Chapter 5: Continuous-time Fourier Transform

Problem 5.1
(a) The CTFT for x,(?) is given by
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(b) The CTFT for x,(¢) is given by

X, (w) = fxz(t)e"“”a’t— I te “u(t)e dt = [rte I dr
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(¢) The CTFT for x;(¢) is given by
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(d) The CTFT for x4(¢) is given by
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X, (@)= T x,(D)e 7 di = T exp(—L)edi = [ expl~ 27 Ydr = [ exp| ~ 2T e Jaxp| Uer ) | gy
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Problem 5.2
(a) By definition,

X ((D) '[38 ](»tdt 3[@’”’ ] _i[efjmn _1]__iefjmn/2[efjom/2 _ejcorc/Z]
! ~l=jo) Jo S o

3 —jen/2[_a ;e B —jo)rc/2[sin((mr/2)]_ —j(oﬂ:/Z[L sin(on/2)
=——e [-2/sin(on/2)]=6e SRS | 6e SL S

=3re /™ 2sinc(w/ 2).

(b) By definition,
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(d) By definition,

0 T
Xy(@)= [+ L+ [(1 -Lle~7"ar
-T 0

0 T
l‘\ —jot 1\ — jort _L\ — jot _ _l\ —jot

|1 1)1 1) e®r (1) 1)1
_[(—f@ (T’< —jo)? 0+(T)<—jm>2}+[o ( T/ (- joy <—f<»)+( ”(—jm)z}

) _ _ 2x2sin*(0.507) _ 4 sin?(0.507) ()5(,)1"
T o T [1 COS((DT)]_ o’T 05T 0507y = Tsinc (2521,
(e) By definition,
T
X ()= Jl 055111(”7)] e ’dt = I"“”dt OSjsm ) e/ dt
l .
=4 =B

We consider different cases for the above integral.

Case: (0 =0)

X5(0)=Tx(t)dt=T[I—O.Ssin(% dt_jdz osjsm”7 dt

—0

=T+ %[cos(”%)]g = T+E[cos(7r) —cos(0)]=T ~T-ra-1)

Casell: (0 #0, ® #/T):

a=feramelenT -elem]i-e] ol
0

B= 0.5{ s {—ja)sin (2)—Zcos (’;)}} for w#0,£%

0

T
_ _ 0572 it
=2 e’ {ja)sm(’”)+ cos(’;)}
%,—J
=0 at t=0,T o

_ 057> | _zJjol _z |__05aT —joT
_”szTz[ Te T |7 2-a?T? 1+€

Case III: (0 = n/T):

161



162 Chapter 5

J

T T T
B= O.SJ.Sin(”?’)efjmdt _ %S.H:e‘/% _e*/%]efjwtdt _ %J‘[ea/(w—%)t _ea/(m?)t:|dt
0 0

T
gf[1-e o o=-% )
= 0 {As &7 s periodic with period T, J.ei/Tdt = 0}
T
0.5 i - _Z ’
——jJ‘[l—e ]dt O=—7

Combining, the above results, the CTFT can be expressed as

T1-1) =0
X,(@) =4 H[1-e7" |54 W=t
%[1—6""”]—%[1—%6"’”} otherwise

r(1-7) ®=0

= +2L7 L w=1Z

%w 1—e /" ]—%[l+e""” J otherwise

Problem P5.3

From magnitude and phase spectra shown in Fig. P5.3, the individual CTFT’s can be expressed as follows
: . _J1xe/?0 —w<o<w

Fig. P5.3(b): X ()= { 0 otherwise

Ixe /% —W<w<0
Fig. P5.3(c): X, (w)=11xe’™ 0<w<W

0 otherwise

Ixe ™ - W<w<0
Fig. P5.3(d): X,(@)=11xe”™  0<w<W

0 otherwise

Using the CTFT synthesis Eq. (5.9), the function x,(#) is calculated as follows.
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X, )= L j X(a))eja)tda) — L j PULELIVL Y P J‘ /OS50 g
2r 27 4, 73

27 T2z j(05+0) 27 j(05+1)

1 {ej(O.SH)w w B 1 e_j(0.5+t)W_e—j(O.5+t)W _L2jsin[(0.5+t)W]
J(0.5+%) _W

=K sin|(©. 5+t)W] smc[W (t+0. 5):|
Vs 0.5+ T

Using the CTFT synthesis Eq. (5.9), the function x,(¢) is calculated as follows.

X, ()= L I X(a))ej“”da) - L I e/ (05t0e g L 1 /05500 4,
4 2 =, 27y

1 [ /050 0 1 [ ei0st0e T o ICOSOW j0soW |
| | — == +
27| j(-0.5+0) |, 27| j(05+0)], 27| j(-0.5+1)  j(0.5+0)

1 i 1 N 2 jtsin(tW) —cos(tW)
27| j(*—0.25) (2 =0.25)

1 OSW [~y s, _
—m[l+e (2,jtsin(eW') cos(tW))].

Clearly, at (¢ = £0.5), x,(?) is undefined in the above expression. Computing directly, we obtain

2jm

Atr=0.5: x2(05 :%Vj‘/ jOStuejO.Swdw:iij ](,,dw 2]”[61.(‘)]:/:%[61-[4/_1].
0 0

0

At1=-05 x,(-05) =L [ e do =L i erdw=— e ] =" 1],
-

-w

Using the CTFT synthesis Eq. (5.9), the function x;(¢) is calculated as follows.

x ()= L .[ X(w)e’”dw :L j N P 1 J‘ B oo
27[ e 272- W 272, o

. 0 . .
:Le*ﬂ”3 iﬂ’f 44— 1 eﬂr/3 e/‘”f " :L e*jfr/3 l_eith +ej7r/3 eth _1
2 Jt |, 2= Jt |, 2« Jt Jt

[sin(Wt +7/3)—sin(z/3) }

:—[2] sin(Wt+ 7 /3)—2jsin(z/3)] = t
V4

J2rmt

Clearly, at (¢ = 0), x3(¢) is undefined in the above expression. Computing directly, we get
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x,(0) = 4= (1—;\/?)} da)+(1+j\/5pfda)}=%[1—j«/§+l+j«/§]=%-

Although the functions x,(¢), x,(¢), and x,(¢) have the same magnitude spectra, their phase spectra are

different. As a result, the time domain representations of these functions are different.

For the special case W = m, the three functions are plotted in Fig. S5.3. Since x,(¢) is a complex function,

its magnitude is plotted in Fig. S5.3. The Matlab code is also included below.

Problem 5.3

X, ()

abs(x,(t))

X3 (t)

Fig. S5.3. Plots of functions in Problem P5.3.

% MATLAB code to plot the functions in Problem 5.3
del = 0.01;

t = -5:del:5;

W = pi ;

x1 = (W/pi) *sinc ((W/pi) * (t+0.5)) ;

k2 = 1./ (3*2%pi* (£.72-0.25)) .* (1+exp (J*0.5*W) * (2*¥j*t.*sin (L*W) —cos (L*W) ) ) ;
x2 (t==0.5) = 1./ (3*2*pi)* (exp (J*W)-1);

x2(t==-0.5) = 1./(3*2*pi)* (exp(J*W)-1);

x3 = (sin(W*t+pi/3)-sin(pi/3)) ./ (pi*t);

x3 (t==0) = W/ (2*pi) ;

subplot(3,1,1), plot(t, x1), grid on
title('Problem 5.3'");




Solutions

xlabel ('t") % Label of X-axis
ylabel ('x 1(t)") $ Label of Y-axis
subplot(3,1,2), plot(t, abs(x2)), grid on
xlabel ('t") % Label of X-axis
ylabel ('abs (x_2(t))") $ Label of Y-axis
subplot(3,1,3), plot(t, x3), grid

xlabel ('t") % Label of X-axis
ylabel ('x 3(t)") % Label of Y-axis

Problem 5.4

(a) The partial fraction expansion is given by

I+ jo) -1 2

X (0)= 5 = — Tt X
2+ jo)3+ jo) 2+ jo) G+ jo)

Calculating the inverse CTFT, we obtain
x () =—e " u(t) +2e > u(r).
(b) The partial fraction expansion is given by

1 0.5 -1 0.5

X, (w)= : - — = —+ —+ :
I+ jo)2+ jo)3+ jo) 1+ jo) 2+ jo) @+ jo)

Calculating the inverse CTFT, we obtain
X5 (1) =0.5¢ " u(t) — e *'u(t) + 0.5¢ >u(t) .
(c)  The partial fraction expansion is given by

1 0.5 0 -1
+

X;(0) = =

= + +
1+ jo)2+ jo)’ G+ jo) (1+jo) Q2+jo) 2+ j0)? G+ jo)

Calculating the inverse CTFT, we obtain
x3 (1) =0.5e " u(t) — te ' u(t) + 0.5¢ >'u(t).

(d)  The partial fraction expansion is given by

| 1 I+ jo
X4(0)= ] . RN N ] . 2
1+ jo)2+2jo+(jo)7) (1+/jo) Q2+2jo+(jo)”)
or, X, (0)= 1 I+ jo

(+jo) 1+(1+ jo)?
Calculating the inverse CTFT, we obtain
xq(O)=eu(t)—e™" costu(r).

(e) The partial fraction expansion is given by

Xs(w)=

1 1 1.50 0.25(4 jo + (jw)?)
= - +
(1+ jo)* 2+ 2jo+(o)?)*  (1+jo)? Q2+2jo+(o)’) 2+2jo+(jo)*)?
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I 150 025(4jo+( j®)?)
. N2 . N2 SRVANY)
1+ jo) 1+(1+ jo) 1+ 1+ jo)7)

or, Xs(w)=

Calculating the inverse CTFT, we obtain

. . 2
x5 () =te " 'u(r) = 1.50e " sintu(r) + I 0.25(4j0+(jo)7) I
A+(1+ jw)*)?

Problem 5.5

Consider an arbitrary function ¢(¢), and assume that
o0
p(t)= [e/dr.
—o0
Now, consider the integral

o0

T H(O)p(t - T)dt = T ¢(t){ | e’”’“”dco}dt = T e ﬁ ¢(t)ej’”’dt} do = T e D(-w)de

—00 —0

Changing the order of integration D(0)=3{p(1)}
—0 o0
= [ (e )(~do') = [ & D(0)do

o0 —0

w=-0', do=—do'

= [®@edo (1)
Note that the right hand side of Eq. (1) is the inverse CTFT of ®(w) computed at ¢ = T, i.e., ¢(7). Hence,
[o)p(t—T)dt = [@(@)e’" do=2m(T) .

The above equation is valid for any arbitrary ¢(¢) if and only if p(f) = 2nd(¢) as can be seen from the
following property of the impulse response

2n j 0(1)3(t — T)dt = 21T .

In other words,

J' e dt = 218(1) .
Interchanging the variables, ¢ and ®, we obtain the required identity

jej“’dcoz 2md(w) . i

—00
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Alternate Proof:
Note that the above result can be proved directly from the CTFT pair

1< 5 278(w) .
By definition, 21d(w) = j1 T
Since §(-w) = &(w), 218(w) = 2718(—0) = j e/ dt . i

—00

Problem 5.6
Using Eq. (5.40), the CTFT for a real-valued even function x(¢) can be expressed as

X (o) = jx(t)e*fw’dz - 2j x(7) cos(wt)dt .
0

—00

Since there is no complex value in the above equation, X(m) is real valued, i.e., Im{X(®)} = 0.
Also, X(~)=2 j x(¢) cos(—wt)dt =2 j x(2) cos(wt)dt = X (o) .
0 0

Therefore, X(w) is also an even function with respect to ®. Since, X(w) is real valued, Re{X(w)} =
Re{X(—mw)}.

Problem 5.7
Using Eq. (5.40), the CTFT for a real-valued odd function x(¢) can be expressed as

X ()= j x(t)e M dt =—j2 j x(¢)sin(oi)dt .
0

Since x(f) is real, the product x(¢)sin(mt) is also real and so is the integral. Therefore, X(w) is pure
imaginary, i.e., Re{X(®)} = 0.

Also, X(-o)= 2[ x(2) sin(—ot)dt = 2 j x(7) sin(ot)dt = —X (o) .
0 0

Therefore, X() is also an odd function with respect to . Since, X(®) is imaginary-valued, Im{X(®)} =
—Im{X(—mw)}.
Problem 5.8

. _ 5 _ 5
(a) Since Xl (_ 0‘)) - 2+j(—c0—5) T 2—j(o+5)

is not equal to Xy ((o) = ﬂSst) ,
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(b)

(©)

(d)

(e)

Xi(®) does not satisfy the Hermitian property. Its inverse CTFT x(¢) is not real valued and is
complex. Nothing can be stated about the odd and even property of x;(¢) from the Hermitian

property.

Since X, (— 03) = cos(— 20+ %)z @ cos(2m) + %sin(2m)

=

3

is not equal to X;(0)= cos(2oo + %)z 5

cos(20) — 1 sin(2w)

Xo(®) does not satisfy the Hermitian property. Its inverse CTFT x,(¢) is not real valued and is
complex. Nothing can be stated about the odd and even property of x,(f) from the Hermitian

property.

Since X;(-o)= ssin[4(—o-n)] _ Ssin[4(w+n)] _ Ssin[4o]

(~o-n) (wtm) (o+m)

X; (O)) _ Ssin [4(0)—11')] _ 5sin [4‘”]

is not equal to o) = (omn)

X;(®) does not satisfy the Hermitian property. Its inverse CTFT x;(¢) is not real valued and is
complex. Nothing can be stated about the odd and even property of x;(¢) from the Hermitian

property.
Since X, (-®)=(3+2/)8(-0—10)+(1-2/)8(- ©+10)=(3+2,)5(co + 10) + (1 - 2)3(> — 10)

is not equal to X3 (@)=03+2/)8(w-10)+(1-2/)8(w+10),

X4(®) does not satisfy the Hermitian property. Its inverse CTFT x4(¢) is not real valued and is
complex. Nothing can be stated about the odd and even property of x4(f) from the Hermitian

property.

Since Xs5(-0)= (- jw)(3_}w)2 (5+0?)

. *( ) 1
is equal to X ((’3) T (1-jo)3-jo) (5+0?)’

X4(w) satisfies the Hermitian property. Its inverse CTFT x4(f) is real valued.

Since Xy(®) is complex (neither pure real-valued or pure imaginary), x4(¢) is neither even nor odd
with respect to 7.

Problem 5.9

(a)

(b)

Applying the linearity property,
X, (0)= 3{5 +3cos(10£) — 7e 2 sin(3t)u(t)}= 53{1}+ 33{cos(101)} — 73{52’ sin(3t)u(t)}.
By selecting the appropriate CTFT pairs from Table 5.2, we get

21

X, (0)=108(0)3{1} + 3n8(0 — 10) + 313(c» — 10) e

Entry (8) of Table 5.2 provides the CTFT pair

sgn(?) &)%@ .

Using the duality property, % PRSLLE NN Pl sgn(—o),



(©)

(d)

(e)

Solutions

CTFT _ .
or, Te————jsgn(v).

Entry (7) of Table 5.2 provides the CTFT pair

—4|f| , CTFT 8
e (—)m .

—4|t-5]  CTFT 8 /5o

Using the time shifting property, e o

Using the frequency differentiation property,

2 A5  CTFT N {eij(n 8 }

—4{t-5 CTFT -7 —7
2 73 L CTFT 50007750 L 4 16e™/50 L

or t - .
’ 4+ jo (4+jo)’

Entry (17) of Table 5.2 provides the CTFT pair

. sin(3mz) CTFT
3sinc(3t) =3 3(n — < > rect(%)

sin(5nt) , CTFT ( e )
S ¢ > rectizor

and Ssinc(5¢) =5
Using the multiplication property

. . 2
2 5 SnGm)  sin(Sm)  CTET >”—[rect(£)* rect(i)]
2 6m 107

t it
sin(3mt)sin(Sm) , CTFT E[ ﬂ) (i)]
or, = < > [rectl - ) * rectly- )],
or, 5 sin(3m32sin(5m) < CTFT 5 %’”[rect (%) * rect (%):I ’
where * is the convolution operation.
Entry (17) of Table 5.2 provides the CTFT pair
. _ A sin@Bmt) , CTFT o
3sinc(3t) =3-—_——« > rect(m)
. __ 4 sin(4nt) CTFT ®
and 4sinc(4r) =4—— > rect(g).
Using the time differentiation property,
1 4 sin(4nt) , CTFT /.
P MR ,(]m)rect(%).
Using the convolution property
2, sinBmt) , | 4 sin(4m) , CTFT 2 [ (&) . (g)]
Tox nt * n dt t ° " 2n rect 6m x jorect 8n

sin(3nt) , 4 sin(4mt) , CTFT _ [ (m ) . (@ )]
k= > = —_— —_
or, ; P AT ED > rect on )% jorect ey |

or, 4sin(t3m) *%sin(fm) < CTFT

> j2m rect(%),

169
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Problem 5.10
Using the linearity property,

X(w)= \5{[6 20— cos(3t) +-Esin(3r) u(z)}
=& 3 u(t)} —5 3{cosGru(t)} +4 3 {sm(3t)u(t)}
=S 5[50(0-3)+50(0+3) |- % + §| LS (0-3)+ F S (0+3) [+ £

13 24+jo

=& T 5 + 52 |- E[65(0-3)+ 65(w+3) + 4j5(0—3) 4 5(+3)]

(2+jo)(9-0")

- %[—<9—wz>+<2--fw><2+-f”>} —2[(6+ jA)S(0-3)+(6— j4)S(0+3)]
=—0 —2[(3+j2)8(w-3)+ (3~ j2)5(w+3)]

(2+jo)9-0")

which is the required result. I

Problem 5.11

o0

From the definition of CTFT, Fix(at)}= JAx(at)ef-’.‘”’dt .

—00

We consider two different cases (a > 0) and (a < 0)
Case 1: Assume a > 0. Substitute » = at in the above expression. The upper and lower limits of
integration stay the same and dr = a dt. The final result is

Fix(at)}= Ix(r)e ie)r —=— J.x(r)e :) =iX(ﬂ).

a
—00

Case2: Assume a < 0. Substitute » = at in the above expression. The upper limit of integration is
r — —oo and the lower limit of integration is # — o0, and dr = a dt. The final result is

[ee] 0

F{x(at)} = J.x(r)e i2) ’ =ﬁ jx(l’)e ) —% J.x(r)e_j(%)rdr =— %X(%)
Combining the two cases, yields F {x(at)} :ﬁ X (%) I

Problem 5.12
Comparing with Fig. 5.9(a), we observe that

h()=x, (£).
Using the scaling property, H(w)=2X, (20))

or, H(w) =% [203 sin(4®) + cos(2w) — 1] ,

which simplifies to H(w)=1 6sinc(47°’)— 4sinc? (%) I
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Problem 5.13
Using the definition of CTFT, we obtain

F{ej“")’x(t)}z J.ejmotx(f)e_‘jwtdt - .[x(t)e_j(w_%)tdt = X{@=0). !

—0 —0

Problem 5.14

Using the convolution property,

x(t)*u@) <« X(co)[2n8(m) + —] :

or, j X(@)u(t - 7)d7 5 27 X (0)5 (@) + 112
or, [ x(@u(~(z - )dr 527X (0)5 () + 12,
t
or, [ x(0)dr 27 X (0)5 () + 2 |
Problem 5.15

(a)  Using the time scaling property, x(Zt)& %X (%)

Using the frequency shifting property, e /> (2t)<ﬂ> X (TS)

Substituting the value of X(®), we obtain

) _ ‘(u+5‘ <
(e x(2) = 4 1-2 lw+5|<3
0 elsewhere
2l —11<w<-5
=452 S<w<-1
elsewhere.

(b)  Using the frequency differentiation property,

() x{e) = 5

de >
2 CTFT 2
or, 2 x(r) 5 - 2’1 4
{0}

The CTET of # x(¢) is given by
Flx(n)|= —L[al9)]= L [rect()]= 30 + 3) - 8(0 - 3)]=[5(0 - 3) -8 + 3)].
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(c) Express (t+5)% =74+ 54
Using the time differentiation property, the CTFT of - is given by
&) joX (o).
Applying the frequency differentiation property to the above CTFT pair, gives
pe « S o [joX (0)]=-X (o) - 09
The CTFT of (t + 5) is given by
3t +5)L )= —X(0) - 0L+ 5 j0X ().

Substituting the value of X(®), we obtain

j5m§1—%§—?—%@§ 0<w<3

3fe+5)Lf=1 jsoll+2)-(1+22) -3<0<0

0 elsewhere.

(d)  Using the time multiplication property,
x(t)- x(0) T L[ (w) = x (o),
which implies that
Fla-x(0) =3 [alg) = alg)]
(¢)  Using the time convolution property,
(1) (1) s X (0)- X(o),
which reduces to

2
_%} |03|S3 1+%2_M |oo|£3

1
Flx(t) = x(t)} = [ - 3

0 elsewhere 0 elsewhere.

(f)  Using the time multiplication property,
(1) cos 0yt s L x (o) s 78(0 - )+ - X (0)* 760+ oy ),
o, x(t)- cos oot L X (0 -y )+1 X(0+ o)
Case I: For @y = 3/2, we obtain
x(t)- cos(31/2) <S5 L x{0-3)+ L x{o+32).

The two replicas overlap over (—3/2 < ® < 3/2), therefore,



Solutions

1, 0+3/2 _9 -3
2 + 3 5 <o< 5
1 —3<w<3
Fix()cos(3t/2)f =1, o4 3 2
2 6 2 2
0 elsewhere

Case II: For my = 3, we obtain

x(z)- COS3Z<ﬂ)%X(® -3)+ 1 X(0+3).
Since there is no overlap between the two shifted replicas,

B |oo+3)

1-= lo+3[<3

Flxcos3tj=1{1-120 o -3[<3

0 elsewhere.

1ol gcp<o

or, F{x(t)cos3t}= %—%3‘ 0<w<6
0 elsewhere.

Case III: For ) = 6, we obtain
x(t)-cos6t<ﬂ>%X(m—6)+%X(m+ 6).

Since there is no overlap between the two shifted replicas,

-l o g<3
Flx(ycos3)=11-20 o —¢[<3
0 elsewhere.
B P
or, F{x(f)cos3t}= %—E%ﬂ 3<0<9
0 elsewhere.
Problem 5.16
(a) From Table 5.2, T Seu(r) .

Using the frequency shifting property,

5 inverse CTFT [ =2t ] Jjst
05 ¢ Se “u(t)| xe

implying that x, (1) =5 (1)

(b) From Table 5.2, cos(2t) «— T Tc[8(c0 -2)+0(o0+ 2)1 .

173
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(©)

(d)

(e)

Using the duality property,
Tc[8(t —2)+06(t + 2)] —T 5 2mcos(— 20) = 2mcos(2w) .
Using the frequency shifting property,
n[8(r —2) + 8(¢ + 2)] e ot  CTFT on cos(Z((o + %)),
implying that

oY) (t) :%[S(t - 2) + S(f + 2)] efj%t =%|:6(l‘ _ 2)€*j%t n S(t i 2)€7j%t:|

or, x,(f)= %[5(: —2)e ' 451+ 2)e-’ﬂ = %[(\/5 ~ D8 =2)+ (3 + j)d(t + 2)e-f%} :

From Table 5.2, rect(ﬁ)& 4sinc(§—j{°)= 4 Siﬁig‘f;i;{) =2 sm(j‘”) .

Using the time scaling property,

t CTFT sin(4m) _ ~ sin(4w)
rect(n) 2:2—=-—==2 .

(0]

Using the frequency shifting property,

jnt , CTFT sin(4(w-m))
rect(é)e’ >2 o

implying that
x5 (t) = %rect(é)ejm .

Using the linearity property, we obtain
x,(H)=3" {(3+ 2/)o(w—10)+(1 —2j)5(a)+10)}

=(3+2/)I{8(@-10)} + (1-2))T " {5(+10)}

3+2) j10 1-2/) —j10
=(;r./)e/ t 4 a=2)) =100
4 2z

Expanding the exponential terms using the Euler’s formula, we obtain
x4 (1) =522 (cos 10 + jsin107) + U522 (cos 107 — jsin10¢)

or, x4(t)=%coslot—(2;nj)sin101.
Taking the partial fraction expansion

_ 1 —_ 4 B C JDo+E
Xs(0)=7 o) Gy o)~ (5@ | Grjo) T Grjey | (510)

where A=0.0625, B=0.25 C(C=0.125, D=-0.3125 and E=0.6876.

Calculating the inverse CTFT transform yields

xs(£)= de™ u(r) + Be > u(t) + Cte > u(r) + D cos(v/5t)u(r) + (E /A5 )sin(ﬁt)u(t) |
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(i) The functions are plotted in Fig. S5.17. The MATLAB code used to generate the plots is given below.

% MATLAB code to plot the functions
t = -10:0.01:10 ;

td = 0:0.001:10000 ;

t =t + eps;

td = t4 + eps;

x1l = exp(-2*abs(t));

X2 = exp(-2*t) .*(cos(5*t)) .*(t>=0);
x3 = (t."4) .*exp(-2*t) .* (t>=0);
x4 = sin(log(t4d));

x5 = 1./t ;

X6 = cos(pi./(2*t)) ;

X7 = exp(=(t.”2)./(2*3*3)) ;
subplot(4,2,1), plot(t, x1), grid
xlabel ('t")

ylabel ('x1(t)")

axis([-5 5 0 1.3])
subplot(4,2,3), plot(t, x2), grid
xlabel ('t")

ylabel ("x2(t)")

axis([-5 5 -0.5 1.3])
subplot(4,2,4), plot(t, x3), grid
xlabel ('t")

ylabel ('x3(t) ")

axis([-4 4 0 0.47])
subplot(4,2,5), plot(td4, x4), grid
xlabel ('t")

ylabel ("x4(t)")

axis([0.001 10000 -1.3 1.3])
subplot(4,2,6), plot(t, x5), grid
xlabel ('t")

ylabel ('x5(t) ")

axis([-1 1 =100 1001])
subplot(4,2,7), plot(t, x6), grid
xlabel ('t")

ylabel ('x6(t) ")

axis([-5 5 -1.3 1.31])
subplot(4,2,8), plot(t, x7), grid
xlabel ('t")

ylabel ("x7(t)")

axis([-5 5 0 1.3])

in Problem 5.17

% for plotting x4 (t)

$for plotting x4 (t)

o©

oe

a=2
a=2, w=5
a=2

o\©

% sigma=3

o

Label of
Label of

X-axis
Y-axis

oo

o©

Label of
Label of

X-axis
Y-axis %

oe

o\©

Label of
Label of

X-axis
Y-axis

oe
oe

oe

Label of
Label of

X-axis
Y-axis

o\©
o\©

o©

Label of
Label of

X-axis
Y-axis

o

o

Label of
Label of

X-axis
Y-axis

o©
o©

o©

Label of
Label of

X-axis
Y-axis %

o
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Fig. S5.17: Time-domain Waveforms for Problem 5.17

(ii)

2 < oo,
a

1]

[0

1

a

_0]

1

1
Since the condition in Eq. (5.59) is satisfied, the CTFT for x1(¢) exists.

0
0

1 _—at
+ (-=a)

0
—o0

eat

—1
a

ee]

dt = .0[ e“dt + j e “dt
—o0 0

0

@  [aolae=[le

0

—0

©

©

0

©

(b) T |x2(2)| dt

J' e (@tion gy

0

1 —(a—jo, )t 1
0 Je o dt |+ 2
0

dt <

”e—at |:ejwot n e—jwot:|
0

1
2

[ e cos(a,tyu(o)|dr

—o0

—00

1

Integral / is given by

|

1
J®)

1
2 L(a-

./030)]

1

—(a-

-

[-

a0t
~(a—joo)

o oo g =1 [

|

while Integral /I is given by

=1
2

1
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_ 1 [, —(a+joy)t 1 e 00 _i[_ 1 ]_i[ 1 ]
H‘zj "t _2[ (a+](n0)]j 2 0 —(a+joy) I7 2 L(a+joy) 1*

0

Therefore,

1 1 1

1 -1
2 ‘(a jmo)‘ 2 ‘(‘Hfﬂ)o)‘ |a®+o}

Since the condition in Eq. (5.59) is satisfied, the CTFT for x2() exists.

< 00,

j|x4 (0)|de =|1|+ 11| =

—00

00

© T|x3(t)|dt I \t“ “”u(t)\dt =]Ot“e“”dt =[ C A0 S 120 5 1 DA S 4 24 }
-0 — 0

0

=[O+O+O+0+O]—[O+O+0+O+24$}=%<oo.

Since the condition in Eq. (5.59) is satisfied, the CTFT for x;(¢) exists.
(d) The function
x4(t) = sin(In(¢))u(t)

is plotted in Fig. S5.17. Note that the horizontal axis uses a logarithmic scale. It is observed that the
function oscillates like a sine wave (although not with a constant period). Therefore, the function
has an infinite number of maximas and minimas. In addition,

j |xd(e)| dt = j [sin(In(#))| dt —>oo
Therefore, the CTFT for x4(f) does not exist.
(e) T |x5(1)|dt = T |4 dt = 2T§ dt =2[In()]] —>
) o 0
Since the condition in Eq. (5.59) is not satisfied, the CTFT for x5(¢) does not exist.

€y) J. |x6()|dt = J. ‘cos ‘dt — o,

Clearly the area enclosed by the cosine term would be infinite. Since the condition in Eq. (5.59) is
not satisfied, the CTFT for x6(¢) does not exist. Also, it can be checked that x6(¢) has an infinite
number of maximas and minimas, which is a second violation of the existence of the CTFT.

@ JRI0ld= flenc 2

dt = Iexp(— )dt—\/_0'<oo.

—00

In evaluating the above result, we used the fact that the area enclosed by a bell curve is 1.
Mathematically, this implies that

J-mc p[2cr ]dt —Imc exp[(t m)’ ]dt =1,

where m is a constant. Since the condition in Eq. (5.59) is satisfied, the CTFT for x,(f) exists. I
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Problem 5.18

(a)

(b)

(©)

(d)

From the solution of Problem P4.11(a), the CTFS coefficients D, of the rectangular pulse train are
obtained as

3 -
> n=0
D,=<0 evennn#0
S odd n,
jnm

with fundamental frequency ®, = 1 radians/s. Therefore, the CTFT is given by

Xl(0)=2n i D, (0 — nwy) =3nd(w) — j6 i S(w—n).

odd n

From the solution of Problem P4.11(b), the CTFS coefficients D, of the rectangular pulse train are
obtained as
% n=0
Dy =9 45
—-=sin(0.5nm) n=0

with fundamental frequency wo, = 7/7 radians/s. Therefore, the CTFT is given by

X2(w) =21 Y D,3(0 - nwy) =1.578(w) - Y Lsin(0.52m)8(w - 12) .

n#0

From the solution of Problem P4.11(c), the CTFS coefficients D, of the rectangular pulse train are

obtained as
1
- n=0
2 b
D, :{ |

o n=0.

with fundamental frequency w, = 2n/T radians/s. Therefore, the CTFT is given by

X3(@) =21 Y D,8(0— nog) =md(0) — j 3 L5(0—245).

n#0

From the solution of Problem P4.11(d), the CTFS coefficients D, of the rectangular pulse train are
obtained as

%, n=0
D,=3 0, evennn=#0
2 oddn,n#0.

(nm)°

with fundamental frequency w, = n/T radians/s. Therefore, the CTFT is given by
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0

X4(w) =21 Y D,d(0—nwy) =nd(w) ++ 2#5(“’ —mmy
n=—0o0 Z;aoo
odd n

From the solution of Problem P4.11(e), the CTFS coefficients D, of the rectangular pulse train are

(e)
obtained as
H1-1) n=0 [ 0.3408 n=0
o £(L-1) n=tl | %/0.1933 n==+1
" 2(1271) O;&n:even— % 0#n=-even
jl% +1#n=o0dd _jo'r?183 +1#n=o0dd

with fundamental frequency wo, = 7/7 radians/s. Therefore, the CTFT is given by

X5(w)=2m Y D,3(w—nwy) =0.6816

n=—oo
= 0.681678(w) + j0.386618(c + %) — j0.386615( — =) + anlfl S(o—18)— j2 Y L§(—12)
fory fory]
evenn oddn

Problem 5.19
(a) From the solution of Problem P5.2(a), the CTFT of the aperiodic signal is given by

3n 0=0

X, (o) =3ne /" 2sinc(w/2) = .
(@) (©/2) 2(1-e7") 020,

The signal shown in Fig. P4.6(a) is a periodic signal with a fundamental period 7, = 2 with one
period matching the function shown in Fig. P5.2(a). The fundamental frequency m, = 1 and the

exponential CTFS coefficients are given by
3 n=0

X . 3n n=0 3
D, =1 X, (o ~ L . - |
nTn )m=nw0 2n jn%(l—e_/"mon) n#0 j23m(1—e_f”“) n#0

which simplifies to

3 —
5 n=0

D, =={-3- odd n
jnm

0 evenn,n=0.

From the solution of Problem P5.2(b), the CTFT of the aperiodic signal is given by

, 1.5T o=0
— ol 9:50T —joT o (0.50T |
X, (03)—0.5Ts1nc( TS’ )+ Te s1nc( 7;” )_{Sin(wT/Z) (1+26_jmT) 00
— .

(b)
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(©)

(d)

The signal shown in Fig. P4.6(b) is a periodic signal with a fundamental period 7, = 27 with one
period matching the function shown in Fig. P5.2(b). The fundamental frequency w, = n/T and the
exponential CTFS coefficients are given by

| X 1.5T =0 % n=0
n T, p— 2T sm(nno()goT/Z) (1 i 2e—jnm0T) w0 81n(2nn117:t/2) (1- e—jl’l‘lt) nz0
which simplifies to
3 —
y n=0
L n=4k+1
D ==! 2n
" 5= n=4k+3
nm

0 evenn,n #0.

From the solution of Problem P5.2(¢c), the CTFT of the aperiodic signal is given by
0.5T o=0

Ly L(1—g7oT) 0.
Jo o T

X;(0)=

The signal shown in Fig. P4.6(c) is a periodic signal with a fundamental period 7, = T with one
period matching the function shown in Fig. P5.2(c). The fundamental frequency wy = 2n/T and the
exponential CTFS coefficients are given by

0.5T =0 0.5 n=0
D, =TL0 X5 (o) =

l =
0=ne, T 1 _ 2l2 (l_e*.lnmoT) %0 1 i 2(1_e7]2nn) n20
Jnwy,  n ey j2nm 4n’n

which simplifies to

L pn=z0.
Jj2nm

05 n=0
D, =

From the solution of Problem P5.2(d), the CTFT of the aperiodic signal is given by

T o=0

X4 (w) = Tsinc? (2321 =
3(©) =5 TsincZ(O'STO’T) ®#0.

The signal shown in Fig. P4.6(d) is a periodic signal with a fundamental period 7, = 27 with one
period matching the function shown in Fig. P5.2(d). The fundamental frequency w, = n/T and the
exponential CTFS coefficients are given by

T w=0 0.5 n=0
7, X )w:ncoo | Tsine? (2220 #0. [0.5sinc”(0.5n) n#0

0.5 n=0
which simplifies to D, =7 0 evennn=0

n
ﬁ oddn,n #0.
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(e) From the solution of Problem P5.2(¢e), the CTFT of the aperiodic signal is obtained as

r1-14 w=0
X(w)= 2T$4Tj w=*+%
o [1 e’f’"T]—fﬁ'i”T[l+e”“’T] otherwise

The signal shown in Fig. P4.6(e) is a periodic signal with a fundamental period 7 = 27 and whose
one period is identical to the function shown in Fig. P5.2(e). Therefore, the fundamental frequency
oy = /T and the exponential CTFS coefficients are given by

D, =Ti0X(na)0) =5 X(nw,)

T(1-1) n=0
=-Lx + [1 e*”""ﬂiﬂ n=xzl1
27 an 2j
—jneyT [ 0.5aT —jnayT ;
S, [1 e ] P [1 +e J otherwise
T(1-7) n=0
= x4 = L[1-e7 |3 %L n==1
jg . [1 - e"”””] - 7”?_532 . [1 + e""’”} otherwise
b5 n=0
_ 1 —os7 _
= i_Jiﬂ-'FT n—il
7 [1 (- 1)} 2 = [14—( 1)} otherwise
H1-3) =0
BECE n=tl
L 0+#n=even
27x(n°-1)
1 _
¥ +1#n=o0dd

Problem 5.20

(a) Calculating the CTFT of both sides and applying the time differentiation property, yields
(jo) Y(@)+6(jo) Y(0)+11(jo)Y (0)+6Y(w)= X (),
or, ((j@) +6(jo) +11(jw)+6)Y (@)= X (w),

or, H(a)) = Y(a)) !

X(@) (jo) +6(jo) +11(jo)+6

The impulse response /A(#) can be obtained by calculating the inverse CTFT of H(w), which can be
expressed as

1 0.5 -1 0.5
H(w)= = + +
1+ jo)2+ jo)3+ jo) (1+jo) 2+ jo) G+ jo)




182 Chapter 5

(b)

(c)

(d)

Calculating the inverse CTFT, we obtain

h(t)=0.5¢ " u(t) - e_ztu(t) + O.Se_3tu(t) .

Calculating the CTFT of both sides and applying the time differential property, yields
(joa)2 Y(w)+3(jo)r (0)+2Y(0)= X (o),
o, (o) +3(je) + 2 (0)= X (o).

Y(O)) _ 1
X(©) (jo) +3(jo)+2

The impulse response /4(¢) can be obtained by calculating the inverse CTFT of H(w), which can be
expressed as

or, H (co) =

1 1
(o) +3(jo)+2 1+ j0) 2+ jo)

H(o)=

Calculating the inverse CTFT, we obtain
W) =e " ut)—e 2 u).
Calculating the CTFT of both sides and applying the time differentiation property, yields
(jo) Y (0)+2(j0)Y (0)+ Y ()= X(0),
() +1(j0)+ 1) (0)= x(w).

_Y(o) _ 1
)= )~ Gal s 200) 51

The impulse response /A(#) can be obtained by calculating the inverse CTFT of H(w), which can be
expressed as

1
(1+ jo)?

H(w)=

Calculating the inverse CTFT, we obtain

h(t)=te " u(t).

Calculating the CTFT of both sides and applying the time differentiation property, yields

(jo))2 Y((D) + 6(j(o)Y(03) + 8Y((D) = (jm)X(oa) + 4X((o) ,

(70 + 6(jo)+ 8)r(0)= ((joo) + 4)x (),

or, H(w)= Y(o) (jo)+4 1

X(©) (jof +6(jo)+8 2+jo

The impulse response A(f) can be obtained by calculating the inverse CTFT of H(w), which is given
by
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h(t)=e 2 u(?).
(e) Calculating the CTFT of both sides and applying the time differential property, yields
(joo) ¥(®)+ 8(jo P ¥(0) + 19(j0)¥ () + 12¥ ()= X (o),
(o) +8(je) +19(j0)+12)r(0)= X(o),

H(co)z Y(co) B 1

X(©) (jof +8(jo) +19(jo)+12

or,

The impulse response 4(f) can be obtained by calculating the inverse CTFT of H(w), which can be
expressed as

1 16 -1/2 . 1/3
H(w)

w)= = + +
(o) +8(jo)* +19(jo)+12 1+ jo) G+ jo) (4+ jo)

Calculating the inverse CTFT, we obtain

h(ty=Lteu(y-Leu()y+Le ™ u(). I

Problem 5.21
(a) Calculating the CTFT of the input and output signals, we obtain

5
2+ jo

X(w) = ﬁ and Y(o)=

The transfer function is given by

_Y(® _
o

H(w) 5.

Calculating the inverse CTFT, the impulse response is given by

h(t)=58(¢) .

In the frequency domain, the input-output relationship is given by
Y(0)=5X (o)
or, in the time domain, y(t)=5x(t).

(b) Calculating the CTFT of the input and output signals, we obtain

X(w)= 1 Y(0)= _ 3 ite
2+ jo 2+ jo
The transfer function is given by
Y(0)
X (o)

H(w)= =3¢ /4

Calculating the inverse CTFT, the impulse response is given by

h(t)=358(t—4).
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In the frequency domain, the input-output relationship is given by
Y(0)=3e /X (0)
or, in the time domain, y(t)=3x(t—4).

(c) Calculating the CTFT of the input and output signals, we obtain

X(co)z; and Y(co)z%.
2+ jo 2+ jo)

The transfer function is given by
_Y(o) 6

H = = .
S S IPRE

Taking the inverse CTFT, the impulse response is given by
h(t) =32 u(r).
In the frequency domain, the input-output relationship is given by
2+ jo) Y (@) =6X (),
or, [(8 +12(jo) + 6(jo)* +( jco)3] Y(0)=6X(0).

Calculating the inverse CTFT, the resulting differential equation is obtained as

3 2
Y69 12D 8 =6x(1)
de*  dt? dt
(d) Calculating the CTFT of the input and output signals, we get

1 1
+ .
1+ jo) 3+ jo)

X(m):ﬁ and Y(w)=

The transfer function is given by

_Y(0)  (A+2jo)2+ jo) 22+ jo)’
X (4 jo)3+jo)  (1+ jo)3+ jo)

H(w)

Using partial fraction expansion, the transfer function is given by

. 2
() P C ) M SR S —
T joG+jo)  A+jo) Gtjo)

Taking the inverse CTFT, the impulse response is given by
h(t) =28(t) + e "u(t) + e u(?).
In the frequency domain, the input-output relationship is given by

1+ jo)3+ jo)Y(0) =22+ jo)’ X(v),

or, [(3 +4(jo) +( jm)z] Y(w)= 2[(4 +4(jo) + (jo)* | X(o).
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Calculating the inverse CTFT, the resulting differential equation is obtained as

2 2
d_y+4ﬂ+3y(z)=2ﬂ+8ﬂ+8x(t). I
dt? dt dt* dt

Problem 5.22

The transfer function of the RC series circuit is given by

H ()= 1/(joC) 1 I SV S
R+1/(joC) 1+ joCR) CR 1/(CR)+ jo

Calculating the inverse CTFT, the impulse response of the system is obtained as
h(t) _ L eier),
CR

The output response is calculated by convolving the input signal with the impulse response /4(¢) in the
time domain. Figure S5.22 shows the convolution using graphical approach.

We consider the three cases separately:
Case I (r<=-T/2): Since there is no overlap between /(1) and v(¢ — 1), the output y(7) is 0.
Case Il (-7/2 <t<=1T/2): The output y(¢) is given by

t+T/2

1
) =— e R gr =~ (—CR)e 7R
w0 = j o (CR)

t+T/2 _ _
—l-—¢ T/(2CR)e t/(CR).

0

Case Il (> 7/2): The output y(¢) is given by

t+7/2 +T /2
() _ Ie—t/(CR)dt ZL(_CR)e—r/(CR) _ [eT/(ZCR) _ o TheeR) | ~riery
CR, 7/, CR T
Combining the three cases, we obtain
0 t<-T/2
y()y=1 1= WD ~T/2<t<T/2
I:eT/(zcze) _efT/(zcze)} e—t/(CR) (>T/2
0 t<-1
For 7=2 R=1MQ, C=1uF, y@)=4{ 1-e"" —-1<t<1
(e-1/e)e”’ t>1
%,—/

~2.3504

The above output y(¢) is plotted in the last row of Fig. S5.22. The output response matches our

expectation from our circuit theory knowledge. At r=-T/2, the input voltage becomes 1 volt, and the
capacitor starts charging resulting in an increase in the output voltage. The increase continues until
t=T/2 at which the input becomes zero. After +=7/2, the capacitor starts discharging resulting in an
exponential decrease of the output voltage. The output voltage becomes zero at ¢t =oo.
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h(T)
& Le_T/CR
h(’t) CR
(1)
V(1)
_T I g
2 2
v(t—1)
w(t—1)
t-% t+%
h() v(t—1)
1
Case I: K &e_T/CR
(t<-T/2)
t-L t+<
h(v) v(t—1)
1
Case II: * &e_T/CR
(~TR <1< T2) \
t-1 0 ¢+L
h(t) v(t—1)
1
Case III: R INY ée_T/CR
(t>172) s
t-L t+L
y(1)
(for T=2, .

R=1MQ, C=1 uF)

0.2
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Figure S5.22: Convolution of the input signal v(¢) with the impulse response /4(¢) in Problem 5.22.

Program: The MATLAB code to plot y(t) in Problem 5.22

t = -2:0.001:3;

% P5.20(a)

y = 0% (t<=-1)+(l-exp(-t-1)).* (t>-1) .* (t<=1)+ (exp (1) —exp (-1) ) *exp (-t) . * (t>1) ;
plot(t,y); grid on;

xlabel ('t");

ylabel ("y(t) '),

Problem 5.23
(i)  Asdetermined in Problem 5.22, the transfer function of the RC series circuit is given by

H(w) :Lx;.
CR 1/(CR)+ jo

Calculating the CTFT of the input, we obtain
X, (0) =1[8(0 — ) + 8(0 + )]

Using the modulation property, the CTFT of the output signal is obtained as

I I
Y (o) = H0) X ()= e ey s 70 o 20 ™  Tiicry 5 o OO @)

which reduces to

T 1 1

1O = TR + Jog @7 P CR ™ THCR) = Jay @ F @0
n  1/(CR) - jo, n  1/(CR)+ jo,
: Y () = x ) 7 D0 5 —6 ,
7 ©)=Cr 1/(CR)* + 03 (0= @)+ 1/(CR)? + &+ @)
o 1ACR)
. Y(w)—CR —1/(CR) [8(0 - ©y) + (0 + )]
T I [5(w—wy) = 8(0+ o).

CR 1/(CR)? + w}

Calculating the inverse CTFT, we obtain

1 1/(CR) —J9
Y(co)z—x— s(wgt) + jsin(®y?),
CR TR + 02 TR i eR) + o0 "
or,
(1) :% [cos(coot) +®,CR sin((oot)] ,
R w

0

which can be expressed as

187
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cos|o,t — tan " (0, CR)|.
[o (0 )]

1
W) =—e—oo=—=x
1+ C* R0}

(b)  As determined in Problem 5.22, the transfer function of the RC series circuit is given by
H(w) =L X _ .
CR 1/(CR)+ jo
Calculating the CTFT of the input, we obtain
X, (0) = jrf8(0 - 0y) - 8(0 +wy)].
Using the modulation property, the CTFT of the output signal is given by
Y(0) = H(0) X, (0) =—— x ! (0 — 0 ) — —— x ! S(m+ )
: JCR " 1/(CR) + jo 07 JCR " 1/CR) + jo 0
which reduces to
Y(w)= T ! d(w—my)— T ! d(o+wy),
JCR 1/(CR)+ jo, JCR 1/(CR) - jo,
1/(CR)— j 1/(CR) + j
or, Y(w)= _n X ( )2 ]0328 —g)— 'n X ( );]032 d(o+mg),
JCR 1/(CR)* + wg JCR 1/(CR)* + o
V(@) =2 — R[50 —ay) — 30+ 0g)]
or JCR 1/(CR)* + o
’ n A
+——x O(m—my)+0(0+®y)].
JCR " 1/(CR)* + 02 [ ° o)
Calculating the inverse CTFT, we obtain
Y(®) :L X %sin(mol) _ X %cos(mot) ,
CR 1/(CR)” + o CR 1/(CR)” + o
or,
1 .
y(t) :m [sm((oot) - 0yCR cos(coot)] ,
which can be expressed as
1 . -1
V() =——=—==sin|oyt —tan  (®y CR)|.
J1+C*R?* 0}
Problem 5.24
The transfer functions obtained in Problem 5.20 are as follows:
1
(a) H(a)) RS . \2 .
(jo) +6(jo) +11(jw)+6
1
(b) H(w)=

(ja))2+3(ja))+2
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B 1
&)= (e

~ (jo)+4 1
@ H (@)= (jo) +6(jw)+8 2+ jo
© 1(0)- :

(jo) +8(jo) +19(jo)+12

The MATLAB code to plot the magnitude and phase spectra is given below:

= -5:0.001:5;

o0 oo =

P5.20 (a)
= 1./ ((3*w) ."3+6* (J*w) ."2+11* (J*w) +6) ;
subplot (5,2,1)
plot (w,abs (H)); grid on;
xlabel ('\omega (radians/s)');
ylabel ('P5.20(a): |H 1(\omega)|'); axis tight
subplot (5,2,2)
plot (w,angle (H)); grid on;

jas

xlabel ('\omega (radians/s)');
ylabel ('P5.20(a): <H 1l (\omega)'); axis tight
% P5.20 (b)

H=1./((3*w) ."2+3* (J*w) +2) ;
subplot (5,2, 3)

plot (w,abs (H)); grid on;
xlabel ('\omega (radians/s)');
ylabel ('P5.20(b): |H 2(\omega)|'); axis tight

subplot (5,2,4)

plot (w,angle (H)); grid on;

xlabel ('\omega (radians/s)');
ylabel ('P5.20 (b): <H 2 (\omega)');
axis tight

H=1./((3*w) ."2+2* (7*w) +1) ;

subplot (5,2,5)

plot (w,abs (H)); grid on;

xlabel ('\omega (radians/s)');

ylabel ('P5.20(c): |H 3 (\omega)|'); axis tight
subplot (5,2, 6)

plot (w,angle (H)); grid on;

xlabel ('\omega (radians/s)');

ylabel ('P5.20(c): <H 3 (\omega)'); axis tight
% P5.20(d)

H = (4+3*w) ./ ((F*wW) . "2+6* (J*w) +8) ;

subplot (5,2,7)

plot (w,abs (H)); grid on;

xlabel ('\omega (radians/s)');

ylabel ('"P5.20(d): |H 4 (\omega)|'); axis tight

o\
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subplot (5,2, 8)

grid on;
(radians/s) ') ;

plot (w,angle (H)) ;
xlabel ('\omega

axis tight

<H 4 (\omega)');

P5.20 (e)
H=1./((3*w)

ylabel ('"P5.20(d) :

oo

>3
°

LN2+19*% (JFw) +12) ;

LA348* (JFw)

subplot (5,2,9)

grid on;
(radians/s) ") ;

plot (w,abs (H)) ;

xlabel ('\omega

|[H 5(\omega) |");

('P5.20(e) :

axis tight

ylabel

)

subplot (5,2,10
plot (w,angle (H)) ;
xlabel ('\omega

grid on;
(radians/s) ') ;

axis tight

<H 5(\omega)');

ylabel ("P5.20 (e) :

The spectra are plotted in Fig. S5.24.
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Fig. S5.24: Gain and Phase responses for Problem 5.24.

Problem 5.25

The transfer functions obtained in Problem 5.21 are as follows:



Y(0) _
H(w) =
(a) H(o)= Y(o)
(b) H(® )_Y (©) 3,0
X(w)
(©) Hw) =2 ___©

X(®) 2+ jo)’

Y(©) (4+2jo)2+jo) 22+ jo)’

@ H(m):X(oo)_ 1+ jo)3+ jo) (1+ jo)3+ jo)

The MATLAB code to plot the magnitude and phase spectra is given below:

Solutions

w = -5:0.001:5;
$ P5.21(a)
H = 5*ones (size(w));

subplot (4,2,1)
plot (w,abs (H)); grid on;
xlabel ('\omega (radians/s)');

subplot (4,2,2)

plot (w,angle (H)); grid on;

xlabel ('\omega (radians/s)');

ylabel ('P5.21(a): <H 1(\omega)'); axis tight

oe

o

P5.21 (b)

H = 3*exp(-j*4*w) ;

subplot (4,2, 3)

plot (w,abs (H)); grid on;
xlabel ('\omega (radians/s)');

subplot (4,2,4)

plot (w,angle (H)); grid on;

xlabel ('\omega (radians/s)');

ylabel ('P5.21(b): <H 2(\omega)'); axis tight

o

o\

P5.21 (c)

H=6./((2+3*w)."3);

subplot (4,2,5)

plot (w,abs (H)); grid on;

xlabel ('\omega (radians/s)');

ylabel ('P5.21(c): |H 3(\omega)|'); axis tight
subplot (4,2, 6)

plot (w,angle (H)); grid on;

xlabel ('\omega (radians/s)');
ylabel( P5.21(c): <H 3(\omega)'); axis tight
% P5.21(d)

H = 2*%(2+3*w) .72,/ ((1+3*w) . * (3+]*w) ) ;
subplot (4,2,7)
plot (w,abs (H)); grid on;

ylabel ('P5.21(a): |H 1(\omega)|'); axis([-5 5 0 5.25]);

ylabel ('P5.21(b): |H 2(\omega)|'); axis([-5 5 0 3.25]1);

191



axis tight
axis tight

|H_4 (\omega) | ') ;

<H 4 (\omega)');

(radians/s) ') ;
grid on;
(radians/s) ') ;

xlabel ('\omega
ylabel ("P5.21(d):
subplot (4, 2, 8)
plot (w,angle (H)) ;
xlabel ('\omega
ylabel ("P5.21(d) :

The gain and phase spectra are plotted in Fig. S5.25.
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 (radians/s)

A(oo) — jB(ay).

[K—w@
H(w)x jn[S((oJr ®() — (e — 0)0)],

Using the modulation property, the CTFT of the output of the system is given by

Fig. S5.25: Gain and phase responses for Problem 5.25.
Y (o)

 (radians/s)

Let us assume that the transfer function H(w) = A(wo) + jB(w) at the fundamental frequency m, of the
sine wave. From the Hermitian property, we note that the real component of 4(w,) of H(wy) is even, while

the imaginary component B(w,) of H(wy) is odd. Therefore,

Case II with input signal given by sin(w?)

Problem 5.26
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or, Y (@)= jaH(~00)3(0 +0g) ~ H(0g)d(0 ~o)].
Expressing H(wy) and H(—wyp) in terms of their real and imaginary components, we obtain
Y (@) = jrd(eo)[5(0 +00) = 80— )]+ 1B(2)[3(e + 09) + 8(> - wo)].
Calculating the inverse CTFT, the output y(¢) is obtained as
V(1) = A(w,)sin(w,t) + B(w,) cos(w,t)
= J(A(@,))* +(B(@,))* sin {@yt +tan™ (B(@,)/ A(e,)} -
=|H (a,)|sin{w,t+ < H(w,)}

where

|H(og)| = (4(9))* +(B0y)> and <H(wy)=tan" (B(wg)/ A(w)).

Case I with input signal given by cos(w?):
Using the modulation property, the CTFT of the output of the system is given by
Y(0) = H(o)x 1d(o+ 0y) + 80— oy)],
or, Y(0) = 1[H(~0)3(0 + 0g) + H(0g)8(0 — )]
Expressing H(w,) and H(—w,) in terms of their real and imaginary components, we get
Y (®) = td(0)[3(o+ 0g) + 80 — oy )] - j1B(w)[5(o+ 0y) - (0 - oy)].
Taking the inverse CTFT, the output y(¢) is given by
y(t) = A(w,) cos(aw,t) — B(w, ) sin(w,t)
= J(A(@,))* +(B(@,))" cos |yt +tan™ (B(e,) | A(,))} -
= |H(a)0)| cos {a)ot+ < H(w, )}

where

|H (00)] = (A(@))* + (B(0y))? and < H(wy)=tan"(B(wg)/ Awy)).

The above result states that the output of an LTI system with real-valued impulse response and a
sinusoidal signal at the input is another sinusoidal signal of the same fundamental frequency as the input.
Only the magnitude and phase of the sinusoidal signal are modified.

Problem 5.27
(i)  With x,(¢) = cos(wot), the output of the RC circuit shown in Fig. P5.22 is given by
y(t)= |H((00 )| cos((oot+ <H(w, ))
where H)=——.
1+ joCR

Substituting the value of the magnitude and phase of H(w) at the fundamental frequency ® = w,,
the output is given by
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y(t)= ;cos(mot —tan ! (mCR)).
1+ (0,CR)?
(il))  Asin part (i), the output of the RC circuit shown in Fig. P5.22 for x,(¢) = sin(myf), is given by
y(t) =|H ()| sin(ogt+ < H(w,))

1

where Ho)=——.
1+ joCR

Substituting the value of the magnitude and phase of H(w) at the fundamental frequency ® = w,,
the output is given by

sin(coot —tan ! (wCR)).

»() S —
1+ (0,CR)?

The answers obtained above match with those obtained in Problem 5.23. I

Problem 5.28
(i) Based on the solution of Problem 5.26,

sin(3t)——|H (3)[sin(3¢+ < H(3)).
For R = 1MQ, and C = 0.1pF, the transfer function is given by

1

H®)=——.
©) 1+ j0.1o
At ® = 3 radians/s, the magnitude and phase of the RC circuit is given by
1
|HQ)|=——

==0.9578 and <H(3)= -16.70° .
1403

The output is given by
y1(£)=0.9578 sin(3t - 16.700).
(i) Based on the solution of Problem 5.26,
cos(3t)——)|H(3)| cos(3r+ < H(3))
and
sin (61 +30°)——|H (6)|sin (6t +30"+ < H(6))
At ® = 3 radians/s, the magnitude and phase of the RC circuit is given by

|H(3)| - ;

==0.9578 and <H(3)= -16.70° .
1403

Similarly, at ® = 6 radians/s, the magnitude and phase of the RC circuit is given by



(iii)

(iv)

Solutions

1
V140.6

Using the linearity property, the output is given by

|H(6)| = =0.8575 and < H(6)=-30.96".

31(6) = 0.9578 cos(3¢ ~16.70° ) 42875 sin6 — 0.96°).
Based on the solution of Problem 5.26,
cos(21)——|H (2)|cos(2t+ < H(2))
and
sin (2000¢) ——|H (2000)|sin 20001+ < H(2000))

At ® = 2 radians/s, the magnitude and phase of the RC circuit is given by

1

\H(2)|= =0.9806 and <H(3)=-11.31".

V1+0.3%
Similarly, at ® = 2000 radians/s, the magnitude and phase of the RC circuit is given by
|H (2000)| = 00050 and < H(2000) =-89.71° .
V1420007

Using the linearity property, the output is given by
y1(£)=0.9806 cos(Zt -1 1.3‘°)+ 0.0050 sin(zoooz - 89.710).
Based on Eq. (5.75)
exp(j3t)——>|H(3)| exp(j3t +j< H(3))
and
exp(12000¢)——|H (2000)| exp(j3¢ + j < H(2000))

At © = 3 radians/s, the magnitude and phase of the RC circuit is given by
1

V1+0.3?

Similarly, at ® = 2000 radians/s, the magnitude and phase of the RC circuit is given by

1
V1420002

Using the linearity property, the output is given by

|H3)|= =0.9578 and <H(3)=-16.70".

=0.0050 and < H(2000)=-89.71° .

|H (2000)| =

y,(£)=0.9578 exp(jSt - j16.70°)+ 0.0050 exp(jZOOOt —89.710).

195
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Problem 5.29
(a) In Example 3.6, it was shown that

y(t)=e "u(t)* e_ztu(t) = [e_’ - e_Zt] u(t).
(b) From Table 5.2, the CTFT of x(¢) and /() are obtained as

X(a))zﬁ, and H(w)=+1

2+ jo

The CTFT of the output is then given by
Y(a)):H(a))X(a)):( ! L=l 1

I+jo) (2+jo) ~ 1+jo T 2o -

Calculating the inverse CTFT results in the output signal
y(t) = [eft - 672’] u(t).

(c) As Ho)= ;((“U:)) = ﬁ , the Fourier-domain input-output relationship can be expressed as

joY(0)+2Y (o) =X (o).

Calculating the inverse CTFT of both sides results in the following differential equation

% +2y(t)=x().

The output can be obtained by solving the differential equation with input x(¢) = e 'u()
and zero initial conditions y(07) = 0.

Zero-input Response: Due to zero initial condition, the zero-input response is y,;i(¢) = 0.

Zero-state Response: The characteristics equation is given by (s + 2) = 0 resulting in a single pole at
s = —2. The homogenous component of the zero-state response is given by

ya(t)=Ae.
Since the input x(¢) = exp(—¢) u(¢), the particular solution is of the form
yP(t)=Ke" fort>0.
Inserting the particular solution in the differential equation results in K = 1. Therefore,
V() = e ut)
The overall zero-state response is, therefore, given by
y. (£)=Ade™ +e
for > 0. To determine the value of 4, we insert the initial condition y(07) = 0 giving
A+1=0=>4=-1

or, A = —1. The zero state response is given by

v =(e" =™ Jutry
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Total Response: By adding the zero-input and zero-state responses, the overall output is given by
y(O) =y (O)+y. () =(e" = Ju().
T

It is observed that Methods (a) — (¢) yield the same result. I

Problem 5.30

(a)  For part (a), we assume that 7= 1 in H (@) and H,(w). From the solution of Problem P5.19(a),
the CTFT of Fig. P4.6(a) is given by

X1() = 318(w) - j6 i L s(w—n).
n

n=—0

odd n

Output for H1(w): Since H1(w) eliminates all frequency components outside the range |o| <4 (as T
= 1), the output is given by

Yl(®) = j28(w+3) + j63(w+ 1) + 318(w) — j63(—1) — j28(wr—3).

Output for H2(w): Since H2(w) eliminates all frequency components outside the range 4 < |w| < 8,
the output is given by

Yi(0)=j28(0+7)+j28(0+5) - jL8(0-1)-jE8(0-3).
(b)  From the solution of Problem P5.19(b), the CTFT of Fig. P4.6(b) is given by
X2w)=1.575(w)— Y Lsin(0.5n7)5(w—2£).

n#0

Output for H1(w): Since H1(w) eliminates all frequency components outside the range || < 4/T, the
output is given by

Y2(w) =-8(0+ ) +1.518(®) - 8(w - 7).
Output for H2(w): Since H2(w) eliminates all frequency components outside the range 4/T < || <
8/T, the output is given by
Y2(w)=0.
(c)  From the solution of Problem P5.19(c), the CTFT of Fig. P4.6(c) is given by

X3(0)=nd(@) - j D Ld(0-2m).
020

Output for H1(w): Since H1(w) eliminates all frequency components outside the range |®| < 4/T, the
output is given by

Y3(w) =nd(w) .

Output for H2(w): Since H2(w) eliminates all frequency components outside the range 4/T < || <
8/T, the output is given by
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Y3(0) = jd(0+25) - jd(w—2E) .

(d)  From the solution of Problem P5.19(d), the CTFT of Fig. P4.6(d) is given by
X4(@)=2n ) D,8(0—nwg) =nd(e) + 1 > L8w-4).

n#0
odd n

Output for H1(w): Since H1(w) eliminates all frequency components outside the range |®| < 4/7, the
output is given by

Y4(0) = 28(0+ %)+ 18(0) + 13 (0 - ).
Output for H2(w): Since H2(w) eliminates all frequency components outside the range 4/T < || <
8/T, the output is given by
Y4(w)=0.
() From the solution of Problem P5.19(e), the CTFT of Fig. P4.6(e) is given by

X5(w)=2x Z D, 6(w—nw,)

0

=0.681670(w) + j0.386670(w + %) — j0.386676 (w0 — %) + Z —o(w—45)

n>-1

n=—o0
n=0
evenn

—J22 5 (=5).

10,1
odd n

Output for H1(w): Since H1(w) eliminates all frequency components outside the range || < 4/T, the
output is given by

Y5(e) = j0.3866m8(e>+ ) +0.681673(e) — j0.3866718(c0 — Z) .

Output for H2(w): Since H2(w) eliminates all frequency components outside the range 4/T < || <
8/T, the output is given by

TS(@) = 130+ )+ L0 -2, |

Problem 5.31

(a) The magnitude spectra of the two systems are calculated below

_ V400+0?
)= e !
_J1 o] > 20
|H2 (co] B {0 elsewhere.

The magnitude spectra are plotted in Fig. S5.31. From Fig. S5.31(a), we observe that the magnitude
|H(®)| is 1 at all frequencies. Therefore, System H,(®) is an all pass filter.
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From Fig. S5.31(b), we observe that the magnitude |H,(w)| is zero at frequencies below 20
radians/s. At frequencies above 20 radians/s, the magnitude is 1. Therefore, System H(®) is a
highpass filter.

H(o) Hy(0)
1 1

-, 0 ®, -20 0 20
(a) (b)

Fig. S5.31: Magnitude Spectra for Problem 5.31.

(b) Calculating the inverse CTFT, the impulse response of the two systems is given by

()= 37 {200 o o0 S (1= 400 u() ~5(0).

hy(t) =3 {1=rect(£) } = 3 {1} =3 { rect() } = (1) Lsinc(22) . |

Problem 5.32

The transfer functions for the three LTIC systems are given by

System (a): Hi(o)= ﬁ .
System (b): H,(®) =nd(w)+ L .
jo
System (c): Hiy(w)=-2+ > = 1= /20
3 2+jo 2+ jo

The following Matlab code generates the magnitude and phase spectra of the three LTIC systems.

SMATLAB Program for Problem P5.32
%System (a)

clear; % clear the MATLAB environment

num coeff = [2]; % NUM coeffs. in decreasing powers of s
denom coeff = [1 2 1]; % DEN coeffs. in decreasing powers of s
sys = tf(num coeff,denom coeff); % specify the transfer function
figure (1)

bode (sys, {0.02,100}); grid;
title('Bode Plot for System-1"'")
%System (b)

o\

sketch the Bode plots

clear; % clear the MATLAB environment

num _coeff = [1]; % NUM coeffs. in decreasing powers of s
denom coeff = [1 0]; % DEN coeffs. in decreasing powers of s
sys = tf(num coeff,denom coeff); % specify the transfer function
figure (2)

bode (sys, {0.02,100}); grid;
title ('Bode Plot for System-2"')
3System (vc)

o\

sketch the Bode plots
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clear; % clear the MATLAB environment
num_coeff = [-2 1]; % NUM coeffs. in decreasing powers of s
denom coeff = [1 2]; % DEN coeffs. in decreasing powers of s
sys = tf(num coeff,denom coeff); % specify the transfer function
figure (3)

bode (sys, {0.02,100}); grid; % sketch the Bode plots

title('Bode Plot for System-3')

The resulting Bode plots are shown in Fig. S5.32.

Bode Plot for System-1
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Figure S5.32. Magnitude and phase spectra for systems in Problem 5.32.
.
Calculating Output:

System (a): Using the convolution property, the output of system (a) is given by
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2 1 1
Y (o) = szr[é(a)—l)Jré(a)H)] - 2z((l+mz S—1)+— 5(a)+1))

= —jﬂ[5(a)—1)—§(a)+l)].
Calculating the inverse CTFT, we obtain
y(t) =sint.

System (b): Using the convolution property, the output of system (b) is given by
1
Y, (@) = [ﬂ&(a)) +,—}x z[s(@-1)+5(w+1)]= ﬁ[%(a)— D+ 5+ 1)]
jo

=—jz[6(w—-1)-5(w+1)].
Calculating the inverse CTFT, we obtain
¥,(t) =sint.
System (c): Using the convolution property, the output of system (c) is given by
- 2w
2+ jw
=—jr[6(w-1)-5(w+1)].

h(w)=

xz[S(@-1)+8(@+1)] = [ 2 5(0-1)+ 52 5(w+1) |

2+j

Calculating the inverse CTFT, we obtain
v3(¢) =sint.

To explain why the three systems produce the same output for input x(¢#) = cost, consider Eq. (5.77),
which for @y =1 is given by

COS(I) Hermitian Symmetric H (®) IH(1)|COS((DOI+ < H(l)) )

In other words, the output for x(¢) = cos(¢) depends only on the magnitude and phase of the system at ® =
1. For the three systems, we note that

|H, ()] =|H, ()] =|H3(D)|=1 and
<H,()=H,()=H3()=~7.

Since the magnitudes and phases of the three system transfer functions at @ = 1 are identical, the three
systems produce the same output y(¢) =sin¢ for x(¢) = cos(?). i

Problem 5.33
The MATLAB code for calculating the CTFTs is listed below.

% Problem 5 33(1i)

ws = 200*pi; % sampling rate

Ts = 2*pi/ws; % sampling interval

tmin = -2; tmax = 2;

t = tmin:Ts:tmax; % define time instants

x = sin(5*pi*t);

y = fft(x); % fft computes CTFT

z = (2*pi*Ts/ (tmax-tmin))*y;% scale the magnitude of y
z = fftshift(z); % centre CTFT about w = 0
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w = -ws/2:ws/length(z) :ws/2-ws/length(z);

subplot (221); plot(w,abs(z)); % CTFT plot of cos(w0*t)
axis ([-20*pi 20*pi 0 max(abs(z))]);

xlabel ('\omega (radians/s)'):;

ylabel ("|x 1(t)|");
title('x 1(t) = sin(5\pi t): Magnitude spectrum')
grid on

subplot (222); plot(w,angle(z).*abs(z) /max (abs(z)));
axis ([-20*pi 20*pi -0.5*pi 0.5*pi]);

xlabel ('\omega (radians/s)');

ylabel ('<x 1(t)")

title('x 1(t) = sin(5\pi t): Phase spectrum')

% Problem 5 33 (ii)

ws = 1000*pi; % sampling rate

Ts = 2*pi/ws; % sampling interval

tmin = -1.25; tmax = 1.25;

t = tmin:Ts:tmax; % define time instants

X = sin(8*pi*t)+sin(20*pi*t);

y = fft(x); % fft computes CTFT

z = (2*pi*Ts/ (tmax-tmin))*y;% scale the magnitude of y
z = fftshift(z); % centre CTFT about w = 0

w = -ws/2:ws/length(z) :ws/2-ws/length(z);

subplot (223); plot(w,abs(z)); % CTFT plot of cos(w0*t)
axis ([-40*pi 40*pi 0 max(abs(z))]);

xlabel ('\omega (radians/s)');

ylabel ("Ix 2(t) ")

title('x 2(t) = sin(8\pi t)+sin(20\pi t): Magnitude spectrum')
grid on

subplot (224); plot(w,angle(z).*abs(z) /max (abs(z)));

axis ([-40*pi 40*pi -0.5*pi 0.5*pi]);

xlabel ('\omega (radians/s)');

ylabel ('<x 2(t)")

title('x 2(t) = sin(8\pi t)+sin(20\pi t): Phase spectrum')
grid on

o)

% end

The magnitude and phase spectra are shown in Fig. S5.33.
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x1(t) = sin(5r t): Magnitude spectrum x1(t) = sin(5rnt): Phase spectrum

o (radians/s) o (radians/s)
x2(t) = sin(8x t)+sin(20x t): Magnitude spectrum xz(t) = sin(8x t)+sin(20x t): Phase spectrum

o (radians/s) o (radians/s)

Figure S5.33. Magnitude and phase spectra for the sinusoidal signals in Problem 5.33.

Problem 5.35
The MATLAB code for calculating the output is listed below.

% Problem 5.35

t = -5:0.001:5;

% time waveforms with N samples each
X = exp(-t).*(t>=0);

h = exp(-2*t) .* (£t>=0);

% CTFT calculated for (2N-1) samples
Xfreq = fft(x,length(x)+length(h)-1);
Hfreq = fft(h,length(x)+length(h)-1);
% Scale the ffts

Xfreq = (2*pi*0.001/10) * Xfreq;
Hfreq = (2*pi*0.001/10) * Hfreq;

% Output

Yfreq = Xfreq .* Hfreq;

y = 1fft (Yfreq);

y = (10/(2*pi*0.001)) *y;

% plot

plot ([-10:0.001:10]1,real(y));
xlabel ('time (t)');

ylabel ('output y(t)'):;
title('Problem 5.35'");

The magnitude and phase spectra are shown in Fig. S5.35. I
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Figure S5.35: Output waveform for Problem 5.35.

Problem 5.36
(i) Bode plots for the LTIC systems specified in Problem 5.20:

The MATLAB code for calculating the Bode plots for the LTIC systems specified in Problem 5.20 is
listed below.

% Problem 5.36
% Bode plot for Problem 5.20(a)

figure (1)

w = 0.01:0.01:100;

num = [1];

den = [1 6 11 6];

sys = tf (num,den);

bode (sys, {0.01,100}) ;

xlabel ('\omega (radians/s)');
title('P5.20(a)");

grid on

[}

% Bode plot for Problem 5.20 (b)

figure (2)

w = 0.01:0.01:100;

num = [1];

den = [1 3 2];

sys = tf(num,den);

bode (sys, {0.01,100}) ;

xlabel ('\omega (radians/s)');
title ('P5.20(b) ") ;

grid on

Q

% Bode plot for Problem 5.20(c)
figure (3)

w = 0.01:0.01:100;

num = [1];

den = [1 2 11;

sys = tf(num,den);

bode (sys, {0.01,100}) ;

xlabel ('\omega (radians/s)');
title ('P5.20(c) ") ;

grid on
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Figure S5.36.1: Bode plot for LTI system specified in Problem 5.20(a) as required in Problem 5.36.
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P5.20(b)

o (radians/s) (rad/sec)

Figure S5.36.2: Bode plot for LTI system specified in Problem 5.20(b) as required in Problem 5.36.

P5.20(c)

o (radians/s) (rad/sec)

Figure S5.36.3: Bode plot for LTI system specified in Problem 5.20(c) as required in Problem 5.36.
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P5.20(d)

Figure S5.36.4: Bode plot for LTI system specified in Problem 5.20(d) as required in Problem 5.36.

P5.20(e)

ians/s) (rad/sec)

Figure S5.36.5: Bode plot for LTI system specified in Problem 5.20(e) as required in Problem 5.36.

o (rad

The Bode plots have a one to one correspondence with the magnitude and phase spectra plotted in

Problem 5.20.

(ii) Bode plots for the LTIC systems specified in Problem 5.21:

Since the transfer function H(w) = 5 in part (a), the magnitude plot for part (a) is constant at 5 for all

frequencies. The phase is 0.

3e7* in part (b). Therefore, the magnitude plot for part (b) is constant at 3

for all frequencies. The phase is —4 represented by a straight line with a slope of —4. These two plots are

not plotted.

The transfer function H(w)



) ")

(radians/s) ') ;

title ('P5.20(d) "'

grid on

(radians/s

title ('P5.20(c) ")

grid on

17
).

num, den) ;

(

[6];

[1 6 12 8

tf (num, den) ;
bode (sys, {0.01,100}) ;

0.01:0.01:100;
tf
bode (sys, {0.01,100}) ;

0.01:0.01:100;

Bode plot for Problem 5.21(c)
figure (2)

°

% Bode plot for Problem 5.21 (c)

figure (1)
xlabel ('\omega

% Problem 5.36
xlabel ('\omega

W
num
den
SYS
w
SYS

o

The MATLAB code for calculating the Bode plots for the LTIC systems specified in parts (c¢) and (d) of

Problem 5.21 is listed below. The plots are shown in Fig. S5.36.6 and S5.36.7.
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Figure S5.36.6: Bode plot for LTI system specified in Problem 5.21(c) as required in Problem 5.36.
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Figure S5.36.7: Bode plot for LTI system specified in Problem 5.21(d) as required in Problem 5.36.



