Chapter 7: Continuous-time Filters

Problem 7.1

Ideal Bandpass Filter: The transfer function of a bandpass filter is given by

I () 4 o, |oa|<oo2
w7 o, <|oa|andcoc <|(o|<oo,

which can be expressed in terms of the transfer functions of two lowpass filters as

e

o > @, o > o,

H/])Z(U‘)) Hlpl((’o)

Taking the inverse CTFT and using the result (7.8) in Example 7.1, the impulse response of the bandpass

filter is given by
gy (1) = 22 ( ) Asmc( l’)

Ideal Bandstop filter: The transfer function of a bandpstop filter can be expressed in terms of the
transfer function of the bandpass filter as

., )4 w1£|03|£c02
Hys(0)=4 {O cozl <o andccocz <o <0
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where we replaced the result for the impulse response of the bandpass filter from the earlier derivation. I

Taking the inverse CTFT, we get

hbv

Problem 7.2

(a) Butterworth filter of order V= 12: Using Eq. (7.20), the poles of H(s)H(—s) are given by

(Zn l)TE

s—exp] +]

for (0 < n < 23). Substituting different values of n, the locations of the poles are specified in Table
S7.2(a). Note that only the shaded cells corresponds to poles lying in the left half of the complex s-plane
and are included in the lowpass Butterworth filter.
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(b) Butterworth filter of order N = 13: Using Eq. (7.20), the poles of H(s)H(—s) are given by

s=exp[j§+] T

. (Zn—l)n]

for (0 < n < 25). Substituting different values of n, the locations of the poles are specified in Table

S7.2(b).
Table S7.2(a): Location of 24 poles for H(s)H(—s) in Problem 7.2(a) for N = 12.

n 0 1 2 3 4 5 6 7 8 9 10 11
P | QNIEH | G| ISR | TR | 10T | TS | 2324 | 3 | T | 19m24 | 124 | S
n 12 13 14 15 16 17 18 19 20 21 22 23
Do | @32 | AW | B | T S| | | e g8 | g2 | gTm2e | s
Table S7.2(b): Location of 26 poles for H(s)H(—s) in Problem 7.2(b) for N = 13.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
Da ei61t/l3 ei71t/l3 eiSﬂ:/B ei91t/l3 eflOn/lS eflln/lS e/’121t/13 -1 elen/B e—jllﬂt/13 elen/B e—j9n/13 e—an/13
n 13 14 15 16 17 18 19 20 21 22 23 24 25
Do eTTHI3 | QOIS | SIS | I3 | B | 23 | 3 1 V13 213 33 JA3 | s

Problem 7.3

From Eq. (7.20), the locations of the poles of the lowpass Butterworth filter of order N is given by

S =W, eXplj 5+

. (2n-m

J N

] =0 eXp[j

(N+2n-1)=w

2N

|

for (1 <n < N), where the poles in the left half of the complex s-plane are selected. For at least one pole to
lie on the real axis, the argument of the exponent must be equal to =, i.e.,

(N+2n-1)

2N

=l,or, n=(N+1)/2,

which lies within the range (1 < n < N). Since n = (N + 1)/2 is a whole number for odd values of N, a
lowpass Butterworth filter with an odd value of order NV has at least one pole on the real axis in the
complex s-plane.

If Nis even, n = (N + 1)/2 does not result in a whole value for #. Therefore, in such a case no pole exists
on the real axis in the complex s-plane.
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Problem 7.4

In this problem, we have to prove that if

S) =0, exp[j% + j—(znz(’;]l)n]

is a pole of the lowpass Butterworth filter of order N then its conjugate

* . . (2n,-1
5| =Sp =@, eXP[-J%-J—( "Z(’N)“]

is also a pole of the same lowpass Butterworth filter.
Note that
5, . . (2n,-1 .
G =enl 30t - rghean]

= exp[— J2Nn— j(2ny — l)n] =exp[— j2Nn] X exp[— Jj(2ny - l)n] =-1.

=1 =1
In other words, the pole s = (s¢)* also satisfies Eq. (7.19), and hence all complex poles of the lowpass
Butterworth filter occur in conjugate pairs.

Problem 7.5

For the interval (-1< ® < 1), the N’th order Type I Chebyshev polynomial 7(w) is given by
Ty(w)= cos(N cos™! (co)).
The roots of the polynomial are cos(N cos ™! (0))): 0,

2rn+Dmn

or, Ncos™ ()= 2

b

for (0 <n < N-1). Rearranging terms, the roots are given by

mnzcos{w},OSnSN—l. i
2N

Problem 7.6

Consider the function 14T 13 (©)=0.

Case I: For (6 < 1), we get 1+¢2 cos(N cos ™! (0))=0,

which has roots at 0= cos[% cos (£ jle)+ %], for O<m<(2N-1).

Substituting 6 = s/j for Type I Chebyshev filter results in the roots

s :jcos%cos_l(ij/s) +%] (P7.6.1)

Substituting 6 = j/s for Type II Chebyshev filter results in the roots
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55 :j/cos[%cos_l(ij/s) +%] (P7.6.2)

Knowing that the roots occur in conjugate pairs (xo = jB) that are symmetric about the origin, Egs.
(P7.6.1) and (P7.6.2) prove that roots of the characteristic equation of Type I Chebyshev filter are inverse
of the roots of the characteristic equation of Type II Chebysheyv filter. I

Problem 7.7

Using Step 1 of Algorithm 7.3.1.1, the gain terms G, and G; are given by

L= —1=—L 1202346 and G, =1~ 1= ~1=99.
(1-8,) 0.9 K .) 01

Using Eq. (7.29), the order of the Butterworth filter is given by
L In(G,/Gy) 1 1n(0.2346/99)

= 4.3605.
2 In(o,/o,) 2 In(10/20)

We round off the order of the filter to the higher integer value as N = 5.

Using Step 2 of Algorithm 7.3.1.1, the transfer function H(S) of the normalized Butterworth filter with a
cut off frequency of 1 radians/s from Table 7.2 is given by

1
T (S+1)(S?+0.61808 +1)(S> +1.61808 +1)
1
S° +3.23608" +5.23595"° +5.23595° +3.2360S +1°

Using the stop band constraint, Eq. (7.32), in Step 3 of Algorithm 7.3.1.1, the cut off frequency of the
required Butterworth filter is given by

H(S)

®, = o, 20 =12.6318 radians/s.

1

GO 09"

Using Step 4 of Algorithm 7.3.1.1, the transfer function H(s) of the required Butterworth filter is obtained
by the transformation and simplification.

1 |

H(s)=H(S =
()= HSNs, S° +3.23608* +5.23595° +5.23595° +3.2360S +1|s_, ;15 315
~ 12.6318°
s°+12.6318%3.2360s* +12.6318%%5.23595” +12.6318° x5.2359s* +12.6318* x3.23605 +12.6318°

3.2161x10°
s° +40.8765s* +835.45265° +1.0553x10%s* +8.2389x10*s +3.2161x 10
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Figure S7.7: Magnitude spectrum of the Butterworth low pass filter designed in Problem 7.7.

Step 5 plots the magnitude spectrum of the Butterworth filter. The CTFT transfer function of the
Butterworth filter is given by

3.2161x10°

H(w)=H(s)| =
(@) ()S:f“’ (jw)’ +40.8765(jw)* +835.4526( jw)’ +1.0553x10%(jw)* +8.2389x10*(jw) +3.2161x10°

The magnitude spectrum |[H(w)| is plotted in Fig. S7.7 with the specifications shown with the shaded
lines. We observe that the design specifications are indeed satisfied by the magnitude spectrum.

Problem 7.8

Expressed on a linear scale, the pass band and stop band gains are given by
(1-8,)=10""2°=0.8913 and &, =10"'* =0.0562.

Using Step 1 of Algorithm 7.3.1.1, the gain terms G, and G; are given by

— 1 11— 1 1=
G =iy~ 1= g — 102588

__1 _1_ 1 1
and G, =i 1= Gk ~1=315.6120.

Using Eq. (7.29), the order of the Butterworth filter is given by

1 In@G, /Gy) _ 1 In(0.2588/315.6120)

= =13.5426.
2 In(o, /o) 2 In(50/65)

We round off the order of the filter to the higher integer value as N = 14.
Using Eq. (7.20), the poles of H(s) are given by

s = exp[j% + j—(z';_gl)n

for (1 <n < 14). Substituting different values of n, the locations of the poles are specified in Table S7.8.

Using Step 2 of Algorithm 7.3.1.1, the transfer function H(S) of the normalized Butterworth filter with a
cut off frequency of 1 radians/s is given by
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H(S)= H (S -

which simplifies to

1

H(S)=—7; 13 12 11 10 9 8
(S +8.9314S8 " +39.88508 ° +117.7337S " +256.1214S8"" +433.7284S5" + 589.0206S5" +

.+ 651.2664S7 +589.02065° +433.7284S° +256.12145* +117.7337S> +39.885052 +8.93145 +1)

Table S7.8: Location of 14 poles for H(s) in Problem 7.8 for N = 14.

n 1 2 3 4 5 6 7
j15m/28 j17m/28 j197/28 j3n/4 j231/28 j251/28 271/28
P ¢ ¢ ¢ ¢ ¢ ¢ ¢
n
n 8 9 10 11 12 13 14
Dn e—]27n/28 e—jZSn/ZS e—j23n/28 6737[/4 e—jl9n/28 e—jl7n/28 e—]lSn/28

Using the stop band constraint, Eq. (7.32), in Step 3 of Algorithm 7.3.1.1, the cut off frequency of the
required Butterworth filter is given by
o, =—2 % 5509246 radians’s.
(Gy)*™  (315.6120)*

Using Step 4 of Algorithm 7.3.1.1, the transfer function H(s) of the required Butterworth filter is obtained
by the transformation

H(s) = H(S)|S:s/o)C - H(S)|S:s/52.9246 ’

which simplifies to

1.3536 x10%*

H(s) =
(s" +472.7119s" +1.1173x10° 512 +1.7455x107 s +2.0098x10% ' +1.8014x10''s” + ..

o 4+1.2948x103 5% +7.5770x10"s7 +3.6270x10"05% +1.4135%x10'85° +4.4179x10"7 5% + ...

. +1.0748x10% 5% +1.9272x10% 5% +2.2841x10% 5 +1.3536 x10%*)
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Figure S7.8: Magnitude spectra of the Butterworth low pass filters, designed in Problem 7.8.

Step 5 plots the magnitude spectrum of the Butterworth filter. The magnitude spectrum |H(w)| is plotted
in Fig. S7.8 with the specifications shown with the shaded lines. We observe that the design specifications
are indeed satisfied by the magnitude spectrum.

Problem 7.9

(a) In Problem 7.7, the gain terms are given by G, = 0.2346 and G, = 99.

Step 1 determines the value of the ripple control factor € as
e=,/G, =+/0.2346 =0.4844..
Step 2 determines the order N of the Chebyshev polynomial as:

cosh™ [(99 /0.2346)%7 ]
N= =2.8209.

cosh [20/10]
We round off N to the closest higher integer as 3.
Step 3 determines the location of the six poles of H(S)H(-S) as
[-0.2553 + j0.9724, 0.2553+ j0.9724, 0.2553-0.972, —-0.2553-0.972, —0.5106, 0.5106].

The 3 poles lying in the left half s-plane are included in the transfer function H(S) of the normalized
Type I Chebyshev filter. These poles are located at

[-0.2553 + j0.9724, -0.2553-;0.972, —0.5106.
The transfer function for the normalized Type-I Chebshev filter is, therefore, given by

K
(S +0.2553 + j0.9724)(S +0.2553 — j0.9724)(S +0.5106) ’

H(S)=

K
S% +1.021382 +1.27155 +0.5162

which simplifies to H(S)=

Since |H(w)| at = 0 is K/0.5162, therefore, K is set to 0.5162 to make the dc gain equal to 1. The
new transfer function with unity gain at © = 0 is given by

0.5162

H(S)=— . .
S% +1.02135% +1.27155 +0.5162
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Step 4 transforms the normalized Type-I Chebyshev filter using the relationship

0.5162
(s/10)> +1.0213(s/10)> +1.2715(s /10) + 0.5162

H(s) = H(S)|s:s/10 -

516.2

or, H(s)= 3 5 3 ,
s~ +10.213s° +127.15x10° s +516.2

which is the transfer function of the required low pass filter.

The magnitude spectrum of the Type-I Chebyshev filter is plotted in Fig. S7.9(a). It is observed that
Fig. S7.9(a) satisfies the initial design specifications.

(b) In Problem 7.8, the gain terms are given by G, = 0.2588 and G, = 315.6120.

Step 1 determines the value of the ripple control factor € as
e=,/G, =+4/0.2588 =0.5087 .

Step 2 determines the order N of the Chebyshev polynomial as.

cosh™ [(315.6120/0.2588)0'5]
N= =5.6133.

cosh '[65/50]

We round off N to the closest higher integer as 6.

1
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Figure S7.9(a): Magnitude spectrum of the Type-1 Chebyshev lowpass filter designed in Problem 7.9(a).
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Figure S7.9(b): Magnitude spectrum of the Type-I Chebyshev lowpass filter designed in Problem 7.9(b).
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Step 3 determines the location of the six poles of H(S)H(-S) as

[-0.0622 — j0.9934, 0.0622 - ;0.9934, 0.1699 — j0.7272, 0.2321- ;0.2662
0.2321+ 0.2662,  0.1699 + j0.7272,  0.0622 + j0.9934, —0.0622+ j0.9934, .
-0.1699 + j0.7272, —0.2321+ j0.2662, —0.2321- ;0.2662, —0.1699 — j0.7272]

The 6 poles lying in the left half s-plane are included in the transfer function H(S) of the normalized
Type I Chebysheyv filter. These poles are located at

[-0.0622 — j0.9934, —0.0622+ j0.9934, —0.1699 + j0.7272, —0.2321+ j0.2662
~0.2321- j0.2662, —0.1699 — j0.7272,]

The transfer function for the normalized Type-I Chebshev filter is, therefore, given by

K

H(S)= X
&) (S +0.0622 + j0.9934)(S +0.0622 — j0.9934)(S +0.1699 — j0.7272)
1

(S +0.1699 — j0.7272)(S +0.2321 + j0.2662)(S +0.2321 + j0.2662)

which simplifies to

K
S0 1£0.92845% +1.93108* +1.2024S> + 0.939552% +0.3072S + 0.0689

Since |H(w)| at @ = 0 is K/0.0689, therefore, K is set to 0.0689 to make the dc gain equal to 1. The
new transfer function with unity gain at ® = 0 is given by

0.0689
S 1092845 +1.93108* +1.2024S> + 0.939552 +0.3072S + 0.0689

H(S)=

H(S)=

Step 4 transforms the normalized Type-I Chebyshev filter using the relationship
H(s)= H(S)|s:s/50 ’
we get

1.0767 x10°

H(S)="—; 5 4 5 o3 62 7 9>
S° +46.425° +4827.587 +1.503x10°S° +5.871x10° S +9.6x10° S +1.0767 x10

which is the transfer function of the required lowpass filter.

The magnitude spectrum of the Type-I Chebyshev filter is plotted in Fig. S7.9b, which satisfies the
initial design specifications.

Problem 7.10

(a) In Problem 7.7, the gain terms are given by G, = 0.2346 and G, = 99.

Step 1 determines the value of the ripple control factor € as

L=O.1005.

1
EENNCD

Step 2 determines the order N of the Chebyshev polynomial as.
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. cosh - [(99 /0.2346)*° ]

=2.8209,
cosh ' [20/10]

which is the same as in Type I Chebysheyv filter. We round off N to the closest higher integer as 3.
Step 3 determines the location of the poles and zeros of H(S)H(-S).

We first determine the location of poles for the Type-I Chebshev filter with ¢ = 0.1005 and N = 3.
Using Eq. (7.47), the location of poles for H(s)H(—s) of the Type I Chebyshev filter are given by

0.5859 — ;j1.3341, 0.5859 —;1.3341, 0.5859+ j1.3341, —0.5859 + j1.3341, 1.1717, -1.1717]

Selecting the poles located in the left half s-plane, we get
[-0.5859 + j1.3341, —0.5859—;1.3341, —-1.1717].

The poles of the normalized Type II Chebyshev filter are located at the inverse of the above locations
and are given by

[-0.2760 — j0.6284, —0.2760+ j0.6284, —0.8534].
The zeros of the normalized Chebyshev Type II filter are computed using Eq. (7.60) and are given by
[-/1.1547, j1.1547, oo].

The zero at s = o is ignored. The transfer function for the normalized Type I Chebyshev filter is
given by
B K(S+ j1.1547)(S — j1.1547)

(S +0.2760 + j0.0.6284)(S + 0.2760 — j0.0.6284)(S + 0.8534)

H(S)

K(S? +1.3333)
S3 +1.405452 +0.9421S + 0.4020

Since |H(w)| at ® = 0 is 1.3333/0.4020 = 3.3167, therefore, K is set to 1/3.3167 = 0.3015 to make the
dc gain equal to 1. The new transfer function with unity gain at ® = 0 is given by

which simplifies to H(S)=

0.3015(S? +1.3333)
S3 +1.405452 +0.9421S +0.4020

H(S)=

Step 4 normalizes H(S) based on the transformation

0.3015((s /20)? +1.3333)
(s/20)° +1.4054(s/20)? +0.9421(s / 20) + 0.4020

H(s) :H(S)|S:s/2o -

which simplifies to

6.03(s% +533.32)
s +28.10852 +376.845 + 3216

H(s)=

Step 5 plots the magnitude spectrum, which is shown in Fig. 7.10(a).
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Figure S7.10(a): Magnitude spectrum of the Type-II Chebyshev filter designed in Problem 7.10(a).
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Figure S7.10(b): Magnitude spectrum of the Type-II Chebysheyv filter designed in Problem 7.10(b).

(b) In Problem 7.8, the gain terms are given by G, = 0.2588 and G, = 315.6120.

Step 1 determines the value of the ripple control factor € as

=0.0563.

1 1
eE= =
JG, 3156120

Step 2 determines the order N of the Chebyshev polynomial as.

cosh™! [(315.6120/0.2588)0-5]
N= =5.6133,
cosh '[65/50]

which is the same as in Type I Chebyshev filter. We round off N to the closest higher integer as 6.
Step 3 determines the location of the poles and zeros of H(S)H(-S).

We first determine the location of poles for the Type-I Chebshev filter with € = 0.0563 and N =

Using Eq. (7.47), the location of poles for H(s)H(—s) of the Type I Chebyshev filter are given by

[-0.1633 - ;1.1421, 0.1633 — j1.1421, 0.4462 — j0.8361,  0.6095 — j0.3060,
0.6095 + j0.3060,  0.4462 + j0.8361, 0.1633 + j1.1421, —-0.1633 + ;j1.1421,
—0.4462 + j0.8361, —0.6095+ j0.3060, —0.6095- ;0.3060, —0.4462— j0.8361]

Selecting the poles located in the left half s-plane, we get

[-0.1633 - ;j1.1421, —0.1633+ j1.1421, —0.4462+ j0.8361, —0.6095 + j0.3060,
—0.6095 - j0.3060, —0.4462— j0.8361]"

11

6.
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The poles of the normalized Type II Chebyshev filter are located at the inverse of the above locations
and are given by

[-0.1227 + j0.8580, —0.1227 — j0.8580, —0.4968 — j0.9309, -1.3104— j0.6580,
—1.3104 + j0.6580, —0.4968 + j0.9309]"

The zeros of the normalized Chebyshev Type 11 filter are computed using Eq. (7.60) and are given by
[-/1.0353, —;1.4142, - j3.8637, ;3.8637, 1.4142, ;1.0353].

The zero at s = o is ignored. The transfer function for the normalized Type II Chebyshev filter is
given by
H(S) = K(S + j1.0353)(S — j1.0353)(S + j3.8637)(S — j3.8637)

= X
(S +0.1227 — j0.8580)(S + 0.1227 + j0.8580)(S + 0.4968 + j0.9309)
(S + j1.4142)(S — j1.4142) :

(S +0.4968 + j0.9309)(S +1.3104 — j0.6580)(S +1.3104 — j0.6580)

which simplifies to
S +185* +485% +32
S% +3.85975° +7.50548* +9.2090S> +8.041852 + 4.3843S +1.7984

Since |H(®)| at © = 0 is 32/1.7984 = 17.7936, therefore, K is set to 1/17.7936 = 0.0562 to make the dc
gain equal to 1. The new transfer function with unity gain at ® = 0 is given by

H(S)=K

0.0562(S® +185% + 4852 +32)
S% +3.85975° +7.50548* +9.20905> +8.041852 + 4.3843S +1.7984

H(S)=

Step 4 normalizes H(S) based on the transformation
H(s)= H(S)|S:s/65
which simplifies to

0.0562(s® +7.605x10%s* +8.568 x10%s? +2.4134 x10'%)

H(s)= .
5% +250.8783s> +3.171x10%s* +2.529x10%s> +1.436 x10%5% +5.087 x10° s +1.356 x 10"

Step 5 plots the magnitude spectrum, which is shown in Fig. S7.10(b). I

Problem 7.11

(a) In Problem 7.7, the gain terms are given by G, = 0.2346 and G, = 99.. The pass band and stop band
corner frequencies are specified as w, = 10 radians/s and o, = 20 radians/s.

Using Eq. (7.64), the ripple control factor is given by
£=,/G, =+0.2346 = 0.4844..

Using Eq. (7.65) with w,/®, = 0.5 and G,/G, = 0.0024, the order N of the elliptic filter is given by

v wlo, /o2 W[76,76.]  yio2siyro9ess)

. \v[Gp / Gs]w[\/I ~(@,/0,)? } ) v[0.0024] [0.8660]
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Using MATLAB, y[0.25] = 1.5962, y[0.9988] = 4.4048, y¢[0.0024] = 1.5708, and y[0.8660] =
2.1564. The value of N is

o 1:5962x4.4048 _

=————— =2.0757.
1.5708 x 2.1564

Rounding off to the nearest higher integer, the order N of the filter equals 3.

(b) In Problem 7.8, the gain terms are given by G, = 0.2588 and G, = 315.6120. The pass band and stop
band corner frequencies are specified as m, = 50 radians/s and o, = 60 radians/s.

Using Eq. (7.64), the ripple control factor is given by
£=,/G, =+0.2588 =0.5087 .

Using Eq. (7.65) with m,/o, = 0.8333 and G,/G, = 0.00082, the order N of the elliptic filter is

N:\v[(wp/ws)z]\v,/l—Gp/Gs] _ v[0.8333]y[0.9996]
vle, /Gs]w[m —(,o,)’ } w[0.00082] [0.5528]

Using MATLAB, y[0.8333] = 2.0672, y[0.9996] = 4.9526, y[0.00082] = 1.5708, and y[0.5528] =
1.7172. The value of N is

20672 4.9526 _

= =3.7955.
1.5708 x1.7172

Rounding off to the nearest higher integer, the order N of the filter equals 4. I

Problem 7.12

The computational complexity of implementing the filter is directly related to the order of the filter. For
Problem 7.7, the orders N of the four types of the low pass filter are:

Butterworth: N=4
Type I Chebyshev: N=3
Type II Chebyshev: N=3
Elliptic: N=3

The Butterworth filter has the highest order (hence, the highest computational complexity), while
Chebyshev and elliptic have the same order. For Problem 7.8, the orders N of the filters are:

Butterworth: N=14
Type I Chebyshev: N=6
Type II Chebyshev: N=6
Elliptic: N=4

By introducing permissible ripples in both pass and stop bands, the elliptic filter has the lowest order. The
Chebysheyv filters have the same order, while the Butterworth filter has the highest order. The amount of
ripple is smallest in the Butterworth filter.
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Problem 7.13

Assume S = (o + jo) corresponds to the lowpass domain, while s = (y + j&) corresponds to the bandstop
domain. In the frequency domain, the transformation is given by

L EEpg
~& 48
Case I: Consider pass band I (=§,; <& <¢&,,) of the bandstop filter.
Frequency & = £,; maps to frequency ® = 1 in the transformed domain.
Frequency & = 0 maps to frequency ® = 0 in the transformed domain.
Frequency & = —&,; maps to frequency o = —1 in the transformed domain.
Case II: Consider pass band II (£, < § < o) of the bandstop filter.
Frequency & = £,, maps to frequency = —1 in the transformed domain.
Frequency & = oo maps to frequency o = 0 in the transformed domain.
Case III: Consider pass band II (—oo < § < —£,,) of the bandstop filter.
Frequency & = —&,, maps to frequency o = 1 in the transformed domain.
Frequency & = —co maps to frequency o = 0 in the transformed domain.

Case IV: Any frequency in the stop band I (£, < & < &,») of the bandstop filter is mapped in the range ||
> 1 in the transformed domain.

Consider, for example, & = 0.5(§,; + £,»), which is mapped as @ =2 + 4 x £,,/( £,» — &,1) and similarly, for
all frequencies in the stop band range.

Problem 7.14

Using Eq. (7.68) with &, = 30 radians/s to transform the specifications from the domain s =y + j& of the
highpass filter to the domain S = ¢ + jo of the lowpass filter, we get

Stop band (o0 < || < 2 radians/s): | H(®)|<0.15

Pass band (Jo| < I radians/s): 0.85< |H(c0)| <1.

The above specifications are used to design a normalized lowpass Butterworth filter.

The gain terms G, and G, are given by
G,=——-1=—L.-1=0.3841

Po(1-5,) 0.852

and G =l —1=—1_—1=43.4444.

S (5,)? 0.15°
The order N of the Butterworth filter is obtained using Eq. (7.25) as
o In(G, /G,) 1 y In(0.3841/43.44444)

2" InE,/8,) 2 In(1/2)

We round off the order of the filter to the higher integer value as N = 4.

=3.4108.
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Using the stop band constraint, Eq. (7.32), the cut off frequency of the required Butterworth filter is

0, 2

o) =1.2482 radians/s.

1

CG)T (43.4444)0
The poles of the lowpass filter are located at

S=o, exp[jg + e

for 1 < n < 4. Substituting different values of n gives

S§=[-0.47774j1.1532 —1.1532+0.4777 —1.1532—0.4777 —0.4777—51.1532].

The transfer function of the lowpass filter is given by

K
H(S)=
) (S+0.4777 + j1.1532)(S +1.1532 - j0.4777)(S +1.1532 + j0.4777)(S + 0.4777 — j1.1532)
or, H(S)= K

S* +3.2617S8° +5.3194S8% +5.0817S +2.4274

To ensure a dc gain of 1 for the lowpass filter, we set K = 2.4274. The transfer function of unity gain
lowpass filter is given by

2.4274
S* +3.2617S> +5.31945% +5.0817S +2.4274

H(S)=

To derive the transfer function of the required highpass filter, we use transformation (7.64) with &, = 30
radians/s. The transfer function of the highpass filter is given by

2.4274
=305 30/ 5)* +3.2617(30/5)° +5.3194(30/5)> +5.0817(30/ 5) + 2.4274

4
S

s +62.8042s% +1.9723x10%s +3.6280x10*s +3.3369x10°

H(s)=H(S)|

or, H(s)=

1
/

0.8

0.6 /
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Figure S7.14: Magnitude spectrum of the Butterworth highpass filter designed in Problem 7.14.

The magnitude spectrum of the highpass filter is included in Fig. S7.14, which confirms that the given
specifications are satisfied.
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Problem 7.15

Repeating the procedure for Problem 7.14, the specifications of the transposed lowpass filter for £, = 30
radians/s are given by

Stop band (oo < || < 2 radians/s): | H(®)|<£0.15
Pass band (Jo| < 1 radians/s): 0.85<|H(w)[<1.

The above specifications are used to design a normalized lowpass Type I Chebysheyv filter.
Type I Chebyshev Filter:
The gain terms G, and G, are given by 0.3841 and 43.4444.

Step 1 determines the value of the ripple control factor € as
£=,/G, =4/03841=0.6198.

Step 2 determines the order N of the Chebyshev polynomial as

1
0.8

0.6 /
/
0.2 /

7

0

0 10 20 30 40 50 60 70 80 90 100
Figure S7.15: Magnitude spectrum of the Type I Chebyshev highpass filter for Problem 7.15.

N cosh™ [(43.4444 /0.3841)" ]
cosh ™' [2/1]

=2.3198.

We round off N to the closest higher integer as 3.
Step 3 determines the location of the six poles of H(S)H(-S) as
[0.2155+ j0.9430, 0.2155-0.9430, —0.2155-0.9430, —0.2155+ j0.9430, 0.431, —0.431].

The 3 poles lying in the left half s-plane are included in the transfer function H(S) of the normalized Type
I Chebyshev filter. These poles are located at

[-0.2155—-;0.9430, —0.2155+ ;0.9430, —0.4310].
The transfer function for the normalized Type-I Chebyshev filter is, therefore, given by

K
(5 +0.2155+ j0.9430)(S +0.2155 — j0.0.9430)(S +0.4310)°

H(S)

K
S* +0.8621S% +1.1216S +0.4034

which simplifies to H(S)=
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Since |[H(w)| at ® = 0 is K/0.1047, therefore, K is set to 0.1047 to make the dc gain equal to 1. The new
transfer function with unity gain at ® = 0 is given by
0.4034

H(S)=— : .
% +0.862152 +1.12168 + 0.4034

Step 4 is not needed as the passband cutoff frequency is o, = 1 radians/s.
This completes the design of Type I Chebyshev filter.

To derive the transfer function of the required highpass filter, we use transformation (7.64) with &, = 30
radians/s. The transfer function of the highpass filter is given by

0.4034
(30/5)° +0.8621(30/5)> +1.1216(30/5) + 0.4034

H(S) = H(S)|S:30/s

S3

or, H(s)=— > 7
s” +83.4110s° +1923.45 + 6.6931x10

The magnitude spectrum of the highpass filter is included in Fig. S7.15, which confirms that the given
specifications are satisfied.

Problem 7.16

Repeating the procedure for Problem 7.14, the specifications of the transposed lowpass filter for £, = 30
radians/s are given by

Stop band (o0 < || < 2 radians/s): | H(®)|<0.15

Pass band (Jo| < 1 radians/s): 0.85< |H(c0)| <1.

The above specifications are used to design a normalized lowpass Type II Chebyshev filter.
Type II Chebyshev Filter:

The gain terms G, and G, are given by 0.3841 and 43.4444.

Step 1 determines the value of the ripple control factor € as

1 1

E = =
JG,  43.4444

Step 2 determines the order N of the Chebyshev polynomial as.

=0.1517.

N cosh™ [(43.4444 /0.3841)" ]
cosh™ [2 / 1]

=2.3198.

We round off order NV to the closest higher integer as 3.
Step 3 determines the location of the poles and zeros of H(S)H(-S).

We first determine the location of poles for the Type-I Chebyshev filter with € = 0.1517 and N = 3. Using
Eq. (7.46), the location of poles for H(s)H(—s) of the Type I Chebysheyv filter are given by

[-0.4861+ j1.2078, 0.4861+ ;j1.2078, 0.4861- j1.2078, -0.4861- ;j1.2078, 0.9722, -0.9722]

Selecting the poles located in the left half s-plane, we get
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[-0.4861+ j1.2078, —-0.4861- ;1.2078, —0.9722].

The poles of the normalized Type II Chebyshev filter are located at the inverse of the above locations and
are given by

[-0.2868 — j0.7125, —0.2868 + j0.7125, —1.0286].
The zeros of the normalized Chebyshev Type II filter are computed using Eq. (7.60) and are given by
[-/1.1547, + j1.1547, oo].

The zero at s = o is neglected. The transfer function for the normalized Type II Chebyshev filter is given
by

2(5)= K(S + j1.1547)(S — j1.1547)
(S +0.2868 + j0.7125)(S +0.2868 — j0.7125)(S +1.0286) ’

K(S? +1.3333)

which simplifies to H(S)=— > .
S7 +1.6021S° +1.1798S + 0.6068

Since |H(w)| at ® = 0 is 1.3333/0.6068 = 2.1973, therefore, K is set to 1/2.1973 = 0.4551 to make the dc
gain equal to 1. The new transfer function with unity gain at @ = 0 is given by
0.4551(S* +1.3333)

H(S)=— . .
% +1.602152 +1.1798S + 0.6068

Step 4 normalizes H(S) based on stop band frequency o, = 2 radians/s, which gives

0.4551((s/2)* +1.3333)

H(s)=H(S =
) =H S50 (s/2)* +1.6021(s/2)* +1.1798(s / 2) + 0.6068

which simplifies to

0.9102(s* +5.3333)
s +3.20425% +4.71925 + 4.8544

This completes the design of Type II Chebyshev lowpass filter.

H(s)=

1

0.8
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Figure S7.16: Magnitude spectrum of the Type Il Chebyshev highpass filter for Problem 7.16.

To derive the transfer function of the required highpass filter, we use transformation (7.64) with &, = 30
radians/s. The transfer function of the highpass filter is given by
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B 0.9102((30/s)* +5.3333)
(30/5)> +3.2042(30/5)> +4.7192(30/ 5) + 4.8544

H(S) = H(S)|S:30/s

0.1707s(s> +168.7511
or, H(s)=— > ( ) T
s% +29.16455% +594.0549s + 5.5620 x 10

The magnitude spectrum of the highpass filter is included in Fig. S7.16, which confirms that the given
specifications are satisfied. I

Problem 7.17
For &,; = 100 radians/s and &, = 150 radians/s, Eq. (7.70) is given by

g* -1.5x10*
50¢

b

to transform the specifications from the domain s = y + j§ of the bandpass filter to the domain S = ¢ +
jo of the lowpass filter. The specifications for the normalized lowpass filter are given by

Pass band (0 < |w| < 1 radians/s): —1dB< 2010g10|H(0))| <0.
Stop band (|o| > min(1.7857, 2.5) radians/s: 20 10g10|H(c0)| <-15dB.

Lowpass Butterworth filter:

The above specifications are used to design a normalized lowpass Butterworth filter. Here, we use the
following MATLAB code to design the Butterworth filter. The same can be derived using the design
steps outlined in the text.

o\

>> wp=1; ws=1.7857; Rp=1l; Rs=15 ;
>> [N,wc]=buttord(wp,ws,Rp,Rs, 's');
>> [num,den]=butter (N,wc, 's"');

>> Ht = tf (num,den);

specify design parameters
determine order and cut-off freqg
determine num and denom coeff.
determine transfer function

o° oo

o\

The transfer function of the lowpass Butterworth filter is given by

3.281

H(S)= )
) S° +4.104S* +8.4225% +10.6852 +8.372S +3.281

To derive the transfer function of the required bandpass filter, we use transformation (7.69) with ,; = 100
radians/s and £,, = 150 radians/s. The transformation is given by
g 8 +1.5x10°
50s

b

from which the transfer function of the bandpass filter is calculated as
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3.281
HE)=H O, S [s?e15x10° | 2 15x104 | 2 15x10* |
s loxIV +4.104 S o loxIV +8.422 s loxIV
50s 50s 50s
2 472 2 4 ’
110.68| S HISXIOT gy ST HLSXAOT 50
50s 50s

which reduces to

1.0253x10° s>

H(s)=
s 4+ 205.25° +9.606x10%s® +1.365x107s” +3.25x10° 5% +3.181x10'"' s°

+4.875x10% 5% +3.071x10% s> +3.242x10"7 s> +1.039%x10" s + 7.5938 x 10>

1 o\
0.8

y (-
o4 ll \
nE S O R B
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Figure S7.17: Magnitude spectrum of the Butterworth bandpass filter in Problem 7.17.

The magnitude spectrum of the bandpass filter is included in Fig. S7.17, which confirms that the given
specifications for the bandpass filter are indeed satisfied.

Problem 7.18

For &,; = 100 radians/s and £,, = 150 radians/s, the transformed specifications for the normalized lowpass
filter are given by

Pass band (0 <|w| <1 radians/s): —1dB< 201og10|H(03)| <0.
Stop band (Jo| > min(1.7857, 2.5) radians/s: 20log,,|H (»)|<-15dB.

Lowpass Type I Chebysheyv filter:

The above specifications are used to design a normalized lowpass Type I Chebyshev filter. Here, we use
the following MATLAB code to design the Butterworth filter. The same can be derived using the design
steps outlined in the text.

>> wp=1; ws=1.7857; rp=1; rs=15;

>> [N,wn] = cheblord(wp,ws,rp,rs,'s"');
>> [num,den] = chebyl(N,rp,wn,'s');

>> Ht = tf (num,den);

o\

specify design parameters
determine order and natural freqg
determine num and denom coeff.
determine transfer function

o° o

o

The transfer function of the Type I Chebyshev filter is given by
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0.4913
S* +0.98835% +1.2385 +0.4913

To derive the transfer function of the required bandpass filter, we use the following transformation
obtained by substituting £,; = 100 radians/s and &,, = 150 radians/s in Eq. (7.69)

H(S)=

G- st +1.5%10*
50s

The resulting transfer function of the bandpass filter is given by

0.4913
HE=HE) o (s +15x10° 2 415x10* ] 2 41.5%10*
S LD L 0.0883] S0 | 1038|120 10,4913
50s 50s 50s

which simplifies to

6.141x10% s>

H(s)= .
() §%+49.425° +4.81x10%s* +1.544%x10%s> +7.214%x10%s% +1.112x10"%s +3.375x10"

1
0.8
0.6 \

\
0.4 / \
A 2 N s A
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Figure S7.18: Magnitude spectrum of the Type I Chebyshev bandpass filter in Problem 7.18.

The magnitude spectrum of the bandpass filter is included in Fig. S7.18, which confirms that the given
specifications for the bandpass filter are indeed satisfied.

Problem 7.19

For &, = 100 radians/s and &,, = 150 radians/s, the transformed specifications for the normalized lowpass
filter are given by

Pass band (0 < |w| < 1 radians/s): —-1dB< 2010g10|H(03)| <0.

Stop band (|o| > min(1.7857, 2.5) radians/s: 2010g10|H((0)| <-15dB.

Lowpass Type II Chebyshev filter:

The above specifications are used to design a normalized lowpass Type Il Chebyshev filter. Here, we use
the following MATLAB code to design the Butterworth filter. The same can be derived using the design
steps outlined in the text.

>> wp=1; ws=1.7857; rp=1; rs=15;
>> [N,wn] = chebl2ord(wp,ws,rp,rs,'s"');
>> [num,den] = cheby2(N,rs,wn,'s');

o\°

specify design parameters
determine order and natural freqg
determine num and denom coeff.

o\°

o\
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>> Ht = tf (num,den); % determine transfer function
The transfer function of the Type II Chebyshev filter is given by

0.853357 +2.819
S%+2.678%+3.25+2.819

To derive the transfer function of the required bandpass filter, we use the following transformation
obtained by substituting £,; = 100 radians/s and &,, = 150 radians/s in Eq. (7.69)

H(S)=

57 +1.5%10*
50s

The resulting transfer function of the bandpass filter is given by

s +1.5%10*

0.8533
50s

2
} +2.819

H(s) = H(S)[ 150 =

50s 2 473 2 472 2 4
s +1.5x10 067 s +1.5%x10 L3139 s +1.5x10 +2.819
50s 50s 50s

which simplifies to

23.565° +8.011x10°s> +5.3x10°s

H(s)= .
s +49.035° +4.806x10%s* +1.565x10°%s> +7.209%10%s% +1.103x 10" s +3.375x 10"

The magnitude spectrum of the bandpass filter is included in Fig. S7.19, which confirms that the given
specifications for the bandpass filter are indeed satisfied.
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Figure S7.19: Magnitude spectrum of the Type I Chebyshev bandpass filter in Problem 7.19.

Problem 7.20
For £,; = 25 radians/s and &, = 325 radians/s, Eq. (7.67) is given by
_300¢
8125-¢%°

to transform the specifications from the domain s = y + j& of the bandstop filter to the domain S = o +
Jjo of the lowpass filter. The specifications for the normalized lowpass filter are given by

Pass band (0 < |w| < 1 radians/s): —4dB< 2010g10|H((o)| <0.

Stop band (|o| > min(1.3793,16) radians/s: 2010g10|H(03)| <-20dB.
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The above specifications are used to design a normalized lowpass Butterworth filter using MATLAB.
Lowpass Butterworth filter:

The above specifications are used to design a normalized lowpass Butterworth filter. Here, we use the
following MATLAB code to design the Butterworth filter. The same can be derived using the design
steps outlined in the text.

>> wp=1; ws=1.3793; Rp=4; Rs=20 ;
>> [N,wc]=buttord(wp,ws,Rp,Rs, 's");
>> [num,den]=butter (N,wc, 's"');

>> Ht = tf (num,den);

oo

specify design parameters
determine order and cut-off freq
determine num and denom coeff.
determine transfer function

o° oo

o\

The transfer function of the lowpass Butterworth filter is given by

0.9545

H(S) = .
S7 +4.464S8°% +9.9645° +14.35% +14.215% +9.76852 + 4.318S + 0.9545

To derive the transfer function of the required bandstop filter, we use transformation (7.74) with £,; = 25
radians/s and £, = 325 radians/s. The transformation is given by

300s

S= 7 s
s° +8125

from which the transfer function of the bandstop filter is calculated as

H(s)=H(S)|;_ 3005 = 0.9545

2 7 6 95 4
248125 { 2300s } +4‘464{ 2300s } +9‘964{ 2300s +14.3[ 2300s }
s +8125 s +8125 s +8125 ] s? +8125

b

3 2 r
+14.21{2300s} +9.768{2300s} +4318 2300S}0.954s
s2 +8125 s2 +8125 | 52 +8125

which reduces to

H(s) = 0.9545(s% +8125)”
(300s)7 +4.464(3005)° (s +8125)+9.964(300s)° (s> +8125)2 +14.3(300s)* (s +8125)°

+14.21(300s)> (s> +8125)* +9.768 (300s) (s> +8125)° +4.318 (300s)(s> +8125)® +0.9545(s> +8125)7

The magnitude spectrum of the bandstop filter is included in Fig. S7.20, which confirms that the given
specifications for the bandstop filter are indeed satisfied.
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Figure S7.20: Magnitude spectrum of the Butterworth bandstop filter in Problem 7.20.
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Problem 7.21
The transformation equation is given by
_300¢
8125-¢2"’

with the following lowpass specifications:

Pass band (0 < |w| < 1 radians/s): —4dB< 2010g10|H(c0)| <0.

Stop band (Jo| > min(1.3793,16) radians/s: 20log,,|H ()| <—20dB.
Type I Chebyshev filter:
The above specifications are used to design a normalized Type I Chebyshev filter using MATLAB.
>> wp=1; ws=1.3793; Rp=4; Rs=20 ;
>> [N,wn] = cheblord (wp,ws,Rp,Rs,'s');

>> [num,den] = chebyl (N,Rp,wn,'s");
>> Ht = tf (num,den);

o\

specify design parameters
determine order and natural freq
determine num and denom coeff.
determine transfer function

o° oo

o\

The transfer function of the Type I Chebysheyv filter is given by

0.1017
S* +0.48825% +1.11952 +0.33265 +0.1611

H(S)=

To derive the transfer function of the required bandstop filter, we use the transformation

300s

S=2—,
s +8125

which results in the following transfer function for the bandstop filter

H(s)=H(S)[(_ 300s = 0.1017

: 4 3 2
$8I {;mmv} +04%2{2mms} +Ln9{23m”} +03n6{2“ms}+01m1
2 +8125 52 +8125 52 +8125 s2 +8125

which reduces to

0.1017(s* +8125)*

H(s)= 7 3.2 2,2 2 2 3 2 7’
(300s)" +0.4882(300s)” (s° +8125) +1.119(300s)" (s +8125)° +0.3326(300s)(s“ + 8125)” +0.1611(s~ + 8125)

The magnitude spectrum of the bandstop filter is included in Fig. S7.21, which confirms that the given
specifications for the bandstop filter are indeed satisfied.

0.6 /
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Figure S7.21: Magnitude spectrum of the Type I Chebyshev bandstop filter in Problem 7.21.

Problem 7.22
The transformation equation is given by
_300¢
8125-¢?’

with the following lowpass specifications

Pass band (0 < |w| < I radians/s): —4dB< 2010g10|H(co)| <0.

Stop band (|o| > min(1.3793,16) radians/s: 20 10g10|H(0))| <-20dB.
Type II Chebyshev filter:
The above specifications are used to design a normalized Type II Chebyshev filter using MATLAB.
>> wp=1; ws=1.3793; Rp=4; Rs=20 ;
>> [N,wn] = chebl2ord(wp,ws,Rp,Rs,'s");

>> [num,den] = cheby2(N,Rs,wn,'s');
>> Ht = tf(num,den);

o

specify design parameters
determine order and natural freqg
determine num and denom coeff.
determine transfer function

o oP

o

The transfer function of the Type II Chebyshev filter is given by

0.03081
S* +0.082045° +1.5695% +0.08313S +0.3081

H(S)=

To derive the transfer function of the required bandstop filter, we use the transformation

_ 300s
s2 +8125°

which results in the following transfer function for the bandstop filter

0.03081
H(s)=H(S)[;_ 3005 = . ; .
248125
o |:2300s} +0.082[2300S} +1.569{23008} +0.0831{2300S}+O.3081
s +8125 s +8125 s% +8125 s +8125
which reduces to
0.03081(s> +8125)*

H(s)

©(300s)* +0.082(3005)° (52 +8125) + 1.569(3005)2 (s> + 8125)% +0.0831(300s)(s> +8125)* +0.3081(s> +8125)*

The magnitude spectrum of the bandstop filter is included in Fig. S7.22, which confirms that the given
specifications for the bandstop filter are indeed satisfied. I
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Figure S7.22: Magnitude spectrum of the Type Il Chebyshev bandstop filter in Problem 7.22.

Problem 7.23
The MATLAB code for designing the lowpass filter specified in Problem 7.7 is shown in Program S7.23.

Program S7.23: MATLAB code for designing the lowpass filter in Problem 7.23

wp=10; ws=20; rp=0.9151; rs=20; % specify design parameters
% Rp = -20*%10gl10(0.9)=0.9151dB
% Rs = -20*%10gl10(0.1)=20dB

Butterworth filter

o\

[N,wc]=buttord (wp,ws, rp,rs,'s');
[numl,denl]=butter (N,wc, 's');

determine order and cut-off freq
determine num and denom coeff.

o\

Htl = tf (numl,denl); % determine transfer function
[H1,wl] = fregs(numl,denl); % determine magnitude spectrum
subplot (411); plot(wl,abs(H1)); % plot magnitude spectrum

grid on, title('Butterworth filter'); ax = axis;
% Type I Chebyshev filter
[

N,wn] = cheblord(wp,ws,rp,rs,'s'); % determine order and natural freq
[num2,den2] = chebyl(N,rp,wn,'s'); % determine num and denom coeff.
Ht2 = tf (num2,den2); % determine transfer function
[H2,w2] = fregs (numl,denl); % determine magnitude spectrum
subplot (412); plot (w2,abs (H2)); % plot magnitude spectrum

grid on, title('Type I Chebyshev filter'); axis(ax);
% Type II Chebyshev filter
[

N,wn] = cheb2ord(wp,ws,rp,rs,'s'); % determine order and natural freqg
[num3,den3] = cheby2(N,rs,ws,'s'); % determine num and denom coeff.
Ht3 = tf (num3,den3); % determine transfer function
[H3,w3] = fregs (num3,den3); % determine magnitude spectrum
subplot (413); plot (w3,abs(H3)); % plot magnitude spectrum

grid on, title('Type II Chebyshev filter'); axis(ax);

% Elliptic filter

[N,wn] = ellipord(wp,ws,rp,rs,'s'); % determine order and natural freq
[num4,dend] = ellip(N,rp,rs,wn,'s"'); % determine num and denom
coeff.

Ht4 = tf (numé4,dend); % determine transfer function
[H4,wd] = fregs (numé4,dend); % determine magnitude spectrum

subplot (414); plot (w4,abs (H4)); % plot magnitude spectrum
grid on, title('Elliptic filter'); axis(ax);

The transfer functions for the four implementations are given as follows:
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3.216x10°
(s° +40.88s% +835.55> +1.055x10% 52 +8.239x10%s +3.216x10°)

Butterworth filter: H(s)=

Type I Chebyshev filter: H(s)= 3 > 5162 3 .
s” +10.21s +127.2x10° s +516.2
2
Type II Chebysheyv filter: H(s)= 3 6'035 3216 :
s” +28.11s” +376.85 + 3216
2
Elliptic filter: H(s)= 3.2657 +692

s> +9.9825% +126.85 +692

Note that the expressions for the transfer function are the same as obtained in Problems 7.7 (for
Butterworth filter), 7.9 (for Type I Chebyshev filter), and 7.10 (for Type II Chebyshev filter). In case of
the elliptic filter, the order N was evaluated in Problem 7.11(a) as 3, which is observed to be the same in
the above expression.

The magnitude spectra for the four implementations are plotted in Fig. S7.23, which satisfy the given
specifications.
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Figure S7.23: Magnitude Spectra of the four implementations of the low pass filter for Problem 7.23.
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Problem 7.24

The Matlab code is similar to that for Problem 7.23 except for the design parameters, and is shown in
Program S7.24.

Program S7.24: MATLAB code for designing lowpass filter in Problem 7.24

o)

wp=50; ws=65; rp=1l; rs=25; % specify design parameters

% Butterworth filter
[N,wc]=buttord(wp,ws,rp,rs,'s'); determine order and cut-off freqg
[numl,denl]=butter (N,wc, 's'); determine num and denom coeff.
Htl = tf (numl,denl); % determine transfer
function

[H1,wl] = fregs(numl,denl); determine magnitude spectrum
subplot (411); plot(wl,abs(H1)); % plot magnitude spectrum
grid on, title('Butterworth filter'); ax = axis;

% Type I Chebyshev filter
[

oo

oo

o\

N,wn] = cheblord(wp,ws,rp,rs,'s'); % determine order and natural freq
[num2,den2] = chebyl(N,rp,wn,'s'); % determine num and denom coeff.
Ht2 = tf (num2,den?); % determine transfer
function

[H2,w2] = fregs (numl,denl); % determine magnitude spectrum
subplot (412); plot(w2,abs (H2)); % plot magnitude spectrum

grid on, title('Type I Chebyshev filter'); axis(ax);
% Type II Chebyshev filter
[

N,wn] = cheb2ord(wp,ws,rp,rs,'s'); % determine order and natural freqg
[num3,den3] = cheby2(N,rs,ws,'s'); % determine num and denom coeff.
Ht3 = tf (num3,den3); % determine transfer
function

[H3,w3] = fregs (num3,den3); % determine magnitude spectrum
subplot (413); plot(w3,abs (H3)); % plot magnitude spectrum

grid on, title('Type II Chebyshev filter'); axis(ax);
% Elliptic filter
[

N,wn] = ellipord(wp,ws,rp,rs,'s'); % determine order and natural freqg
[num4,dend] = ellip(N,rp,rs,wn,'s'); % determine num and denom coeff.
Ht4 = tf (numé4,dend); % determine transfer function
[H4,wd] = fregs (numé4,dend); % determine magnitude spectrum
subplot (414); plot (w4, abs (H4)); % plot magnitude spectrum

grid on, title('Elliptic filter'); axis(ax);

The transfer functions for the four implementations are given as follows:
Butterworth filter:

1.354x10%*
(s" +472.75 1117351 +1.746 x107 ' +2.01x10% ' +1.801x 1057 + ...

H(s)=

4129510358 +7.577x10M 57 +3.627x10'05° +1.414%x10"8 s> +4.418x10" 5% + ...

e+ 1.075%10%1 5% +1.927x10%% 5% +2.284x 102 5 +1.354x10%)
Type I Chebyshev filter:
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0.9596 x10°
S0 1+ 46.418° + 48275 +1.503x10°5% +5.871x10°S2 +9.596x107 S +1.077x10°

Type I Chebyshev filter:

H(S)=

0.05623s5° + 4277s* +4.818x107 s> +1.357 x 10"
s%4+250.95° +3.172x10%s* +2.53x10%s> +1.436x10%5% +5.089x10%s +1.357x 10"

Elliptic filter (N = 4):

H(s) =

0.0562252% +970.95% +2.785x10°
s* +46.025% + 402752 +1.072x10%s +3.125x10°

H(s)=

Note that the expressions for the transfer function are the same as obtained in Problems 7.8 (for
Butterwoth filter), 7.9(b) (for Type I Chebysheyv filter), and 7.10(b) (for Type II Chebyshev filter). In case
of the elliptic filter, the order N was evaluated in Problem 7.11(b) as 4, which is observed to be the same
in the above expression.
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Figure S7.24: Magnitude Spectra of the four implementations of the lowpass filter for Problem 7.24.

The magnitude spectra for the four implementations are plotted in Fig. S7.24, which satisfy the given
specifications.
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Problem 7.25

Expressing the pass-band and stop-band gains in dB, we get
Rs =20%*log(0.15) =-16.4782 and Rp = 20*log(0.85) = —1.4116.

The MATLAB code for designing the highpass filter specified in Problem 7.14 is shown in Program
S7.25.

Program S7.25: MATLAB code for designing highpass filter in Problem 7.25

% MATLAB code for designing highpass filter in Problem 7.25

wp=30; ws=15; Rp=1.4116; Rs=16.4782 ; % design specifications high
% pass Butterworth filter

[N, wc] = buttord(wp,ws,Rp,Rs,'s"'); % determine order and cut off

[numl,denl] = butter (N,wc, 'high','s') ;% determine transfer function

Htl = tf (numl,denl);

[H1,wl] = fregs(numl,denl); % determine magnitude spectrum

subplot (411); plot(wl,abs(H1)); % plot magnitude spectrum

grid on, title('Butterworth filter'); ax = axis;

TE%%% % Type I Chebyshev filter

[N, wn] = cheblord(wp,ws,Rp,Rs,'s") ;

[num2,den2] = chebyl (N,Rp,wn, '"high', 's"') ;

Ht2 = tf (num2,den2);

[H2,w2] = fregs (num2,den2); % determine magnitude spectrum

subplot (412); plot (w2,abs (H2)); % plot magnitude spectrum

grid on, title('Type I Chebyshev filter'); axis(ax);

35%%% % Type II Chebyshev filter

[N,wn] = cheb2ord(wp,ws,Rp,Rs,'s"') ;

[num3,den3] = cheby2 (N,Rs,wn, '"high','s"') ;

Ht3 = tf (num3,den3);

[H3,w3] = fregs (num3,den3); % determine magnitude spectrum

subplot (413); plot(w3,abs(H3)); % plot magnitude spectrum

grid on, title('Type II Chebyshev filter'); axis(ax);

$%%%% % Elliptic filter

[N,wn] = ellipord(wp,ws,Rp,Rs,'s') ;

[num4,dend] = ellip(N,Rp,Rs,wn, '"high', 's")

Ht4 = tf (num4,dend);

[H4,wd] = fregs (numé4,dend); % determine magnitude spectrum

subplot (414); plot(w4d,abs (H4)); % plot magnitude spectrum

grid on, title('Elliptic filter'); axis(ax);

The following transfer functions are returned.

4
Butterworth filter: H(s)= 2 3 3 &l 7 5
§T+62.8s” +19725° +3.628x10" s +3.337x10
3
s
Type I Chebysheyv filter: H(s)= .
P g ) s” +83.41s* +1923s5 +6.693x 10*
3
Type II Chebyshev filter: H(s)=— j *275.65 T
§” +37.27s" +970.2s +1.161x10
2
Elliptic filter: H(s)=— 285" +131.5

5% +24.835 +876.6
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Note that the transfer function of the Type II Chebyshev filter is different from the one

31

obtained in

Problem 7.16. This is because of the MATLAB implementation of the Type Il Chebyshev highpass filter,
which is slightly different from the one explained in the text. If all steps of the Type II Chebyshev filter

are implemented as explained in the text, we get the same transfer function. Both transfer func
the design specifications. The magnitude spectra are plotted in Fig. S7.25.
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Figure S7.25: Magnitude Spectra of the four implementations of the low pass filter for Problem 7.25.

Problem 7.26
The MATLAB code for designing the bandpass filter specified in Problem 7.17 is shown in Program
S7.26.
Program S7.26: MATLAB code for designing bandpass filter in Problem 7.26
% MATLAB code for designing bandpass filter in Problem 7.26
wp=[100 150]; ws=[75 175]; Rp=1l; Rs=15 ; % Design Specifications
% Butterworth filter
[N, wc] = buttord(wp,ws,Rp,Rs,'s'");
[numl,denl] = butter (N,wc,'s');
Htl = tf (numl,denl);
[H1,wl] = freqgs(numl,denl); % determine magnitude spectrum
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subplot (411); plot(wl,abs(H1)); % plot magnitude spectrum
grid on, title('Butterworth filter'); ax = axis;

% Type I Chebyshev filter

[N, wn] = cheblord(wp,ws,Rp,Rs,'s");

[num2,den2] = chebyl (N,Rp,wn,'s');

Ht2 = tf (num2,den?);

[H2,w2] = freqgs (num2,den?2); % determine magnitude spectrum
subplot (412); plot(w2,abs(H2)); % plot magnitude spectrum

grid on, title('Type I Chebyshev filter'); axis(ax);
% Type II Chebyshev filter
[N,wn] = cheb2ord(wp,ws,Rp,Rs,'s");

[num3,den3] = cheby2(N,Rs,wn,'s');

Ht3 = tf (num3,den3);

[H3,w3] = fregs (num3,den3); % determine magnitude spectrum
subplot (413); plot (w3,abs(H3)); % plot magnitude spectrum

grid on, title('Type II Chebyshev filter'); axis(ax);

% Elliptic filter
[N,wn] = ellipord(wp,ws,Rp,Rs,'s");

[num4,dend] = ellip(N,Rp,Rs,wn,'s'");

Ht4 = tf (numé4,dend);

[H4,wd] = freqgs(num4,dend); % determine magnitude spectrum
subplot (414); plot (w4, abs (H4)); % plot magnitude spectrum

grid on, title('Elliptic filter'); axis(ax);

The aforementioned MATLAB code produces the following transfer functions for the four filters.
Butterworth filter:

1.025x10%s°
510 4+205.25° +9.606x10%s® +1.365x107s” +3.25x10°s° +3.181x10" s>

H(s) =

+4.875x10%s* +3.071x10% s> +3.242x10"7 52 +1.039x10" 5 + 7.594 x10%°
Type I Chebysheyv filter:
6.141x10*s?
s©+49.425° +4.81x10%s* +1.544%x10%s% +7.214%x10%s% +1.112x10" s +3.375x10'> -
Type I Chebyshev filter:

H(s)=

42.665° +1.632x10%s> +9.599x10°
s% +133.55° +5.3x10%s* +4.357x10%s> +7.95x10%s% +3.004x10"0s +3.375x10'2

Elliptic filter:

H(s)=

23.56s5° +8.011x10°s> +5.3x10°s

H(s)= .
2 s +49.035° +4.806x10%s* +1.565x10%s> +7.209x10%s% +1.103x 10" s + 3.375x 10"

The magnitude spectra are plotted in Fig. S7.26.



Solutions
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Figure S7.26: Magnitude Spectra of the four implementations of the band pass filter for Problem 7.26.

Problem 7.27
The MATLAB code for the design of the bandstop filter is shown in Program S7.27.

Program S7.27: MATLAB code for designing bandstop filter in Problem 7.27

% MATLAB code for designing bandstop filter

wp=[25 325]; ws=[100 250]; Rp=4; Rs=20; % Specifications
% Butterworth Filter

[N, wn] = buttord(wp,ws,Rp,Rs,'s"') ;

[numl,denl] = butter (N,wn, 'stop','s");

Htl = tf (numl,denl);

[H1,wl] = fregs(numl,denl); % determine magnitude spectrum
subplot (411); plot(wl,abs (H1)); % plot magnitude spectrum

grid on, title('Butterworth filter'); ax = axis;
% Type I Chebyshev filter

[N, wn] = cheblord(wp,ws,Rp,Rs,'s") ;
[num2,den2] = chebyl (N,Rp,wn, 'stop','s');

Ht2 = tf (num2,den2);

[H2,w2] = fregs(num2,den?2); % determine magnitude spectrum
subplot (412); plot (w2,abs (H2)); % plot magnitude spectrum

grid on, title('Type I Chebyshev filter'); axis(ax);
% Type II Chebyshev filter
[N,wn] = cheb2ord(wp,ws,Rp,Rs,'s"') ;

33
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[num3,den3] = cheby2 (N,Rs,wn, 'stop','s');

Ht3 = tf (num3,den3);

[H3,w3] = fregs (num3,den3); % determine magnitude spectrum
subplot (413); plot(w3,abs (H3)); % plot magnitude spectrum

grid on, title('Type II Chebyshev filter'); axis(ax);

% Elliptic filter

[N,wn] = ellipord(wp,ws,Rp,Rs,'s') ;

[num4,dend4] = ellip(N,Rp,Rs,wn, 'stop','s");

Ht4d = tf (num4,dend);

[H4,wd] = fregs (numéd,dend); % determine magnitude spectrum
subplot (414); plot(w4d,abs (H4)); % plot magnitude spectrum

grid on, title('Elliptic filter'); axis(ax);

The resulting transfer functions are:

Butterworth filter:

s 41.25%10%s% +6.25%x10%5° +1.562x10"s* +1.953x10"% 5% +9.766 x 10!

H(s)=
s'0 +768.65° +4.203x10°s® +1.47x10%s7 +3.87x10"s% +7.145x10% s>

+9.674x10"s* +9.187x10' s +6.568 x10" 52 +3.002x 10 5 +9.766 x 10%"
Type I Chebysheyv filter:
s +7.5x10%s* +1.875x10%s? +1.562x10"
s© +1068s° +2.265x10°s* +1.285x10% s> +5.662x10%s% +6.674x10' s +1.562x10"
Type II Chebyshev filter:

H(s)=

5% 4+9.662x10%s* +2.416x10° s> +1.562x10"
s° +397.95% +1.758x10°s* +3.207x107 s> +4.395x10°s> +2.487x10" s +1.562x 10"

Elliptic filter:

H(s)=

0.631s* +4.009x10*s2 +3.943x10%

H(s)= .
st +167.953 +1.354%10° 5% +4.197x10%s + 6.25x10%

Note that the transfer functions for the bandstop filters are different than the ones obtained in Problems
7.20 to 7.22. Both versions satisfy the specifications though the transfer functions obtained using
MATLAB are of lower order. MATLAB uses a different transformation between the bandstop and
lowpass domains resulting in a different answer.

The magnitude spectra are plotted in Fig. S7.27. I
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Figure S7.27: Magnitude Spectra of the four implementations of the bandstop filter for Problem 7.27.



