Chapter 9: Sampling and Quantization

Problem 9.1

(a)

(b)

(©)

X, (t) = 5sinc (200t ) = % 2007 sinc ( 2007 x tj . Therefore
r r

)_{1/40 || < 2007

_1 @
Xl(a))—%rect(m‘ 0 |a>2007.

The maximum frequency is given by 100 Hz. Based on the Nyquist theorem, the maximum

S

sampling period is T = 2%.05 =5ms.

X, () = 5sinc(200t) + 8sin (1007t) .

max freq=100Hz max freq=50Hz

max freq=100Hz

Therefore, maximum sampling period is given by

TS=L3=5 ms.
200

A q.’)

b +
—lel o ol

—lgo —S® D to IS0

Fig. S9.1: A(f ) denotes the spectrum of sinc(200t) and B(f ) denotes the spectrum of sin(1007t). X;(f)
is the sum of two shifted replicas of A(f), and is non-zero within the band [-150,150] Hz.

Since X3(t) is a product of sinc(200t) and sin(100xt), the spectrum of X;(t) can be obtained by
convolving the spectrums of sinc(200t) and sin(100nt). From the theory of CT convolution, it can
easily be seen that (see Fig. S9.1), the maximum frequency present in X3(t) is 150 Hz. Therefore, the
maximum sampling period is given by
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$=3.33ms.

T, =
2x150

Since X4(t) is a convolution product of sinc(200t) and sin(100xt), the spectrum of X4(t) can be
obtained by multiplying the spectrums of sinc(200t) and sin(100xt). As the spectrum of sin(100mrt)
includes two impulses at 50 Hz and —50 Hz, the spectrum of x4(t) will only include two impulses at
50 Hz and —50 Hz. As the maximum frequency present in X4(t) is 50 Hz, the maximum sampling
period is given by

T.=— _s=10ms. |
2x50

Problem 9.2

(a)

(b)

(©)

(d)

From Table 5.2, we know that ~ Ysinc () > rect(5%-).
Applying the time-shifting property of the CTFT (see Table 5.4), we obtain
W sinc (@) o rect(2)e .

The uncertainty principle is satisfied as X;(t) is a bandlimited signal but NOT a time limited signal
since a sinc function has infinite length.

From Table 5.2, we know that X,(t) =Lsinc (%) )

The uncertainty principle is satisfied as X,(t) is a bandlimited signal but NOT a time limited signal
since a sinc function has infinite length.

From Table 5.2, we know that Wsine (W) > rect(52-).

Applying the frequency-shifting property of the CTFT (see Table 5.4), we obtain

W o Wt \ p it [oRloN
- smc( ” )e <—)rect( W )

).

In other words, X,(t) =sinc()e" +Lsinc(WL)e ' = W ginc(L)cos(opt),

W o Wt ) p— Jont O+,
and p- smc( ” )e 4 rect( W

which is not a time-limited signal.

The uncertainty principle is satisfied as X;(t) is a bandlimited signal but NOT a time limited signal
since a sinc function has infinite length.

1 wy<w<lo,

Express X, (@) =U(0- o) - U(0-2a,) = {0 elsewhere

From Table 5.2, we know that

T V4

©3%) sinc ( SLIL ) ©> rect (ﬁ) .
Applying the frequency-shifting property of the CTFT (see Table 5.4), we obtain

0.5 . 0.5 t jl. —1.5
( ﬁ""’)smc(( :") )e”sw"t Hrect(u).

@
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0.5 0.5 j j
In other words, X, (t) = ( %)snc(( w‘])t)e”‘sw“t— Slnc(w"t)e”‘sw‘)t,

which is not a time-limited signal. The uncertainty principle is satisfied as X4(t) is a bandlimited
signal but NOT a time limited signal since a sinc function has infinite length

Problem 9.3

(a)

(b)

(©)

(d)

Express X,(t) = cos(@yt) [u(t+T) —u(t —T)]=cos(a,t)rect (3-).
From Table 5.2, we know that  rect (55 ) <> 2T sinc(22-)
and cos(ayt) & 7[5 (w—m,)+ 5 (0+a,) |.
Applying the frequency-convolution property of the CTFT (see Table 5.4), we obtain
cos(ybrect(3) > 5={2Tsine (32 2[5 (0, ) + 50+ ,) ]
= T{sinc(<2)+[8(0-a,) +5(w+ ;)]
- fine (27 ) (=2

We note that X,() is a summation of two sinc functions and is, therefore, not a band-limited signal.
As x;(t) is a time-limited signal, the converse of the uncertainty principle is satisfied.

From Table 5.2, we know that rect(%) <> rsinc (%) )

Applying the time-convolution property of the CTFT (see Table 5.4), we obtain

rect(4) * rect(+) <> {r sinc(£5)x 7 sinc( m)} =17" sinc® (£).

We note that X,(®) is a product of two sinc functions and is, therefore, not a band-limited signal. As
X2(t) is a time-limited signal, the converse of the uncertainty principle is satisfied.

—aff
X (1) = e “Mrect ()= {e 7/2<t<7/2 |

0 otherwise

Calculating the CTFT, we obtain

7/2 /2

X (w)_ J‘ e—a\t\ e ja)tdt _ZJ' gt cos(a)t)dt— [Z_“'(—acosa)t+a)sina)t)];/2

-7/2
wz]

= 2[92;/2( acos(wr/2)+ wsin(wr/2)) +
= #wz[a +e " (—acos(wr/2) + a)sin(a)z'/2))]

a”+ o+

We note that X3(w) is not a band-limited signal. As x3(t) is a time-limited signal, the converse of the
uncertainty principle is satisfied.

Taking the CTFT, we get
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X, (@) =J{5(t-5)}+I{5t+5)} =e"I{s5(t)} +e*I{s(t)}
=e 1’ 1% =2cos(5w)
We note that X4(w) is not a band-limited signal. As X4(t) is a time-limited signal, the converse of the
uncertainty principle is satisfied.

Problem 9.4

(a) Applying the width property (in frequency domain) of the CT convolution, we know that X(t) is a
bandlimited signal with maximum frequency 650 Hz. The minimum value of the sampling rate f,
that does not introduce any aliasing is 1300 samples/sec or 1300 Hz.

(b)  The signals vi(t) and v,(t) are bandlimited to 300 Hz and 500 Hz, respectively. The spectrum of the
produce X(t) = vi(t)v,(t) is shown in Fig. S9.4(a). It is observed that x(t) is a bandlimited signal with
maximum frequency of 800 Hz. The minimum value of the sampling rate f; that does not introduce
any aliasing is 1600 samples/sec or 1600 Hz.

(¢) A sampling interval of 2 ms implies a sampling frequency is 500 Hz. The spectrum of the sampled
signal is a periodic function with a period of 1000% rad/s, and is shown in Fig. S9.4(b). It is
observed that the spectrum is aliased, and hence X(t) cannot be recovered from the sampled signal.
The spectrum can be plotted by hand or the following Matlab code may be used to generate Fig.
S9.4(b).
>> % MATLAB Program for Problem 9.4 (c)
>> X 1p =[0:1/1200:1, ones(1,799), 1:-1/1200:0];
>> kX _1p = [-1600:1600];
>> plot ([-1600:1600],X_1p)
>> ylabel ('Spectrum (x 0.001/PI)"');
>> xlabel ('radian frequency')
>> axis ([-1700 1700 0 1.2])
>> print -dtiff plot.tiff
>> [kX, X] = shiftadd(kx 1p, X 1p, -5, 5, 1000);
>> plot (kX, X) ;
>> ylabel ('Spectrum (x 0.001/PI)"');
>> xlabel ('radian frequency');
>> %axis ([-1600 1600 0 21]);
>> print -dtiff plot.tiff

(d) A sampling interval of 0.1 ms implies a sampling frequency is 10,000 Hz. The spectrum of the

sampled signal will be a periodic function with a period of 20,000m rad/s, and is shown in Fig.
S9.4(c). It is observed that there is no aliasing in the spectrum, and hence X(t) can easily be
recovered from the sampled signal using a lowpass filter.

>> % MATLAB Program for Problem 9.4 (d)

>> X 1p =[0:1/1200:1, ones(1,799), 1:-1/1200:0];
>> kX 1lp = [-1600:1600];

>> plot ([-1600:1600],X 1p)

>> ylabel ('Spectrum (x 0.001/PI)"'");

>> xlabel ('radian frequency')

>> axis([-1700 1700 0 1.2])

>> print -dtiff plot.tiff

>> [kX, X] = shiftadd(kX 1lp, X 1lp, -1, 1, 20000);
>> plot (kX,X) ;

>> ylabel ('Spectrum (x 0.001/PI)"'");

>> xlabel ('radian frequency');

>> axis ([-25000 25000 0 1.27]);

>> print -dtiff plot.tiff |
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Fig. S9.4: Plots for Problem 9.4.
Problem 9.5

The CTFT of x(t) is given by

X (@) = 3{sin (4007t) +2cos(1507t)} = I{sin (4007t)} + 23 {cos (1507t)}
= jﬂ[é’(a) +4007) -0 (w— 4007[)] +2r [5((0 +1507)+ o (w — 1507[)]

and is shown in Fig. S9.5.
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Fig. S9.5. Fourier transform X(®) of the original CT signal.

Note that the maximum frequency in X(t) is 400w rad/s, or, 200 Hz. Therefore, the Nyquist sampling rate
is given by 400 samples/second. A lower sampling rate will cause aliasing and it will not be possible to
reconstruct the signal perfectly.

(a)

fs= 100 samples/s:

The sampling rate us given by 2007 rad/s and the sampling interval by 0.01s. The CTFT of the
sampled signal is given by

X (@) =+ i X (0-ma,) =+ i X (w-200mr).

m=—w

The CTFT X¢(®) is shown in Fig. S9.5a(i). It is observed that the impulses located at ® = £50m,
+150m, £250m, £350m, ... have an area of 2n/Ts, while the impulses located at ® = 0, +200m,
+4007, £6007, £800m, ... have an area with alternating values of jn/Ts and —jn/Ts. Note that the
impulses with area jn/Ts will cancel the impulses with area —jn/Ts, and therefore, there will not be
any impulses at @ = 0, £2007, £4007, £6007, £800m7, .... The revised plot of CTFT X¢(®) is shown
in Fig. S9.5a(ii).

When the sampled signal is passed through a lowpass filter with transfer function

T, |o<1007
H(w) =

0 elsewhere

a CT signal y(t) will be reconstructed. The spectrum Y(w) of the signal y(t) is shown in Fig.
S9.5a(iii) and can be expressed as

Y (w) =27z[5(w+507) + 5(w—507)].
Calculating the inverse CTFT, we obtain the reconstructed signal
y(t) =2cos(507t) .

Since the sampling rate does not satisfy the Nyquist criterion, the reconstructed signal is different
from the original signal.
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Fig. S9.5a. Spectrum of the sampled signal and the reconstructed signal in Problem 9.5(a).

You may be wondering — why does the sin(400nt) term totally disappear when sampled at 100Hz?
Calculate the sampled signal to see what happens.

F,=100 = T,=:;=0.01.

The sampled signal is then given by
X(KT,) = sin (4007KT; ) + 2 cos (1507kT, ) = sin (4007zk x 0.01) + 2 cos (1507k x 0.01)
=sin(47k)+2cos(1.57k)
=0

=2cos(0.57k)

If you sample, sin(400xt) with a sampling frequency 100 Hz (at time instances KT), the sampled
output or the sin(400xt) component is always zero.

(b) fs=200 samples/s:

The sampling rate us given by 400r rad/s and the sampling interval by 0.005s. The CTFT of the
sampled signal is given by

X (@)= X(0-ma)=+ > X(w0-400mz).

s
m=—o0 m=—o0
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Fig. S9.5b. Spectrum of the sampled signal and the reconstructed signal in Problem 9.5(b).

The CTFT X¢(w) is shown in Fig. S9.5b(i). It is observed that the impulses located at ® = £150m,
+250m, £5507, £650m, ... have an area of 27/Ts, while the impulses located at ® = 0, 400,
+800m, ... have an area with alternating values of jn/Ts and —jn/Ts. Note that the impulses with area
jn/Ts will cancel the impulses with area —jn/Ts, and therefore, there will not be any impulses at ® =
0, 24007, £800m, .... The revised plot of CTFT Xs(w) is shown in Fig. S9.5b(ii).

When the sampled signal is passed through a lowpass filter with transfer function

H () T, |0£2007
W)= )
0 elsewhere

a CT signal y(t) will be reconstructed. The spectrum Y(w) of the signal y(t) is shown in Fig.
S9.5b(iii) and can be expressed as
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Y(w)=27[6(w+1507)+ 5(w —1507)].
Calculating the inverse CTFT, we obtain the reconstructed signal
y(t)=2cos(150xt) .

Note that the sampling rate does not satisfy Nyquist criterion in this case. As a result, the
reconstructed signal is different from the original signal.

You may be wondering — why does the sin(400xt) term totally disappear when sampled at 200Hz?
Calculate the sampled signal to see what happens.

The sampled signal is then given by

If you sample, sin(400xt) with a sampling frequency 200 Hz (at time instances kT), the sampled
output for the the sin(4007t) component is always zero.

F,=200 = T,=-5=0005.

X(KT,) = sin (4007KT, ) + 2 cos (1507KT; ) = sin (4007k x 0.005) + 2 cos (1507zk x 0.005)
=sin(27k)+2cos(0.757k)
=0

= 2008(0.757Z'k)

(©)

fs = 400 samples/s:

The sampling rate us given by 800r rad/s and the sampling interval by 0.0025s. The CTFT of the
sampled signal is given by

X (0)=+ i X(a)—ma)s)zT—ls i X (w—800mr) -

m=—o0o m=—co

The CTFT Xs(w) is shown in Fig. S9.5¢(i). It is observed that the impulses located at w = £150m,
+6507, £950m, ... have an area of 2n/Ts, while the impulses located at @ = 0, #4007, +£800m, ... have
an area with alternating values of jn/Ts and —jn/Ts. Note that the impulses with area jn/Ts will cancel
the impulses with area —jn/Ts, and therefore, there will not be any impulses atw = 0,
+4007, £800m, .... The revised plot of CTFT Xy(w) is shown in Fig. S9.5¢(ii).

When the sampled signal is passed through a lowpass filter with transfer function
T, |o|<400x
H (o) =

0 elsewhere

a CT signal y(t) will be reconstructed. The spectrum Y(w) of the signal y(t) is shown in Fig.
S9.5b(iii) and can be expressed as

Y(w)=27[6(w+1507)+ 5(w —1507)].
Calculating the inverse CTFT, we obtain the reconstructed signal

y(t)=2cos(150xt) .
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Fig. S9.5¢c. Spectrum of the sampled signal and the reconstructed signal in Problem 9.5(c).

Note that the sampling rate does not satisfy Nyquist criterion in this case. As a result, the
reconstructed signal is different from the original signal.

fs =500 samples/s:
The sampling rate us given by 1000x rad/s and the sampling interval by 0.002s. The CTFT of the
sampled signal is given by

X (@)=% Y X(0-ma,)=3 > X(w-1000mr).

The CTFT Xs(®) is shown in Fig. S9.5d(i). Note that none of the impulses overlap and hence there
is no cancellation of impulses. The CTFTX(®) is shown in Fig. S9.5d(ii).

When the sampled signal is passed through a lowpass filter with transfer function

H (o) T, |o<5007
w) = )
0 elsewhere

a CT signal y(t) will be reconstructed. The spectrum Y(w) of the signal y(t) is shown in Fig. S9.d(ii),
and can be expressed as

Y(@)=27[6(w +1507) + 5(w —1507) |+ jz[5(@ +4007) — 5 (e — 4007)]-
Calculating the inverse CTFT, we obtain the reconstructed signal
y(t) =2cos(1507t) + sin(400xt) .

Note that because the sampling rate satisfies the Nyquist sampling criterion in this case, the
reconstructed signal is identical to the original signal. |
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Fig. S9.5d. Spectrum of the (i) sampled signal and the (ii) reconstructed signal in Problem 9.5(d).
Problem 9.6

The CT signal x(t) is sketched in Fig. S9.6a.

o9

e et S it e e e —

[T et e R R e el SOt —

T | L SRR AR

el s SanEEEEE! TEREP o EEERE T

] R = SR R

el e nEE R Lt LEEEE R EEE T

[l e e i e T o D —

e e S e e e R B it REEEEEE —

o

Figure S9.6a: The CT signal x(t) for Problem 9.6.
(a) From Table 5.2, entry (18), we know the following CTFT pair

1t
1-= tj<rt
AL = - M <, tsinc? (2.
T

0 otherwise

The input signal can be expressed in terms of the function A(t) as follows

1
X(t):{o.25(3—|t|) 0<ff<3 _ 075( j <3

=0.75A(1
0 otherwise 0 (3)

otherwise
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Therefore, X (@) =0.75x 3sinc (;_0;) =2.25sinc’ (;_0;)

Note that the signal is not band limited. In other words, the maximum frequency present in this
signal is infinite. Therefore, the Nyquist sampling frequency is also infinite.

(b) The CTFT X(w) is sketched in Fig. S9.6b. It is observed that the maximum value of X(®) = 2.25 at
o = 0. From Fig. S9.6a, it is clear that

|X (co)| <0.0225 for ®>5.62 radians/s.
The MATLAB code used to plot Fig. S. 9.6b is given below

>> clf ;

>> w =-10:0.01:10 ;

>> s = sinc(3*w/ (2*pi)) ;

>> X = 2.5*%s.72 ;

>> subplot(3,1,1), plot(w, X), grid on

>> xlabel ('w'") % Label of X-axis
>> ylabel ('X(w) ") $ Label of Y-axis
>> axis([-10, 10, 0O, 31)

>> subplot(3,1,2), plot(w, X), grid on

>> xlabel ('w'") % Label of X-axis
>> ylabel ('X(w) ") $ Label of Y-axis
>> axis([-10, 10, 0, 0.03]) ;

>> subplot(3,1,3), plot(w, X), grid on

>> xlabel ('w') % Label of X-axis
>> ylabel ('X(w) ") % Label of Y-axis
>> axis([5.5, 5.7, 0.02, 0.03]) ;print -dtiff plot.tiff ;% Save figure as a TIFF file
>> k= -5:5 ;

>> x = 0.25*(3-abs (k)).*((abs(k)<4)) ;

>> stem(k, x, 'filled'),grid

>> ylabel ('x[k]"');

>> xlabel ('k")

>> print -dtiff plot.tiff

2L |
z
=
1
1] L 1 | |
-10 & & 4 2 0 2 4 6 8 10
w
0.03 T m - || T .
I ! | |
| 1 | | il |
ooz [t | | | I \
E ] 1 ] ] | | | |
= - f g 1] E |
001+ t gl & H o -
{ I| { i 1
| i | \ A
0 | it 1 il 1 |
-10 & & 4 2 0 2 4 6 8 10
w
0.03 T T T T T
Z o025 - .
=3 -
0.02 L L

I I i —_
55 552 5.54 5.56 5.58 5.6 562 5.64 5.66 5.68 57

Figure S9.6b: CTFT X(w) in Problem 9.6.

It is observed that |X (c0)| <0.0225 for o >5.62radians/s.
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Expressed in Hz, the maximum effective frequency in the signal is given by B = 5.62/21t = 0.89 Hz.
Therefore, the Nyquist sampling rate would be 2 % 0.89 = 1.78 samples/second.

(¢c) The discrete signal x[k] for the interval (-5 <t <5) is plotted in Fig. S9.6(c).

0.8
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4 3
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k

Figure S9.6¢: DT signal x[k] in Problem 9.6(c).

(d) The quantizer in Example 9.3 has eight reconstruction levels Iy, as follows:
rm=-0.875,-0.625 ,-0.375 , -0.125, 0.125, 0.375, 0.625, 0.875.
The decision levels are given by
dn=-1V,-0.75V, -0.5V ,-0.25V , 0V, 0.25V, 0.50V, 0.75V, 1V.
Note that the quantizer generates
yIk] =1, =3[d, +d,.]
where d, <x[k]<d,,,.

The quantization error is shown in Table S9.6a, and is plotted in Fig. S9.6d. The Matlab code used
to generate Fig. S9.6d is given below:

>> % MATLAB program for Fig. 9.6d

> k=[-5 -4 -3 -2 -1 0 1 2 3 4 5];

>> x = [0 0 0 0.25 0.50 0.75 0.50 0.25 0 0 01;

>> g = [0.125 0.125 0.125 0.375 0.625 0.875 0.625 0.375 0.125 0.125 0.125];
>> e = x-q;

>> subplot(4,1,1),plot(k, x),grid on

>> xlabel ('t'), ylabel('x(t)")

>> %title('The Original Continuous Signal')
>> subplot(4,1,2),stem(k, x),grid on

>> xlabel ('k'), ylabel('x[k]")

>> %title('The Original Discrete Signal')
>> subplot(4,1,3),stem(k, qg),grid on

>> xlabel ('k'), ylabel('glk]")

>> %title('The Quantized Discrete Signal')
>> subplot(4,1,4),stem(k, e),grid on

>> xlabel ('k'), ylabel('e[k]")

>> %title('The Error Signal')

>> print -dtiff plot.tiff
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Table S9.6a: Quantized sample values and the quantization errors

t k X[K] Q{xX[K]} e[k]
s 5 0 0.125 —0.125
2 4 0 0.125 —0.125
3 3 0 0.125 ~0.125
) ) 0.25 0375 -0.125
-1 -1 0.50 0.625 —0.125

0 0 0.75 0.875 —0.125

1 1 0.50 0.625 ~0.125

2 2 0.25 0.375 ~0.125

3 3 0 0.125 ~0.125

4 4 0 0.125 ~0.125

5 5 0 0.125 -0.125

The theoretical maximum quantization error for this quantizer is 0.25/2 = 0.125. It is observed that

the maximum error occurs at all values of k.

(e) The decision and reconstruction levels for the 16-level quantizer are shown in Table S9.6b. The
quantized sample values are shown in Table S9.6, while the quantization error values are plotted in

Fig. S9.6e.
Table S9.9b: Decision and reconstruction levels for the 16-level quantizer
m Decision Reconstruction m Decision Reconstruction
levels levels levels levels
0 ~1.000 ~0.9375 8 0 0.0625
1 —0.875 —0.8125 9 0.125 0.1875
2 ~0.750 —0.6875 10 0.25 0.3125
3 —0.625 —0.5625 11 0.375 0.4375
4 —0.500 —0.4375 12 0.50 0.5625
5 —0.375 —0.3125 13 0.625 0.6875
6 ~0.250 —0.1875 14 0.75 0.8125
7 ~0.125 —0.0625 15 0.875 0.9375
Table S9.9c: Quantized sample values
t k x[K] Q{x[K]} e[k]
5 5 0 0.0625 —0.0625
2 4 0 0.0625 ~0.0625
3 3 0 0.0625 ~0.0625
] ) 0.25 0.3125 —0.0625
-1 -1 0.50 0.5625 —0.0625
0 0 0.75 0.8125 -0.0625
1 1 0.50 0.5625 -0.0625
2 2 0.25 0.3125 —0.0625
3 3 0 0.0625 -0.0625
4 4 0 0.0625 —0.0625
5 5 0 0.0625 —0.0625
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Figure S9.6d: Quantization error e[K] in Problem 9.6(d).

The theoretical maximum quantization error for this quantizer is 0.125/2 = 0.0625. It is observed
that the maximum error occurs at all values of k. The MATLAB code for Fig. S9.6¢ is given below:

>> % MATLAB program for Figure S9.6e

> k =[-5 -4 -3 -2 -1 0 1 2 3 4 51;

>> x = [0 0 0 0.25 0.50 0.75 0.50 0.25 0 0 01;

>> g = [0.0625 0.0625 0.0625 0.3125 0.5625 0.8125 0.5625 0.3125 0.0625 0.0625
0.0625];

>> e = x-q;

>> subplot(2,1,1),stem(k, g),grid on

>> xlabel ('k'), ylabel('glk]")

>> %$title('The Quantized Discrete Signal')

>> subplot(2,1,2),stem(k, e),grid on

>> xlabel ('k'), ylabel('el[k]")

>> %title('The Error Signal')

>> print -dtiff plot.tiff |
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Figure S9.6e: The quantization error signal e[K] in Problem 9.6(e).

Problem 9.7

Recall that r(t) =rect(t)* > §(t—KT,)

k=—c0
is a periodic signal with rect(t/t) repeated. The individual replicas are separated by a duration of Ts.

Applying CTFS, the periodic signal r(t) can be represented as

rt)= Y D,el"!

N=—o

where @s = 21/Ts. The CTFS coefficient is given by

1 T, /2 _ R
oy ity oL e,
T, T T,
_Ts /12 -1/2
—jno,t/2 _ L jnegt/2 0
which simplifies to D, = 1ye : € _ 0T sinc( wsTj. I
Ts — jno 2n 2n

Problem 9.8
(a) Consider the bandpass signal X(t) with CTFT
X(®)=0 for |o|<ow and|®|>w,

The spectrum of X(t) is shown in Fig. P9.8(a) with an additional constraint that ®; > (®; — ®;).
Sampling by a periodic impulse train

kZS(t—kTS)&?r—Z PIICEELOB
=—00 M=—o0

the spectrum of the periodic signal x(t) is given by
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X(t) x ZS(t—kT) PRLSLLENEN i 0.

k=—c0 —0

X (D) X (@)

shown in Fig. P9.8(b). Note that the original signal X(t) can be perfectly reconstructed by filtering
with a bandpass signal provided there is no overlap with (m = 0) replica. This would require

Right corner of (m = —1) replica: ——+ 0, <o, oOr, %—:‘ 2 (0, — ).
and

Left corner of (m = 1) replica: —%+ o <-wm, or, 2—:‘ <20.
Combining the two conditions, we get (0 —) < %—" <2 .

Note that this rate is less than the Nyquist baseband sampling rate of 2, radians/s.

(b) The minimum sampling rate is (@, — ®;) radians/s.
(c) For the signal to be constructed, the transfer function of the bandpass filter is given by
T o oo,
Hip () = {O elsewhere. I

Problem 9.9

(a) Using the CTFT exp(—jL (o, + ®,)t) 1> 2n8(w+ 2522 t) .

Hence, X(t) *exp(— |+ (o, + 0, ) T X (0 + 2522 1)

Fig. S9.9 plots the spectra of the signals at the output of the multiplier q(t) (Fig. S9.9(a)), at the
output of the lowpass filter (Fig. 9.9(b)), and at the output of the impulse train multiplier (Fig.
S9.9(c)).

(b)  From Fig. 9.9(b), it is clear that the output of the lowpass filter is a baseband signal with the highest
frequency of Wmx = 0.5(0; +®,). Using Nyquist sampling theorem, the sampling frequency is
given by f, >3 (0,+0,).

The sampling interval is limited by T, <27/(®, + ®,).

(¢)  If the sampling frequency is set to the Nyquist rate, i.e.,

f, = 1 3: (0, +0,),

then the original signal x(t) is obtained from Xs(t) by filtering with a bandpass filter with the transfer
function

H (o) = 1 o £|co|£032
0 elsewhere.
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Fig. S9.9: Spectra of the signals: (a) at the output of the multiplier q(t); (b) at the output of the
lowpass filter; and (c) at the output of the impulse train multiplier.

For any other sampling frequency, f, >5-(®, +®,),

the original signal X(t) is obtained from Xs(t) by filtering with a lowpass filter with the transfer

function
1 0<lo<(0,+m,)/2
oy [1 051050,
elsewhere
and then multiplying the resulting baseband signal with 2cos(nt((®; +w,)t). |
Problem 9.10

(a) The CTFS of the sawtooth wave is given by

s(t)= Y D, exp(j2nnt/T,)
N=—o0
where the CTFS coefficients are given by

T, /2
1

D, = j(1+ e T+ — 1 J.(l— 2t)e 2™ Tt
T s T, /2 s
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n=0
which simplifies to D, =<0 evenn,n=0

2
o oddn,n=0.

The CTFT of z(t) = X(t) x s(t) is given by

o=

X(t) x s(t) 5L X (0) *21 > D, 8(0—2nn/T,),

N=—o0
or, Z(®)= Y D,X(0-2n7/T,).
N=—o0
(b)  The spectrum of the CTFT of the sampled signal z(t) is shown in Fig. S9.10.
1| Z(w)
2
/ _\ 2 )
YARERN RN e
=30, -2, -0, —2nf 0 2nf o, 2w, 3w,
Fig S9.10: Spectrum of z(t) sampled with a periodic sawtooth wave with os = 27/Ts.

(¢) From Fig. S9.10, the original signal x(t) can be recovered from z(t) if the main replica at ® = 0 does
not overlap with the replica at ® = ®s. In other words, s > 4nf3. Thus the fundamental frequency of
the sawtooth saw wave is the same as the Nyquist sampling rate for X(t).

The original signal X(t) can be recovered from z(t) by filtering z(t) with a lowpass filter specified
below
2 0|05
Hi={2 OSle=0%e,
0  otherwise.

(d)  Signal z(t) is different from the sampled signal Xs(t) obtained by ideal impulse train sampling in the
following two ways. First, all replicas at even multiples of w;, (i.e., ® = 2kws) are missing. Second,
the magnitudes of the odd-numbered replicas are not constant and decrease with the increasing
frequency. |

Problem 9.11

(a) The CTFS of the alternating sign impulse train with period T = 2T is given by

s(t) = i D, exp(jnnt/T,)

N=—w0

where the CTFS coefficients are

_ 1 i —jnmt/Tg _ 1 —jnr
D, =7 [lB-3-T.k dt=—[i-e].

S
b 0 evenn
or, =
" |+ oddn.
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The CTFT of z(t) = x(t) x s(t) is given by
X(t) x s(t) «—T>-L X (0)*21 YD, 8(0—nn/T,),
N=—o0
or, Z(®)= Y D,X(0-nn/T,).
N=—o0
(b)  The spectrum of the CTFT of the sampled signal z(t) is shown in Fig. S9.10.
Z(w)
| | | | > ©

=30, =20, -0, =27 0 2% o, 2w, 3w,

Fig S9.11: Spectrum of z(t) sampled with an alternating sign impulse train with s = 7/Ts.

(¢) From Fig. S9.11, the original signal x(t) can be recovered from z(t) if the first replica at ® = ws does
not overlap with the replica at ® = 3w,. In other words, s > 2nf. Thus the fundamental frequency
of the alternating sign impulse train is half the Nyquist sampling rate for X(t).

The original signal X(f) can be recovered from z(t) by multiplying z(t) with cos(wst) and then
passing the resulting output through a lowpass filter specified below
T, 0<|0<0.50
Hw)={Te 0<ll=0%e,
0 otherwise.

(d)  All replicas at even multiples of s, (i.e., ® = 2Kws, for kK = 0, £1, £2, £3, ...) are missing in the
spectrum of z(t). This is the only difference between the spectrum of the sampled signal X(t)
obtained by ideal impulse train and that of z(t). |

Problem 9.12

(@)  The CTFS of the alternating sign impulse train with period T = Ts is given by

s(t)= Y D, exp(j2nnt/T,)

N=—o0
where the CTFS coefficients are
1
D =—
T

S

o —p

[B(t) + 8(t _ A)]e*innt/Tsdt — TL[I n e*j“A/Ts ]’

—JnA/2T,
or, D, =2e ™" cos()

The CTFT of z(t) = X(t) x s(t) is given by

X(t)x s(t) > -L X (0) *21 YD, 8(0—nn/T,),

nN=-—o0

or, Z(®)= Y D,X(o-nn/T).

N=—o0
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(b)  The spectrum of the CTFT of the sampled signal z(t) is shown in Fig. S9.10.

% Z(w)
H LN/ \ /1N i —_ , ®
=3, -2, -0, —2np 0 2xfB o, 2w, 3o,

Fig S9.11: Spectrum of z(t) sampled with an alternating sign impulse train with s = /Ts.

(c) From Fig. S9.11, the original signal X(t) can be recovered from z(t) if the first replica at ® = 0 does
not overlap with the replica at ® = ®s. In other words, s > 4nf3. Thus the fundamental frequency of
the sampling train is the same as the Nyquist sampling rate for x(t).

The original signal X(t) can be recovered from z(t) by filtering z(t) with a lowpass filter specified
below

0.5T, 0<|o[<0.50m,

0 otherwise.

H@»:{

(d) Compared with the ideal impulse train sampling, the replicas are attenuated by a factor of
2cos($2). |

Problem 9.13

In terms of the sampling frequency fs, the sampled signal is given by

X (0)=f, iX(w—Zmnfs).

m=—w0

The output of the bandlimited channel is given by
Xep(@) = f,[Xyp(@+ 47 )+ X (@67 f)+ X (@87 f)]
where Xysg(®) is the upper side band of X(®) given by

X(w) 0<o<nf,

0 elsewhere

Xuse (@) :{

and X, sg() is the lower side band of X(w) given by

Y (o) | X@ o<,
0) =

UsBATs 0 elsewhere.

Note that X (0) = X g (0) + X g ()

and X() is a baseband signal with a bandwidth of B = nf;.

The original signal X(®) can be recovered from Xgp(w) by first multiplying with cos(6nfit) and then
filtering the output with a lowpass filter whose transfer function is given by

1/f, 0<|o|<zf,

0 otherwise.

H(a)):{
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Problem 9.14

Given that the maximum quantization noise (A/2) is limited to £p percent of the peak-to-peak value Vyp,
therefore,

% =0.01p prp ,or, A=0.02p prp ,
L Vi 50
implying that No.of Levels(L) = ———+1=—+1,
0.02pxV p
log, |2 +1
and No. of bits per level > log, [5—;) + 1] = M =3.32log,, [% + 1].
log,,(2)
For p << 1, the above expression reduces to
No. of bits per level > 3.321og,, [%] : |

Problem 9.15

(a) Based on the Nyquist sampling theorem, the sampling frequency f; is given by
f, > 2B = 8000 samples/s.

The maximum sampling period is given by T < 1/8000 = 0.125ms.
(b) Based on Problem 9.14,
No. of bits per level > 3.321og, [5?0] =3.32.

Rounding off to the nearest whole number, length of the code word = 4 bits/sample.

(c)  The data rate of PCM is 4 bits/sample x 8000 samples/s = 32 kbits/s. |

Problem 9.16

Sampling Rate = 2 x 10° samples/s.
Transmission Speed = 2 x 10° bits/s.

2x10°

Maximum number of bits per sample = = ———_
2x10°

=10.

Number of Levels (L) = 10" = 1024.

As the input amplitude range is +1 V, the quantization step size is given by, A = 2 1 ~0.00195.

The maximum distortion is given by, A/2 = 0.000977. I

Problem 9.17

The input-output relationship of the ideal sampling system is given by



(1)

(i)

(iii)

(iv)
V)

(vi)
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0

X(t) > y(t) = > x(KT,)s(t—kT,)

k=—w0

Linearity: Since

=—00

x(0) > 3 (KT, -KT,) = y,(1)
k

X1 - 3 %(KT)S(t—KT,) = y, (1)

0

ax () + px,(t) —» z [axl(kTs) +ﬂx2(kTs)] o(t—KT,)

k=—
—a > X (KIS —KT)+ B % (KT,)S(t—KT,)
=ay, (t) + ﬂyz (t)

the system is a linear system.

Time Invariance: For inputs X;(t) and X,(t) = x,(t — T), the outputs are given by

X(0) = S (KT —KT,) = y,(1)
k=—c0

0

X,(1) =X (t-T) > > x,(KT,)5(t—KT,) = x,(t-T —2) = y, (1)

If X, (t)=X,(t—T), then y,(t) = i X, (KT,)S(t —KT,) = i X (KT, =T)S(t—KkT.).

Since y,(t-T)= z X, (KT)o(t—T —KT,) # y,(t), the system is NOT time invariant.

k=—0
Memoryless: The system output at time t=KT, depends only on the input value at t = KTs.
Therefore, the system is memoryless.

Causality: Since the system is memoryless, it is also causal.

Stability: Assume that the input is bounded |x(t)] < M. Then, the absolute output can be expressed
as:

o0

ly®)] =D x(KT,)s(t—KT,)| = i X(KT)|S(t—kT,) < M i S(t—KT))

k=-o

Note that because of the CT impulse functions, |y(t)| is not strictly a bounded function. Therefore,
the system is NOT BIBO stable.

As discussed in chapter 9, the X(t) can be reconstructed from the samples, if the sampling rate is

greater than Nyquist sampling rate. Therefore, the system is in general not invertible. However, if
the sampling theorem is satisfied, the input can be reconstructed using the following equation:

x(t) =sinc( ft)*y(t)

where f; is the sampling frequency. I
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Problem 9.18

The input-output relationship of the ideal sampling system is given by
x[k]—> Q{x[k]}=4[d, +d,,]=ylk] for d, <xk]<d,, -

(1)  Linearity: In a linear system, there is one-to-one correspondence between input and output values.
In other words, no two different input signal values will produce the same output value. In the
above quantization system, this is not the case. Note that all signal values in the range [0y, dm+1)
produce the same output value, which is 0.5[dy, + dp+(]. In other words, the quantization system is
nonlinear.

(ii)) Time Invariance: From the input-output relationship of the system, it is observed that the output
value depends on the input value (and the decision levels), and does not depend anyway on the time
factor, i.e., when the output is calculated. Therefore, if we have an input output pair, X[kK]— y[K],

and if we delay X[k], the output y[K] will also be delayed by the same amount. Hence, the system
is time-invariant.

(iii) Memoryless: The system output at time K depends only on the input value at the same time K.
Therefore, the system is memoryless.

(iv) Causality: Since the system is memoryless, it is also causal.

(v)  Stability: In a quantizer, the output must be equal to one of the reconstruction levels, and the
reconstruction levels are always finite valued. Therefore, the system is BIBO stable.

(vi) In an invertible system, there is unique correspondence between input and output values. In other
words, no two different input signal values will produce the same output value. In the above
quantization system, this is not the case. If the output of the system is 0.5[dy + dn+], the input
could be of any value in the range [dp, dn:1). So, it is not possible to uniquely determine the input
values. In other words, the quantization system is NOT invertible. I

Problem 9.19

(a)  The space required to store each audio sample (per channel) is 16 bits. As there are two channels,
Space needed to represent each stereo audio sample = 32 bits = 4 bytes
An audio clip has an average duration of 5 minutes (300 s). Therefore,
Number of audio samples/clip = 44100 x 300 =13.23x10° samples.
To store an audio clip,
Required storage space = 13.23x10° x4 =52.92x10° bytes.
(b)  As the mp3 format reduces the file size to 1/8" of its original size, to store an mp3 audio clip,

Required storage space = 52.92x10°/8 =6.615x10° bytes.

1024 x10° |

C Number of mp3-compressed audio clips = ~154.8.
(c) P P P 6.615x10°

Problem 9.20

(a) The space required to store each color (3 channels) pixel is 24 bits or 3 bytes. As there are 2560 x
1920 pixels in an image, therefore,



Solutions

Space needed to represent each image = 2560 x1920 x 3 =14.746 x10° bytes.
(b)  The image in JPEG format requires one-tenth of the uncompressed storage space. Therefore,
Space needed to represent each image (JPEG) = 1.475x10° bytes
(c)  The camera has 512 x 10° bytes of memory. Therefore,

6
Number of JPEG-compressed that can be stored = 12107 ~347.

1.475x10°

25



