Chapter 4: Signal Representation using Fourier Series

Problem 4.1

(a) Using Definition 4.4, the CT function x,(¢) can be represented as x1(¢) = ¢101(¢) + c202(?) + c393(¢)
with the coefficients c,, for n = 1,2, and 3, given by

T
¢ =5 J.xl(t)d)l(t)dt—ZT j( Ayt + 5 J-Adt— (—AT + AT) =0,
-T -T
T -T/2 T/2
&y =2 [x@b0d = [(A)-Ddr+ j (=AW, (0)dt + 5= IA(l)dt+ j A(=1ydt
-T -T -T/2 T/2
L R )
T
and ¢y =5 j X (003 (t)dt = 5 j (~A)V)dt + 5 j A(-1)dt =5 (~AT — AT) = -4
-T -T

In other words, x,(¢) = —4¢s(¢), which can also be proved by inspection.

(b) By inspection, x,(f) = —A¢,(¢), which can also be proven by evaluating the coefficients ¢; =0, ¢, =
—A,and ¢c; =

(c) Using Definition 4.4, the CT function x3(¢) can be represented as x3(¢) = ¢101(¢) + c202(f) + c393(¢)
with the coefficients c,, for n = 1,2, and 3, given by

T -T/2
o = [x @0 0de = [(a)xde+5 j (A)()dt == (AL 4 ATy = 4
_T -T T/2
T -T/2
&y =37 [x 00, (0dr =3 [(A)-Ddt+3 j (A)(-Ddr =L (-4L 4Ty = 4
-T -T T/2
T -T/2
and =4 j x5 ()03 (1)dt = 5 j (A)1)dt + 5 j (A)(~1)dt = 3= (AT ~ AT)=0.
-T
In other words, x3(7) = 0.54(d1(¢) — ¢2(¢)), which can also be proved by inspection. I

Problem 4.2
Computing the integral

j o0 1t = [ - e

—00

Since the function inside the integral is even with respect to ¢, therefore,
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T(I)l (1), (1)dt = 2Te2f (1 — Ke ™ )dt = 2Te2’ dt - 2KTe6’ dt=1-%
—00 0 0 0

For the functions to be orthogonal, 1- % =0 = K=3. i

Problem 4.3

The following derivation shows that the individual functions {P,(x), n =0, 1, 2, 3} have nonzero finite
energy. We use the notation P,,, to represent the integral

1
Py, = j P, (x)P, (x)dx -
Computing the integrals

1
R, = jl.ldx = [x]i1 =
-1

1

1
— [ Cax=[13] =2
}’I’I—J.xdx—[sxll—y

-1

PL=t G = f(orf -6x" et =43¢ 20 1] =

—1 -1
1
and s :%J‘ 25x —30x" +9x7 )dx— [25 T—6x° +3x° ] 1:%(27 6+3)=

which shows that the functions P,(x) have nonzero finite energy.

To show that the functions are orthogonal with respect to each other, we determine the integrals

1
POJ=J. x dx=0,

—1=odd

1
Ry=% I (5x’ =3x)dx =0,
-1 =odd

1
and P, = %I[le —14x° +3dex 0. |

-1 =odd
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Problem 4.4

The following derivation shows that the individual functions {7,(x), n =0, 1, 2, 3} have nonzero finite
energy. We use the notation 7, , to represent the integral

T,,(x)T,(x)dx .

e [

Computing the integrals

[sm (x)] =T,

1 2 1
L, = Ix—dx =[—%x\/1—x2 +%sin_1(x)} =
_1‘V1—x2 -1

i
2 b

dx—4T,+ Ty =3n-4(0.5n)+ n=2m,

_4'[\/:

and similarly, the higher order 7,,,‘s can be proven to be nonzero for m = n.

To show that the functions are orthogonal with respect to each other, we determine the integrals

dxz—[my =0,

-1

1
T - X
0,1 l|-1 ,—l 2

Toz—j = dx 201~ T =0,
3 1
T03=I dx 4! al dx—3T01=[—\/1—x2 +%(1—x2)3} =0,
’ V1= S V1= x? ’ -1
and similarly, the higher order 7,,,‘s can be proven to be zero for m # n. I

Problem 4.5

1 1 1
Casel(m=p.n=q) [H,,(OH,,0d=[H,, 0] d=] [Hy0 2"t — )]
0

0 0
Substituting x=02"t-n),
1 2" —n 2" —n
we get j Hyy(OH . (1)dt = J' [Ho o) 27" dx =27 J.[Hoyo(x)]zdx .
0 -n 0

Since (0 <n <2" — 1), therefore, (2" —n) > 1 and

meanpq(r)dt 2 j[Hoo(xﬂ dx=2" '"j(n dx+2” mj( D2dx=27".
0.5
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1 1
Case I (m # p. n % q): IH,,,,,, ()H ., (1)dt = J‘HO,O(Z’”I‘ —n)Hy (21— q)dt
0 0

Substituting x=02"t-n),

1 2™ —n
we get [ HopoOH , (0t =277 [ Hy o () Hy o (27" x4 27" 0~ g)d
0 0

Since (0<n<2"—-1)or (2" —n)>1 and

1 1
[ Hopon O, g (0t =27" [ Hy g (x)H o (27" x+27 " n— g)d,
0 0

1 0.5 1
or, J.Hm,n(t)Hp’q(t)dt =27" J.HO’O(2p_mx+ 2P —qydx —27" J.HO,O(2p_mx+ 2P p—q)dx =0.
0 0 0.5

Problem 4.6

(a) By inspection, we note that the time period 7, = 2w, which implies that the fundamental frequency
Wy = 1.

Since the CTFS coefficient a, represents the average value of the signal, therefore, aq = 3/2.

Using Eq. (4.31), the CTFS cosine coefficients a,’s, for (n # 0), are given by
Ty r b4

a,= %0 J x1(¢) cos(nw,t)dt = % J. 3cos(nayt)dt = % J 3cos(nt)dt
0 0 0

=2 [sin(mn)]] =-Z[sin(nr)-0]=0

4

Using Eq. (4.32), the CTFS sine coefficients b,’s are given by
Ty Vi
b, = %0 J x1(¢) sin(na,t)dt = % I 3sin(nt)dt = % [— cos(nt)]g = % [— cos(nr)+ cos(O)] =3 [1 —(=1)" ]
0 0

nrw
{6 n=odd

0 n=even

(b) By inspection, we note that the time period 7y = 27, which implies that the fundamental frequency
oo = 1/T.

Since the CTFS coefficient ao represents the average value of the signal, therefore, ao = 0.75.

Using Eq. (4.31), the CTFS cosine coefficients a,’s, for (rn # 0), are given by



(©)

(d)
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T/2

=2 j x(t)cos(nwyt)dt = 2 j x(t)cos(nayt)dt = 2 j 0.5cos(nw,t)dt + j cos(nw,t)dt

Tﬁ’f 2

= nw - [sm(na)ot)] T [sm(na)ot)]ﬂ2
[sm(na) T/2)] ,m[sm(na) T) sin(naw, T/2)] [ a)0T=7r]
sm(mz') T sm(nﬂ /2)=—=1 sm(nﬂ /2)

0 n=even

=1-L p=4k+1

L pn=4k+3

nr
Since x2(%) is even, therefore, the CTFS sine coefficients b, = 0.

By inspection, we note that the time period 7, = T, which implies that the fundamental frequency
Wy = 21/T.

Since the CTFS coefficient a, represents the average value of the signal, therefore, aq = 1/2.
Since the function [x3(¢) — 0.5] is odd, therefore, the CTFS cosine coefficients a, = 0, for (n # 0).
Using Eq. (4.32), the CTFS sine coefficients b,’s are given by

2%
b, = T .[ (1 - ?J sin(nwgt)dt

2 —cos(nwyt) [_ l) o sin(nwyt) !

T (nwy) T (”(90)2 0

2 (l} N sin(nwyT) N _(l} 8 sin(0)

T (”(00) T)  (nog)*  \T) (ne)’
— 2 —

anT nm

By inspection, we note that the time period 7, = 27, which implies that the fundamental frequency
Wy = /T.

Using Eq. (4.30), the CTFS coefficient 7} is given by
z T
ay=5p J x(t)dt=%jx(t)dt=%><%:%.
-T 0

Using Eq. (4.31), the CTFS cosine coefficients a,’s, for (n # 0), are given by
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T
a,= % I x(t)cos(nw,t)dt = %

-T

O

T T
(1-£) cos(nw,t)dt = % I cos(nw,t)dt — 2 I tcos(nayt)dt
0

even function 0

2 . T 2 . T
= T [s1r1(na)01,‘)]0 "o T [cos(na)ot) + nw,t sm(na)ot)] .

=-Z [sin(nw,T) - 0] - ﬁ [cos(nw,T) + na,T sin(new,T) —1] [ o, =7]

2 __2 ; —
=-=sin(nr) o [cos(mr) + nzsin(nr) 1]
=0

0 n=even

:"22”2[1_(_1)n]:{niz ol

Since x4(?) is even, therefore, the CTFS sine coefficients b, = 0.

(e) By inspection, we note that the time period 7, = 27, which implies that the fundamental frequency
Wy = 7/T.

Using Eq. (4.30), the CTFS coefficient T} is given by
27 T T r
aozflrjx(t)dtz%j[l 0.5sin (& ] :iTJ. —ﬁjsm(%)dt
0 0 o 0

Lo dstyloos]] =+ g foostr) —cos(0)] =4 - = 5L

Using Eq. (4.31), the CTFS cosine coefficients a,’s, for (n # 0), are given by

T T
%J‘ 1-0. SSln(%)] cos(nwyt)dt = %J‘cos(na)ot)dt —%J‘s ”7 cos(nawyt)dt
0 0 0

=4 =B

where Integrals 4 and B are simplified as

A_

[sin(nw,1)]; = [sin(nw,T) - 0] = 7= [sin(n7) - 0] = 0

na)T

T T
B= %Js (”7) cos(naw,t)dt = iTI ”7 cos dt =47 j[sm Zn+1)— s1n(”’ (n-1) ]dz
0 0

= % x 7”(”1%)” [cos”?’(n + 1)]0 + ﬁ x 77[(”_1)” [cos”?’(n - 1)]0 [for n=1]
[1 —cosz(n+ 1)] - %[1 —cosz(n-— 1)]

1#n=o0dd { 0 1#n=o0dd

0
2 2 _ 1
dz(ntl)  dn(n) = even )

— 1
T 4z(n+l)

n=even

For = = 4TJ‘smM X5 [cos 2”’] =$[1—cos27r]=0-
0 n=odd
In other words, B=
——L _ p=cven
z(n*—1)

which implies that
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0 n=odd
a,=A-B=3

2oy h=even

Using Eq. (4.32), the CTFS sine coefficients b,’s are given by

=55 I 1—-0.5sin (”7)} sin(naw,t)dt = Ism(nwot)dt % (”7) sin(nw,t)dt

O'—n’ﬂ

=C =D

where Integrals C and D are simplified as

0 n=even

2 p=odd

nrw

C= iy T[ cos(nw, t)] [ cos(nw,T") + cos(O)] = [1 cos(n;z)] {

T T
D=3 [sin(%)sin (22) dt = & [ [ cos & (n — 1) — cos (2 (n + 1)) |dt
0 0

= a7 % Z=D)/T 1)/T [sin5(n~ 1)] ar ﬂ(n+1)/T [sin 5 (n +1)] [for n=1]
= m [sm m(n—-1)— sm(O)] - m [sm r(n+1)— sm(O)]
=0 [for n# 1]
For(n=1),

T T
D= %J‘ sin® (%) dt = ﬁj[l - COS(%)J dt =| =gz [ sin MJZ =3
0 0 —_—

=0

1 n=1
In other words, D=
0 n>1
0 n=even
Therefore, b=C-D= %—% n=1 I
% 1#n=o0dd
Problem 4.7

By inspection, we note that the time period 7, = 7, which implies that the fundamental frequency w, =
27/T.

Using Eq. (4.30), the CTFS coefficient a, is given by

1 T/2
ay="; J.S(t)dt—F

-T/2

Using Eq. (4.31), the CTFS cosine coefficients a,’s are given by
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T/2

a, =— IS(I) cos(nwt)dt =£ cos(nwgt) =—
T T _
-T/2 t=0
Using Eq. (4.31), the CTFS sine coefficients b,’s are given by
T/2 )
b, == j 8(f)sin(nwyt)dt =—sin(nwyt)|  =0.
r r =0
-T/2

The value for b, can also be derived by noting that x(¢) is an even function. For such functions, the
CTFS coefficient b, = 0.

Problem 4.8
(1)  x1(9) = cos(7¢) + sin(15¢ + ©/2) = cos(7¢) + cos(15%).

The fundamental frequency of cos(7¢) is given by ®; = 7, which implies that the time period of
this term is 7 = 2n/7. The fundamental frequency of cos(15¢) is given by m, = 15, which implies
that the time period of this term is 7, = 27/15.

L 15

Since the ratio =
T,

is a rational number, x;(¢) is periodic with the overall period 7y, = mT, = nT, = 2n. The
fundamental frequency is given by @ = 1.

The CTFS expansion x(t)=ay+ z (a” cos(nt)+b, sin(nt))
n=1
we note that ay=0, a;=1, and qg5=1.

The remaining coefficients are all zero.

In other words,

P (S 2 R
=% 4=10 otherwise ¢ “nTYs

with the fundamental frequency w, = 1.

(ii)) The fundamental frequency of sin(2¢) is given by w; = 2, which implies that the time period of this
termis 7] = .

The fundamental frequency of cos(4¢ + ©/4) is given by @, = 4, which implies that the time period
of this term is 75> = /2.

L
T2

Since the ratio =2

is a rational number, therefore, x,(¢) is periodic with the overall period Tp = mT, = nT, = . The
fundamental frequency is given by wy = 2.

Comparing x,(¢) = 3 + sin(2f) + cos(4t + n/4) = 3 + sin(2¢) + 0.707cos(4¢) — 0.707sin(4¢)



(iii)

(iv)
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with the CTFS expansion x(f) =ay + Y_(a, cos(2nt) + b, sin(2nt))

n=1
we note that ay=3, b =1 a,=0.707, and b, =-0.707

The remaining coefficients are all zero.

0707  n=2 ! n=1
In other words, ay =3, a, = 0 otherwise and b, =1-0.707 n=2
0 otherwise,

with the fundamental frequency w, = 1.

The fundamental frequency of exp(j2¢) is given by ®; = 2, which implies that the time period of
this term is 7 = m.

The fundamental frequency of exp(j5¢) is given by w, = 5, which implies that the time period of
this term is 7, = 27/5.

The fundamental frequency of exp(—j37) is given by ®; = 3, which implies that the time period of
this term is 73 = 27/3.
Since the ratios ﬂzé, ﬁzé, and ﬁzé

, 2°T, 2 T
are all rational numbers, therefore, x;(f) is periodic with the overall period Ty = mT; = nT, =
pT5 =2mn. The fundamental frequency is given by my = 1.

Comparing

x3()=12+exe’ + e/ xe/™ e/ xe™ /3!

=1.2+excos(2¢t) + jexsin(2t) + e/? x cos(5t) + jej2 x sin(5¢) + e /% x cos(3t) — je_-"2 x sin(3t)

with the CTFS expansion x(f) =ay + Y_(a, cos(2nt) + b, sin(2nt))

n=1

we note that

e n=2 je 2 n=2

_ _ e /? n=3 _J-Jje’ n=3

aO - 12, an - 612 n= 5 and bn - je]2 n= 5
0  otherwise 0 otherwise

with the fundamental frequency w, = 1.

Because of the exp(z + 1) term, the signal x4(¢) is not periodic. Therefore, the CTFS expansion
cannot be obtained.
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Problem 4.9
b /2
By definition, D,=— J' x()e " d
Ty
-T,/2
P ! 7,/2
which is expressed as D, =— I x(t)e " dt + — I x(t)e " g |
T, T,
-T,/2 0
Y B
Substituting ¢ = —o. in Integral A, we get
P ! 7,/2
A=— [x(-o)e*(~da) = — [x(-o)e’" " dar.
T, T,
T,/2 0

Since x(¢) is an even function, therefore, x(—a) = x(a) and the above integral reduces to
7,/2
A=— Ix(oc)e-]”m"“doc )
T, 0

Substituting the value of Integral A from the above expression, the exponential CTFS coefficients are
given by

| T,/2 | 7,/2
D, = [y dt+— [x(t)e™ " dr
1y 0 T, 0
! T,/2 5 7,/2
or, D, =— J.x(z)[ef”““’ +e’f”‘”0t] dt =— Ix(t) cos(nwyt)dt . i
T, 0 T, 0
Problem 4.10
7,2
By definition, D,=— j x()e " d
Ty
-T,/2
P 0 ‘ = /2 ‘
which is expressed as D,=— jx([)e‘f”‘”ofd[+_ Ix(l)e_f”motdt.
T T,
-T,/2 0
y B

Substituting ¢ = —o in Integral A, we get
1 0 ' T,/2 )
A=— jx(—a)ef”‘”o‘* (—do) = — jx(—a)ef"‘”o“da .
Ty Ty
T,/2 0
Since x(#) is an odd function, x(—a) = —x(o.) and the above integral reduces to
T,/2

A=—L j x(o)e "% doy .
I i
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Substituting the value of Integral A from the above expression, the exponential CTFS coefficients are
given by

T/2 ! T,/2
D, =—— | x(t)e” ™ dr + x(t)e " dt
- aoetas |
| B2 T
- _ Jnagt —jnwot _4J .
or, = j x()] e ] dt= T ! x(¢)sin(nayt)dt . |

Problem 4.11

(a) By inspection, we note that the time period 7 = 2w, which implies that the fundamental frequency
o = 1. Using Eq. (4.44), the DTFS coefficients D,’s are given by

L gera L] P o) oo
D, =— |x(t)e "'dt =— [3e /"dt = 5
—jnn
_0/2 ]2nTE(1 e ) n#0.
3 _
3 2 n=0
or, D, =— (1 —(—1)”): 0 evenn,n=#0.
j2nm
— odd n
jnm
The magnitude and phase spectra are given by
%, n=0
Magnitude Spectrum: |Dn| =40, evenn,n=+0.
n—3ﬁ, odd n.
0, evenn
Phase Spectrum: <D, = —%, oddn,n>0
%, odd n,n<0.

The magnitude and phase spectra are shown in row 1 of the subplots included in Fig. S4.11.

(b) By inspection, we note that the time period 7, = 2 7, which implies that the fundamental frequency
o = 1/T. Since x(¢) is an even function, therefore, the DTFS coefficients D,’s are given by

1 0.5T 1
7.2 j05dt+— Idt_025+05 0.75 n=0
D, = FO Ix(t) cos(nwyt)dt =4 50T 0.57
0 IO 5cos(nwyt)dt +— Icos(noaot)dt n#0.

OST

For (n # 0), the DTFS coefficients are given by
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05T 1
+_

_ 0.5 [sin(nmot)]
or, Dn = 7 —nwo 0 T

. T
o] 05 fi00 Sum) — 25in(0.5mm)] = -2 sin(0.5mm).
noy dosr g nn

Combining the above results, we get

3 _
Z n=0
0 evenn,n #0.
D, = |
_W oddn,n=(4k+1)
1 _
Tl odd n,n = (4k + 3).

The magnitude and phase spectra are given by

%, n=0
Magnitude Spectrum: |Dn| =4 0, evenn,n=0.
1
W’ odd n.
0, evenn
Phase Spectrum: <D, =3mn, oddn,n=(4k+1)

0, oddn,n=(4k+3).

The magnitude and phase spectra are shown in row 2 of the subplots included in Fig. S4.11.

(c) By inspection, we note that the time period 7y = 7, which implies that the fundamental frequency
o = 21/T. Using Eq. (4.44), the DTFS coefficients D,’s are given by

G ;
_ —jnoyt _ _t ), Jnoyt _
Dn—T-([x(t)e dt—T_([(l Lo gp=y

For (n #0), the DTFS coefficients are given by

T , — jnot —mont 77
o= -l I-HES-HHE0]
J 0

which reduces to

1 e /neld 1 Ty
(=jnwo) (= jnwy) (—jneg)” |, J2nm

Combining the two cases, we get

%, n=0
D, =1 ]
T n#0.

The magnitude and phase spectra are given by



(d)

(e)

Solutions

1 =0
. 2 n=
Magnitude Spectrum: ID,|=4 |
——, n=#0.
Z‘n‘rc
0, n=0
Phase Spectrum: <D,=4 051, n<0
—0.5n, n>0.

The magnitude and phase spectra are shown in row 3 of the subplots included in Fig. S4.11.

135

By inspection, we note that the time period 7, = 2 7, which implies that the fundamental frequency

o = 1/T. Since x(f) is an even function, the DTFS coefficients D,’s are given by

T
1
L ?J.(l—%)dt:O.SO, n=0
D, = . J.x(t) cos(nwgt)dt =4 0
° o L £)eos(nanrdr, 0.
Ty
For (n # 0), the DTFS coefficients are given by
T
1 1 \sin(nwy?) \— cos(nwt)
D, =—|-%)cos(nwyt)dt =—|1-% 0 _(-L ,
Tg( d 77 N D

which reduces to

(nm)>  (mm)* | (nm)?

D :|:0_0_COS(}’ITC)+ 1 }:l—(—l)”

Combining the two cases, we get

%, n=0
D,=37 0, evennn=#0
2 oddn,n#0.

(nm)?

Since D, is always positive, its phase spectrum is 0.

The magnitude and phase spectra are shown in row 4 of the subplots included in Fig. S4.11.

By inspection, we note that the time period T, = 2 7, which implies that the fundamental frequency

o = 1/T. For (n = 0), the exponential DTFS coefficients is given by

2T T T T
D, = [ x(@)dt =5 [[1-0.5sin (%) |dt =5 [ dt - [ sin (%) dt
0 0 0 0
=14+ bxtdo [cos(%’)]g =14 _Lcos(r)-cos(0)]=1--L

For (n = 0), the exponential DTFS coefficients is given by
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T T T
D, =37 [[1-05sin (%) e dt =3 [ e dt — 3 [ sin (2) e "t -
0 0 0

=4 =B

Solving for Integrals A and B, we get

e " dt = 7_1.2,116(“ [e’j”‘”“’ ]OT = _jém [e'-’”” - 1] = ﬂﬁ [1 —(- l)n]

=L
A=3r

S —y

and

CTFS coefficients for x1(t), Fig. P4.6(a)

CTFS coefficients for x1(t), Fig. P4.6(a)

n
CTFS coefficients for x5(t), Fig. P4.6(e) CTFS coefficients for x5(t), Fig. P4.6(e)
T TrT TSI TTOTOCT 2r T T T T T T T ST T

Fig. S4.11: Magnitude and phase spectra calculated in P4.11 for the periodic functions
shown in Fig. P4.6.



Solutions

T T T
B [sin(2)e Par =L [[eF - e Far =L [[ 7 -7 |
T AT T 8T RT
0 0

T

0
S U D b S s
ST[ —jnz € ez € . for n #+1

= %[(n-lnn (e—j(n—l)zz _ 1) _ ('H]l)” (e—j(n+l)7r _ 1)]
i S e D
= o 1+ 7]

For n =+ 1, Integral B reduces to

t =j2at —j2nt T
Forn=1, B—%I[l—eT}dtZ%[t+.Le T } =TI -1
0

J J2m . ST 8
oo I
and Forn=-1, B:J.SITﬂejf” _th:ﬁ%[_j%e 5 _tl :;877}:_%.
+ % n==1
In other words, B=
{4,,(,, ) [ +(=1) ] otherwise
Combining, the above cases, the CTFS coefficients can be expressed as
173 n=0
D, = jznn[l D ]¢%¢ n=+1
]2n;z [1 (_l)n] " (,, 5 [1 +(=1)" ] otherwise
%(1 - %) n=0
= ‘T'j(% _é) n=xl1
4,,(,12,1) [1+ (_l)n]+ _,'21;1;; [1—(—1)"] otherwise
3(1-7) n=0
+J ( ¥ —é) n=xl
) 2”(;2_1) 0#n=even
jn% t1#n=o0dd

1(1-1) n=0 [~=0.3408 n=0

l—l = I =+

Magnitude Spectrum: | _J 7 * n_il_ 0.1933 n=xl
n _ ~ 01592 —

Zn(iz—l) 0+n=even o 0+#n=even

% +1#n=o0dd z70.3‘nl‘83 t1#n=o0dd

137
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0 n=even 0 n=even

Phase Spectrum: £D, = A(Fj) n=%l =<-Z  n=odd,n>0

2

£(5) tl#n=odd |35 n=odd,n<0

The magnitude and phase spectra are shown in row 5 of the subplots included in Fig. S4.11.

Problem 4.12

By inspection, we note that the time period 7, = 7, which implies that the fundamental frequency w, =
m/T.

Using Eq. (4.44), the exponential CTFS coefficient D,’s are given by

1 TTZ ~ 1! f —_—
D,=— |x(t)e/"™dr=— |8(t)e /"dt =—
Ty _ V)2 T i T

The magnitude spectrum |D,| is constant at 1/7 for all values of n. The phase spectrum <D, is always 0.

Problem 4.13

In each case, we show that the exponential CTFS coefficients obtained directly from Eq. (4.44) are
identical to those obtained from the trigonometric CTFS coefficients.

(a) From the solution of Problem P4.6(a), we know that

6

2 n=odd

a,=+, a,=0,and bﬂ:{”” .
0 n=even

Using Eq. (4.45), the exponential CTFS coefficients for x1(#) are given by

a n=0 a, n=0

0
D,=<%(a, - jb,) n>0 =1-1jb, n>0 [ a,=a,=0]
%(afn—'_jbfn) n<0 %jb’" n<0
3 n=0 5 10
0 n=even 2
= =50 n=even
—j= n=o0dd,n >0
- - n=odd
—j= n=odd,n <0 /
(b)  From the solution of Problem P4.6(b), we know that
0 n=even
ay=%> a,=—Lsin(nz/2)={—-L n=4k+1,and b, =0.
L pn=4k+3

nw

Using Eq. (4.45), the exponential CTFS coefficients for x2(¢) are given by



Solutions

: : n=0
0 0+#n=even 0 0#n=even
- n=4k+1 - n==1,45,...

1 n=4k+3

n=13+7,...

2nz

(c)  From the solution of Problem P4.6(c), we know that
a :%, a,=0, and b, :#.
Using Eq. (4.45), the exponential CTFS coefficients for x3(¢) are given by

a, n=0 a, n=0
D, =1%(a,-jb,) n>0  =9-3jb, n>0 [+ a,=a,=0]
(a +jb7n) n<0 Ljb, n<0

o=

4 n=0
=<—j 7 n>0 :{ ’

;1
o oy n<0

(d) From the solution of Problem P4.6(d), we know that

0 n=even

a4y =7 an=n§rz[l—(—1)"]={ 4 »and b, =0.

5 N =odd
n-r”

Using Eq. (4.45), the exponential CTFS coefficients for x4() are given by
a n=0 a, n=0
D,=4 %(a,—jb,)=3%a, n>0 =44a, n>0 [ b,=b,=0]

1 7 )=l 1
a,+jb,)=%a, n<0 za., n<0

1
2 1

) I’IZO
0 0#n=even
=1, 4 5 =< 0 O#n=even.
TE n=odd,n>0

2 n=odd
11— 5= n=odd,n<0 n

nmw

(¢) From the solution of Problem P4.6(e), we know that

-1
70D 2 1 %1 =odd

139
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Using Eq. (4.45), the exponential CTFS coefficients for x5(7) are given by

(n="0): D, =1-4
(n=1): D, :%(al—jbl):—%(%—%):j(%—%)
(n=-1): D, :%(al+jb1):§(%—%):—j(%—%)
—ﬁ n=odd jn%r n=odd
(n>1): Dn:%(an_jbn)_ =
L n=even L n =even
27(n*-1) 27(n"-1)

(n<-1): D,=%(a_, + jb

):{é(_ﬁﬁ) nzodd:{ L n=odd
2

n=even

Combining the above results, we obtain

-1 =0
b +j(t-4) n==1 I
L 0#n=even
27z(n"-1)
,-n% +1#n=odd.

Problem 4.14
Problem 4.11(b) computes the exponential DTFS coefficients of x2(¢) as

x2(0)«E 5 pr = —Esin(O.Snn)
nm

with fundamental frequency w, = n/T. Differentiating x2(¢) with respect to ¢, we get

= 20.55(t=0.5T —2kT)—~ > 0.55(¢ +0.5T —2kT),
f=—00

m=—o0

dx2(t)
dt

0.5g(t) 0.5g(t+T)

where the first term g(f) represents an impulse train with period 7, = 27 and with impulses located at
(772 + 2kT). Using the time differentiation property,

dx2(t) cTFs . x gJnm 0.5 . N
——¢—— jnwyD, =—x——=—sin(0.5n7) = — j —sin(0.5n7
dt JNOyLy T nm ( n ) ]2T ( n )
implying that 0.5g(t)—0.5g(t+ T)(ﬂ)—j%sin(o.Smc) .

Using the time shifting property,
g(t)-g(t+T)« 5 pg (1 — e/l ): D¥ (1 - ef’”“)

with D$ representing the exponential CTFS coefficients of g(¢). Hence,

DS (1 - ef”“)z - j%sin(O.Snn)
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DE = _]L Sin(O.Sm'c) _ _]l SiIl(O.SI’lTC) _ e—jm‘t/Z I
S T ™2 2)sin(05mm)) 2T

Problem 4.15

(i)

(i)

(iii)

As shown in Problem P4.8(i), x1(¢) is periodic with the overall period 7 = 21 and fundamental
frequency wp = 1. The function x,(¢) can be expressed as follows:

x,(t) = cos(7t) + cos(15t) = L&/ +Le /7 4L/ Lo/
Comparing with the exponential CTFS expansion with @y = 1,

x(1) = iDn exp(jnt),

n=1
we note that D;=D_,=05 and D;5=D_5=0.5.
The remaining coefficients are all zero.

As shown in Problem P4.8(ii), x,(¢) is periodic with the overall period T, = ® and fundamental
frequency ®, = 2. Expanding

Xo(¢) = 3 + sin(2f) + cos(4t + n/4)

a1 g2 1 _—j2t | 1 _jnl4_jar 1 _—jnl4 —jht
as xz(t)—3+jze Se +5e el + e e

Comparing with the exponential CTFS expansion with wy =2,
x()= D, exp(j2nt).

n=1

we note that

—jn/4 : . i/ 4
D_2=%e JT N D_lz‘]%, D0=3, Dlz_‘]% al’ld Dzzéeﬂt .
The remaining coefficients are all zero.

As shown in Problem P4.8(iii), x5(¢) is periodic with the overall period 7, = 2n and fundamental
frequency o, = 1. Expanding

X (1) =12+ /2 4 /6D 4 o/ C1+2)
as x3(t)=1.2+e><ej2t+e12xef5’+e—12><e—j3t'
Comparing with the exponential CTFS expansion with @y =1,

X(©)=3 D, expljnt)

n=1

we note that

D 3= e_jz, DO = 12, D2 =e, al’ld D5 =ej2 .

The remaining coefficients are all zero.
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(i)  Since the signal is not periodic because of the exp(z + 1) term, the exponential CTFS expansion
cannot be obtained.

Problem 4.16
For the impulse train pt)= z 8(1‘ - 2kn)ﬂ> E = 2L
yis
k=—o0
with period 7, = 2r and fundamental frequency m, = 1.
. dx(t) ~ -

Expressin —= oMt +Z —2km)— olt — % —2km),

P s dt k;oo ( ! ) k:z—oo ( ! )

p(t+m/4) p(t—m/4)

and using the time shifting property, we observe that

dx(t ; _i
d( ) CTFs e_]noaort/4En e _]n(nort/4En .
t

dx(t) cTFs

Substituting wy = 1, we get gy

2jsin(0.25nm)E,, .

Using the time differentiation property,
jnwgD, =2 jsin(0.25rm)E, ,

o, D, =2sin(0.25nm)E,, .
Substituting E, = 1/27, we get D, = 1-sin(0.25n7) = 4 x smég:i’;”) =+sinc(0.25n). i
Problem 4.17

Example 4.14 derived the exponential DTFS coefficients of the square wave with the duty cycle (t/7) as
D, = %sinc(ﬂ) .

n T

(1) For T'= 5 ms, the fundamental frequency is fo = 1/T = 1/5ms = 200 Hz, while the fundamental
angular frequency is oy = 27tfy = 4007 radians/s. With T = 1ms, the exponential CTFS coefficients
are given by

D, = Lsincle).
which are plotted in Fig. S4.17(a) in terms of two scales: (a) number n of the CTFS coefficients;
and (b) the corresponding frequency = nfy in Hz.

(i) For T = 10 ms, the fundamental frequency is fo = 1/7 = 1/10ms = 100 Hz, while the fundamental
angular frequency is @y = 27fy = 200w radians/s. With T = 2ms, the expression for the exponential
CTFS coefficients stay the same as in part (i) and is given by

_ 1 n
D, _gsmc(g) s

which are plotted in Fig. S4.17(b) in terms of two scales: (a) number 7 of the CTFS coefficients;
and (b) the corresponding frequency f'= nfy in Hz.
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02 ® [ ]
0.15
0.1
0.05
welle 1 1 °%°%
°ile 0le® .
13 10 -3 0 3 10 13
-3000  -2000  —1000 0 1000 2000 300
(@)
0.2 o’e 02 r 3
0.15 0.15
0.1 0.1
" oo, TS, o "~ 2l a
o2 o o L
0‘%- ‘Mr 'kﬂ‘ ®op it Sagen? ) O‘NM W W e .
-30 —20 10 0 T 10 20 30 -60 40 -20 0 20 40 60
3000 2000 —1000 0 1000 2000 3000 3000 -2000 1000 0 1000 2000 3000
(b) (c)

Fig. S4.17: DTFS coefficients for Problem 4.17.

(iii)) Finally, for T = 20 ms, the fundamental frequency is fo = 1/7 = 1/20ms = 50 Hz, while the
fundamental angular frequency is @y = 27tfy = 1007 radians/s. With T = 4ms, the expression for the
exponential CTFS coefficients stay the same as in parts (i) and (ii) and is given by

D, =%sinc(%) ,
which are plotted in Fig. S4.17(b) in terms of two scales: (a) number 7 of the CTFS coefficients;
and (b) the corresponding frequency f'= nfy in Hz.
From Fig. S4.17, we make the following observations.

DC Coefficient: Keeping the duty cycle (1/7) of the square wave constant maintains the same dc
or average value of the signal. Therefore, the dc coefficient D, stays the same for the three
representations.

Zero Crossings: Since the duty cycle (1/7) is kept constant, the width of the main lobe and side
lobes of the discrete sinc function stay the same in the discrete (#) domain. A change in the
fundamental frequency causes the widths to be different in Hertz.

Problem 4.18

(a) Intime domain, the average power of x1(¢) is given by

Loz, LT, 9
Py =Fj|xl(t)| di =Ej9dt ==
0 0

Using the Parseval’s theorem, the average power of x1(¢) is given by

Pa= SIof =l 2 S =225 ¥

= 1
—.
n=—0 n=1,3,5,... n=1,3,,.. 1

a

Using the results of Problem 4.21, we know that
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TE_2—1+L+L+L+L
8 3252 72 92
2
which gives P, =225 +Ex%=4.5.
T

(b) In time domain, the average power of x2(¢) is given by
P, =—j| 20) dt = —[0 25T +T]=0.625.

Using the Parseval’s theorem, the average power of x2(¢) is given by

Pa= S ppf o2 Sipfeied 3k

n=—c0 n=1,3,5,.. n=1,3,5,.. ”

Using the results of Problem 4.21, we know that

9 2 % 10

which gives P, =—+—><—:E=O.625.

(¢) Intime domain, the average power of x3(¢) is given by
= —j|x3(z)| dt = ——[(1 —t/T) ]O =

Using the Parseval’s theorem, the average power of x3(¢) is given by

Po= SIDL=pf 2 S te 2 3 L

n=—o0 n=1,2,3,...

—2—1+ ! +L+ ! ! +
6 22 3% 42 5
2
which gives P, =l+ixn— =l.
4 47> 6 3

(d) Intime domain, the average power of x4(¢) is given by
I TPCI Il [

P =— |4 dt==|(-t/T)*dt =——=|1-1/T)* |, ==

4 2T_jT| ) T!( V= |1-0/T) |y =

Using the Parseval’s theorem, the average power of x2(¢) is given by

= 1
- S fepf e Spfege 3o

n=—oo n=1,3,5,.. n135
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2
Using the result 1+L4+L4+L4+i4+...=1.0147=n—
35T 79 96
1 8 n?
which gives P,=—4+—x—=—.
g “T T2 06 3 !

Problem 4.19

(a)  Within one period ¢ = [0, 27], function x1(¢) is absolutely integrable as

ThKﬂWt:T&h:3m
0 0

Function x1(¢) has only one maxima and one minima within one period, hence, has bounded
variations.

Finally, there are only two discontinuities within one period.
Function x1(¢) satisfies the Dirichlet conditions.

(b)  Within one period 7 = [0, 2 7], function x2(¢) is absolutely integrable as

2T
[P2(0)ldr =1.57.
0

Function x2(f) has only one maxima at and two minimas within one period ¢ = [0, 7], hence, has
bounded variations.

Finally, there are only two discontinuities ¢ = 7/2 and 37/2 within one period ¢ = [0, 7].
Function x2(7) satisfies the Dirichlet conditions.

(c)  Within one period ¢ = [0, 7], function x3(¢) is absolutely integrable as
T
T
yﬁmW:E.

Function x3(¢) has only one minima and one maxima within one period ¢ = [0, 7], hence, has
bounded variations.

Finally, there are only one discontinuity at # = 0 within one period ¢ = [0, 7].
Function x3() satisfies the Dirichlet conditions.

(d)  Within one period ¢ = [0, 2 7], function x4(¢) is absolutely integrable as

2T
j|x4(t)|dt =T.
0

Function x4(f) has only one minima and one maxima within one period ¢ = [0, 2 7], hence, has
bounded variations.

Finally, there is no discontinuity within one period 7 = [0, 2 7].
Function x4(¢) satisfies the Dirichlet conditions.

(¢)  Within one period 7 = [0, 2 7], function x5(¢) is absolutely integrable as
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j|x5(t)|dt (m-T
2n

Function x5(7) has only one minima and two maximas within one period ¢ = [0, 2 7], hence, has
bounded variations.

Finally, there is no discontinuity within one period ¢ = [0, 2 7].

Function x5() satisfies the Dirichlet conditions. I
Problem 4.20
Determine if the following functions satisfy the Dirichlet conditions and have CTFS representation.
1 x(@®)=1/t,t=(0,2] and x(z) = x(¢t +2);
(i) g()=cos(n/2t),t=(0,1]and g(t)=g(t+1);
(ii1)  A(r) =sin(In(?)), t= (0, 1] and A(¢) =h(t+1).
Solution:
@) j.|x(t)|dt = Jz-ldt = ‘—Lz =0
0 0! 2%y
As the function x() is not absolutely integrable, x(f) does not satisfy the Dirichlet conditions.
(il)) As shown in Fig. S4.20 (top plot), function g(¢) has an infinite number of maximas and minimas
in one period. Therefore, g(¢) does not satisfy the Dirichlet conditions.
(i)  As shown in Fig. S4.20 (bottom plot), function /(f) appears to satisfy the Dirichlet conditions.

However, Matlab is not able to plot all the peaks because of its limited resolution. When
t =(0,1], In(¢) = (-00,0] and is a CT function. The function sin(In(z)) will have a maxima every

27 interval of In(z) implying that the total number of maxima’s are infinite. The function A(f)
therefore does not satisfy the Dirichlet conditions.

Problem 4.20, part (ii)

cos(/2t)

gv =
s

time (t)
Problem 4.20, part (iii)

sin(In(t))

h(t)

timé ()

Fig. S4.20: One period of the functions g(¢) and /(¢) in Problem 4.20(ii) and (iii).
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Problem 4.21

Example 4.9 derived the trigonometric CTFS coefficients of the triangular wave f{¢), shown in Fig.
S4.21, as follows

f@)= n=§5,m (n2n4)2 cos(0.5nmt)= %[COS(O.SM‘)-F%COS(l.STCt)+SLZCOS(2.57U)+ %COS(S.SMH - }

Substituting (¢ = 0) on both sides, we get

24 & 1 24 1 1 1 1
f(o):_z Z _2:_2|:1+_2+—2+—2+—2+...:|.
T =135, T 3 5% 779

Figure S4.21: Periodic signal f{t) considered in Problem 4.21.
From Fig. S4.21, we note that f(0)=3.

Equating the above two equations, we obtain

2 o0

T 1 1 1 1 1

—= E —=l+—=+—=+—+—+...

8 n:u’imnz 3252 72 92 !

Problem 4.22

From the solution of Problem 4.6(c), we know that the trigonometric CTFS expansion of the half
sawtooth wave is given by

1 &1
3t)=—+ Y —sin(Runt/T
x3(0) = Zm (2nmt/T)

n=1

1 - 1 1 1 1 1 1 1 1
Substituting ¢t = 7/4, we get x3(T'/4)=—+ » —sin(nn/2)=—+—|1l——+———+———+—...
g get x3( ) z T (nm/2) 2 n[ 3 5 7 9 11 }

n=1

Since x3(774) = (1 — (T/4)/T) = 0.75, therefore,

0.75=l+l 1—l+l—l+l—i+—...
2z 3 57 9 11

e T w1 - 1 1 1
which implies that Z=Y) —x(-D)" =l e —
P 4 Z}n D 3 5 7 I
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Problem 4.23

From the solution of Problem 4.11(c), we know that the exponential CTFS expansion of the half
sawtooth wave is given by
1
> n=0
2 b
D, Z{ 1

A n#0.

Computing the power from the exponential CTFS coefficients, we get

poSpplyy L Lo 1 1 11
x nzz_ol n| +n=z_oo4n2n2 4+ ;4’12752 4+2TEZZ 2

ENGI e

Computing the power in the time domain, we obtain

Ve a2, Loty 1 o 1
Px:?.[|x3(t)| dt:?.[(l—7J dt=7x(—T/3)(l—Fj =X (T/39x (0= ==
0 0 0
Equating the two expressions for the power
1 1 l — 1
EpaEp Iy
or. n—zziizl+i+i+i+i+i+... i
’ 6 nt 22 3 4 ¢

Problem 4.24
(i)  The transfer function H() is given by

o0

0 0
H(w)= J.efz‘t‘e*jwdt =J. e e s + J’ezte*jwtdt
0

—00 —00

0

0

_ 1 o2+ jo) 1 o2 j0)
(-2- jo) o (2+jo) .
=+x[0—1]+ 1, x[1-0]= 4 5

(-2-jo) 2+ jo) 4+

(i1)  Since the transfer function H(®) is real valued, therefore, its magnitude spectrum

4
|H (o) = H(w) = Pl
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Magnitude Plot for 4(¢) = exp(-2)

1 /TN

0.8 / \
z 0.6

|H(®

0.2

frequency (®)
Fig. S4.24: Magnitude spectrum for A(¢) = exp(-2¢|)
The magnitude spectrum |H(®)| is shown in Fig. S4.24.
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(iii)) The exponential CTFS coefficients E, of the output signal y(¢) are given by E, = D, H(®,) where
oo = 2n/T and D, are the exponential CTFS coefficients for the input signal. As found in P4.12,

the exponential CTFS coefficients for the input impulse train are given by:

p T2 |

_ — jno,t - —jnt -

Dn—TO j x(e "t = j Syt =
-T,/2 -T/2

The exponential DTFS coefficients £, are then given by

£ _l[ 4 } B AT
" T4+ 0 gamr | AT? +2nm)? |

In the time domain, the output signal is expressed as

y(t) _ ZEne]nwot _ Z e_]2n1'tt/T )

T? + (mc)2

n=—x n=—0

Problem 4.25
(i)  The transfer function H() is given by

H(w) = T(ezz Lo )e—jwtdt =T€(2+jw)tdt—]ge(4+jm)tdt
0 0 0

o0 o0

-1 _ . -1 _ .
e 2+ jo)t e (4+ jo)t

T2+ jo) . (4+jo) .
:_—lx[()_l]__—lx[o_l]: 2
2+ jo) 4+ jo) 2+ jo)(4+ jo)
(ii)) The magnitude response is given by
2

)= \/(4+w2)(16+032) '

The magnitude spectrum |H(w)| is shown in Fig. S4.25.
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Magnitude Plot for A(f) = [exp(—2¢) — exp(—41)] u(f)

0.25 /
0.2
3 015
T
0.1
0.05 — S
-8 —6 -4 -2 0 2 4 6 8
frequency (®)

Fig. S4.25: Magnitude spectrum for A(¢) = [exp(—2f) — exp(—41)] u(?).

(iii)) The exponential CTFS coefficients E, of the output signal y(¢) are given by E, = D, H(wo) with @
= nt/T. For the raised cosine wave, the exponential CTFS coefficients D, are given by

0.75 n=0
Dy =1_03 Gn0.5nm) n=0-

nm

Therefore, the CTFS coefficients £, of the output signal y(¢) are given by

0.75 n=0
2
E, = . . X4 0.5 .
{(24—]0))(4-}-]&))10_"”” ———sin(nz/2) n#0
nrw

1/4 n=0 3/4 n=0
= 277 X3 0.5 .
- - n#0 —Esm(nﬁ/Z) n#0
(2T + jnm)(AT + jnrx) nx
3/16 n=0
=1 T?sin(nz/2) 20
nm(2T + jnx)(4T + jnr) '
In the time domain, the output signal is expressed as
0 o0 2
y(t) — z Enejna)ot :i_ Z T Sln(o'snﬂ-) ejnm/T ) I
n=-o0 16 n=—c0 l’lﬂ(2T + ]l’l7Z')(4T + ]nﬂ')

n#0

Problem 4.26
(i)  The transfer function H() is given by

Paterol |°° Paterol *

—(4+ jo)|, (4+ jo)|,

x[0-1]=Z—

H(w) = [te™ e dt =[te " dt =1
0 0

B -1
4+ j)

x[O—O]

(ii)) The magnitude response is given by

(4+Jw) (4+Ja>)
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1 1
Ji6+0t)(16+0?) 16+0"

[H (@) =

The magnitude spectrum |H(®)| is shown in Fig. S4.26.

Magnitude Plot for A(¢) = ¢ exp(—4¢) u(f)

0.06

0.04

0.02— ~_

-8 —6 -4 -2 0 2 4 6 8
frequency (®)

Fig. S4.26: Magnitude spectrum for /() = t exp(—4¢) u(¢).

(iii)) The exponential CTFS coefficients E, of the output signal y() are given by E, = D, H(wo) with @
= nt/T. For the sawtooth wave, the exponential CTFS coefficients D, are given by

%, n=0
D,=3 0, evennn#0
2 oddn,n#0.

(nm)*

Therefore, the CTFS coefficients £, of the output signal y(¢) are given by

=, n=0
1 —
25 n=0
E = ;2 xy 0, evenn = 0, even n
(4 + ]0)) o=2nr/T
2 5 odd n 2
(n7) 2T odd
n.
(n7)* (4T + j2nr)?
In the time domain, the output signal is expressed as
& } 1 277 .
1) = E e]"wof -4 e_/n/zt/T )
=2 F, 3 Z:g (n7) (4T + j2n7)’ !

n=—o0
n=odd
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Problem 4.27
(1) (a) Expressing

oo}

7 1
f)=—
(0 n22m+l

m=0

sin[8n(2m + 1)t]= 7 {sin(Snt) + %sin(24nt) + % sin(40mt) + }
T
we note that the signal x,(f) contains the fundamental component sin(87n¢) and its harmonics.

Therefore, the signal is periodic, and the fundamental frequency for x(¢) is given by wy, = 87
radian/sec. The fundamental period is Ty = 21/my = 0.25 sec.

[>e}

. 7 1 7 <
(b) Since x, () = ;mzoz o sin[-8n(2m + 1)t] = ——MZ‘B

1+ 1 sin[8m(2m + 1)t] = —x, (1),

the signal is odd.

(c) The following MATLAB code is used to reconstruct the function in the time domain. The
number # of harmonics is set to 4000.

o

% initializing CTFS parameters
nterms = 4000;

w0 = 8*pi;

t =-1:0.001:1;

a0 = 0;

an = zeros (l,nterms);
nnz = l:2:nterms;

bn2d = zeros (2,nterms/2);
bn2d(1l,:) = 1./nnz;

bn = reshape (bn2d, 1,nterms);
% calculating time-domain function
x1 = (7/pi)* ictfs(wl0,t, a0,an,bn);

plot(t,x1);

xlabel ('t");

ylabel ('x1(t)"');

axis([-1 1 -3 31), grid on;
title ('Reconstruction from CTFS')

(d) The resulting waveform is shown in Fig. S4.27.

Reconstruction from CTFS

N W

x1(2)

|
W= O =

-1 -075 =05 -025 0 0.25 0.5 0.75 1
t

Fig. S4.27: Signal x1(¢) reconstructed from the first 4000 trigonometric
CTFS coefficients in Problem 4.27(a).

(i) (a) Expressing

X(0)=15+) !
m=0

dm+1

cos[27t(4m + l)t] =15+ [005(275[) + %cos(lOm) + é sin(18mt) + }
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we note that the signal x,(f) contains the fundamental component cos(2n¢) and its harmonics.
Therefore, the signal is periodic, and the fundamental frequency for x,(¢) is given by wy, = 27
radian/sec. The fundamental period is Ty = 2n/wo = 1 sec.

1
dm+1

1

2n(4dm+ 1t |= 1),
4chos[ n(4m +1)t] = x, (1)

(b) Since x,(—1)=1.5+ Y cos[-2n(4m +1)t]=1.5+ )
m=0 =0

the signal is even.

(c) The following MATLAB code is used to reconstruct the function in the time domain. The
number z of harmonics is set to 4000.

o

% initializing CTFS parameters
nterms = 4000 ;
w0 = 2*pi ;

t = -4:0.001:4 ;

a0 = 1.5 ;

nnz = l:4:nterms;

an2d = zeros (4,nterms/4);
an2d(1,:) = 1./nnz ;

an = reshape(an2d,1l,nterms) ;

bn = zeros(l,nterms) ;

% calculating time-domain function
x2 = ictfs (w0, t,al0,an,bn);

plot (t,x2)

xlabel ('t');
ylabel ("x2(t) ")
axis([-2 2 -2 5]), grid on

title ('Signal Reconstruction from CTFS')
(d) The resulting waveform is shown in Fig. S4.27. i
Signal Reconstruction from CTES
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Fig. S4.27: Signal x2(¢) reconstructed from the first 4000 trigonometric
CTFS coefficients in Problem 4.27(b).

Problem 4.28
From Example 4.8, the CTFES coefficients are given by
o =1.7079, ay =L1572’ and bn ZM'
1+25n 1+25n

The periodic signal g(?) is, therefore, given by
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2(t)=1.7079 + Z 3. 4157 cos nt Z 17. 0787 nsin nt)

with the fundamental frequency ®, = 1 radians/s.

The following MATLAB code is used to reconstruct the function in the time domain. The number n of
harmonics is set to 4000.

o

% initializing CTFS parameters
nterms = 2000 ;

n = l:nterms;

wO =1 ;

t = -12:0.01:12 ;
a0=1.7079 ;

an = 3.4157./(1+25*n.*n) ;

bn = 17.0787*n./(1+25*n.*n) ;

% calculating time-domain function

g = ictfs(w0,t, a0,an,bn) ;

% plotting the function

plot(t,qg)

xlabel ('t'");

ylabel ('g(t) ")

axis([-12 12 0 4]), grid on

title ('Reconstruction of g(t) from CTFS')

The resulting waveform is shown in Fig. S4.28. It is observed that the plot is identical to that of Fig.

4.10.
Reconstruction of g(¢) from CTFS
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Fig. S4.28: Signal g(¢) reconstructed from the first 2000 trigonometric
CTES coefficients in Problem 4.28.
Problem 4.29

From Example 4.9, the CTFS coefficients are given by
0 nmiseven
ap=0,a, = ,and b, =0.
0 "2 pisodd. "

(nm)?
The periodic signal f{¥) is, therefore, given by

f= Z 24,

)=2 [cos(O 5nt)+ cos(l. 5nt)+—cos(2 5mt)+- ]

with the fundamental frequency w, = 0.57 radians/s.
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The following MATLAB code is used to reconstruct the function in the time domain. The number n of
harmonics is set to 2000.

% initializing CTFS parameters
nterms = 2000 ;

an = zeros(l,nterms);

nnz = l:2:nterms;

w0 = 0.5%pi ;

t = -8:0.01:8 ;

al0=0 ;

an2d = zeros(2,nterms/2);
an2d(1l,:) = 24./(pi*pi*nnz.*nnz) ;
an=reshape (an2d,1,nterms) ;

bn = zeros(l,nterms);

% calculating time-domain function

x = ictfs(w0,t, al0,an,bn) ;

% plotting the function

plot (t, x)

xlabel ('t'");

ylabel ('f(t)");

axis([-8 8 -4 4]), grid on

title ('Reconstruction of f(t) from CTFS')

The resulting waveform is shown in Fig. S4.29. It is observed that the plot is identical to that of Fig.

4.11.
Reconstruction of f{¢) from CTFS
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Fig. S4.29: Signal f{t) reconstructed from the first 2000 trigonometric
CTFS coefficients in Problem 4.29.
Problem 4.30
From Example 4.12, the CTFS coefficients are given by
D ~ 0.3416
n 0.2+jn °
The periodic signal g(¢) is, therefore, given by
8= D 351 exp(jnoy)
n=—oo

with the fundamental frequency ©, = 1 radians/s.

The following MATLAB code is used to reconstruct the function in the time domain. The number n of
harmonics is set to 4000.
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o

% initializing CTFS parameters
nterms = 4000 ;

n=(-nterms/2) :nterms/2;

dn = 0.3416./(0.2+1i*n);

nnz = l:2:nterms;
wl = 1;
t = -12:0.01:12 ;

oe

calculating time-domain function

= ictfs (w0, t,dn) ;

plotting the function

plot(t,qg)

xlabel ('t");

ylabel ('g(t)"'):;

axis([-12 12 0 4]), grid on

title ('Reconstruction of g(t) from CTFS')

o° Q

The resulting waveform is shown in Fig. S4.30. It is observed that the plot is identical to that of Fig.

4.10.
Reconstruction of g(¢) from CTFS
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Fig. S4.30: Signal g(¢) reconstructed from the first 4000 exponential
CTES coefficients in Problem 4.30.
Problem 4.31

From Example 4.13, the CTFS coefficients are given by

0 n=even

D, = .
ﬁ n =odd.

The periodic signal f{¥) is, therefore, given by

[ee]

f0= 2 Erexpljnoy)

nisodd

with the fundamental frequency ®, = n/2 radians/s.

The following MATLAB code is used to reconstruct the function in the time domain. The number n of
harmonics is set to 4000.
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o

% initializing CTFS parameters
nterms = 4000 ;

w0 = 0.5%pi ;

t = -8:0.01:8 ;

nnz = l:2:nterms;

dn2d = zeros (2,nterms/2);

dn2d(2,:) = 12./(pi*pi*nnz.*nnz) ;
dn=reshape (dn2d,1,nterms) ;

dn = [fliplr(dn(2:length(dn))), dnl;
% calculating time-domain function
f = ictfs(wO,t, dn) ;

% plotting the function

plot(t, )

xlabel ('t'");

ylabel ("f£(t)");

axis([-8 8 -4 4]), grid on

title ('Signal Reconstruction from CTFS')

The resulting waveform is shown in Fig. S4.31. It is observed that the plot is identical to that of Fig.

4.11.
I
A Reconstruction of f{f) from CTFS
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Fig. S4.31: Signal f{¥) reconstructed from the first 4000 exponential
CTES coefficients in Problem 4.31.
Problem 4.32

From the solution of Problem 4.24, the exponential CTFS coefficients are given by

T
E =| ——
n I:T2+n27z_2:|

y(t) — Z T ejZnirt/T

T? +n*n?

with the time domain representation

where ®, = 27/ T = 27 radians/s

The following MATLAB code is used to reconstruct the function in the time domain. The number n of
harmonics is set to 4000.
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% initializing CTFS parameters
nterms = 4000 ;

T =1;

w0 = 2*pi/T;

t = -6:0.01:6;

nnz = O:nterms;

en = (4*T)./(4*T*2 + (nnz*pi)."2);
en = [fliplr(en(2:length(en))), en];

oe

calculating time-domain function

y = ictfs(wl0,t, en) ;

% plotting the function

plot(t,y)

xlabel ('t"');

ylabel ("y(t) ")

axis([-6 6 0 2.5]), grid on

title ('Signal Reconstruction from CTFS')
print -dtiff plot.tiff;

The resulting waveform is shown in Fig. S4.32.

Signal Reconstruction from CTFS
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Fig. S4.32: Signal y(¢) reconstructed from the first 4000 exponential
CTFS coefficients in Problem 4.32.

Problem 4.33

From the solution of Problem 4.25, the exponential CTFS coefficients are given by

3/16 n=0
E, =3 T’ sin(nz/2) 20
nx(2T + jnr)(4T + jnr) '
with the time domain representation
y(t) — i E ejmuot :i_ i T2 Sln(nﬂ-/z) ejmrt/T
= 16 = nzQ2T + jnx)(4T + jnr)
n#0

where o, =2n/T = 27 radians/s

The following MATLAB code is used to reconstruct the function in the time domain. The number # of
harmonics is set to 4000.
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% initializing CTFS parameters
nterms = 4000 ;

en(n == 0) = 3/16;

% calculating time-domain function

y = ictfs(w0,t, en) ;

% plotting the function

plot (t,real (y)) % imaginary part of y(t) is O
xlabel ('t');

ylabel ('y(t)');

axis([-6 6 0.12 0.26]), grid on

title ('Signal Reconstruction from CTFS')

print -dtiff plot.tiff;

T =1;

w0 = 2*pi/T;

t = -6:0.01:6;

n = -nterms:nterms;

en = - (T"2*sin(0.5*n*pi)) ./ ((n+eps) *pi.* (2*T+j*n*pi) .* (4*T+j*n*pi)) ;

The resulting waveform is shown in Fig. S4.33.

Signal Reconstruction from CTFS

it)

Fig. S4.33: Signal y(¢) reconstructed from the first 4000 exponential
CTFS coefficients in Problem 4.33.
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