
 
 

Chapter 7: Continuous-time Filters 
 

 
Problem 7.1 

Ideal Bandpass Filter: The transfer function of a bandpass filter is given by 
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which can be expressed in terms of the transfer functions of two lowpass filters as 
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Taking the inverse CTFT and using the result (7.8) in Example 7.1, the impulse response of the bandpass 
filter is given by 
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Ideal Bandstop filter: The transfer function of a bandpstop filter can be expressed in terms of the 
transfer function of the bandpass filter as 
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Taking the inverse CTFT, we get 

( ) ( )π
ω

π
ω

π
ω

π
ω +−= tAtA

bs
ccccAth 1122 sincsinc)(  

where we replaced the result for the impulse response of the bandpass filter from the earlier derivation. ▌ 

Problem 7.2 

(a) Butterworth filter of order N = 12: Using Eq. (7.20), the poles of H(s)H(−s) are given by 

 [ ]24
)12(

2exp π−π += njjs  

for (0 ≤ n ≤ 23). Substituting different values of n, the locations of the poles are specified in Table 
S7.2(a). Note that only the shaded cells corresponds to poles lying in the left half of the complex s-plane 
and are included in the lowpass Butterworth filter. 
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(b) Butterworth filter of order N = 13: Using Eq. (7.20), the poles of H(s)H(−s) are given by 

 [ ]26
)12(

2exp π−π += njjs  

for (0 ≤ n ≤ 25). Substituting different values of n, the locations of the poles are specified in Table 
S7.2(b). ▌ 

 

Table S7.2(a): Location of 24 poles for H(s)H(−s) in Problem 7.2(a) for N = 12. 

n 0 1 2 3 4 5 6 7 8 9 10 11 

pn ej11π/24 ej13π/24 ej15π/24 ej17π/24 ej19π/24 ej7π/8 ej23π/24 e−j23π/24 e−j7π/8 e−j19π/24 e−j17π/24 e−j5π/8 

n 12 13 14 15 16 17 18 19 20 21 22 23 

pn e−j13π/24 e−j11π/24 e−j3π/8 e−j7π/24 e−j5π/24 e−jπ/8 e−jπ/24 ejπ/24 ejπ/8 ej5π/24 ej7π/24 ej3π/8 

Table S7.2(b): Location of 26 poles for H(s)H(−s) in Problem 7.2(b) for N = 13. 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 

pn ej6π/13 ej7π/13 ej8π/13 ej9π/13 ej10π/13 ej11π/13 ej12π/13 −1 e−j12π/13 e−j11π/13 e−j10π/13 e−j9π/13 e−j8π/13 

n 13 14 15 16 17 18 19 20 21 22 23 24 25 

pn e−j7π/13 e−j6π/13 e−j5π/13 e−j4π/13 e−j3π/13 e−j2π/13 e−jπ/13 1 ejπ/13 ej2π/13 ej3π/13 ej4π/13 ej5π/13 

Problem 7.3 

From Eq. (7.20), the locations of the poles of the lowpass Butterworth filter of order N is given by 
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for (1 ≤ n ≤ N), where the poles in the left half of the complex s-plane are selected. For at least one pole to 
lie on the real axis, the argument of the exponent must be equal to π, i.e.,  

 12
)12( =−+

N
nN , or, 2/)1( += Nn , 

which lies within the range (1 ≤ n ≤ N). Since n = (N + 1)/2 is a whole number for odd values of N, a 
lowpass Butterworth filter with an odd value of order N has at least one pole on the real axis in the 
complex s-plane.  

If N is even, n = (N + 1)/2 does not result in a whole value for n. Therefore, in such a case no pole exists 
on the real axis in the complex s-plane.  ▌ 
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Problem 7.4 

In this problem, we have to prove that if  
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is a pole of the lowpass Butterworth filter of order N then its conjugate 
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is also a pole of the same lowpass Butterworth filter. 

Note that 
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In other words, the pole s = (s0)* also satisfies Eq. (7.19), and hence all complex poles of the lowpass 
Butterworth filter occur in conjugate pairs. ▌ 

Problem 7.5 

For the interval (−1≤ ω ≤ 1), the N’th order Type I Chebyshev polynomial TN(ω) is given by 

( ))(coscos)( 1 ω=ω −NTN . 

The roots of the polynomial are ( ) 0)(coscos 1 =ω−N , 

or, 
2
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=ω− nN , 

for (0 ≤ n ≤ N – 1). Rearranging terms, the roots are given by 
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)12(cos , 0 ≤ n ≤ N – 1.  ▌ 

Problem 7.6 

Consider the function 0)(1 22 =θε+ NT . 

Case I: For (θ ≤ 1), we get 0))(coscos(1 12 =θε+ −N , 

which has roots at [ ]N
m

N j π− +ε±=θ )(coscos 11 , for (0 ≤ m ≤ (2N – 1). 

Substituting θ = s/j for Type I Chebyshev filter results in the roots 

 [ ]N
m

N jjs π− +ε±= )(coscos 11
1 . (P7.6.1) 

Substituting θ = j/s for Type II Chebyshev filter results in the roots 
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 [ ]N
m

N jjs π− +ε±= )(coscos 11
2 . (P7.6.2) 

Knowing that the roots occur in conjugate pairs (±α ± jβ) that are symmetric about the origin, Eqs. 
(P7.6.1) and (P7.6.2) prove that roots of the characteristic equation of Type I Chebyshev filter are inverse 
of the roots of the characteristic equation of Type II Chebyshev filter. ▌ 

Problem 7.7 

Using Step 1 of Algorithm 7.3.1.1, the gain terms Gp and Gs are given by 

 2346.011 22 9.0
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Using Eq. (7.29), the order of the Butterworth filter is given by 
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We round off the order of the filter to the higher integer value as N = 5. 

Using Step 2 of Algorithm 7.3.1.1, the transfer function H(S) of the normalized Butterworth filter with a 
cut off frequency of 1 radians/s from Table 7.2 is given by 
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Using the stop band constraint, Eq. (7.32), in Step 3 of Algorithm 7.3.1.1, the cut off frequency of the 
required Butterworth filter is given by 
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Using Step 4 of Algorithm 7.3.1.1, the transfer function H(s) of the required Butterworth filter is obtained 
by the transformation and simplification. 
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Figure S7.7: Magnitude spectrum of the Butterworth low pass filter designed in Problem 7.7.  

Step 5 plots the magnitude spectrum of the Butterworth filter. The CTFT transfer function of the 
Butterworth filter is given by 

5
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The magnitude spectrum |H(ω)| is plotted in Fig. S7.7 with the specifications shown with the shaded 
lines. We observe that the design specifications are indeed satisfied by the magnitude spectrum. ▌ 

Problem 7.8 

Expressed on a linear scale, the pass band and stop band gains are given by 

0562.010and8913.010)1( 20/2520/1 ==δ==δ− −−
sp . 

Using Step 1 of Algorithm 7.3.1.1, the gain terms Gp and Gs are given by 

 0.258811 22 8913.0
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Using Eq. (7.29), the order of the Butterworth filter is given by 

 13.5426
)6550ln(

)6120.3150.2588ln(
2
1

)ln(
)ln(

2
1

=×=
ωω

×=
sp

sp GG
N . 

We round off the order of the filter to the higher integer value as N = 14. 

Using Eq. (7.20), the poles of H(s) are given by 

 [ ]28
)12(

2exp π−π += njjs  

for (1 ≤ n ≤ 14). Substituting different values of n, the locations of the poles are specified in Table S7.8. 

Using Step 2 of Algorithm 7.3.1.1, the transfer function H(S) of the normalized Butterworth filter with a 
cut off frequency of 1 radians/s is given by 
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Table S7.8: Location of 14 poles for H(s) in Problem 7.8 for N = 14. 

n 1 2 3 4 5 6 7 

pn ej15π/28 ej17π/28 ej19π/28 ej3π/4 ej23π/28 ej25π/28 ej27π/28 

n 8 9 10 11 12 13 14 

pn e−j27π/28 e−j25π/28 e−j23π/28 e−j3π/4 e−j19π/28 e−j17π/28 e−j15π/28 

 

Using the stop band constraint, Eq. (7.32), in Step 3 of Algorithm 7.3.1.1, the cut off frequency of the 
required Butterworth filter is given by 
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Using Step 4 of Algorithm 7.3.1.1, the transfer function H(s) of the required Butterworth filter is obtained 
by the transformation 

 9246.52// )()()( sSsS SHSHsH
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which simplifies to 

 

)101.3536102.2841101.9272101.0748...

...104.4179101.4135103.6270107.5770101.2948...

...011.8014102.0098101.7455101.1173472.7119(
103536.1)(

2423222321

419518616714813

9111091171251314

24

×+×+×+×+

+×+×+×+×+×+

+×+×+×+×++

×
=

sss

sssss

ssssss
sH

 

 



  Solutions                7 

  

0 15 30 45 60 75 90 105 120 135 150
0

0.2

0.4

0.6

0.8

1

0 15 30 45 60 75 90 105 120 135 150
0

0.2

0.4

0.6

0.8

1

 
Figure S7.8: Magnitude spectra of the Butterworth low pass filters, designed in Problem 7.8. 

 
Step 5 plots the magnitude spectrum of the Butterworth filter. The magnitude spectrum |H(ω)| is plotted 
in Fig. S7.8 with the specifications shown with the shaded lines. We observe that the design specifications 
are indeed satisfied by the magnitude spectrum. ▌ 

Problem 7.9 

(a) In Problem 7.7, the gain terms are given by Gp = 0.2346 and Gs = 99. 

Step 1 determines the value of the ripple control factor ε as 

 4844.02346.0 ===ε pG . 

Step 2 determines the order N of the Chebyshev polynomial as: 
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We round off N to the closest higher integer as 3. 

Step 3 determines the location of the six poles of H(S)H(−S) as 

]5106.0,5106.0,972.02553.0,972.02553.0,9724.02553.0,9724.02553.0[ −−−−++− jjjj . 

The 3 poles lying in the left half s-plane are included in the transfer function H(S) of the normalized 
Type I Chebyshev filter. These poles are located at 

 5106.0,972.02553.0,9724.02553.0[ −−−+− jj . 

The transfer function for the normalized Type-I Chebshev filter is, therefore, given by 
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)(
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SjSjS

KSH , 

which simplifies to 
5162.02715.10213.1

)( 23 +++
=

SSS
KSH . 

Since |H(ω)| at ω = 0 is K/0.5162, therefore, K is set to 0.5162 to make the dc gain equal to 1. The 
new transfer function with unity gain at ω = 0 is given by 
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SH .   
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Step 4 transforms the normalized Type-I Chebyshev filter using the relationship 

 
5162.0)10/(2715.1)10/(0213.1)10/(

5162.0)()( 2310/ +++
== = sss

SHsH sS , 

or, 
2.5161015.127213.10

2.516)( 323 +×++
=

sss
sH , 

which is the transfer function of the required low pass filter. 

The magnitude spectrum of the Type-I Chebyshev filter is plotted in Fig. S7.9(a). It is observed that 
Fig. S7.9(a) satisfies the initial design specifications. 

(b) In Problem 7.8, the gain terms are given by Gp = 0.2588 and Gs = 315.6120. 

Step 1 determines the value of the ripple control factor ε as 

 5087.02588.0 ===ε pG . 

Step 2 determines the order N of the Chebyshev polynomial as.  
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We round off N to the closest higher integer as 6. 
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Figure S7.9(a): Magnitude spectrum of the Type-I Chebyshev lowpass filter designed in Problem 7.9(a). 
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Figure S7.9(b): Magnitude spectrum of the Type-I Chebyshev lowpass filter designed in Problem 7.9(b). 
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Step 3 determines the location of the six poles of H(S)H(−S) as 

 
]7272.01699.0,2662.02321.0,2662.02321.0,7272.01699.0
,9934.00622.0,9934.00622.0,7272.01699.0,2662.02321.0

2662.02321.0,7272.01699.0,9934.00622.0,9934.00622.0[

jjjj
jjjj

jjjj

−−−−+−+−
+−+++

−−−−−
. 

The 6 poles lying in the left half s-plane are included in the transfer function H(S) of the normalized 
Type I Chebyshev filter. These poles are located at 

 ],7272.01699.0,2662.02321.0
2662.02321.0,7272.01699.0,9934.00622.0,9934.00622.0[

jj
jjjj

−−−−
+−+−+−−−  

The transfer function for the normalized Type-I Chebshev filter is, therefore, given by 
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which simplifies to 

 
0689.03072.09395.02024.19310.19284.0

)( 23456 ++++++
=

SSSSSS
KSH . 

Since |H(ω)| at ω = 0 is K/0.0689, therefore, K is set to 0.0689 to make the dc gain equal to 1. The 
new transfer function with unity gain at ω = 0 is given by 

 
0689.03072.09395.02024.19310.19284.0

0689.0)( 23456 ++++++
=

SSSSSS
SH .   

Step 4 transforms the normalized Type-I Chebyshev filter using the relationship 

 50/)()( sSSHsH == , 

we get 

 972635456

9

100767.1106.910871.510503.15.482742.46
100767.1)(

×+×+×+×+++

×
=

SSSSSS
SH , 

which is the transfer function of the required lowpass filter. 

The magnitude spectrum of the Type-I Chebyshev filter is plotted in Fig. S7.9b, which satisfies the 
initial design specifications. ▌ 

Problem 7.10 

(a) In Problem 7.7, the gain terms are given by Gp = 0.2346 and Gs = 99. 

 Step 1 determines the value of the ripple control factor ε as 

  1005.0
99
11

===ε
sG

.  

 Step 2 determines the order N of the Chebyshev polynomial as.  
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[ ]

[ ]
2.8209

1020cosh
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1
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N , 

 which is the same as in Type I Chebyshev filter. We round off N to the closest higher integer as 3. 

 Step 3 determines the location of the poles and zeros of H(S)H(−S). 

 We first determine the location of poles for the Type-I Chebshev filter with ε = 0.1005 and N = 3. 
Using Eq. (7.47), the location of poles for H(s)H(−s) of the Type I Chebyshev filter are given by 

]1717.1,1717.1,3341.15859.0,3341.15859.0,3341.15859.0,3341.15859.0[ −+−+−−− jjjj  

 Selecting the poles located in the left half s-plane, we get 

  ]1717.1,3341.15859.0,3341.15859.0[ −−−+− jj . 

 The poles of the normalized Type II Chebyshev filter are located at the inverse of the above locations 
and are given by 

  ]8534.0,6284.02760.0,6284.02760.0[ −+−−− jj . 

 The zeros of the normalized Chebyshev Type II filter are computed using Eq. (7.60) and are given by 

  ],1547.1,1547.1[ ∞− jj . 

 The zero at s = ∞ is ignored. The transfer function for the normalized Type II Chebyshev filter is 
given by 

  
)8534.0)(6284.0.02760.0)(6284.0.02760.0(

)1547.1)(1547.1()(
+−+++

−+
=

SjSjS
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 which simplifies to 
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)3333.1()( 23

2

+++

+
=

SSS
SKSH . 

 Since |H(ω)| at ω = 0 is 1.3333/0.4020 = 3.3167, therefore, K is set to 1/3.3167 = 0.3015 to make the 
dc gain equal to 1. The new transfer function with unity gain at ω = 0 is given by 
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2

+++

+
=

SSS
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 Step 4 normalizes H(S) based on the transformation 
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)3333.1)20/((3015.0)()( 23

2

20/ +++
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sSHsH sS  

 which simplifies to 

  
321684.376108.28

)32.533(03.6)( 23

2
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+
=

sss
ssH . 

 Step 5 plots the magnitude spectrum, which is shown in Fig. 7.10(a). 
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Figure S7.10(a): Magnitude spectrum of the Type-II Chebyshev filter designed in Problem 7.10(a). 
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Figure S7.10(b): Magnitude spectrum of the Type-II Chebyshev filter designed in Problem 7.10(b). 

(b) In Problem 7.8, the gain terms are given by Gp = 0.2588 and Gs = 315.6120. 

 Step 1 determines the value of the ripple control factor ε as 

  0.0563
6120.315

11
===ε

sG
.  

 Step 2 determines the order N of the Chebyshev polynomial as.  

  
[ ]

[ ]
5.6133

5065cosh

)2588.0/6120.315(cosh
1

5.01

==
−

−

N , 

 which is the same as in Type I Chebyshev filter. We round off N to the closest higher integer as 6. 

 Step 3 determines the location of the poles and zeros of H(S)H(−S). 

 We first determine the location of poles for the Type-I Chebshev filter with ε = 0.0563 and N = 6. 
Using Eq. (7.47), the location of poles for H(s)H(−s) of the Type I Chebyshev filter are given by 

]8361.04462.0,3060.06095.0,3060.06095.0,8361.04462.0
,1421.11633.0,1421.11633.0,8361.04462.0,3060.06095.0

,3060.06095.0,8361.04462.0,1421.11633.0,1421.11633.0[

jjjj
jjjj

jjjj

−−−−+−+−
+−+++

−−−−−
 

 Selecting the poles located in the left half s-plane, we get 

  ]8361.04462.0,3060.06095.0
,3060.06095.0,8361.04462.0,1421.11633.0,1421.11633.0[

jj
jjjj

−−−−
+−+−+−−− . 
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 The poles of the normalized Type II Chebyshev filter are located at the inverse of the above locations 
and are given by  

  ]9309.04968.0,6580.03104.1
,6580.03104.1,9309.04968.0,8580.01227.0,8580.01227.0[

jj
jjjj

+−+−
−−−−−−+− . 

 The zeros of the normalized Chebyshev Type II filter are computed using Eq. (7.60) and are given by 

  ]0353.1,4142.1,8637.3,8637.3,4142.1,0353.1[ jjjjj −−− . 

 The zero at s = ∞ is ignored. The transfer function for the normalized Type II Chebyshev filter is 
given by 
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 which simplifies to 

  
7984.13843.40418.82090.95054.78597.3

324818)( 23456
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=

SSSSSS
SSSKSH  

 Since |H(ω)| at ω = 0 is 32/1.7984 = 17.7936, therefore, K is set to 1/17.7936 = 0.0562 to make the dc 
gain equal to 1. The new transfer function with unity gain at ω = 0 is given by 
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)324818(0.0562)( 23456

246

++++++

+++
=

SSSSSS
SSSSH  

 Step 4 normalizes H(S) based on the transformation 

  65/)()( sSSHsH ==  

 which simplifies to 

11928364456

1228446

10356.110087.510436.110529.210171.3250.8783
)102.4134108.56810605.7(0.0562)(

×+×+×+×+×++

×+×+×+
=

ssssss
ssssH . 

 Step 5 plots the magnitude spectrum, which is shown in Fig. S7.10(b). ▌ 

Problem 7.11 

(a) In Problem 7.7, the gain terms are given by Gp = 0.2346 and Gs = 99.. The pass band and stop band 
corner frequencies are specified as ωp = 10 radians/s and ωs = 20 radians/s. 

 Using Eq. (7.64), the ripple control factor is given by 

0.48442346.0 ===ε pG . 

 Using Eq. (7.65) with ωp/ωs = 0.5 and Gp/Gs = 0.0024, the order N of the elliptic filter is given by 

  
[ ] [ ]
[ ] [ ] [ ]8660.00024.0

]9988.0[]25.0[

)(1

1)(

2

2

ψψ

ψψ
=





 ωω−ψψ

−ψωωψ
=

spsp

spsp

GG

GG
N . 
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 Using MATLAB, ψ[0.25] = 1.5962,  ψ[0.9988] = 4.4048, ψ[0.0024] = 1.5708, and ψ[0.8660] = 
2.1564. The value of N is  

  2.0757
1564.25708.1
4048.45962.1

=
×
×

=N . 

 Rounding off to the nearest higher integer, the order N of the filter equals 3. 

(b) In Problem 7.8, the gain terms are given by Gp = 0.2588 and Gs = 315.6120. The pass band and stop 
band corner frequencies are specified as ωp = 50 radians/s and ωs = 60 radians/s. 

 Using Eq. (7.64), the ripple control factor is given by 

0.50872588.0 ===ε pG . 

 Using Eq. (7.65) with ωp/ωs = 0.8333 and Gp/Gs = 0.00082, the order N of the elliptic filter is  

  
[ ] [ ]
[ ] [ ] [ ]5528.000082.0

]0.9996[]8333.0[

)(1

1)(

2

2

ψψ

ψψ
=





 ωω−ψψ

−ψωωψ
=

spsp

spsp

GG

GG
N . 

 Using MATLAB, ψ[0.8333] = 2.0672,  ψ[0.9996] = 4.9526, ψ[0.00082] = 1.5708, and ψ[0.5528] = 
1.7172. The value of N is  

  3.7955
7172.15708.1
9526.40672.2

=
×
×

=N . 

 Rounding off to the nearest higher integer, the order N of the filter equals 4. ▌ 

Problem 7.12 

The computational complexity of implementing the filter is directly related to the order of the filter. For 
Problem 7.7, the orders N of the four types of the low pass filter are: 

Butterworth:   N = 4 
Type I Chebyshev:  N = 3 
Type II Chebyshev:  N = 3 
Elliptic:   N = 3 

The Butterworth filter has the highest order (hence, the highest computational complexity), while 
Chebyshev and elliptic have the same order. For Problem 7.8, the orders N of the filters are: 

Butterworth:   N = 14  
Type I Chebyshev:  N = 6 
Type II Chebyshev:  N = 6 
Elliptic:   N = 4 

By introducing permissible ripples in both pass and stop bands, the elliptic filter has the lowest order. The 
Chebyshev filters have the same order, while the Butterworth filter has the highest order. The amount of 
ripple is smallest in the Butterworth filter.  ▌ 
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Problem 7.13 

Assume S = (σ + jω) corresponds to the lowpass domain, while s = (γ + jξ) corresponds to the bandstop 
domain. In the frequency domain, the transformation is given by 

 
21

2
12 )(

pp

pp

ξξ+ξ−

ξ−ξξ
=ω . 

Case I: Consider pass band I (−ξp1 ≤ ξ ≤ ξp1) of the bandstop filter.  

Frequency ξ = ξp1 maps to frequency ω = 1 in the transformed domain. 

Frequency ξ = 0 maps to frequency ω = 0 in the transformed domain. 

Frequency ξ = −ξp1 maps to frequency ω = −1 in the transformed domain. 

Case II: Consider pass band II (ξp2 ≤ ξ < ∞) of the bandstop filter. 

Frequency ξ = ξp2 maps to frequency ω = −1 in the transformed domain. 

Frequency ξ = ∞ maps to frequency ω = 0 in the transformed domain. 

Case III: Consider pass band II (−∞ < ξ ≤ −ξp2) of the bandstop filter. 

Frequency ξ = −ξp2 maps to frequency ω = 1 in the transformed domain. 

Frequency ξ = −∞ maps to frequency ω = 0 in the transformed domain. 

Case IV: Any frequency in the stop band I (ξp1 < ξ < ξp2) of the bandstop filter is mapped in the range |ω| 
> 1 in the transformed domain. 

Consider, for example, ξ = 0.5(ξp1 + ξp2), which is mapped as ω = 2 + 4 × ξp1/( ξp2 − ξp1) and similarly, for 
all frequencies in the stop band range.  ▌ 

Problem 7.14 

Using Eq. (7.68) with ξp = 30 radians/s to transform the specifications from the domain s = γ + jξ of the 
highpass filter to the domain S = σ + jω of the lowpass filter, we get 

Stop band (∞ < |ω| ≤ 2 radians/s): 15.0|)(| ≤ωH  

Pass band (|ω| < 1 radians/s): 1)(85.0 ≤ω≤ H . 

The above specifications are used to design a normalized lowpass Butterworth filter.  

The gain terms Gp and Gs are given by 

 3841.011 22 85.0
1

)1(
1 =−=−=
δ− p

pG  

and 4444.4311 22 15.0
1

)(
1 =−=−=

δs
sG . 

The order N of the Butterworth filter is obtained using Eq. (7.25) as  

 4108.3
)21ln(

)44444.433841.0ln(
2
1

)ln(
)ln(

2
1

=×=
ξξ

×=
sp

sp GG
N . 

We round off the order of the filter to the higher integer value as N = 4. 
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Using the stop band constraint, Eq. (7.32), the cut off frequency of the required Butterworth filter is 

 2482.1
)4444.43(

2

)( 8
1

2
1 ==

ω
=ω

N
s

s
c

G
 radians/s. 

The poles of the lowpass filter are located at  

 [ ]8
)12(

2exp π−π +ω= n
c jjS  

for 1 ≤ n ≤ 4. Substituting different values of n gives 

 S = [−0.4777+j1.1532  −1.1532+j0.4777  −1.1532−j0.4777  −0.4777−j1.1532]. 

The transfer function of the lowpass filter is given by 

 
)1532.14777.0)(4777.01532.1)(4777.01532.1)(1532.14777.0(

)(
jSjSjSjS

KSH
−+++−+++

=  

or, 
4274.20817.53194.52617.3

)( 234 ++++
=

SSSS
KSH . 

To ensure a dc gain of 1 for the lowpass filter, we set K = 2.4274. The transfer function of unity gain 
lowpass filter is given by 

 
4274.20817.53194.52617.3

4274.2)( 234 ++++
=

SSSS
SH  

To derive the transfer function of the required highpass filter, we use transformation (7.64) with ξp = 30 
radians/s. The transfer function of the highpass filter is given by 

 
4274.2)/30(0817.5)/30(3194.5)/30(2617.3)/30(

4274.2
)()( 234/30 ++++

==
= ssss

SHsH sS  

or, 542334

4

103369.3106280.3109723.18042.62
)(

×+×+×++
=

ssss
ssH . 
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Figure S7.14: Magnitude spectrum of the Butterworth highpass filter designed in Problem 7.14. 

The magnitude spectrum of the highpass filter is included in Fig. S7.14, which confirms that the given 
specifications are satisfied. ▌ 
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Problem 7.15 

Repeating the procedure for Problem 7.14, the specifications of the transposed lowpass filter for ξp = 30 
radians/s are given by  

Stop band (∞ < |ω| ≤ 2 radians/s):  15.0|)(| ≤ωH  

Pass band (|ω| < 1 radians/s): 1)(85.0 ≤ω≤ H . 

The above specifications are used to design a normalized lowpass Type I Chebyshev filter.  

Type I Chebyshev Filter: 

The gain terms Gp and Gs are given by 0.3841 and 43.4444. 

Step 1 determines the value of the ripple control factor ε as 

 6198.03841.0 === pGε .  

Step 2 determines the order N of the Chebyshev polynomial as 
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Figure S7.15: Magnitude spectrum of the Type I Chebyshev highpass filter for Problem 7.15.  

 
[ ]

[ ]
3198.2

12cosh

)3841.0/4444.43(cosh
1

5.01

==
−

−

N . 

We round off N to the closest higher integer as 3. 

Step 3 determines the location of the six poles of H(S)H(−S) as  

 ]431.0,431.0,9430.02155.0,9430.02155.0,9430.02155.0,9430.02155.0[ −+−−−−+ jjjj . 

The 3 poles lying in the left half s-plane are included in the transfer function H(S) of the normalized Type 
I Chebyshev filter. These poles are located at 

 ]4310.0,9430.02155.0,9430.02155.0[ −+−−− jj . 

The transfer function for the normalized Type-I Chebyshev filter is, therefore, given by 

 
)4310.0)(9430.0.02155.0)(9430.02155.0(

)(
+−+++

=
SjSjS

KSH , 

which simplifies to 
4034.01216.18621.0

)( 23 +++
=

SSS
KSH . 
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Since |H(ω)| at ω = 0 is K/0.1047, therefore, K is set to 0.1047 to make the dc gain equal to 1. The new 
transfer function with unity gain at ω = 0 is given by 

 
4034.01216.18621.0

4034.0)( 23 +++
=

SSS
SH . 

Step 4 is not needed as the passband cutoff frequency is ωp = 1 radians/s.  

This completes the design of Type I Chebyshev filter. 

To derive the transfer function of the required highpass filter, we use transformation (7.64) with ξp = 30 
radians/s. The transfer function of the highpass filter is given by 

 
4034.0)/30(1216.1)/30(8621.0)/30(

4034.0
)()( 23/30 +++

==
= sss

SHsH sS , 

or, 423

3

106931.64.19234110.83
)(

×+++
=

sss
ssH . 

The magnitude spectrum of the highpass filter is included in Fig. S7.15, which confirms that the given 
specifications are satisfied. ▌ 

Problem 7.16 

Repeating the procedure for Problem 7.14, the specifications of the transposed lowpass filter for ξp = 30 
radians/s are given by  
Stop band (∞ < |ω| ≤ 2 radians/s): 15.0|)(| ≤ωH  

Pass band (|ω| < 1 radians/s): 1)(85.0 ≤ω≤ H . 

The above specifications are used to design a normalized lowpass Type II Chebyshev filter.  

Type II Chebyshev Filter: 

The gain terms Gp and Gs are given by 0.3841 and 43.4444. 

Step 1 determines the value of the ripple control factor ε as 

 1517.0
4444.43
11

===
sG

ε . 

Step 2 determines the order N of the Chebyshev polynomial as.  

 
[ ]

[ ]
.3198.2

1/2cosh

)3841.0/4444.43(cosh
1

5.01

==
−

−

N  

We round off order N to the closest higher integer as 3. 

Step 3 determines the location of the poles and zeros of H(S)H(−S). 

We first determine the location of poles for the Type-I Chebyshev filter with ε = 0.1517 and N = 3. Using 
Eq. (7.46), the location of poles for H(s)H(−s) of the Type I Chebyshev filter are given by 

]9722.0,9722.0,2078.14861.0,2078.14861.0,2078.14861.0,2078.14861.0[ −−−−++− jjjj  

Selecting the poles located in the left half s-plane, we get 
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 ]9722.0,2078.14861.0,2078.14861.0[ −−−+− jj . 

The poles of the normalized Type II Chebyshev filter are located at the inverse of the above locations and 
are given by 

 ]0286.1,7125.02868.0,7125.02868.0[ −+−−− jj . 

The zeros of the normalized Chebyshev Type II filter are computed using Eq. (7.60) and are given by 

 ],1547.1,1547.1[ ∞+− jj . 

The zero at s = ∞ is neglected. The transfer function for the normalized Type II Chebyshev filter is given 
by 

 
)0286.1)(7125.02868.0)(7125.02868.0(

)1547.1)(1547.1()(
+−+++

−+
=

SjSjS
jSjSKSH , 

which simplifies to 
6068.01798.16021.1

)3333.1()( 23

2

+++
+

=
SSS

SKSH . 

Since |H(ω)| at ω = 0 is 1.3333/0.6068 = 2.1973, therefore, K is set to 1/2.1973 = 0.4551 to make the dc 
gain equal to 1. The new transfer function with unity gain at ω = 0 is given by 

 
6068.01798.16021.1

)3333.1(4551.0)( 23

2

+++
+

=
SSS

SSH . 

Step 4 normalizes H(S) based on stop band frequency ωs = 2 radians/s, which gives 

 
6068.0)2/(1798.1)2/(6021.1)2/(

)3333.1)2/((4551.0)()( 23

2

2/ +++
+

==
= sss

sSHsH sS  

which simplifies to 

 
8544.47192.42042.3

)3333.5(9102.0)( 23

2

+++
+

=
sss

ssH . 

This completes the design of Type II Chebyshev lowpass filter. 
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Figure S7.16: Magnitude spectrum of the Type II Chebyshev highpass filter for Problem 7.16.  

To derive the transfer function of the required highpass filter, we use transformation (7.64) with ξp = 30 
radians/s. The transfer function of the highpass filter is given by 
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8544.4)/30(7192.4)/30(2042.3)/30(

)3333.5)/30((9102.0)()( 23

2

/30 +++
+

==
= sss

sSHsH sS , 

or, 323

2

105620.50549.5941645.29
)7511.168(1707.0)(

×+++
+

=
sss

sssH . 

The magnitude spectrum of the highpass filter is included in Fig. S7.16, which confirms that the given 
specifications are satisfied. ▌ 

Problem 7.17 

For ξp1 = 100 radians/s and ξp2 = 150 radians/s, Eq. (7.70) is given by 

ξ
×−ξ

=ω
50

105.1 42

, 

to transform the specifications from the domain s = γ + jξ of the bandpass filter to the domain S = σ + 
jω of the lowpass filter. The specifications for the normalized lowpass filter are given by  

Pass band (0 ≤ |ω| < 1 radians/s): 0)(log20dB1 10 ≤ω≤− H . 

Stop band (|ω| ≥ min(1.7857, 2.5) radians/s: dB15)(log20 10 −≤ωH . 

Lowpass Butterworth filter: 

The above specifications are used to design a normalized lowpass Butterworth filter. Here, we use the 
following MATLAB code to design the Butterworth filter. The same can be derived using the design 
steps outlined in the text. 

 
>> wp=1; ws=1.7857; Rp=1; Rs=15 ; % specify design parameters 
>> [N,wc]=buttord(wp,ws,Rp,Rs,'s');  % determine order and cut-off freq 
>> [num,den]=butter(N,wc,'s');  % determine num and denom coeff. 
>> Ht = tf(num,den);    % determine transfer function 

The transfer function of the lowpass Butterworth filter is given by 

281.3372.868.10422.8104.4
281.3)( 2345 +++++

=
SSSSS

SH . 

To derive the transfer function of the required bandpass filter, we use transformation (7.69) with ξp1 = 100 
radians/s and ξp2 = 150 radians/s. The transformation is given by  

 
s

sS
50

105.1 42 ×+
= , 

from which the transfer function of the bandpass filter is calculated as 
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,

281.3
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which reduces to 

.
105938.710039.110242.310071.310875.4

10181.31025.310365.110606.92.205
100253.1)(

2019217315413

511697784910
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×+×+×+×+×+

×+×+×+×++
×

=

ssss

ssssss
ssH
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Figure S7.17: Magnitude spectrum of the Butterworth bandpass filter in Problem 7.17. 

The magnitude spectrum of the bandpass filter is included in Fig. S7.17, which confirms that the given 
specifications for the bandpass filter are indeed satisfied. ▌ 

Problem 7.18 

For ξp1 = 100 radians/s and ξp2 = 150 radians/s, the transformed specifications for the normalized lowpass 
filter are given by  

Pass band (0 ≤ |ω| < 1 radians/s): 0)(log20dB1 10 ≤ω≤− H . 

Stop band (|ω| ≥ min(1.7857, 2.5) radians/s: dB15)(log20 10 −≤ωH . 

Lowpass Type I Chebyshev filter: 

The above specifications are used to design a normalized lowpass Type I Chebyshev filter. Here, we use 
the following MATLAB code to design the Butterworth filter. The same can be derived using the design 
steps outlined in the text. 

 
>> wp=1; ws=1.7857; rp=1; rs=15; % specify design parameters 
>> [N,wn] = cheb1ord(wp,ws,rp,rs,'s'); % determine order and natural freq 
>> [num,den] = cheby1(N,rp,wn,'s');  % determine num and denom coeff. 
>> Ht = tf(num,den);    % determine transfer function 

The transfer function of the Type I Chebyshev filter is given by 
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4913.0238.19883.0
4913.0)( 23 +++

=
SSS

SH . 

To derive the transfer function of the required bandpass filter, we use the following transformation 
obtained by substituting ξp1 = 100 radians/s and ξp2 = 150 radians/s in Eq. (7.69) 

 
s

sS
50

105.1 42 ×+
= . 

The resulting transfer function of the bandpass filter is given by 

4913.0
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which simplifies to 

121028364456

34

10375.310112.110214.710544.11081.442.49
10141.6)(

×+×+×+×+×++
×

=
ssssss

ssH . 
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Figure S7.18: Magnitude spectrum of the Type I Chebyshev bandpass filter in Problem 7.18.  

The magnitude spectrum of the bandpass filter is included in Fig. S7.18, which confirms that the given 
specifications for the bandpass filter are indeed satisfied. ▌ 

Problem 7.19 

For ξp1 = 100 radians/s and ξp2 = 150 radians/s, the transformed specifications for the normalized lowpass 
filter are given by  

Pass band (0 ≤ |ω| < 1 radians/s): 0)(log20dB1 10 ≤ω≤− H . 

Stop band (|ω| ≥ min(1.7857, 2.5) radians/s: dB15)(log20 10 −≤ωH . 

Lowpass Type II Chebyshev filter: 

The above specifications are used to design a normalized lowpass Type II Chebyshev filter. Here, we use 
the following MATLAB code to design the Butterworth filter. The same can be derived using the design 
steps outlined in the text. 

 
>> wp=1; ws=1.7857; rp=1; rs=15; % specify design parameters 
>> [N,wn] = cheb2ord(wp,ws,rp,rs,'s'); % determine order and natural freq 
>> [num,den] = cheby2(N,rs,wn,'s');  % determine num and denom coeff. 
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>> Ht = tf(num,den);    % determine transfer function 

The transfer function of the Type II Chebyshev filter is given by 

819.22.367.2
819.28533.0)( 23

2

+++
+

=
SSS

SSH . 

To derive the transfer function of the required bandpass filter, we use the following transformation 
obtained by substituting ξp1 = 100 radians/s and ξp2 = 150 radians/s in Eq. (7.69) 

 
s

sS
50

105.1 42 ×+
= . 

The resulting transfer function of the bandpass filter is given by 
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which simplifies to 

121028364456
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=
ssssss

ssssH . 

The magnitude spectrum of the bandpass filter is included in Fig. S7.19, which confirms that the given 
specifications for the bandpass filter are indeed satisfied. ▌ 
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Figure S7.19: Magnitude spectrum of the Type I Chebyshev bandpass filter in Problem 7.19. 

Problem 7.20 

For ξp1 = 25 radians/s and ξp2 = 325 radians/s, Eq. (7.67) is given by 

28125
300

ξ−
ξ

=ω , 

to transform the specifications from the domain s = γ + jξ of the bandstop filter to the domain S = σ + 
jω of the lowpass filter. The specifications for the normalized lowpass filter are given by 

Pass band (0 ≤ |ω| < 1 radians/s): 0)(log20dB4 10 ≤ω≤− H . 

Stop band (|ω| ≥ min(1.3793,16) radians/s: dB20)(log20 10 −≤ωH . 
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The above specifications are used to design a normalized lowpass Butterworth filter using MATLAB. 

Lowpass Butterworth filter: 

The above specifications are used to design a normalized lowpass Butterworth filter. Here, we use the 
following MATLAB code to design the Butterworth filter. The same can be derived using the design 
steps outlined in the text. 

>> wp=1; ws=1.3793; Rp=4; Rs=20 ; % specify design parameters 
>> [N,wc]=buttord(wp,ws,Rp,Rs,'s');  % determine order and cut-off freq 
>> [num,den]=butter(N,wc,'s');  % determine num and denom coeff. 
>> Ht = tf(num,den);    % determine transfer function 

The transfer function of the lowpass Butterworth filter is given by 

9545.0318.4768.921.143.14964.9464.4
9545.0)( 234567 +++++++

=
SSSSSSS

SH . 

To derive the transfer function of the required bandstop filter, we use transformation (7.74) with ξp1 = 25 
radians/s and ξp2 = 325 radians/s. The transformation is given by  
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from which the transfer function of the bandstop filter is calculated as 
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The magnitude spectrum of the bandstop filter is included in Fig. S7.20, which confirms that the given 
specifications for the bandstop filter are indeed satisfied. ▌ 
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Figure S7.20: Magnitude spectrum of the Butterworth bandstop filter in Problem 7.20. 
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Problem 7.21 

The transformation equation is given by 

28125
300

ξ−
ξ

=ω , 

with the following  lowpass specifications: 

Pass band (0 ≤ |ω| < 1 radians/s): 0)(log20dB4 10 ≤ω≤− H . 
Stop band (|ω| ≥ min(1.3793,16) radians/s: dB20)(log20 10 −≤ωH . 

Type I Chebyshev filter: 

The above specifications are used to design a normalized Type I Chebyshev filter using MATLAB. 

 
>> wp=1; ws=1.3793; Rp=4; Rs=20 ; % specify design parameters 
>> [N,wn] = cheb1ord(wp,ws,Rp,Rs,'s'); % determine order and natural freq 
>> [num,den] = cheby1(N,Rp,wn,'s');  % determine num and denom coeff. 
>> Ht = tf(num,den);    % determine transfer function 

The transfer function of the Type I Chebyshev filter is given by 

1611.03326.0119.14882.0
1017.0)( 234 ++++

=
SSSS

SH . 

To derive the transfer function of the required bandstop filter, we use the transformation 
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which results in the following transfer function for the bandstop filter 
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which reduces to 
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The magnitude spectrum of the bandstop filter is included in Fig. S7.21, which confirms that the given 
specifications for the bandstop filter are indeed satisfied. ▌ 
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Figure S7.21: Magnitude spectrum of the Type I Chebyshev bandstop filter in Problem 7.21. 

 

Problem 7.22 

The transformation equation is given by 

28125
300

ξ−
ξ

=ω , 

with the following  lowpass specifications 

Pass band (0 ≤ |ω| < 1 radians/s): 0)(log20dB4 10 ≤ω≤− H . 
Stop band (|ω| ≥ min(1.3793,16) radians/s: dB20)(log20 10 −≤ωH . 

Type II Chebyshev filter: 

The above specifications are used to design a normalized Type II Chebyshev filter using MATLAB. 

 
>> wp=1; ws=1.3793; Rp=4; Rs=20 ; % specify design parameters 
>> [N,wn] = cheb2ord(wp,ws,Rp,Rs,'s'); % determine order and natural freq 
>> [num,den] = cheby2(N,Rs,wn,'s');  % determine num and denom coeff. 
>> Ht = tf(num,den);    % determine transfer function 

The transfer function of the Type II Chebyshev filter is given by 

3081.008313.0569.108204.0
03081.0)( 234 ++++

=
SSSS

SH . 

To derive the transfer function of the required bandstop filter, we use the transformation 
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which results in the following transfer function for the bandstop filter 
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which reduces to 
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The magnitude spectrum of the bandstop filter is included in Fig. S7.22, which confirms that the given 
specifications for the bandstop filter are indeed satisfied. ▌ 
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Figure S7.22: Magnitude spectrum of the Type II Chebyshev bandstop filter in Problem 7.22. 

 

Problem 7.23 

The MATLAB code for designing the lowpass filter specified in Problem 7.7 is shown in Program S7.23. 

Program S7.23: MATLAB code for designing the lowpass filter in Problem 7.23 
wp=10; ws=20; rp=0.9151; rs=20; % specify design parameters 
% Rp = -20*log10(0.9)= 0.9151dB 
% Rs = -20*log10(0.1)=20dB 
% Butterworth filter 
[N,wc]=buttord(wp,ws,rp,rs,'s');  % determine order and cut-off freq 
[num1,den1]=butter(N,wc,'s');  % determine num and denom coeff. 
Ht1 = tf(num1,den1);    % determine transfer function 
[H1,w1] = freqs(num1,den1);  % determine magnitude spectrum 
subplot(411); plot(w1,abs(H1));  % plot magnitude spectrum 
grid on, title('Butterworth filter'); ax = axis; 
% Type I Chebyshev filter 
[N,wn] = cheb1ord(wp,ws,rp,rs,'s'); % determine order and natural freq 
[num2,den2] = cheby1(N,rp,wn,'s'); % determine num and denom coeff. 
Ht2 = tf(num2,den2);    % determine transfer function 
[H2,w2] = freqs(num1,den1);  % determine magnitude spectrum 
subplot(412); plot(w2,abs(H2));  % plot magnitude spectrum 
grid on, title('Type I Chebyshev filter'); axis(ax); 
% Type II Chebyshev filter 
[N,wn] = cheb2ord(wp,ws,rp,rs,'s'); % determine order and natural freq 
[num3,den3] = cheby2(N,rs,ws,'s'); % determine num and denom coeff. 
Ht3 = tf(num3,den3);    % determine transfer function 
[H3,w3] = freqs(num3,den3);  % determine magnitude spectrum 
subplot(413); plot(w3,abs(H3));  % plot magnitude spectrum 
grid on, title('Type II Chebyshev filter'); axis(ax); 
% Elliptic filter 
[N,wn] = ellipord(wp,ws,rp,rs,'s'); % determine order and natural freq 
[num4,den4] = ellip(N,rp,rs,wn,'s'); % determine num and denom 
coeff. 
Ht4 = tf(num4,den4);    % determine transfer function 
[H4,w4] = freqs(num4,den4);  % determine magnitude spectrum 
subplot(414); plot(w4,abs(H4));  % plot magnitude spectrum 
grid on, title('Elliptic filter'); axis(ax); 

 
 
The transfer functions for the four implementations are given as follows: 
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Butterworth filter: 
)10216.3108.239101.055835.540.88(
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Type I Chebyshev filter: 
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Type II Chebyshev filter: 
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Elliptic filter: 
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+
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Note that the expressions for the transfer function are the same as obtained in Problems 7.7 (for 
Butterworth filter), 7.9 (for Type I Chebyshev filter), and 7.10 (for Type II Chebyshev filter). In case of 
the elliptic filter, the order N was evaluated in Problem 7.11(a) as 3, which is observed to be the same in 
the above expression. 

The magnitude spectra for the four implementations are plotted in Fig. S7.23, which satisfy the given 
specifications. ▌ 
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Figure S7.23: Magnitude Spectra of the four implementations of the low pass filter for Problem 7.23. 
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Problem 7.24 

The Matlab code is similar to that for Problem 7.23 except for the design parameters, and is shown in 
Program S7.24. 
 

Program S7.24: MATLAB code for designing lowpass filter in Problem 7.24 
wp=50; ws=65; rp=1; rs=25; % specify design parameters 
% 
% Butterworth filter 
[N,wc]=buttord(wp,ws,rp,rs,'s');  % determine order and cut-off freq 
[num1,den1]=butter(N,wc,'s');  % determine num and denom coeff. 
Ht1 = tf(num1,den1);    % determine transfer 
function 
[H1,w1] = freqs(num1,den1);  % determine magnitude spectrum 
subplot(411); plot(w1,abs(H1));  % plot magnitude spectrum 
grid on, title('Butterworth filter'); ax = axis; 
% Type I Chebyshev filter 
[N,wn] = cheb1ord(wp,ws,rp,rs,'s'); % determine order and natural freq 
[num2,den2] = cheby1(N,rp,wn,'s'); % determine num and denom coeff. 
Ht2 = tf(num2,den2);    % determine transfer 
function 
[H2,w2] = freqs(num1,den1);  % determine magnitude spectrum 
subplot(412); plot(w2,abs(H2));  % plot magnitude spectrum 
grid on, title('Type I Chebyshev filter'); axis(ax); 
% Type II Chebyshev filter 
[N,wn] = cheb2ord(wp,ws,rp,rs,'s'); % determine order and natural freq 
[num3,den3] = cheby2(N,rs,ws,'s'); % determine num and denom coeff. 
Ht3 = tf(num3,den3);    % determine transfer 
function 
[H3,w3] = freqs(num3,den3);  % determine magnitude spectrum 
subplot(413); plot(w3,abs(H3));  % plot magnitude spectrum 
grid on, title('Type II Chebyshev filter'); axis(ax); 
% Elliptic filter 
[N,wn] = ellipord(wp,ws,rp,rs,'s'); % determine order and natural freq 
[num4,den4] = ellip(N,rp,rs,wn,'s'); % determine num and denom coeff. 
Ht4 = tf(num4,den4);   % determine transfer function 
[H4,w4] = freqs(num4,den4);  % determine magnitude spectrum 
subplot(414); plot(w4,abs(H4));  % plot magnitude spectrum 
grid on, title('Elliptic filter'); axis(ax); 

 
 
 
The transfer functions for the four implementations are given as follows: 

Butterworth filter: 
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Type I Chebyshev filter: 
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Type II Chebyshev filter: 
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Elliptic filter (N = 4): 
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Note that the expressions for the transfer function are the same as obtained in Problems 7.8 (for 
Butterwoth filter), 7.9(b) (for Type I Chebyshev filter), and 7.10(b) (for Type II Chebyshev filter). In case 
of the elliptic filter, the order N was evaluated in Problem 7.11(b) as 4, which is observed to be the same 
in the above expression. 

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Butterworth filter

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Type I Chebyshev filter

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Type II Chebyshev filter

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Elliptic filter

 
Figure S7.24: Magnitude Spectra of the four implementations of the lowpass filter for Problem 7.24. 

 

The magnitude spectra for the four implementations are plotted in Fig. S7.24, which satisfy the given 
specifications.  ▌ 



 30                   Chapter 7 

  

Problem 7.25 

Expressing the pass-band and stop-band gains in dB, we get 

Rs = 20*log(0.15) = −16.4782 and Rp = 20*log(0.85) = −1.4116. 

The MATLAB code for designing the highpass filter specified in Problem 7.14 is shown in Program 
S7.25. 

Program S7.25: MATLAB code for designing highpass filter in Problem 7.25 
% MATLAB code for designing highpass filter in Problem 7.25 
wp=30; ws=15; Rp=1.4116; Rs=16.4782 ; % design specifications high 
       % pass Butterworth filter 
[N, wc] = buttord(wp,ws,Rp,Rs,'s'); % determine order and cut off 
[num1,den1] = butter(N,wc,'high','s') ;% determine transfer function 
Ht1 = tf(num1,den1); 
[H1,w1] = freqs(num1,den1);  % determine magnitude spectrum 
subplot(411); plot(w1,abs(H1));  % plot magnitude spectrum 
grid on, title('Butterworth filter'); ax = axis; 
%%%%%      % Type I Chebyshev filter 
[N, wn] = cheb1ord(wp,ws,Rp,Rs,'s') ; 
[num2,den2] = cheby1(N,Rp,wn,'high','s') ; 
Ht2 = tf(num2,den2); 
[H2,w2] = freqs(num2,den2);  % determine magnitude spectrum 
subplot(412); plot(w2,abs(H2));  % plot magnitude spectrum 
grid on, title('Type I Chebyshev filter'); axis(ax); 
%%%%%      % Type II Chebyshev filter 
[N,wn] = cheb2ord(wp,ws,Rp,Rs,'s') ; 
[num3,den3] = cheby2(N,Rs,wn,'high','s') ; 
Ht3 = tf(num3,den3); 
[H3,w3] = freqs(num3,den3);  % determine magnitude spectrum 
subplot(413); plot(w3,abs(H3));  % plot magnitude spectrum 
grid on, title('Type II Chebyshev filter'); axis(ax); 
%%%%%      % Elliptic filter 
[N,wn] = ellipord(wp,ws,Rp,Rs,'s') ; 
[num4,den4] = ellip(N,Rp,Rs,wn,'high','s') ; 
Ht4 = tf(num4,den4); 
[H4,w4] = freqs(num4,den4);  % determine magnitude spectrum 
subplot(414); plot(w4,abs(H4));  % plot magnitude spectrum 
grid on, title('Elliptic filter'); axis(ax); 

 

The following transfer functions are returned. 
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Note that the transfer function of the Type II Chebyshev filter is different from the one obtained in 
Problem 7.16. This is because of the MATLAB implementation of the Type II Chebyshev highpass filter, 
which is slightly different from the one explained in the text. If all steps of the Type II Chebyshev filter 
are implemented as explained in the text, we get the same transfer function. Both transfer functions satisfy 
the design specifications. The magnitude spectra are plotted in Fig. S7.25. ▌ 
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Figure S7.25: Magnitude Spectra of the four implementations of the low pass filter for Problem 7.25. 

 

Problem 7.26 

The MATLAB code for designing the bandpass filter specified in Problem 7.17 is shown in Program 
S7.26. 

Program S7.26: MATLAB code for designing bandpass filter in Problem 7.26 
% MATLAB code for designing bandpass filter in Problem 7.26 
% 
wp=[100 150]; ws=[75  175]; Rp=1; Rs=15 ; % Design Specifications 
%%%%% 
% Butterworth filter 
[N, wc] = buttord(wp,ws,Rp,Rs,'s'); 
[num1,den1] = butter(N,wc,'s'); 
Ht1 = tf(num1,den1); 
[H1,w1] = freqs(num1,den1);  % determine magnitude spectrum 
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subplot(411); plot(w1,abs(H1));  % plot magnitude spectrum 
grid on, title('Butterworth filter'); ax = axis; 
%%%%% 
% Type I Chebyshev filter 
[N, wn] = cheb1ord(wp,ws,Rp,Rs,'s'); 
[num2,den2] = cheby1(N,Rp,wn,'s'); 
Ht2 = tf(num2,den2); 
[H2,w2] = freqs(num2,den2);  % determine magnitude spectrum 
subplot(412); plot(w2,abs(H2));  % plot magnitude spectrum 
grid on, title('Type I Chebyshev filter'); axis(ax); 
%%%%% 
% Type II Chebyshev filter 
[N,wn] = cheb2ord(wp,ws,Rp,Rs,'s'); 
[num3,den3] = cheby2(N,Rs,wn,'s'); 
Ht3 = tf(num3,den3); 
[H3,w3] = freqs(num3,den3);  % determine magnitude spectrum 
subplot(413); plot(w3,abs(H3));  % plot magnitude spectrum 
grid on, title('Type II Chebyshev filter'); axis(ax); 
%%%%% 
% Elliptic filter 
[N,wn] = ellipord(wp,ws,Rp,Rs,'s'); 
[num4,den4] = ellip(N,Rp,Rs,wn,'s'); 
Ht4 = tf(num4,den4); 
[H4,w4] = freqs(num4,den4);  % determine magnitude spectrum 
subplot(414); plot(w4,abs(H4));  % plot magnitude spectrum 
grid on, title('Elliptic filter'); axis(ax); 

The aforementioned MATLAB code produces the following transfer functions for the four filters. 
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The magnitude spectra are plotted in Fig. S7.26. ▌ 
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Figure S7.26: Magnitude Spectra of the four implementations of the band pass filter for Problem 7.26. 

Problem 7.27 

The MATLAB code for the design of the bandstop filter is shown in Program S7.27. 

Program S7.27: MATLAB code for designing bandstop filter in Problem 7.27 
% MATLAB code for designing bandstop filter 
wp=[25 325]; ws=[100  250]; Rp=4; Rs=20;  % Specifications 
% Butterworth Filter 
[N, wn] = buttord(wp,ws,Rp,Rs,'s') ; 
[num1,den1] = butter(N,wn,'stop','s'); 
Ht1 = tf(num1,den1); 
[H1,w1] = freqs(num1,den1);  % determine magnitude spectrum 
subplot(411); plot(w1,abs(H1)); % plot magnitude spectrum 
grid on, title('Butterworth filter'); ax = axis; 
% Type I Chebyshev filter 
[N, wn] = cheb1ord(wp,ws,Rp,Rs,'s') ; 
[num2,den2] = cheby1(N,Rp,wn,'stop','s'); 
Ht2 = tf(num2,den2);  
[H2,w2] = freqs(num2,den2);  % determine magnitude spectrum 
subplot(412); plot(w2,abs(H2)); % plot magnitude spectrum 
grid on, title('Type I Chebyshev filter'); axis(ax); 
% Type II Chebyshev filter 
[N,wn] = cheb2ord(wp,ws,Rp,Rs,'s') ; 
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[num3,den3] = cheby2(N,Rs,wn,'stop','s'); 
Ht3 = tf(num3,den3); 
[H3,w3] = freqs(num3,den3);  % determine magnitude spectrum 
subplot(413); plot(w3,abs(H3));  % plot magnitude spectrum 
grid on, title('Type II Chebyshev filter'); axis(ax); 
% Elliptic filter 
[N,wn] = ellipord(wp,ws,Rp,Rs,'s') ; 
[num4,den4] = ellip(N,Rp,Rs,wn,'stop','s'); 
Ht4 = tf(num4,den4); 
[H4,w4] = freqs(num4,den4);  % determine magnitude spectrum 
subplot(414); plot(w4,abs(H4)); % plot magnitude spectrum 
grid on, title('Elliptic filter'); axis(ax); 

 

The resulting transfer functions are: 

Butterworth filter: 

.
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Type I Chebyshev filter: 
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Type II Chebyshev filter: 
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Elliptic filter: 

862534

8244

1025.610197.410354.19.167
10943.310009.4631.0)(

×+×+×++

×+×+
=

ssss
sssH . 

Note that the transfer functions for the bandstop filters are different than the ones obtained in Problems 
7.20 to 7.22. Both versions satisfy the specifications though the transfer functions obtained using 
MATLAB are of lower order. MATLAB uses a different transformation between the bandstop and 
lowpass domains resulting in a different answer. 

The magnitude spectra are plotted in Fig. S7.27. ▌ 
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Figure S7.27: Magnitude Spectra of the four implementations of the bandstop filter for Problem 7.27. 

 


