
 

Chapter 15: FIR Filter Design 
 

 

 
Problem 15.1 
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Combining the above results, we obtain, 
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For the special case of m=0 (zero delay), 
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Problem 15.2 

(i) The normalized cut-off frequency is given by 2 0.5
8/ 2nΩ = = . 

The ideal lowpass filter for the above normalized cut-off frequency is given by (see Table 14.1 in the text) 

( ) sin(0.5 )[ ] 0.5sin 0.5ilp
k

kh k c k π
π= = . 
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(ii) The normalized cut-off frequency is given by 2 0.25
16 / 2nΩ = = . 

The ideal lowpass filter for the above normalized cut-off frequency is given by 

( ) sin(0.25 )[ ] 0.25sin 0.25ilp
k

kh k c k π
π= = . 

(iii) The normalized cut-off frequency is given by 2 0.0907
44.1/ 2nΩ = = . 

The ideal lowpass filter for the above normalized cut-off frequency is given by 

( ) sin(0.0907 )[ ] 0.0907sin 0.0907ilp
k

kh k c k π
π= = . ▌ 

 

Problem 15.3 
 
The amplitude of the 5-tap (N = 21) rectangular, Hanning, Hamming, and Blackman windows are listed in 
the following table, and plotted in Fig. S15.3.  ▌ 

Table: Amplitude of the 5-tap (N = 5) Rectangular, Hanning, 
Hamming, and Blackman windows. 

Window Time Index (k) 
 0 1 2 3 4 
Rectangular 1 1 1 1 1 
Hanning 0 0.5 1 0.5 0 
Hamming 0.08 0.54 1 0.54 0.08 
Blackman 0 0.34 1 0.34 0 

 

 

Fig. S15.3: 5-tap (N = 5) rectangular, Hanning, Hamming, and 
Blackman windows. The markers (x,o) corresponds to the 
actual amplitude of the discrete windows. 
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Program 15.3: MATLAB code to generate the amplitude of 
5-tap (N = 5) Rectangular, Hanning, Hamming, and 
Blackman windows. 

N=5; 
k=0:N-1; 
hannw  = 0.5-0.5*cos(2*pi*k/(N-1)) 
hammw = hamming(N) 
blacw = blackman(N) 
 
rectw = ones(1,5); 
plot(k,rectw,k,hannw,k,hammw,k,blacw); 
axis([-1  5  0  1.1]) 
xlabel('k') 
ylabel('Window Amplitude');  
print -dtiff plot.tiff 

 
 
Problem 15.4 

The minimum stopband attenuation is 35 dB. From Table 15.2 in the text, it is observed that Hanning, 
Hamming and Blackman windows will satisfy the stopband attenuation requirement. 

The normalized transition bandwidth, 
0.3 0.3s pc

n
π

π π π
Ω − ΩΔΩ

ΔΩ = = = =  

Using Table 15.2, the length corresponding to various windows is given by 

Hanning: 
6.2 6.2 20.66

0.3n

N ≥ = =
ΔΩ

, or 21N =  

Hamming: 
6.6 6.6 22

0.3n

N ≥ = =
ΔΩ

. 22N = . If an odd-length filter is desired, N=23. 

Blackman: 
11 11 36.66

0.3n

N ≥ = =
ΔΩ

, or, 37N = . ▌ 

Problem 15.5 
 
As the minimum stopband attenuation is 35 dB, Eq. (15.20) in the text yields, 

0 40 5842(35 21) 0 0789(35 21) 1.6789 1.1046 2.783.. .β = − + − = + ≈ . 

It was shown in the solution of Problem 15.4 that 0.3nΔΩ = . Therefore, the length of the Kaiser window 
is obtained from Eq. (15.21) as follows: 

7.95 35 7.95 12.56
2.285 2.285 0.3n

AN
π π
− −

≥ = =
× ΔΩ ×

 

which is rounded off to the closest higher odd number as 13.  ▌ 
 
 
 



4     Chapter 15 

Problem 15.6 

The normalized cut-off frequency, 1c
n

ΩΩ
π π

= = . Therefore, the impulse response of the DT filter is given 

by 

( )1[ ] sinilp
kh k cπ π=  

The rectangular window with 51 taps is given by 

1 0 50
[ ]

0R

k
w k

otherwise

≤ ≤⎧⎪= ⎨
⎪⎩

 

Right-shifting the ideal lowpass filter impulse response by 25 time units, and multiplying with the 
rectangular window, the designed FIR filter impulse response is obtained as: 

251 sin ( ) 0 50
[ ] [ ] [ ]

0 .

k

rect ilp R

c k
h k h k w k

otherwise
ππ
− ≤ ≤⎧⎪′ = = ⎨

⎪⎩
 

 

 
(a) 

              
(b) (c) 

Figure S15.6: Filter design using windows in Problem 15.6. (a) 51 tap filter obtained 
using the rectangular window, (b) amplitude gain (in absolute scale) of the filter, and (c) 
amplitude gain (in dB scale) of the filter. 
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In order to make the DC gain unity, the filter impulse response is divided by [ ] 0.9754recth k′ =∑ : 

[ ][ ]
0.9754

rect
rect

h kh k
′

= . 

The impulse response [ ]recth k  and the frequency characteristics of the filter are shown in Fig. S15.6.  ▌ 

Program 15.6: MATLAB Program for calculating and plotting the Filter responses 
clear; clf 
N=51 ; ;              % Number of filter taps 
M=(N-1)/2 ; 
k = 0:N-1; 
 
filter_ideal = (1/pi)*sinc((k-M)/pi) ; 
window_rect = ones(1,N) ; 
filter_rect = filter_ideal.*window_rect ; 
S=sum(filter_rect) 
filter_rect = filter_rect/S; 
% the filter impulse response is scaled so that the 
% the DC gain is one. 
 
% Plotting the filter impulse response 
stem(k, filter_rect, 'filled'),grid 
ylabel('Filter Impulse Response');  
xlabel('k') 
print -dtiff plot.tiff 
 
% Calculating the freq. response 
[H, w] = freqz(filter_rect,1) ; 
 
%Plot in absolute scale 
plot(w, abs(H)), grid 
axis([0  pi  0  1.1]); 
xlabel('Frequency (rad/s)') 
ylabel('Amplitude Gain');  
print -dtiff plot.tiff 
 
%Plot in dB scale 
Hr = 20*log10(abs(H)+eps) ; 
plot(w, Hr), grid 
axis([0   pi   -50   2]); 
xlabel('Frequency (rad/s)') 
ylabel('Amplitude Gain (in dB)');  
print -dtiff plot.tiff 

clear; clf 
N=51 ; ;              % Number of filter taps 
M=(N-1)/2 ; 
k = 0:N-1; 
 
filter_ideal = (1/pi)*sinc((k-M)/pi) ; 
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ; 
filter_hamming = filter_ideal.*window_hamming ; 
S=sum(filter_hamming) 
filter_hamming = filter_hamming/S; 
% the filter impulse response is scaled so that the 
% DC gain is one. 
 
% Plotting the filter impulse response 
stem(k, filter_hamming, 'filled'),grid 
ylabel('Filter Impulse Response');  
xlabel('k') 
print -dtiff plot.tiff 
 
% Calculating the freq. response 
[H, w] = freqz(filter_hamming,1) ; 
 
%Plot in absolute scale 
plot(w, abs(H)), grid 
axis([0  pi  0  1.1]); 
xlabel('Frequency (rad/s)') 
ylabel('Amplitude Gain');  
print -dtiff plot.tiff 
 
%Plot in dB scale 
H = 20*log10(abs(H)+eps) ; 
plot(w, H), grid 
axis([0   pi   -80   5]); 
xlabel('Frequency (rad/s)') 
ylabel('Amplitude Gain (in dB)');  
print -dtiff plot.tiff 
 
%Plot in dB scale 
plot(w, H,w,Hr), grid 
axis([0   pi   -80   5]); 
xlabel('Frequency (rad/s)') 
ylabel('Amplitude Gain (in dB)');  
print -dtiff plot.tiff 

Problem 15.7 

The normalized cut-off frequency, 1c
n

ΩΩ
π π

= = . Therefore, the impulse response of the DT filter is given 

by 

( ) sin( )1[ ] sinilp
kk

kh k cπ π π= =  
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The Hamming window with 51 taps are given by 

( )250.54 0.46cos 0 50
[ ]

0

k

H

k
w k

otherwise

π⎧ − ≤ ≤⎪= ⎨
⎪⎩

 

Right-shifting the ideal lowpass filter impulse response by 25 time units, and multiplying with the 
Hamming window, the designed FIR filter impulse response is obtained as: 

( )25
251 0.54 0.46cos sinc( ) 0 50

[ ] [ ] [ ]
0 .

k

Hamm ilp H

k k
h k h k w k

otherwise

π
π π

−⎧ ⎡ ⎤− ≤ ≤⎪ ⎣ ⎦′ = = ⎨
⎪⎩

 

In order to make the DC gain unity, the filter impulse response is divided by [ ] 0.9982Hammh k′ =∑ : 
[ ][ ]

0.9982
rect

rect
h kh k

′
= . 

The impulse response [ ]Hammh k  is shown in Fig. S15.7(a). The frequency characteristic of the filter is 
shown in Fig. S15.7(b) and (c). Fig. S15.7(d) compares the frequency characteristics of the designed filter 
with that of the filter obtained in Problem 15.6. ▌ 
 

             
(a) (b) 

                    
(c) (d) 

Figure S15.7: Filter design using Hamming window in Problem 15.7. (a) Impulse response of 
the 51-tap FIR filter, (b) the amplitude gain characteristics of the filter in absolute scale, (c) 
the amplitude gain characteristics of the filter in dB scale and (d) comparison of the 
amplitude gain characteristic with the filter obtained in Problem 15.6 (using Rectangular 
window). 
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Problem 15.8 

(a) As the minimum stopband attenuation is 45 dB, several windows such as Hamming, Hanning, and 
Blackman will satisfy the specification. 

(b) The cut-off frequency of the filter is calculated to be 

cf  = passband edge frequency + 0.5*transition bandwidth = 10.025 KHz + 0.5 KHz = 10.525 KHz 

The normalized cut-off frequency is given by 

10.525 0.4773
44.1/ 2nΩ = = . 

The ideal lowpass filter for the above normalized cut-off frequency is given by 

( )sin(0.4773 )[ ] 0.4773sin 0.4773l
k

kh k c kπ
π= = . 

The normalized transition bandwidth, 1 
22.05 Δ 0.0454n

KHz
KHzΩ = = . 

From Table 14.3, we know that for Hamming window, 6.6Δ n NΩ = . 

Therefore, 6.6 6.6
Δ 0.0454 145.4

n
N Ω≥ = = . We can choose, N=146 (even length) or 147 (odd length). Note that 

the 146 tap filter will have a fractional delay (72.5 units) and the 147 tap filter will have an integer delay 
of 73 time units. 
 
Case 1: N=146 
 
The Hamming window is given by 

( )2
1450.54 0.46cos 0 145

[ ]
0

k

H

k
w k

otherwise

π⎧ − ≤ ≤⎪= ⎨
⎪⎩

 

Right-shifting the ideal lowpass filter by 73 time units, and multiplying with the Hamming window, the 
designed FIR filter impulse response is obtained as: 

( ) ( )2
1450.4773 0.54 0.46cos sin 0.4773( 72.5) 0 145

[ ] [ ] [ ]
0 .

k

l H

c k k
h k h k w k

otherwise

π⎧ ⎡ ⎤− − ≤ ≤⎪ ⎣ ⎦= = ⎨
⎪⎩

 

In this case, [ ] 1.0004h k =∑ , and hence the scaling of h[k] can be ignored. 

Case 2: N=147 

The Hamming window is given by 
( )730.54 0.46cos 0 146

[ ]
0

k

H

k
w k

otherwise

π⎧ − ≤ ≤⎪= ⎨
⎪⎩

 

Right-shifting the ideal lowpass filter by 73 time units, and multiplying with the Hamming window, the 
designed FIR filter impulse response is obtained as: 

( ) ( )730.4773 0.54 0.46cos sin 0.4773( 73) 0 146
[ ] [ ] [ ]

0 .

k

l H

c k k
h k h k w k

otherwise

π⎧ ⎡ ⎤− − ≤ ≤⎪ ⎣ ⎦= = ⎨
⎪⎩
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In this case, [ ] 1.0005h k =∑ , and hence the scaling of h[k] can be ignored. 

 

(c) The frequency response of the 146-tap and 147-tap filters is shown in Fig. S15.8(i), and Fig. S15.8(ii), 
respectively. Note that, because of the shift, both filters are causal.  ▌ 
 

       
(a) (b) 

 

        
(c) (d) 

Figure S15.8(i). 146-tap FIR filter designed using Hamming Window. a) The impulse response, b) the 
blow up of the impulse response showing the middle 40 impulses, c) the amplitude-frequency 
response in absolute scale, and (d) the amplitude-frequency response in dB scale. Note that as the 
filter has even number of taps, the middle two impulses in Fig (b) have identical amplitude. 
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Figure S15.8(ii). 147-tap FIR filter designed using Hamming Window. a) The impulse response, b) 
the amplitude-frequency response in absolute scale, (c) the amplitude-frequency response in dB scale, 
and (d) the blow-up of amplitude-frequency response near the cut-off frequency. 

 

Program 15.8: MATLAB Program for calculating and plotting the Filter responses 
clear; clf 
N=146 ; ;              % Number of filter taps 
M=(N-1)/2 ; 
k = 0:N-1; 
 
filter_ideal = 0.4773*sinc(0.4773*(k-M)) ; 
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ; 
%win_hamm = hamming(N) ; 
filter_hamming = filter_ideal.*window_hamming ; 
S=sum(filter_hamming) 
filter_hamming = filter_hamming/S; 
% the filter impulse response is scaled so that the 
% sum is one. 
 
% Plotting the filter impulse response 
stem(k, filter_hamming, 'filled'),grid 
ylabel('Filter Impulse Response');  
xlabel('k') 

clear; clf 
N=147 ; ;              % Number of filter taps 
M=(N-1)/2 ; 
k = 0:N-1; 
 
filter_ideal = 0.4773*sinc(0.4773*(k-M)) ; 
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ; 
%win_hamm = hamming(N) ; 
filter_hamming = filter_ideal.*window_hamming ; 
S=sum(filter_hamming) 
filter_hamming = filter_hamming/S; 
% the filter impulse response is scaled so that the 
% sum is one. 
 
% Plotting the filter impulse response 
stem(k, filter_hamming, 'filled'),grid 
ylabel('Filter Impulse Response');  
xlabel('k') 
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print -dtiff plot.tiff 
 
% Calculating the freq. response 
[H, w] = freqz(filter_hamming,1) ; 
 
%Plot in absolute scale 
plot(w/pi*22.05, abs(H)), grid 
axis([0  23 0  1.1]); 
xlabel('Frequency (in KHz)') 
ylabel('Amplitude Gain');  
print -dtiff plot.tiff 
 
%Plot in dB scale 
H = 20*log10(abs(H)+eps) ; 
plot(w/pi*22.05, H), grid 
axis([0  23 -80 2]); 
xlabel('Frequency (in KHz)') 
ylabel('Amplitude Gain (in dB)');  
print -dtiff plot.tiff 

print -dtiff plot.tiff 
 
% Calculating the freq. response 
[H, w] = freqz(filter_hamming,1) ; 
 
%Plot in absolute scale 
plot(w/pi*22.05, abs(H)), grid 
axis([0  23 0  1.1]); 
xlabel('Frequency (in KHz)') 
ylabel('Amplitude Gain');  
print -dtiff plot.tiff 
 
%Plot in dB scale 
H = 20*log10(abs(H)+eps) ; 
plot(w/pi*22.05, H), grid 
axis([0  23 -80 2]); 
xlabel('Frequency (in KHz)') 
ylabel('Amplitude Gain (in dB)');  
print -dtiff plot.tiff 

 

Problem 15.9 

As the normalized cut-off frequency 0.4773nΩ = , the ideal (IIR) impulse response is given by  

( )[ ] 0.4773sin 0.4773h k c k= .  

The passband ripples requirement is not specified. The stopband attenuation should be at least 45 dB. 
Therefore, A=45. The shape parameter is then calculated to be 

0.4 0.40.5842( 21) 0.078( 21) 0.5842(45 21) 0.078(45 21) 3.9548A Aβ = − + − = − + − ≈  

The normalized transition bandwidth, 1 
22.05 ΔΩ 0.0454n

KHz
KHz= = . Therefore, the window length N is 

given by 

45 7.95  113.78
7.18 0.0454

N −
≥ =

×
 or 114. 

Substituting β = 3.9548 and N = 114 in Eq. (15.18), the Kaiser window is given by 

[ ]
( )

[ ]

2
0

0

3.9548 1 56.5 / 56.5
0 113

3.9548
0 otherwise.

kaiser

I k
kw k I

⎧ ⎡ ⎤⎛ ⎞− −⎡ ⎤⎜ ⎟⎪ ⎣ ⎦⎢ ⎥⎝ ⎠⎪ ⎣ ⎦ ≤ ≤= ⎨
⎪
⎪⎩

 

By applying a right-shift to the ideal lowpass filter by 56.5 time units, and multiplying with the Kaiser 
window, the designed FIR filter impulse response is given by 

( )0.4773sin 0.4773( 56.5) [ ] 0 113
[ ] [ ] [ ]

0 .
kaiser

ilp kaiser

c k w k k
h k h k w k

otherwise

⎧ − ≤ ≤⎪= = ⎨
⎪⎩

 

In this case, [ ] 1.0006h k =∑ , and hence the scaling of h[k] can be ignored. 
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The magnitude response of the designed filter is plotted in Fig. S15.9, and it is observed that the given 
specifications of the filter are satisfied. ▌ 

    
(a) (b) 
 

 
(c) 

Figure S15.9. 114-tap FIR filter designed using Kaiser Window. (a) The impulse response, (b) the blow 
up of the impulse response showing the middle 40 impulses, and (c) the frequency response. 

 

Program 15.9: MATLAB Program for Problem 15.9 
clear; clf 
 
A=45 ; 
beta = 0.5842*((A-21)^0.4) + 0.078*(A-
21)  
NTB = 1/44.1  
N = (A-7.95)/(14.36*NTB)  
N=ceil(N)  
 
M=(N-1)/2 ; 
k = 0:N-1; 
 
filter_ideal=0.4773*sinc(0.4773*(k-M)); 
filter_kaiser = 
filter_ideal.*(kaiser(N,beta))' ; 
S=sum(filter_kaiser) 
filter_kaiser = filter_kaiser/S; 

% Plotting the filter impulse response 
stem(k, filter_kaiser, 'filled'),grid 
ylabel('Filter Impulse Response');  
xlabel('k') 
print -dtiff plot.tiff 
% Calculating the frequency response 
[H, w] = freqz(filter_kaiser,1) ; 
H = 20*log10(abs(H)+eps) ; 
 
plot(w,H) ; 
plot(w/pi*22.05, H), grid 
axis([0  23 -80 2]); 
xlabel('Frequency (in KHz)') 
ylabel('Amplitude Gain (in dB)');  
print -dtiff plot.tiff 
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Problem 15.10 

The cut-off frequency Ωc of the filter is given by 0.64 0.3 / 2 0.49c π π πΩ = − = . The normalized cut-off 
frequency Ωn of the filter is Ωc / π = 0.49. The impulse response of the ideal high  pass filter with a cut-off 
frequency of 0.49 is given by 

 [ ] [ ] [ ]0.49sinc 0.49( )ihph k k m k mδ= − − − . 

The maximum passband ripple is 0.002, and the maximum stopband ripple is 0.005. As the ripple 
characteristics are similar in passband and stopband, the effective maximum ripple = min(0.002, 0.005) = 
0.002. The minimum attenuation A is therefore given by 1020 log 0.002 54A = ≈  dB. 

The shape parameter is evaluated from Eq. (15.20) as follows: 

 0.1102( 8.7) 4.99Aβ = − = . 

The transition band ΔΩc for the FIR filter is (Ωp − Ωs) = 0.3π. The normalized transition band ΔΩn is 
therefore given by ΔΩc / π = 0.3. Using ΔΩn = 0.3, the length N of the Kaiser window is given by 

 
54 7.95 21.38

2.285 0.3
N

π
−

≥ =
×

. 

Rounding off to the higher closest odd number, we obtain N = 23. 

The expression for the Kaiser window is given by 

 [ ]
( )

[ ]

2
0

0

4.99 1 11 /11
0 22

4.99

0 otherwise.

kaiser

I k
kw k I

⎧ ⎡ ⎤⎛ ⎞− −⎡ ⎤⎜ ⎟⎪ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦⎪ ≤ ≤= ⎨
⎪
⎪⎩

 

The impulse response of the highpass FIR filter is given by 

 [ ] [ ] [ ]hp ihp kaiserh k h k w k= , 

where [ ]ihph k  is specified above with m = 11. The filter gain at πΩ =  is given by 

 ( ) [ ] [ ]
1 1

0,2,... 1,3,...
1.0002

N N

hp hp hp
k k

H h k h kπ
− −

= =

= − =∑ ∑ . 

As ( ) 1H π ≈ , the coefficients of h[k] need not be normalized. 

The magnitude response of the highpass FIR filter is plotted in Fig. S15.10, and it is observed that the 
given specifications of the filter are satisfied.  ▌ 
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Fig. S15.10. Magnitude response of the highpass FIR filter designed in Problem 15.10. 

Program 15.10: MATLAB Program for Problem 15.10 
wn = 0.49 ;           % Normalized cutoff frequency 
beta = 4.99;          % Shape parameter 
N  = 23;              % Impulse response length 
M  = (N-1)/2;         % Delay 
k = [0:(N-1)]; 
d = [zeros(1,M) 1 zeros(1,M)];      % delayed impulse 
hihp = d - wn*sinc(wn*(k-M)) 
h = hihp.* kaiser(N,beta)'  ; 
S=sum(h.*((-1).^(k-1)));     % =0.9999 
[H, w] = freqz(h,1,512); 
freq = (w/pi) ; % Horizontal axis for plotting freq. response 
H2dB = 20*log10(abs(H)) ; 
 
plot(freq, H2dB), grid 
axis([0  1  -80  5]); 
%title('Kaiser Window') 
xlabel('Normalized Frequency') 
ylabel('Magnitude Response (in dB)'); 
plot(freq, abs(H)), grid 
axis([0  1  0  1.1]); 
title('Highpass Filter') 
xlabel('Normalized Frequency') 
ylabel('Magnitude Response'); 
print -dtiff plot.tiff 

Problem 15.11 
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The cut-off frequencies of the bandpass filter are given by 

( )1 0.5 0.2 0.4 0.3c π π πΩ = + =  and 

( )2 0.5 0.6 0.8 0.7c π π πΩ = + = . 

The normalized cut-off frequencies are given by 1 1 / 0.3n c πΩ = Ω =  and 2 2 / 0.7n c πΩ = Ω = . The impulse 
response of an ideal bandpass filter is given by 

  [ ] [ ] [ ]0.7sinc 0.7( ) 0.3sinc 0.3( )ibph k k m k m= − − − . 

The maximum ripple = min(0.02,0.009) = 0.009. Therefore, the minimum attenuation 
1020log 0.009 41A = ≈  dB.  

The shape parameter β of the Kaiser window is computed as 
0 40 5842( 21) 0 0789( 21) 3.51.. A . Aβ = − + − = . 

The transition bands ΔΩc1 and ΔΩc2 for the bandpass FIR filter are given by 

1 0.4 0.2 0.2c π π πΔΩ = − =  and  

2 0.8 0.6 0.2c π π πΔΩ = − = , 

which lead to the normalized transition BW of ΔΩn = 0.2. 

The length N of the Kaiser window is given by 

  
41 7.95 23.02

2.285 0.2
N

π
−

≥ =
×

. 

Rounded to the closest higher odd number, N = 25 and the value of m is 12. The expression for the Kaiser 
window is as follows: 

  [ ]
( )

[ ]

2
0

0

3.51 1 12 /12
0 24

3.51
0, otherwise.

kaiser

I k
kw k I

⎧ ⎡ ⎤⎛ ⎞− −⎡ ⎤⎜ ⎟⎪ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦⎪ ≤ ≤= ⎨
⎪
⎪⎩

 

The impulse response of the bandpass FIR filter is given by 

 [ ] [ ] [ ]bp ibp kaiserh k h k w k= , 

where [ ]ihph k  is specified above with m = 12. The filter gain at 0.5πΩ =  (mid passband) is given by 

 ( ) [ ]
1

0.5

0
0.5 0.995

N
j k

bp hp
k

H h k e ππ
−

−

=

= =∑ . 

Therefore, the coefficients of h[k] are normalized, as [ ] [ ] / 0.995bp bph k h k= . 

The magnitude response of the bandpass FIR filter is plotted in Fig. S15.11, and it is observed that the 
given specifications of the filter are satisfied. ▌ 
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Fig. S15.11. Magnitude response of the bandpass FIR filter designed in Problem 15.11. 

Program 15.11: MATLAB Program for Problem 15.11 
wn1 = 0.3 ;           % Normalized cutoff frequency-1 
wn2 = 0.7 ;           % Normalized cutoff frequency-2 
beta = 3.51;          % Shape parameter 
N  = 25;              % Impulse response length 
M  = (N-1)/2;         % Delay 
k = [0:(N-1)]; 
hibp = wn2*sinc(wn2*(k-M)) - wn1*sinc(wn1*(k-M)); 
h = hibp.* kaiser(N,beta)' ; 
 
S=sum(h.*exp(-j*0.5*pi*(k-1)))     % =0.9950 
h = h/abs(S) ; 
 
[H, w] = freqz(h,1,512); 
freq = (w/pi) ; % Horizontal axis for plotting freq. response 
H2dB = 20*log10(abs(H)) ; 
 
plot(freq, H2dB), grid 
axis([0  1  -80  5]); 
%title('Kaiser Window') 
xlabel('Normalized Frequency') 
ylabel('Magnitude Response (in dB)'); 
print -dtiff plot.tiff 

 

Problem 15.12 

The cut-off frequencies of the bandstop filter are given by 

( )1 0.5 0.3 0.4 0.35c π π πΩ = + =  and  

( )2 0.5 0.6 0.7 0.65c π π πΩ = + = . 



16     Chapter 15 

The normalized cut-off frequencies are given by 1 0.35nΩ =  and 2 0.65nΩ = . The impulse response of 
an ideal bandstop filter is given by 

 [ ] [ ] [ ] [ ]0.65sinc 0.65( ) 0.35sinc 0.35( )ibsh k k m k m k mδ= − − − + − . 

The maximum ripple = 0.05. Therefore, the minimum attenuation 1020log 0.05 26.02A = ≈  dB.  

The shape parameter β of the Kaiser window is computed as 

  0 40 5842( 21) 0 0789( 21) 1.51.. A . Aβ = − + − = . 

The transition bands ΔΩc1 and ΔΩc2 for the bandpass FIR filter are given by 

( )1 0.4 0.3 0.1c π π πΔΩ = − =  and  

( )2 0.7 0.6 0.1c π π πΔΩ = − = , 

which leads to the normalized transition BW of ΔΩn = 0.1. 

The length N of the Kaiser window is given by 

  
26.02 7.95 25.17
2.285 0.1

N
π
−

≥ =
×

. 

Rounded to the closest higher odd number, N = 27 and the value of m is 13. 

The expression for the Kaiser window is as follows: 
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0, otherwise.
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The impulse response of the bandstop FIR filter is given by 

 [ ] [ ] [ ]bs ibs kaiserh k h k w k= , 

where [ ]ibsh k  is specified above with m = 13. 

The magnitude response of the bandstop FIR filter is plotted in Fig. S15.12. It is observed that the 
bandstop filter satisfies the design specifications. 
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Fig. S15.12. Magnitude response of the bandstop FIR filter designed in Problem 15.12. 

Program 15.12: MATLAB Program for Problem 15.12 
wn1 = 0.35 ;           % Normalized cutoff frequency-1 
wn2 = 0.65 ;           % Normalized cutoff frequency-2 
beta = 1.51;          % Shape parameter 
N  = 27;              % Impulse response length 
M  = (N-1)/2;         % Delay 
k = [0:(N-1)]; 
d = [zeros(1,M) 1 zeros(1,M)];      % delayed impulse 
hibs = d - wn2*sinc(wn2*(k-M)) + wn1*sinc(wn1*(k-M)); 
h = hibs.* kaiser(N,beta)' ; 
 
S=sum(h)     % =0. 
h = h/abs(S) ; 
 
[H, w] = freqz(h,1,512); 
freq = (w/pi) ; % Horizontal axis for plotting freq. response 
HdB = 20*log10(abs(H)) ; 
 
plot(freq, HdB), grid 
axis([0  1  -80  5]); 
%title('Kaiser Window') 
xlabel('Normalized Frequency (\Omega)') 
ylabel('Magnitude Response, 20log_{ 10}|H(\Omega)|'); 
print -dtiff plot.tiff 
% 
plot(freq, abs(H)), grid 
%axis([0  1  -80  5]); 
title('Kaiser Window') 
xlabel('Normalized Frequency (\Omega)') 
ylabel('Magnitude Response (|H|)'); 
print -dtiff plot.tiff 

 

 

The solution of Remaining problems (15.13-15.25) will be added soon. 
 

 

 

 




