) where the invariant four-phase equilibrium 
bcc/fcc/Fe3C/graphite exists in the Fe-C system? If you find it, examine the region around it. 
In principle, it should be similar to Fig. 8.11 but instead of constructing a three-dimensional 
diagram, you may show projections from three directions. 
 
Hint 
 
When mapping the region around the invariant equilibrium, it may be difficult to start from 
the invariant equilibrium, which cannot be followed. It may be better to start from a point on a 
three-phase line. 
 

8.5. Sections of potential phase diagrams 
 
Compute the SO μμ ,

2OP
 phase diagram for the Cu-O-S system at 1 atm. Then make a section at 

1000 K, using to express Oμ  and  to express 
2SP Sμ . 

 
Hint 
 
You are invited to try to interpret the resulting potential diagram before sectioning. It may 
then be helpful to consult the long list of print-outs from the computations of equilibria.  
 

8.7. Ternary systems 
 
Consider the possible oxidation of Cu in water without any extra oxygen present. There are 
two possible oxides, Cu2O and CuO, in addition to H2O.  
 
Hint 

Cu would first oxidize to Cu2O and O would have to come from H2O. Free hydrogen would 
thus form and dissolve in the water or form gas bubbles if the H potential is high enough, i.e. 
if the partial pressure of H2 would be high enough compared to the external pressure. It would 
thus be interesting to compute the equilibria and express the result as partial pressure of H2 in 
a hypothetical gas phase. Do that from 0 to 100oC. 
 
It is conceivable that oxidation continues and results in CuO. First you should thus consider 
the equilibrium H2O/Cu2O/Cu and then H2O/CuO/Cu2O.   
 
When you have completed this problem you have obtained a diagram which may be regarded 
as a potential phase diagram for the Cu-O system with the H potential in water as an 
expression of the O potential. The diagram has three phase fields, one each for Cu, Cu2O and 
CuO. In Section 8.7 there is already a diagram showing the equilibrium between CuO and 
Cu2O although it is more complicated but does not show Cu. Furthermore, it uses the O 
potential instead of the H potential.   
 



 
 

Chapter 9. Molar phase diagrams 
 

Problem 9.1. Molar axes 
Problem 9.2. Sets of conjugate variables containing molar variables   Problem 
Problem 9.4. Sections of molar phase diagrams     
Problem 9.6. Topology of sectioned molar diagrams 
 

9.1. Molar axes 
 
Compute and plot the phase diagram for Fe-C at 1 atm and between 1650 and 1850 K and 0 
and 0.03 mol% C. Then, try to use enthalpy and C content as axes in the diagram. 
 
Hint 
 
You should realize that you may have to declare that you are not interested in the values for 
two-phase mixtures but for the individual phases present in the mixtures. 
 

9.2. Sets of conjugate variables containing molar variables 
 
Compute the phase equilibria for pure Fe between 500 and 1000 K and between 8E9 to 14E9 
bar. Plot the results as phase diagrams with various pairs of axes. In particular combine Hm 
with other quantities. 
 
Hint 
 
As shown in Table 9.1, all combinations of axes don't give true phase diagrams. 
 
 

9.4. Sections of molar phase diagrams  
 
Consider a carbon free Fe-6 mass% Cr alloy being carburised. Demonstrate with a diagram 
how the alloy would move from phase field to phase field as the C content is increasing. 
Construct the diagram for temperatures between 650 and 1550oC. Then, try to figure out the 
number of phases in the various phase fields. Finally, compute diagrams showing how the 
amounts of the phases change with the C content during carburisation and with temperature 
during cooling. 
 
Hint 
 
Evidently, you are asked to compute a so-called isopleth with a constant ratio of Fe to Cr. It 
will give the same result whether you define this ratio with mass fractions or mole fractions. 
 



9.6. Topology of sectioned molar diagrams 
 
Compute a zero-phase-fraction line of your own choice through the isopleth obtained in the 
first part of Problem 9.4. Plot this line in a diagram with the same axes as the isopleth. 
 
Hint 
 
Your data bank system should offer some method of requiring that a selected phase should 
take part in all the equilibria that are computed, but with the zero amount. 
 
 
 



Chapter 10. Projected and mixed phase diagrams 
 

Problem 10.1A. Schreinemakers' projection of potential phase diagrams. 
Problem 10.1B. Schreinemakers' projection of potential phase diagrams. 
Problem 10.2. The phase field rule and projected diagrams 
Problem 10.4. Coincidence of projected surfaces 
Problem 10.7A. Selection of axes in mixed diagrams 
Problem 10.7B. Selection of axes in mixed diagrams 
Problem 10.8. Konovalov's rule 
 

10.1A. Schreinemakers' projection of potential phase diagrams. 
 
Consider the ternary Al-Mg-Si system at 1 atm and in the region 400 to 700oC. It should obey 
the same topological rules as a binary system with a variable P, as Fig. 10.1(a). Calculate the 
three-dimensional phase diagram. Plot the result with the axes , which should yield a 
projection in the T direction with the same topology as Fig. 10.1(b). Produce a stereographic 
pair of pictures by using 

SiMg aa ,

TaSi ⋅± ε instead of  as an axis. You have to find a conveniently 
small value of the 

Sia
ε  constant. That pair should give an impression of the three-dimensional 

structure. Another method was used in Fig. 10.1(a). 
 
Hint 
 
Your data bank system certainly has a standard procedure for mapping phase diagrams with 
axes for two components. Hopefully, it is then possible to plot the results with the activity 
axes. It may be most convenient to use activities based on the pure elements in their stable 
solid states and at the current temperature as references. 
 

10.1B. Schreinemakers’ projection of potential phase diagrams 
 
Compute and plot all the liquidus surfaces for the Fe-Cr-C system at 1 atm. Then, add 
isotherms on the liquidus surfaces.    
 
Hint 
 
In principle, the first part of this problem is solved by mapping the complete potential phase 
diagram after sectioning at the constant pressure. However, the condition liq=fix must be used 
in order to avoid all other univariant lines (also called monovariant). To add isotherms 
actually means to map isothermal sections, which might require a new mapping operation for 
each section.   
 



10.2. The phase field rule and projected diagrams 
 
The fundamental property diagram of a ternary system has 3+2=5 axes, e.g. Aμ , Bμ , Cμ , T 
and P. By projecting in one direction one obtains a four-dimensional potential phase diagram 
and those four potentials then make a set of independent state variables. In order to obtain a 
two-dimensional phase diagram, which can be plotted on paper, one can project in the 
directions of three potentials and could thus obtain 5x4x3=60 different projections. An 
alternative would be to project in one direction and section at constant values of two 
potentials. That would give another 60 alternatives. Finally, one could project in two 
directions and section at a constant value of one. That would add yet another 60 alternatives. 
You are asked to make two two-dimensional phase diagrams of the Fe-Cr-C system. 
 
Hint 
 
1) Each time you decide to make a section, you must make a new mapping of the phase 
equilibria at the chosen value of the sectioned potential. On the other hand, once you have 
mapped the equilibria for variable conditions for all the potentials, you can directly plot any 
projection you like. For convenience, you should thus choose to make two projections. 
 
2) Since only four of the potentials are independent due to the Gibbs-Duhem relation, you 
should choose one to be dependent, say Aμ .  
 
3) After mapping all the univariant equilibria you should choose two pairs of potentials to be 
used as axes in the two diagrams. It may be most illustrative to choose T and P as one pair and  

Bμ  and Cμ  as the other. 
 

10.4. Coincidence of projected surfaces 
 
Compute the Fe+FeO+Fe2O3+FeS equilibrium at 1 atm. In order to simplify the problem, 
include only the fcc phase as an Fe phase. Compute the connecting four three-phase equilibria 
in a reasonably large region around the invariant point. Plot those four-phase lines using T and 

 as axes. Use O2 gas of 1 atm and the current temperature as reference for O2. Then 

change the latter axis to  where 

ref
OO 22

μμ −

)(
22

ref
SS

ref
OO μμεμμ −⋅±− ε  is a conveniently small number. 

 
Hint 
 
1) It may be convenient also to use pure S as at the current temperature as reference. 
 
2) You may find that the modified axis made a new line appear. From where did it come? 
 



10.7A. Selection of axes in mixed diagrams 
 
Compute the phase diagram for Pb-Sn at 1 bar. Plot the result in a diagram with the mPb S,μ  
axes. It should look as Fig. 10.18. Plot the diagram with the following pairs of axes, PbPb S,μ ; 

TPb ,μ ;   mPb Sx , ; PbPb Sx , ; mSnPb S),( μμ − . 
 
Hint 
 
In order to obtain a true phase diagram you must choose a pair of axes that belong to the same 
set of conjugate variables. 
 

10.7B. Selection of axes in mixed diagrams 
 
Compute the isothermal section of the Fe-Cr-C system at 1200oC and 1 atm. Then, plot the 
result with the axes uCr, Cμ  as in Fig. 10.19. The diagram probably shows swallow tails. Try 
to get rid of them by changing the axes. It may be worth trying xCr, Cμ ; uCr,( FeC μμ − ); 
uCr,( CrC μμ − ); uCr,ln(aC/aFe) and xCr,aC.  
 
Hint 
 
Consult Tables 9.1 and 3 regarding the ways of combining variables for the axes in a true 
phase diagram. 
 

10.8. Konovalov's rule 
 
In the T-x diagram for the Fe-Cr system there is a bcc+fcc two-phase field showing a 
congruent transformation. Use an isothermal section to examine how the phase field extends 
into the ternary diagram when C is added. First, choose axes for the mole fractions of Cr and 
C. Show what kind of diagram you should then use in order to obtain a congruent 
transformation point. With what experimental technique could one observe it? 
 
2) There is another pair of axes that would give a similar diagram. Compare the Cr content of 
the congruent point in the two diagrams. Explain the difference by studying a diagram with 
two potential axes.  
 
Hint 
 
You may get some inspiration from Problem 10.7B. There you obtained two true phase 
diagrams with one potential axis. Only one of them seemed to indicate a congruent 
transformation.  
 
 
 



Chapter 11. Direction of phase boundaries 
 

Problem 11.5. Congruent melting points 
Problem 11.6. Vertical phase boundaries 
 

11.5. Congruent melting points 
 
Determine the curvatures of the two phase boundaries at the congruent transformation point 
for bcc/sigma in the Fe-Cr system. 
 
Hint 
 
You may evaluate the curvature of a curve from three points. The transformation point is one 
and you may compute one point on each side by requiring that T should be 0.1 K lower, for 
instance.  
 

11.6. Vertical phase boundaries 
 
The phase boundary bcc/fcc in the Fe-C system is retrograde, i.e., the solubility of C in bcc 
which starts from zero at the transition point of 911oC reaches a maximum value at some 
lower temperature and then decreases and approaches zero at low temperatures. Evaluate the 
temperature of maximum solubility with high accuracy. 
 
Hint 
 
Rather than just comparing the solubility at various temperatures it may be more accurate to 
evaluate the slope of the phase boundary and evaluate where it goes through zero. 
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