Chapter 6: Laplace Transform

Problem 6.1
© © © © 0

() X(s)= j x(t)e ™" dt = I eStut)e ™ dt + j e u(—t)e ™ dt = j e gy je“—“fdz.
—o0 —0 —0 0 —00

1 /4

Integral I reduces to
o0 —(s+5)¢t |w _1 1
1= je’(‘“+5)‘dt = = [0—1] = provided Re{(s+5)} >0= ROC R, :Re{s}>-5,
) ~(s+5)],  (s+5) s+5

Q

while integral II reduces to

0

0 (4-9)t _
I = j =S _ ! [1—0]:—1 provided Re{(4—5)} >0=> ROC R, :Re{s} < 4-
i (4-5), A=) s—4
The Laplace transform is therefore given by
X(s)=I+1= L - with ROC:R=R, NR, or R:(-5<Re{s} <4).
s+5 s—4 (s+5)(s—4)
) ®© 0 0 0 0
(b)  X(9)= [x(yedi=[e e dr= [e¥e i+ [e™ e dt= [ i+ [e P dr
—0 —o —o0 0 —o0 0
1 1
Integral I reduces to
0 e |0 1 -
1= I e dt = = [1 - O] =—— provided Re{(3—5)}>0=ROC R, :Re{s} <3
J G-s). (-9 s—3

b

while integral II reduces to

© —(s+3)t ‘w

I={e"Vdr= —
) ~(s+3)],  (s+

[0—1]=; provided Re{(s+3)}>0= ROC R, :Re{s}>-3
3) s+3

The Laplace transform is therefore given by

X(s)=I1+1= b1 = 2_6 with ROC:R=R (R, or R:(-3<Re{s}<3).
s+3 s-3 s -9
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0 0 0
(©) X(s)= j x(t)e*'dt = j 2 cos(100)u(—t)e "dt = - j £ (e = e dt

0 0

:2%_ J‘ tzef(sf_/lo)zdt_%j J‘ e (101 g
0
_05) —(s5—/10)¢ _10\242 o
= [e ((s=j10)*¢* +2(s Jlo)z+2)L
. . 0
(Sf-j%w[e*w“’” ((s+ 1007 +2(s+ j10)z+2)] s#+/10

0.5/ 0.5; .
= os[2-0]-s[2-0] Re {s+j10}<0
— 1 .
=] [( o T G } ROC: Re{s}<0
_ 5 (410 ~(s=j10)° 5 65%10-j2000 _ _605°+2000 ROC: Re{s}<0

(5=10)* (s+,10)° (s>+100)° (s2+100)°

0 0 0 0
d) X(s)= j x(t)e ™" dt = j e M cos(5t)e ™" dt == j e cos(51)dt + j e cos(5t)dt .
—o0 0
1 1

—o0 —0

Integral I reduces to
0

1
(3-5)> +5°

0
I= I e cos(5t)dt = [(3 —5)e® ™ cos(5t) + 5¢° sin(bt)]

—00

—00

- Gosy+. ;2 n 52'[(3 —5+0)—(0+0)]= ( _(;)_2—1)52 provided Re{(3—s5)}>0= ROC R, :Re{s} <3
—s 5—

while integral II reduces to

0

K 1
I =] e " cos(5)dt =————————|— (s + 3)e """ cos(5¢) + 5~ sin(5¢)
-([ 0 (s+3)2+52[ ]0
1 (s+3) )
=——J(0+0)—(—(s+3)+0)|=—————— provided Re{(s +3)} >0 = ROC R, :Re{s} >-3
(s+3)> +5° [0+~ (s +3)+0)] (s+3)> +5° :

The Laplace transform is therefore given by

X()=1+H = +S3;3+ SR _53;23+ & With ROC:R=R (R, or R:(-3<Re{s} <3).




Solutions

€ X(s)= j x(t)e dt = j e’ cos(9t)u(t)e dt = je—“-”f cos(9¢)dt
—0 —0 0
= ﬁ[—(s —7)e " cos(9t) +9e " sin(9t)] provided Re{(s—7)} >0
§—= 0
_ m[(o +0)=(~(s=7)+0)]
S Cl) ROCR: Rels}>7
(s=7)7+9
© 0 0
(©  X(s)= [ x(nedt =] " cos(9tu(~t)e "dt = [ e cos(9t)dt
1 0

=—————[ (s =7)e " " cos(91) +9¢ ™" sin(91) | provided Re{(s—7)} <0

(s=7)+9

1
_m[—(s—7)+0—(0+0)]

—0

:% ROCR: Relst<7
-

6 X(s)|_, = ]O x(1)dt =2 j (1-ndr =2[1-05¢] =1

X(s),,, = [ x(edt=[ (140 dr+ [ (1= 1) dr
L ) 0

I 1

where
I= T(l +o)e " dt =T edt + _(fte"“dt ==t ]01 +L[e (-t - 1)]f1
-1 -1 -1

=l(es —1)+s%[—1—es(s—l)]=s%[ses —s—l—es(s—l)]zs%(es —s—l)

N

and
Il = j'(l —t)e dt =j e dt — Jl' tedt = %[e“" ]L - S%[e“”(—st - 1)];
0 0

0

- %(1 - eﬂ)_ ?[eﬂ(—s -D+ 1] = g%[s —se'+e ' (s+1)— 1] = S%(e’s +5— 1)
The Laplace transform is therefore given by

1 s=0
X(s)= ROC : Entire s-plane
(s) {g%(e“res—,?.) s#0 P

3
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Problem 6.2
—st —st —st —st

—st —st
(a) X(s)= jtse‘”dt_ =5t 4200 - 60r? S 1200~ 120"
(‘S) (=s) (=s) (=s) (=s) (=s)" J,

Applying the limits, we obtain
!
X(s)= 12—60 = is' with ROC: Re{s} > 0.
s s

0

(b) X(S) = jsin(6t)u(t)ef:tdt — Isin(6t)efstdt _ %J' jér ,6; ,S,dt
v 0

— 1 —(s—j6)t 1 —(s+j6)t
= EJ. dt 35 I e dt

0

[ ~(s— /6>t] %[e—mm)t]: s#+jo,
= 16 93/ Re {s* j6}>0
—jl12
= [ 5+j6 =) } 0. SJ si36
=t ROC: Re{s}>0
C) X(S) — ICOS2(6Z)6—Sldt — lje_Stdt + lj‘e—Sl‘ COS(12t)dt :i 1 - SCOS(12Z‘) + 12 Sln(12t)
23 29 25 |2 s? +122 0
which reduces to
2
2 )
X(s)mta a8 T FTD i ROC: Refs) > 0,

25 2 s +12% s(s? +144)

0

(d) X(s)= T x(t)e 'dt :I e cos(9)u(t)e dt = Te‘(””’ cos(91)dt

e 0

0

1
C(s+3)2+9
~ 1

(s+3)°+9°

S ROCR: Re{s}<-3
(s+3)"+9

[ (s +3)e " cos(91) +9e V" sin(97) | provided Re{(s+3}<0

0

[(0+0)—(—(s+3)+0)]

e) X(s)= |22 cos(10n)e ' dt =— |2 /s + = | ¢2e 61Dy |
(e) X(s)= [ cos(101) 5 { 2{
1 11

Integral I reduces to



Solutions

o (s=J10) o (s=/10) o (s=/10)
=|¢? 2t ~+2 - = - with ROC: Re{s} > 0.
— (s —j10) (s — j10) —(s-j10)" ], (s—,10)
Integral II reduces to
o (5+710) o510} o (510}
I=|? — =2t >+ 2 T = 3 with ROC: Re{s} > 0.
—(s+/10)  (s+,10) —(s+j10)° |, (s+j10)

The Laplace transform is, therefore, given by

1 3t 3
(s —j10) (s + j10)

X(s)= with ROC: Re{s} > 0.

® x(s)|_, = T x(t)dt =j(1 —nydt =[1-0.5¢° ]; =1

0 1 1 1
X(s)| , = I x(t)e'dt = j (1-t)edt :J' e dt - j te™'dt
0" 0 0

0

=afer] i[est-n] =L (1)~ L[ (s -1 +1]
= %Z[S —se’+e’(s+ 1)—1] =S%(e’s +5 —1)
% s=0

Therefore, X (s)=
(s) S%(e"+s—1) s#0

ROC : Entire s-plane

Problem 6.3

(a) Using partial fraction expansion and associating the ROC to individual terms, yields

o SPa2srl __ (s+) sl _ 4 B
X(s)= (s+1)(s2+55+6)  (s+D(s+2)(s+43) — (s+2)(s+3) ~ 82 + 843

ROC:Re{s}>-2  ROC:Re{s}>-3

where A4 Z[Y—”] _, = -1, B :[ﬂl=,3 =2.

s+3 kg 542

Calculating the inverse transform of X(s), yields

x(t) =€ u(t)+ 2 u(t) = (2 =™ Ju(®).

(b) Using partial fraction expansion and associating the ROC to individual terms, yields

_ 242541 _ s+1 _ A _B_
X(s)= (s+1)(s2+55+6)  (s+2)(s43) T 5+2 + 5+3

[V
ROC:Re{s}<—2 ROC:Re{s}<-3

{

where constants 4, and B were computed in part (a) as 4 =—1, and B = 2.

—1 2
s+2 + s+3
—— ——
ROC:Re{s}<—2  ROC:Re{s}<-3

In other words, X (s) =

5
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Using the transform pair —efmu(—t)@

with ROC: Re{s}<—a, the inverse
(s+a)

transform of X(s) yields
x(t) = e u(—t)—eu(-t) = (6_2’ —e™ )u(—t).

Note that the same rational fraction for X(s) yields different time domain representations if the
associated ROC is different.

4354 _ _ *43s-4  _ A4 B C_
(©) X(S) T (s+1)(s2+55+6)  (sHD(s+2)(s+3) T 811 + 52 83
ROC:Re{s}>—1 ROC:Re{s}>-2  ROC:Re{s}>-3
_ s*+3s—4 — _ s°+3s5-4 _ _  s°+35-4 —
where 4= s+ 2)(s3) |y 3, B= (D)oo 6, C= (o D(sH3) |y 2.
X(s) canbeexpressedas:  X(s)= = + & + =

[ [ o
ROCRe{s}>-1 ROCRe{s}>—2 ROC:Re{s}>-3

The inverse transform of X(s) yields

x(1)= (—3e” +6e =27 ) u(t)

2 2
— s“+3s—4 —_ s“+3s—4 _ A B C
(d) X(S) - (s+1)(s*+55+6) T (sHD)(s+2)(s43) T s+1 + s+2 + s+3
ROC:Re{s}<—1 ROC:Re{s}<—2  ROC:Re{s}<-3

where constants A4, B, and C were computed in part (a) as 4 =-3, B= 6, and C =-2.

X(s) canbe expressed as: X (s)= S—_+31 + SEZ + %
—— —— fult
ROC:RRe{s}<-1 ROC:RRe{s}<-2 ROC:Re{s}<-3

Using the transform pair — e~ “ u(—t) PEEEN

with ROC: Re{s} <—a, the inverse
(s+a)

transform of X(s) yields

x(t)= (3€_l —6e +2e )u(—t) )

(e) Using partial fraction expansion and associating the ROC to individual terms, yields

2
X(s) = s+l — A + B + Cs+D
( ) s(s+1)(s2+2s5+17) s (s+1) (s2+2s5+17)
ROCRe{s;>0  ROCRe{s}>~1  ROCRe{s}>Re{-1+ 4}

where

)/ S s _
s(s+D)(s*+2s+17) ~ | (s+D)(s*+2sH17) | o 17

2 ’ 1
B Y o B =| =T
and B - |:S(S+1)(52+23+1 7) (S + 1):| |:S(Sz+2S+l7):|S=—1 8 .

s=-1

To evaluate C and D, expand X(s) as



¢

(@

Solutions

sT+1=A(s +1)(s> + 25 +17) + Bs(s> + 25 +17) + (Cs + D)s(s +1)
and compare the coefficients of s° and s°. We get

0=4A+B+C
1=34+2B+C+D

which has a solution C = 9/136 and D = 137/136. The Laplace transform may be expressed as

_ 1 _ 1 9(s+1) 32x4
X(s)= s 8(s+1) 136((s+1)*+4%)  136((s+1)*+47)

—
ROCRe{s}>0  ROCRe{s}>~1 ROCRe{s}>-1 ROCRe{s}>—1
Taking the inverse transform of X(s) yields
x(t)=Fu()—te u(t)+32-e" cos(4t)u(t) +-+e” sin(4t)u(r)

=(L-1e "+ e cos(dr)+Le sin(4r) u(r).

Using partial fraction expansion and associating the ROC to individual terms yields

_ s+ _ 4 B C D
X(s)= (s+2)% (s+3)(s+4)  (s5+2) + (s+2)? T o TG
—_— ——

Re{s}>-2 Re{s}>-2 Re{s}>-3 Re{s}>—4

where

B= s+1 (S+2)2] :[ s+l ] :_l
L(s+2)% (s+3)(s+4) -1 (s+3)(s+4) J— » 2

C=f——(s+ 3)] = [—s;I ] =2
L(s+2)" (s+3)(s+4) i=—1 (s+2)" (s+4) d—_3
[ s+1 s+1 3

and D=l (s+4)| =[] =7

L(s+2)% (s+3)(s+4) ers W23 doy g

To evaluate 4, expand X(s) as
SH1=A(s+2)(s+3)(s+4)+B(s +3) (s +4) + C(s +2)* (s +4) + D(s + 2)* (s + 3)
and compare the coefficients of s°. We get
0=4+C+D
which has a solution 4 = 5/4.
Taking the inverse transform of X(s) yields
x(t)=2eu(t) —Lteu(t)— 2 u(t) +3 e u(t)

= (% e =Ll —2e +3e7 )u(t).

Using partial fraction expansion and associating the ROC to individual terms, gives

o s*2sHl A B c (Ds+E)
X(S)_(x+1)3(s2+16)_ (s+1) (s+1)> + (s+1)° (s2+16)

— — |
ROC:Re{s}<~1  ROC:Re{s}<-1 ROCRef{s}<-1 ROC:Re{s}<0

where

7
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C= s —2s5+1 ( + 1) ] — [SZ—ZS-H] —_
(s+1)3(s2+16) (s*+16) d__ 17°

To evaluate 4, B, and C expand X(s) as

s?=2s+1=A(s+1)*(s* +16) + B(s + )(s* +16) + C(s* +16) + (Ds + E)(s +1)*

and compare the coefficients of s 5%, 5% and s. We get

0=4+D (coefficients of s*) 0=A+D
0=24+B+3D+E (coefficients of s*) or 1(3)=2A+B+3D+E
1=174+ B+ C+3D+3E (coefficients of s%) 17 =174+ B+3D +3E

~2=324+16B+D+3E  (coefficients of s) —2=324+16B+D+3E

which has a solution of 4 = 0.0206, B =-0.2076, D = —0.0206, and £ = 0.2282.
Taking the inverse transform of X(s) yields

x(£) = —=0.0206¢ "u(—t) + 0.2076te u(~t) — 0.11768%¢ " u(~t) +0.0206 cos(4t)u(~t) — 0.057 sin(4¢)u(~t)

=[-0.0206¢™ +0.2076t™ —0.11761¢™ +0.0206 cos(4r) — 0.057 sin(41) | u(—t). i

Problem 6.4

The Laplace transform of the combined signal x(¢) +2x,(¢) is given by

x, (1) +2x,(t) <>~ L= =il

s +5s+6 s2+55+6 s24+55+6 (s+2)(s+3) *

The ROC of L {xl(t) +2x, (t)} includes the region (R; N R,), or, Re{s} > —2. However, simplifying the

expression of L {)c1 (1) +2x, (t)} , we obtain

X, (1) +2x, (1) %5 -
Since the pole at s = —2 cancels out, the overall ROC is greater than the intersection of the two individual
ROC’s and is given by R: Re{s} > -3. I
Problem 6.5

Using partial fraction expansion, the Laplace transform is given by

X(s)= 0025 | 0025 | —03755+0.125 | 0.3755+0.125
(5) (s+) = (s-D) (s?—45+5) (s2+45+5)

(a) For ROC R: Re{s} < -2, the ROC’s associated with individual terms are given by

X(S) —_ 0.025 0.025 + —0.3755+0.125 + 0.3755+0.125

(s+1) (s=1) (s%—4s5+5) (s*+4s+5)
—— ——
Re{s}<—1 Re{s}<l Re{s}<2 Re{si<-2

Taking the inverse Laplace transform, the time domain representation is obtained as

x(1) =0.025¢ " u(—t) — 0.025¢" u(—1) + 0.375¢> cos tu(—t) — 0.125¢*" sin tu(—t)
—0.375¢ 2 costu(~t) — 0.125¢ % sin tu(—1).



(b)

Solutions 9

For ROC R: -2 <Re{s} <-1, the ROC’s associated with individual terms are given by

X(s)=— 0025 0.025  —03755+0.125 | 0.3755+0.125
(s+1) (s-1) (s> —45+5) (5% +45+5)
NG N/
Reisj<=1  Re{sj<l Re{s}<2 Refs}>-2

Note that the ROC associated with the last term is changed. Taking the inverse Laplace transform,
the time domain representation is obtained as

x(£) =0.025¢ " u(—t) — 0.025¢" u(—1) + 0.375¢* cos tu(—t) — 0.125¢>" sin tu(—t)
+0.375¢ % costu(t) + 0.125¢ 2" sin tu(r).

(¢) For ROC R: -1 <Re{s} <1, the ROC’s associated with individual terms are given by
__ 0025 0.025 | —0.3755+0.125  0.375s+0.125
X(s)= (s+1) (s-1) (s—4s+5) (s>+4s+5)
—_— ——
Re{s}>-1 Re{s}<l Re{s}<2 Re{s}>-2
Taking the inverse Laplace transform, the time domain representation is obtained as
x(£) =—0.025¢ " u(t) — 0.025¢" u(—t) + 0.375¢*" cos tu(~t) — 0.125¢>" sin tu(—r)
+0.375¢ % costu(t) + 0.125¢ 2" sin tu(r).
(d) For ROCR: 1 <Re{s} <2, the ROC’s associated with individual terms are given by
__ 0025 0.025 _ —0.3755+0.125 | 0.375s+0.125
X(s)= (s+1) (s-1) (s—45+5) (s°+4s+5)
—— ——
Re{s}>-1 Re{s}>1 Re{s}<2 Re{s}>-2
Taking the inverse Laplace transform, the time domain representation is obtained as
x(£) =—0.025¢ " u(r) + 0.025¢"u(t) + 0.375¢? costu(~t) — 0.125¢* sin tu(—r)
+0.375¢ 2 costu(t) + 0.125¢ 2 sin tu(r).
(e) For ROC R: Re{s} > 2, the ROC’s associated with individual terms are given by
__ 0025 0.025 _ -0.3755+0.125 | 0.375s+0.125
X(s)= (s+1) (s-1) (s—45+5) (s°+4s+5)
—— ——
Re{s}>-1  Re{s}>1 Re{s}>2 Re{s}>—2
Calculating the inverse Laplace transform, the time domain representation is obtained as
x(t) = —0.025¢ "u(t) +0.025¢'u(t) — 0.375¢* costu(t) +0.125¢* sin tu(t)
+0.375¢7 costu(t)+0.125¢ 7 sin tu(t)
=[-0.025¢ " +0.025¢' —0.375¢™ cost+0.125¢™ sin¢ +0.375¢ > cost+0.125¢ > sint |u(t). |
Problem 6.6

Assume that

x(t) <2 X (s) withROC: R.

By definition
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M x(f) <L je%’x(t)e*”m - I x(0)e UV = X (s —s,).

with ROC: R + Re{sy} because the new transform is a shifted version of X(s). For any s in the ROC R of
x(?), the values of s + Re{so} are in the ROC of exp[s¢f] x(?). I

Problem 6.7

Unilateral Laplace Transform: By definition, the unilateral Laplace transform is given by
X(s)= jx(z)e—“dz .
o

Dividing both sides with s and integrating the right hand side by parts, we get

X(s) _

N

Tx(t) % dt = jx(oc)da % ’ - T[ j x(a)doc] [— e ] dt .
0 0

0 0 L0

TermI

The time integration property for unilateral Laplace transform follows directly from the above
relationship by noting that Term I is zero at both the upper and lower limits.

Bilateral Laplace Transform: The proof for the bilateral Laplace transform is similar except that Term I
is nonzero.

Problem 6.8

To prove the initial value theorem, we expand x(¢) using the Taylor series expansion about ¢ = 0" as
follows.

x(1)=x(07) +txV(07) + 5 xP (07 ) 4+ + L x(07) + -+

where x denotes the n’th order derivative of x(?).

Because, x(¢) is a causal function, it can be expressed as follows.
x(t) = x()u(t) = (0 Yu(t) + xV (0 )u(t) + xP (O Su() + -+ x" (0 ) Lu(t) + -,
Taking the Laplace transform of both sides of the above equation, we get
X(s5)=x(0")L+ x(1>(0+)si2 n x<2>(0+)s% bt X(")(0+)Tlﬂ g,
Multiplying both sides of the above equation with s and applying the limit, ¢ — oo, gives
}LIESX(S) = }iilg[x(0+)+ x07)L + x(z)(0+)s%+---+ x“”(O*)S% +]

=1lim x(0) + lim| xV(0") 4 + xP(0") L+ + x*(0) L+ |-

=0, assuming x") (0" )<oo for r=1,2,3,..

= lim x(0")

§—>0

In proving the theorem, we assumed x(#)u(f) = x(¢#) which is valid only for causal signals, and therefore,
the initial value theorem holds true for the unilateral Laplace transform and not for the bilateral Laplace



Solutions 11

transform. In addition, x(¢) should not contain an impulse function or any other discontinuity at t=0 so
that x(0") <o for r=1,2,3,....

Problem 6.9

From the time differentiation property, we know

% PEEENS'S (s)—x(07) with ROC: R
]9 dx —st _ -
or, ae dt=sX(s)— x(O )

Applying the limit, s — 0, on both sides of the equation, we get

or, 11m[ [ e ”dz] = lim[ sX () = x(0 )]
0
which simplifies to J. o [hm e }dt = llm [SX(S) x(0~ )]
s—0
or, j et = lim [ X ()~ x(0°) [ lime ™ = 1} .
Applying the limits to x(t)‘:, = 1iIIOI sX(s)—x(07),
we get x(o0) = 1irr01 sX(s)»

which proves the final value theorem.

Problem 6.10

(a) From Table 6.1,

L s
cos(mot)u(t) «—> el

Using the s-domain differentiation property (see Table 6.2), we get

2, 2
—ICOS(O)OI‘)M(I) < L o d s _ (og+57)-s(2s)

& ot (o sy
o, t cos(@,tu(t) <= (: ;”‘%)
(b) From Table 6.1,
sin(oq?)u(t) PEEIEN oy

Using the s-domain differentiation property (see Table 6.2), we get

. L a4 o _ o
—ZSIIl(O)()t)M(t) ’% werOvz - (wzo+ ?2)2
o+ ot




12 Chapter 6

2aw,s

(sP+ag)*”

or, tsin(wyt)u(t) <+t

(¢) Using the results from part (b) and using the linearity property, we get

#(sin(at) —at cos(at))u(t)< L \#[ 4 a5 }

2a° | (a*+ s7) - (a*+ s%)?

which reduces

1

5L sin(a) - ar cos(an)u(r) <

Problem 6.11

(@)  f,(0)=cos(10)x(t) =L e’ x(t) + L™ x(1).
Using the s-shifting property, we obtain
F(s)=1X(s=5)+1 X(s+5) ROC:[R,shifted by s = 5] [R,shifted by s =5].

(b)  fr()=e " x(4t-3).
Using the time-shifting property,
x(t—3)«Lt—>e > X(s) ROC:R,.
Using the scaling property,
(4t -3)«L>Lle X(5) ROC:2R, .

Using the s-shifting property, we obtain

(s+5)

fr(O)=e™ x(4 —3) L Fy(s) =L e *V X(223) ROC:2R, shifted by s =5,

(¢)  Using the time-shifting property,
x(t—4)«*>e ™ X(s) ROC:R,.
Using the time differentiation property,
Lx(t)]«L—>sX(s)-x(0") ROC:R,.
We now use the s-plane differentiation property
If x(t)<%—>X(s) ROC:R, then -—ux(t)«~t><[X(s)] ROC:R, .
Using the s-plane differentiation property,
(-0)* L[x()]«*><4[sX(s)] ROC:R,.
Using the time shifting property,
(t-4)* Lx( -l e™ Lsx(5)] ROC:R,.
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) f,(0)=[x()+2] =x*(6) + 4x(r) + 4

Using the s-convolution property, we obtain

xz(t)@ziX(s)*X(s) ROC:{R }.
T

x(t) <> X (s) ROC: {Rx}

1<—L—>l ROC: Re{s}>0
S

Using the linearity property, we obtain

F,(s)= % X(s)* X(s)+4X(s) +§ ROC:[ R, N{Re(s) >0} ].

(e)  Using the s-shifting property, we obtain
e x(t) > X (s +s5,) ROC:{R, —Re(s,)} .
Using the time integration property,
t 0
[ e x(@)yda i1t [ x(a)da  ROC: [{R,—Re(sy)} N{Refs}>0}].
Problem 6.12

To determine the ROC, we use Property 2 that states:

For a right sided (causal) function, the ROC takes the form Re{s} > 5, and consists of the right side of the
complex s-plane

(a)

(b)

Poles lie at s = —6.8541 and s = —0.1459, and hence the ROC is given by R: s > —0.1459. Since the
ROC contains both s = 0 and s = oo, the initial and final value theorems can be applied.

" . lim _lim _lim 2 lim T
Initial value: - Ox(t) =g 05X (s)= § =00 Tl T 5§ =0Tl 1.
. . lim _lim _lim P
Final value: PN o X(0) = 5 —> 0sX(s) = 50700
Note that x(£) =1.0217¢ 084 (£) = 0.0217¢ 14 (1),

and therefore the initial and final value theorems compute the correct answer.

Poles lie at s = =5.7016 and s = 0.7016, and hence the ROC is given by R: s > 0.7016. Since the
ROC contains s = oo, the initial value theorem can be applied. The final value theorem may give an
incorrect answer.

L . lim _lim _lim 2 _ lim 1
Initial value: PN Ox(t) = o SX(s)= S —> 00 Tiseed S >0 AL L.
. . lim _lim _lim 2
Final value: "7, x(f)= ", (sX()=, o755 =0
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Note that x(£) =0.8904¢ > 715, (£) + 0.1096€* 1%y (1),

and therefore the value of x(o0) obtained from the final value theorem is incorrect. The initial value
theorem computes the correct answer.

(c) Poleslie at s = -5 and s = 5, and hence the ROC is given by R: s > 5. Since the ROC contains s = oo,
the initial value theorem can be applied. The final value theorem may give an incorrect answer.

lim oy lim g _lim s _lim (3] _

Initial value: =
value: 4 50 S —> 0 §—>00 25  §—>00 1-%

: . lim _lim _lim ss?+9)
Final value: PN OOx(t) SN OsX(s) = 50 s 0.

Note that x(1) =8(t) + 3.4 u(r) - 3.4 ' u(r),

and therefore the value of x(o0) obtained from the final value theorem is incorrect. The initial value
theorem computes the correct answer of x(0) = .

(d) Poles lie at s = —1.5 +1.323 and s = —1.5 — j1.323, and hence the ROC is given by R: s > —1.5.
Since the ROC contains both s = 0 and s = o, the initial and final value theorems can be applied.

Inltlal Value llm x(t) _ llm SX(S) — llm S!_¥2+2_¥+1 _ llm N l-*—2/S+l/S2 -0

t—0 T s> S —>00 243544 S —> 00 1+3/s5+4/s>

: . lim _lim _lim  s(s’+2s+1)
Final value: PR x(t) = P 0sX(s) =0 e = 0

Note that x(t)=8(t) — e cos(v/2.750)u(t) - JZLB e sin(v/2.750)u(t

and therefore the initial and final value theorems compute the correct answer.

(e) Poleslie at s =0, -1, s =-2, and s = -3, and hence the ROC is given by R: s > 0. Since the ROC
contains s = oo, the initial value theorem can be applied. The final value theorem may give an
incorrect answer.

s (s>+4) (1+4/5%)

o L1 1 1 -5 _1; _
Initial value: ltl_I)l(} x(t) = ll_r)lo”é sX(s)= }1_1)2 € GAeIeT 11_{1; TRvEy RS

. . lim _lim _lim s (s2+44) o
Final value: t—)oox(t)_s—>OSX(s)_s—>Oe m—g

Note that x(1)=28(t—4) -3 e “u(t - 5) + 4 > u(t - 5) - L e -5),

and therefore the initial value theorem computes the correct answer. The value of x(c0) obtained
from the final value theorem is incorrect.

Problem 6.13
(a) Calculating the Laplace transform of both sides, we obtain

s*Y(s)— s p(07)- y‘_(g;)} + 3|:SY(S) —~ &D} +2Y(s)=1

=0

or, (s> +3s+2)Y(s)=1or Y(s)=4+—=—1 =1 X

(2435+2)  (s+#D)(s42) — s+ 542 °




(b)

(©)

Solutions

Calculating the inverse Laplace transform, we obtain
y(t)=e ut)—eu(t)= (e_’ - e_z’)u(t).

Calculating the Laplace transform of both sides, we obtain

[s Y(s)— sy(O) y(O ):|+4|:SY(S) } 4Y(s)=

or, (s +4s+4)Y(s) =L or Y(s)= 44

s(s+2) s v+2 (s+2)2’

where the partial fraction coefficients are calculated as

1 1
=—, and C=|1 =——
4 I: s :|s=72 2
Expanding Y(s), and comparing the numerator of both sides, we get
1=A(s+2)* + Bs(s +2)+Cs

=(A+B)s> +(44+2B+C)+44

— 1
- 2
(s+2) =0

Comparing the coefficients of s* in both sides, we get (4 + B) =0 or B =—1/4.

1/4 1/4 /2
In other words, Y(S) —m =TT T o7 o12)

Calculating the inverse Laplace transform of Y(s) yields
y(O)=4[1-e? =26 Ju(t) =4[ 1- (2t + De™ Ju(t).

Calculating the Laplace transform of both sides, we obtain

szY(s)—sw—w}+6{SY(S)—&(Q}-SY(S)=ﬁ

— 1 s+7
(s+2)(s+3)2(s+4)  (s+2)(s+4)

2 _ 1
or, (s* +6s+8)Y(s)= e

Calculating the partial fraction expansion of the two terms separately, we obtain

1 — Y240 1 __ 112
(s+2)(s+3)% (s+4)  ST2 1 s+3 (543)2 s+
s+7 5/2 _ 3/2

and T (sHd) — 542 544

Expanding Y(s) as

Y(S) 1/2 1 1/2 5/2 3/2 _ 3 1 2

s+2 (s+3)° s+4 542 s+4 T s+2 (s+3)? s+4 °

Calculating the inverse Laplace transform of Y(s) yields

y(t)= (3672[ —te —2e™" ) u(t).

15



16 Chapter 6

(d) Calculating the Laplace transform of both sides, we obtain

(
— —
=1 =0

{S3Y(s)—52);(()P)‘—s&—ﬂ(’)_)}+8|:szﬂs)—sy

or, (s° +8s? +19s+12)Y(s):SL2+(s2 +8s+19) or

2 a0 4,03 2 k k k k. k.
Y — 1 s“+8s+19 — _ S 48574195741 :_1+_2+_3+_4+ s
(S) S2(S 4857 +195+12)  S4+852+195+12  s2(s+1)(s+3)(s+4) s gt sl s+3 0 s+4
where
k = i 5448534195241
1= ds |GG
L s=0
= +i(s“+8s3+19s2+1)—Mi((s+1)(s+3)(s+4))
(s+1)(s+3)(s+4) ds (s+1)? (s+3)* (s+4)° ds
L 5=0
1 1 1 19
iw0-tx L (¢ 4852 4195412 =L x]9=—12
12 Wt 144 144
L S s=0
k. = 5448534195241 1
27 (s |y 12
— 57 +85°+195% +1 — 1-8+19+1 _ 13
3 S (s43)(s+4) |oo_ 1x2x3 6
ko = 5148574195741 — 81-216+171+1 _ 37
4 S (s+)(s+4) | _3 9x(-2)x1 -18
k. = 548574195741 — 256-512+304+1 _ 49
5 S (s+1)(s5+3) |y L16x(=3)x(-1) 48
_ _ 19/144 | 1/12 | 13/6 _ 37/18 | 49/48
In other words, Y(s) = —={= + 252+ S — 158+ 00

Therefore, y(¢)= (—% +hr4 e — e L B ) u(t).

An Alternative (Equivalent) Solution of (d)

Calculating the Laplace transform of both sides, we get

0)—&:I+19|:SY(S)—&:|+12Y(S)=Slz

S3Y(s)—s2);(0P)‘—sj;(OP)‘—jL((’)_)}+8|:s2Y(S)—s&0F2—&(’)_)‘:I+IQ{SY(S)—);(OP)‘:I+12Y(S)=Slz

=0 =1 =0

or, (s° +8s” +19s+12)Y(s):%2+(s2 +8s+19) or

Y(S) — 1 s2 485419 _ 1 s2+8s+19
s2(s°+85%+195+12)  $S+8s52+19s+12  sP(s+D)(s43)(s+4)  (sHD(s+3)(s+4)

Taking the partial fraction expansion of the two terms separately

1 — 00208 _ 0.0556 4 0.1667 __ 01319 | 0.0833
sP(s°+857+19s+12)  (s+4)  (s+3) (s+1) s s

2485419 1 2 +-2
(s>+852+19s5+12)  (s+4)  (s+3) ° (s+])

and
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Expanding Y(s), we get

Y(S) — 0.0208 _ 0.0556 + 0.1667 __ 0. 1319 + 00833 + 2 + 2

(s+4) (s+3) (s+1) 52 (s+4) (s+3) (s+1)
— 1.0208 _ 2.0556 2.1667 _ 0.1319 0.0833
T (s+4) (s+3) + (s+1) s + 52

Taking the inverse Laplace transform of Y(s) gives
Y(t) =1.0208e ' u(t) —2.0556e > u(t) +2.1667e " u(t) —0.1319u(t) + 0.0833¢u(t)
=[-0.1319+0.0833¢ +2.1667¢ " ~2.0556¢ > +1.0208¢ ™ |u(?)

4 2
€L anld
dt dt

Calculating the Laplace transform of both sides, we get

+y(t) = u(?); y(07)=y(07)=3(0")=5(0")=0.

=0 =0

s4Y(5) =5’ y(07) =5 (07) = sj(07) - 'y"(O_)] +2 {SzY(S) —sy(07) y'(O_)} +Y(s) =7

4 2 1 _ 4 Bs+C Ds+E
or, (s" +2s” +)Y(s)=+ or Y(s)= o +2§ D=5 e T ey

—— S] = ] =1
s(st+257+1) " dg steastandg

Equating numerator of Y(s) in both sides, we get (Note: A=1)

where A=

1=(s"+1)° +(Bs+C)s(s* + 1)+ (Ds + E)s
=(1+B)s* +Cs’ +(2+B+D)s> +(C+ E)s +1
Comparing the coefficients of polynomials of different order we get
Coefficients of s*: 1+ B=0=B=-1
Coefficients of s*: C =0
Coefficients of s*: 2+B+D=0=1+D=0=D=-1
Coefficients of s: C+E=0=E=0

The partial fraction expansion of Y(s) is given by

V(s)=t- -

241 (5241

Noting that (see Problem 6.10(b)) ¢sin(w,t) u(t) VR L 7 2o )2 , the inverse transform is obtained

as

y(t) =[1-cos(t)+0.5¢sin(r) Ju(t) .
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Problem 6.14

l_sz+_S+2

I I
)

2 P (s+2) T

@ () X(s)=L{4u(t)}=* and Y(s) = L{tu(t)+ e‘zfu(t)}

Y(s) — s24s+2 xS = s% 4542
X(s) sP(s+2) 4 4s(s+2) *

The transfer function is given by H(s) =

(i) The impulse response is given by

W) =L {Fed) =10 {1+ 5] =10 {1+ 4 -

4s(s+2) s(s+2)

L} =+(8@) +u(t)-2¢u(t))

(ii1) In order to calculate the input-output relationship in the form of a differential equation, we
represent the transfer function as follows.

H(S) — SSs+2 _ Y(s)

4s(s+2) X(s)

or, (4s” +85)Y(s) = (s> +5+2)X(s)

Calculating the inverse Laplace transform and assuming zero initial conditions, the differential
equation representing the system is given by

2
4d—f+8d—y=d—f+ﬁ+2x(t).
dt dt dt~ dt

(b) (i) The Laplace transform of the input and output signals are given by

X(s)= and  Y(s)=3e ™

(s +2) (s+2)

Dividing Y(s) with X(s), the transfer function is given by

H(s)= % =3¢,

(i) The impulse response is obtained by calculating the inverse Laplace transform. The impulse
response is given by
h(t)=30(t —4).

(iii) In order to calculate the input-output relationship in the form of a differential equation, we
represent the transfer function as

_a—4s _ Y(s)
H(s)=3e" = X0 -

Cross multiplying, we get Y(s)=3e ¥ X(s).
Calculating the inverse Laplace transform, the input-output relationship of the system is given by
y()=3x(t—4).
(c) (i) The Laplace transform of the input and output signals are given by

X(s)= L and Y(s)= Si -3 (Si 5

Dividing Y(s) with X(s), the transfer function is given by

_Y) _2_ 35
H(S) =5 =5 i




(d)

(e)
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(i) The impulse response is obtained by calculating the inverse Laplace transform. The impulse
response is given by

2 —
h(t)=2u(t)—3%[e ‘”u(t)] .
(ii1) In order to calculate the input-output relationship in the form of a differential equation, we

represent the transfer function as

2(s+4)-3s> _ Y(s)

H() == = %0 -

Cross multiplying, we get $2Y(s) +4sY(s) =-3s> X (s) + 25X (s)+8X(s).
Calculating the inverse Laplace transform, the input-output relationship of the system is given by

2 3
LR N . S
di* e’ dt
(1) The Laplace transform of the input and output signals are given by

X(s)zﬁ and Y(s)=ﬁ+$.

Dividing Y(s) with X(s), the transfer function is given by

_Y(s) _ (s+2) | (s+2) _ 1 1
H) =55 =6 T om =2t~ 55

(i) The impulse response is obtained by calculating the inverse Laplace transform. The impulse
response is given by

h(t) = 2u(?) + e "u(t) — e > u(?).
(ii1) In order to calculate the input-output relationship in the form of a differential equation, we

represent the transfer function as

(s+2)(s+1+s+3) _ Y(s)

H(s)= Gi)G13) - X(s)

Cross multiplying, we get 2S2Y(S) +8sY(s)+8Y(s)= szX(s) +4sX(s)+3X(s).
Calculating the inverse Laplace transform, the input-output relationship of the system is given by

2 2
28 g gy = 4 .
de* dt di? dt

Note that there is no overlap between the ROC’s of the two terms exp(?)u(—t) and exp(—3#)u(t), and
hence the Laplace transform for y(¢) does not exist.

Problem 6.15

(a)

H(S)I £l (+)0s—))

$2425+1 (s+1)?
Two zeros: at s = j,—j
Two poles: at s =—1,—1. The zeros and poles are shown in Fig. S6.15(a).

Because both poles are in the left side of the s-plane, the system is always BIBO stable.
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(b)

(©)

(d)

(e)

Chapter 6

2545 _ 2(s+2.5)
H(s)= P56 (3)-2)

One zero: at § =—2.5
Two poles: at s =—3,+2 . The zero and poles are shown in Fig. S6.15(b).

Because one pole is located at the right-hand side of the s-plane, the system is NOT stable.

_ _3s+10  _ 3(s+10/3)
H(8) = =505 = Tron

One zero: at § = —4
Two poles: at s =—6,—3 . The zero and poles are shown in Fig. S6.15(¢).
Because both poles are in the left side of the s-plane, the system is always BIBO stable.

H(S):ﬁ_ s+2

s249  (s+)3)(s—j3)
One zero: at s =—2
Two poles: at s =+ j3,—j3 . The zero and poles are shown in Fig. S6.15(d).

There are only two poles, and both poles are located on the imaginary axis. Therefore the system
is a marginally stable system.

2 2
H §) == +3s42 _ _s743s42 1
( ) 4352425 s(sz+3s+2) s

The system does not have any zero.
One pole: at s =0 . The pole is shown in Fig. S6.15(¢).

There is only one pole, which is located on the imaginary axis. Therefore the system is a
marginally stable system.
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Figure S6.15

Problem 6.16

Note that the poles of the LTIC system are located at s = -5, j2, —2, j3, —j3, -2 + j1.5, and -2 — j1.5.
Since there are unrepeated poles at the imaginary axis, the system is a marginally stable system. It
produces bounded output for bounded inputs provided the input signal does not include a complex
exponential term of the form exp(j2¢), exp(—j2¢), exp(j3f), or exp(—j3¢).

(a) The input signal includes e /*'u(¢) . The system will produce an unbounded output.

(b) The input signal does not include a complex exponential term of the form exp(;j2¢), exp(—j2¢), exp(j3?),
or exp(—j3¢). Therefore, the system will produce a bounded output.

(0) x(t) = [cos(¢) +sin(40)]u(t) =[ 0.5(e” +e )= 0.5j(e™* —e/*) Ju(t)

The input signal does not include a complex exponential term of the form exp(j2¢), exp(—j2¢), exp(j3¢), or
exp(—j3f). Therefore, the system will produce a bounded output.

(d) x(£) =[cos(20) +sin(30)u(t) = 0.5(” +e7*) = 0.5 j(e" —e ™) |u(t)

The input signal includes e’*u(t), e /*u(t), e”'u(t), and e’ u(t). Therefore, the system will
produce an unbounded output.
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(e) x(t)=| e " sin(31) | u(t) =—0.5j[ e " (& —e ) | u(t) =—0.5j[ & =& | u(r)

The input signal does not include a complex exponential term of the form exp(j2¢), exp(—j2¢), exp(j3¢), or
exp(—j3f). Therefore, the system will produce a bounded output.

Problem 6.17
(a) There are two zeros at s = 0, 1 and two poles at s = -2, —4. Since all poles lie in the left half of the
s-plane, and therefore System (a) is stable.

The transfer function of System (a) is given by

_ s(s-1) : .
H(S) = Km with ROC: RC{S} > -2,

4(3)

Substituting H(4) = 1, we get  H(4)=1=K =5,

or, K=4.
The transfer function of System (a) is given by

_ s(s—1) . .
H(s) =4 55 With ROC: Re{s} > 2.

(b)  There are two zeros at s = 0, —4 and three poles at s = 1, —2, —3. Since a pole lies in the right half of
the s-plane, and therefore System (b) is NOT stable.

The transfer function of System (b) is given by

_ s(s+4) . .
H(S) —KW with ROC: Re{S} > 1.

4(8)

Substituting H(4) =1, we get H(4)=1=K 3O

or, K = 63/16.

The transfer function of System (b) is given by

_ 63 s(s+4) . .
H(s) =% Temeey With ROC: Refs} > 1.

(¢)  There are two zeros at s =2 +;2, 2 — j2 and two poles at s = -2 —j2, —2 + ;2. Since both poles lie in
the left half of the s-plane, and therefore System (¢) is stable.

The transfer function of System (¢) is given by

o (5=242)(s—2—42) - (s7—4s+8) . . _
H(s)=K T2 62 = K (74548) with ROC: Re{s} > 2.

Substituting H(4) =1, we get H(4)=1= K% ,or, K=35.

The transfer function of System (b) is given by

H(s)=5 5= with ROC: Refs} > 2.

(d) There are two zeros at s = 1, 2 and four poles at s = -3, -3, =2 — j3, =2 + j3. Since all poles lie in
the left half of the s-plane, and therefore System (d) is stable.

The transfer function of System (¢) is given by

_ (s—D(s-2) _ (s*=3s5+2)
H(s)=K (s+3)(s+3)(s+2+/3)(s+2-j3) K (s*+105° +465> +1145+117)
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with ROC: Re{s} > -2.

Substituting H(4) = 1, we get H(4)=1=K (2(260)5),0r,K=735/2.

The transfer function of System (b) is given by

735 (s*=3s5+2) . ) B
H(9) =3 iorrassstiamr With ROC: Refs) > =2. |

Problem 6.18

The transfer functions for noncausal implementations stay the same as P6.17. Only the ROC changes as
shown below:

(@) H(s)= 4% with ROC: Re{s} < —4.

A second possible transfer function for a noncausal implementation is obtained by considering the
ROC: -4 <Re{s} <-2.

4 .
(b) H(s)=¢ 6% with ROC: Re{s} > -3.

Two possible transfer functions for noncausal implementations are obtained by considering the
ROC: -3 <Re{s} <-2 and ROC: -2 <Re{s} <.

(c) H(s)= % with ROC: Re{s} < -2.

_ 735 (s*=3s5+2) . . _
d  H(s)= 2 (s*+10s+465% +114s+117) with ROC: Re{s} > 3.

A second possible transfer function for a noncausal implementation is obtained by considering the
ROC: -3 <Re{s} < -2. i

Problem 6.19

Since H(s)xH,, (s)=1,0r, H;,,(s)=

my H( )

the poles of H(s) must map as zeros of the inverse system. Similarly, the zeros of H(s) must map as poles
of the inverse system. Fig. S6.19 shows the locations of poles and zeros of the LTIC systems of Fig.
P6.17.

4 Im{s} Im{s} Im{s}
4 4 4
2 o
2 O 24 x 2
o— ¥ > Re{s}
-4 2 2 4 e = > Re{s} > Re{s} = > Re{s}
-2 -4 -2 2 4 -4 -2 2 4 —4 / -2 2 4
-2 O-2 4 x -2
—4 double o
-4 -4 zeros. —4
(a) (b) () (d)

Fig. S6.19: Poles and zero plots for the inverse systems.
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Problem 6.20

Property (c) states that H(s) has four poles but no zeros, therefore, the transfer function can be expressed
as

H(s)= K . (S6.20.1)

S +a3S3+612S2+a1S+ao

Property (a) states that the impulse response 4(7) is even and real-valued. Using the even property A(f) =
h(—t), we show that H(s) = H(—s) as follows:

By definition, H(s)= Ih(t)e_s’ dr
implying that H(-s)= Ih(t)eStdt .
Substituting ¢ = o, we get H(—s)= j h(—o)e ™ (~da) = j h(o)e ™ %da = H(s). (86.20.2)

Combining Eq. (56.20.1) with (56.20.2), we can see that a; = a; = 0 and the transfer function takes the
form

K

H)=— o
S4 +a2S2 +a0

(86.20.3)

with coefficients a, = ag real valued. The transfer function of the form (S6.20.3) with real coefficients has
poles that occurs in conjugate symmetry. In other words, if s = 0.5exp(jn/4) is a pole, then s =
0.5exp(j3n/4), s = 0.5exp(—j3n/4), and s = 0.5exp(—jn/4) should also be poles. The resulting transfer
function is

H(s) = K K
(s = 0.5¢73 ) (s = 0.5¢ 7 4)(s = 0.5¢/™*)(s — 0.5¢/™*) 5% +0.0625
Using property (a), we substitute H(0)= _[ h(t)dt =8

to get K = 0.5. The transfer function is given by

H(s) = I

s 40.0625
Problem 6.21

Calculating the Laplace transform of both sides of the input-output relationship, we get
SW () +RsW (s)+FW (s) = 7= X(s)

Y(s) _  1c
) 2
X(s) ~ Prkgel

The transfer function is given by H(s) = . Note that the transfer function has two poles,

which are the roots of the characteristic equation sS4+ £5+-+ =0, and are given by
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Ry (R _4
p=—" (;) F=—f(#) -1
() -1 ;
pr=— e () 1

Depending on the values of R, L, and C, two cases can occur.

Case 1: (%)2 —1>0 or, R 24L

In this case, (%)2 —— is real, and both poles will be real poles. Because (%)2 -1 <%,

both p, and p, will have negative values. In other words, the poles are in the left side of the s-
plane, and therefore, the system is always stable.

Case 2: (%)2 —1<0 or, R?<4L

In this case, (%)2 —- is imaginary, and both poles will be complex poles. The real part of

R

both these complex conjugate poles will be —57-. In other words, the poles are in the left side of

the s-plane, and therefore, the system is always stable.

Therefore, the R-L-C circuit is always stable. i

Problem 6.22

(a)  Factorizing H(s) yields the following expression for the transfer function

) (2 N 53
H(S) T (sHD(s+2)(s+3)(s+4) — (s+)(s+3)(s+4) *

The poles of H(s) are located at s =—1, —3, —4. Possible choices of the ROC are:
Choice 1: ROC: Re{s} > —1.
Choice 2: ROC: -3 <Re{s} <-1.
Choice 3: ROC: -4 <Re{s} <-3.
Choice 4: ROC: Re{s} <—4.
(b) For a causal implementation of H(s), the ROC must cover most of the rightmost side of the s-plane

to ensure that /,(¢) is a right hand sided sequence. The overall ROC is therefore given by ROC:
Re{s} >-1.
Taking the partial fraction expansion of H(s) yields
- (s-3) _ 2/3 3 7/3
H(s)= GGG~ ) T Gry T (st
—— —— ——
ROC:Re{s}>—1 ROC:Re{s}>-3 ROC:Re{s}>—4

Calculating the inverse Laplace transform, we obtain

h () =-2e"u(t)+3e > u() - Le M u().
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Since all three terms in /,(¢) decay to 0 as t — oo, /(%) is stable.

(c) For a left hand sided implementation of H(s), the ROC must cover the leftmost side of the s-plane.
The overall ROC is therefore given by ROC: Re{s} <—4.
Taking the partial fraction expansion of H(s) yields
— s—=3 — 2/3 3 7/3
HS) =tmeoem =" w1t &3~ &
—_— —— ——
ROC:Re{s}<—1 ROC:Re{s}<—3 ROC:Re{s}<—4
Calculating the inverse Laplace transform, we obtain
hy(t) =2 e u(—t) =3¢ u(-t) + Ze u(-t).
Note that 4,(f) is not stable because all three terms e ‘u(—t), e u(~t), and e *u(—t) are
unstable.

(d) For a double sided implementation of H(s), the ROC must consist of a narrow strip within the s-
plane. The overall ROC is therefore given by ROC: (-3 < Re{s} < —1), or, ROC: (-4 < Re{s} <
=-3).

(1) If ROC: (-3 <Re{s} <-1), then H(s) is expressed as
— (s=3) — 2/3 3 7/3
Ao =Giemem =~ Gy v Gy T oo
—_— —_— —_—
ROC:Re{s}<—1 ROC:Re{s}>-3 ROC:Re{s}>—4
Calculating the inverse Laplace transform, we obtain
hy () =2 e "u(-1)+3e > u(t) - Le M u(r).
Note that such /() is not stable because the term e 'u(—t) is not stable.
(i1) On the other hand, if ROC: (-4 < Re{s} <-3), then H(s) is expressed as
— (s-3) _ 2/3 3 7/3
H(s)= e S R R )
—_— —— ——
ROCRRe{s}<—1 ROC:Re{s}<-3 ROC:Re{s}>—4
Calculating the inverse Laplace transform, we obtain
hy()=2e " u(-t) =3¢ u(-t) - Le ™ u(r).
Note that such /4(7) is not stable because the terms e'u(—t) and 3e'u(~t) are not stable.

(e) As shown above, the implementation /4(¢) with the overall ROC given by ROC: Re{s} > —1is
stable. The remaining implementations /,(%), /5(), and h4(f) are unstable.

Problem 6.23

(a)  Factorizing H(s) gives the following expression for the transfer function

— (s-12)(s+7)
H(s)= (s+4)(s+5)*(s=7)

The poles of H(s) are located at s = —4, -5, -5, and 7. Possible choices of the ROC are:



(b)

(©)

(d)
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Choice 1: ROC: Re{s} > 7.
Choice 2: ROC: -4 <Re{s} < 7.
Choice 3: ROC: -5 <Re{s} < 4.
Choice 4: ROC: Re{s} <-5.

For a causal implementation of H(s), the ROC must cover most of the right half of the s-plane to

ensure that 4,(7) is a right hand sided sequence. The overall ROC is therefore given by ROC: Re{s}
>17.

Taking the partial fraction expansion of H(s) gives

H(s)= (s-12)(s+7) 48/11 _ 3421/792  _ 17/6 _ 35/792
(s+4)(s+5)*(s=7) (s+4) (s+5) (s+5)° (s=7)

ROC:Re{s}>—4 ROCRe{s}>-5 ROC:Re{s}>—5 ROCRRe{s}>7

Taking the inverse Laplace transform gives

hy () =8 e u(r) - 32 u(r) - Lo u(t) - 3

7t
) =" u(t).

792

Since the last term =22 792 e"'u(t) in hy(7) reaches oo as ¢ — oo, hy(£) is NOT stable.

For a left hand sided implementation of H(s), the ROC must cover most of the left half of the s-
plane. The overall ROC is therefore given by ROC: Re{s} <-5.

Taking the partial fraction expansion of H(s) gives

(s) = (s-12)(s+7) 48/11 o 3421/792 17/6 . 35/792
(s+4)(s+5)*(s=T7) (s+4) (s+5) (s+5)° (s=7)
—— —

%,—/
ROC:Re{s}<—4 ROCRe{s}<—5 ROCRe{si<-5 ROCRe{s}<7

Taking the inverse Laplace transform gives

_ —4t 3421 5t 17 4,5t 35 7t
hy(t)= ——e u(—t)+792 u(—t) +{5te u(—t)+7926 u(-t).

Note that /,(f) is not stable because of the first three terms which are all unstable.

For a double sided implementation of H(s), the ROC must consist of a narrow strip within the s-
plane. The overall ROC is therefore given by ROC: (—4 <Re{s} <7), or, ROC: (-5 <Re{s} <—4).
IfROC is (-4 < Re{s} < 7), then H(s) is expressed as

H(s) = (s-12)(s+7)  _ 48/11 o 3421/792 17/6 _ 35/792
(s+4)(s+5)*(s=7) (s+4) (s+5) (545)? (s=7)
R,_J \—V—/

—
ROCRe{s}>—4  ROCRe{s}>-5 ROCRe{s}>-5 ROCRe{s}<7

Taking the inverse Laplace transform gives

—4¢ =5t Tt
hy (t)=%e u(t)—%e u(t)—%te “u(t) + 7926 u(—t).
Note that such £;(%) is stable.

On the other hand, if ROC: (-5 < Re{s} <—4), then H(s) is expressed as

(s)= (s-12)(s+7)  _ 48/11 _ 3421/792  _ 17/6 _ 351792
(s+4)(s+5)*(s=7) (s+4) (s+5) (s+5)° (s=7)
A/ N ’

ROCRRe{s}<—4 ROC:Re{s}>-5 ROC:Re{s}>—5 ROCRe{s}<7
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Calculating the inverse Laplace transform gives

hy(t) =3 e (=) 3L () - L te ™ u(t) + 32 e 'u(-1).

Note that such /A4(7) is not stable because the first term is not stable.

(f) As shown above, the implementation /;(¢) with the overall ROC given by ROC: (-4 < Re{s} <
7) is stable. The remaining implementations are unstable.

Problem 6.24

Sl _ (=)

(a) The causal implementation of  H(s)= T (1)

is always BIBO stable.

(b)  The causal implementation of

2545 _ n_ (s+2.5)
H(s) =2 2= 2 5

is not stable because of the pole at s = 2. The all-pass system

H,,(9)=3

cascaded with the original system would cancel out the pole at s = 2, making the overall system
with transfer function

overall(s) H(S)XHQP(S) Q5425 w572 9 s42.5

(s+3)(s— 2) s+2 (s+3)(s+2)
stable. Note that the overall system has the same magnitude spectrum as the original system. The
phase spectrum will be different.

35410 _ 3 _s+10/3
s24+95+18 (s+3)(s+6)

(¢) The causal implementation of H(s) =

is always BIBO stable.

9+2 — s+2

(d)  The causal implementationof  H(s) = 5% = 75075

is marginally stable.

(¢)  The causal implementation of H(s)=—543s42 1
$24+3s%42s N
is marginally stable. I
Problem 6.25

(a) Based on the feedback configuration,

(vi5) s+3 s+3 s+3

1(9) l+m (s+3)(s+5)+1 (s+3)(s+5)+1 (s+4)2

Using the cascaded configuration,



(b)

(©)

Solutions 29

Hy(5) = ——— s H, () = >
(s+D(s+2) (s+D(s+2)(s+4)

Finally, using the feedback configuration, the overall transfer function of the system is expressed as

1

H (5)=—&0 _ (s +1)(s+2)(s+4)* . st H11s% + 4257 + 645 +32
T DG+ s +6) (5 +3) 57 +17s" +10857 431657 +4175+195

Expressing the system in the form shown in Fig. S6.25(b), the response of the feedback configured
subsystem enclosed in dotted rectangle is given by

G (5444 sP46s5+8

I+ ceiaers CHDE+D6+D+T §3 1767 414549

Hy(s)=

The overall transfer function of the system is expressed as

2
H,,(S)ZHI(S){ ! ! }:_ (s + 45 + DH, (5)

(s+2)(5+3) (5+5) | 3 +10s% +315+30°

(s> +4s+1) (s> + 65 +8)

or, Hb(S):_ 3 2 3 P 5
(s7 +10s° +31s +30) (s +7s” + 145 +9)

st +10s3 +33s% +385+8

or, H,(s)=- .
b s® +175° +115s5* +396s> + 73452 + 6995 + 270

The outputs of the two summers are given by

I
V=X e 66 @

|
and W(s)=X(s)— G626 V(s).

Substituting the values of W(s) in the first equation, we get
1 1

V(s)=X(s)— X(s)+ V(s),
(s+4)(s+5)(s+06) (+D(s+2)(s+Ds+5)(s+6)(s+7)
o, V(s)= (s+D(s+2)(s+4d)(s+5)(s+6)(s+7) 5 (5+4)(s+5)(s+6)—1 X(s).
I-(s+D(s+2)(s+4)(s+5)(s+6)(s+7T) (s+4)(s+5)(s+06)
or, V(s)= (s+D(s+2)(s+D(s+4)(s+5)(s+6)—1] X(s).

+DE+2)(s+D(s+5)(s+6)(s+7)—1

The system’s output is given by

B 8 +Ds+4)(s+5)(s+6)—1]
S (s43) (s+D)(s+2)(s+A)(s+5)(s+6)(s+7)—1

Y(s) V(s) X(s),

T 5+ 1)(s+2)(s +3)

which results in the overall transfer function
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st +225% +179s% + 6375 + 833 I

H(s)=— 6 5 4 3 2 :
s’ +28s° +322s” +1960s™ +6769s” +13132s° +13067s + 5037

Problem 6.26

The following MATLAB code computes the partial fraction coefficients for the transfer functions
specified in parts (a) to (g). The coefficients and the roots are specified after the MATLAB code.

% part (a)

num a = [1 2 17;

denum a = poly([-1; roots([1l 5 6])]);

[coeff a,roots a,K a] = residue(num a,denum a);
% part (b) is same as part (a)

% part (c)

num ¢ = [1 3 -4];

denum ¢ = poly([-1; roots([1l 5 6])]);

[coeff c,roots c¢,K c] = residue (num c,denum cC)
% part (d) is same as part (c)

% part (e)

num e = [1 0 1];

denum e = poly([0; -1; roots([1 2 17])]);
[coeff e,roots e,K e] = residue(num e,denum e);
% part (f)

num £ = [1 1];

denum_f = poly([-2; -2; -3; -4]);

[coeff f,roots f,K f] = residue(num f,denum f);
5 part (9)

num g = [1 -2 1];

denum g = poly([-1; -1; -1; roots([1l 0 161)1);
[coeff g,roots g,K g] = residue(num g,denum g);

(a) The MATLAB code produces the following output
coeff a = [2 -1 0]; roots a = [-3 -2 -1]; and K a = [];
leading to the partial fraction expansion

2 1

s+3 s+2°

X(s)=

(b)  The results for Part (b) are the same as the results for Part (a).
(c) The MATLAB code produces the following output
coeff ¢ = [-2 6 -3]; roots ¢ = [-3 -2 -1]; and K c = [];
leading to the partial fraction expansion
2 6 3
+ - :
s+3 s+2 s+l

X(s)=-

(d)  The results for Part (d) are the same as the results for Part (c).

(e) The MATLAB code produces the following output
coeff e = [0.0331-j0.1176 0.0331+j0.1176 -0.125 0.058817;
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roots e = [-1+j4 -1-j4 -1 0]; and K e = [];
leading to the partial fraction expansion

0.0331-;0.1176 N 0.0331+,0.1176  0.125  0.0588

X(s)= +
(s+1-j4) (s+1+j4) (s+1 s

Note that the term containing the complex poles can be combined as

2x0.0331(s +1) +2x4x0.1176  0.125 N 0.0588

X(s)=
) (s+1)? +16 (s+1) s

9

or,

0.0662s +1.007 0.125 0.0588
X(s)= 5 - +
(s+2s+17)* +16 (s+1) s
(f) The MATLAB code produces the following output
coeff £ = [0.75 -2 1.25 -0.51;
roots £ = [-4 -3 -2 -2]; and K £ = [];
leading to the partial fraction expansion

075 2 +1.25_ 0.5
s+4 s+3 s+2 (s+2)°

(g) The MATLAB code produces the following output
coeff £ = [-0.0103-3j0.0285 -0.0103+30.0285 0.02056 -0.2076 0.2352]
roots f = [§4 -3j4 -1 -1 ~-11; and K f = [];

X(s)=

leading to the partial fraction expansion

0.0103+ ;0.0285 0.0103 - j0.0285 N 0.02056 0.2076 0.2352

X(s)=- -+ <
s—j4 s+ j4 s+1 (s+1)” (s+1)

Note that the term containing the complex poles can be combined as

0.0206s —0.228 N 0.02056 0.2076 0.2352

X(s)=- - + :
(5) s +16 s+1 (s+1)? (s+1)

Problem 6.27

The MATLAB code for generating the Bode plots is given below followed by the plots in Fig. S6.27.

% part (a)

figure (1); num = [1 0 1]; denum = [1 2 1];
S = tf (num,denum); bode(S); grid on

% part (b)

figure (2); num = [2 5]; denum = [1 1 -6];
S = tf (num,denum); bode(S); grid on

% part (c)

figure (3); num = [3 10]; denum = [1 9 18];
S = tf (num,denum); bode(S); grid on

% part (d)
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= [1 0 9];
grid on

denum

(1 2];

num

(4);

tf (num, denum) ;

figure
S

bode (S) ;

tf (num,denum) ; bode(S); grid on

S =

Bode Diagram

(ap) spnyuben

405} - - -

(Bop) eseyqd

o
—

Frequency (rad/sec)

(a)
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Bode Diagram

(ap) epnyubep

Frequency (rad/sec)

(b)
Bode Diagram

(gp) spnyubep

Frequency (rad/sec)

)

(c
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Bode Diagram

400
200 - ———+-—+-
0

(ap) epnyubep

(Bep) eseyd

Frequency (rad/sec)

(d)
Bode Diagram
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Fig. S6.27: Bode plots for Problem 6.27.
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Problem 6.28

The MATLAB code for generating the Bode plots is given below.

o)

% part (a)

figure (1); num = [1 0 1]; denum = [1 2 1];

w = [0.01:0.001:100]; [H,w] = fregs (num,denum,w);
subplot (211); semilogx(w,20*logl0O(abs(H))); grid on;
subplot (212); semilogx (w,angle(H)); grid on

% part (b)

figure (2); num = [2 5]; denum = [1 1 -6];

w = [0.1:0.001:100]; [H,w] = fregs(num,denum,w);
subplot (211); semilogx(w,20*1logl0O(abs(H))); grid on;
subplot (212); semilogx (w,angle(H)); grid on

Q

% part (c)

figure (3); num = [3 10]; denum = [1 1 -6];

w = [0.1:0.001:100]; [H,w] = fregs (num,denum,w) ;
subplot (211); semilogx(w,20*logl0O(abs(H))); grid on;
subplot (212); semilogx(w,angle(H)); grid on

% part (d)

figure (4); num = [1 2]; denum = [1 0 9];

w = [0.1:0.001:100]; [H,w] = fregs (num,denum,w) ;
subplot (211); semilogx(w,20*1loglO (abs(H))); grid on;

subplot (212); semilogx(w,angle(H)); grid on

% part (e)

figure (5); num = [1 3 2]; denum = [1 3 2 0];

w = [0.1:0.001:10]; [H,w] = fregs(num,denum,w);
(

subplot (211); semilogx(w,20*1ogl0 (abs(H))); grid on;
subplot (212); semilogx(w,angle(H)); grid on

The plots are similar to the plots obtained in Problem 6.27 except the phase that needs to be converted to
degrees. I

Problem 6.29

The MATLAB code for generating the impulse is given below followed by the plots in Fig. S6.29.

% part (a)

figure (1); num = [1 0 1]; denum = [1 2 1];
S = tf (num,denum); impulse(S);

% part (b)

figure (2); num = [2 5]; denum = [1 1 -6];
S = tf (num,denum); impulse(S);

% part (c)

figure (3); num = [3 10]; denum = [1 9 18];
S = tf (num,denum); impulse(S);

% part (d)

figure (4); num = [1 2]; denum = [1 0 9];

S = tf (num,denum); impulse(S);

% part (e)




denum [1 3201,
Impulse Response

[1 3 2];
impulse (S) ;

num

(3)

Chapter 6
tf (num, denum) ;

figure

S
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Impulse Response
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Impulse Response
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Impulse Response

| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
T s |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
L e S S e e [ T A e
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
T T B A N N
% | | | | | | | | |
3 | | | | | | | | |
=S | | | | | | | | |
£ | | | | | | | | |
< 1 T T T T T T T T T
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
ot
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
L e i el e At B e e Il s
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
1 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
(e)

Fig. S6.29: Impulse response for Problem 6.29.

Problem 6.30

(a) The MATLAB code for computing the roots of the functions is given below:

(1) [_I1 (S) — s2-55-84

s*+753-3352-3555-700

>> roots([1 -5 -84])
>> roots([1 7 =33 =355 -=7001])

which computes two zeros at s = 2.5 +j8.8176, —7 and four poles at s =7,-5,-5,-4.

Gy H,(s)= 52195484

s 475323352 -3555-700

>> roots([1 -19 84])
>> roots ([l 7 -33 =355 -=7001)

which computes two zeros at s = 12, 7 and four poles at s=7,-5,-5,—4. Note that the zero at s = 7
cancels the pole at s = 7. Therefore, in effect there is one zero at s = 12, and three poles at s =—5,-5,—-4.

42052 +155+61
(i) H5(s)= st 4557 43152 +1255+150

>> roots([1 20 15 61])
>> roots ([l 5 31 125 150])
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which computes three zeros at s =—-19.3886,-0.3057 + j1.7472 and four poles at s = j5,—;5,-3,-2.

(IV) H4 (s) — 531052 +255+7

$04+65°+425% +485° +28857 +965+544

>> roots([1 -10 25 71])
>> roots([1 6 42 48 288 96 544])

which computes three zeros at s =—-0.2536,5.1268+ j1.1473 and six poles at s =+;2,+ 2, -3+ ;5.

(V) H5 (S) — s2+35+7

2 +(6-77)s* +(11-28)s+(6—21)

>> roots([1 3 7])
>> roots ([1 6-3*7 11-3*28 6-3*211)

which computes two zeros at s =—1.5+ j2.1794 and three poles at s =-3,-1,-2+ ;7.

(b)
(1) One pole (at s=7) is in the right-half of the s-plane. Therefore the system is NOT stable.

(i1) All three uncanceled poles s=-5,-5,—4 are located in the left-half of the s-plane. Therefore the
system is absolutely stable.

(ii1) No pole is located in the right-half of the s-plane, and two non-repeated poles (s =+ ;5) are located
on the imaginary axis. Therefore the system is marginally stable.

(iv) There are two repeated set of poles (s = j2, j2,—j2,—;2) on the imaginary axis. Therefore the system
is NOT stable.

(v) All three poles at s =—3,—1,-2+ j7 are located in the left-half of the s-plane. Therefore the system is
absolutely stable.



