
 

Chapter 4: Signal Representation using Fourier Series 
 

 

Problem 4.1 

(a) Using Definition 4.4, the CT function x1(t) can be represented as x1(t) = c1φ1(t) + c2φ2(t) + c3φ3(t) 
with the coefficients cn, for n = 1,2, and 3, given by 
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 In other words, x1(t) = −Aφ3(t), which can also be proved by inspection. 

(b) By inspection, x2(t) = −Aφ2(t), which can also be proven by evaluating the coefficients c1 = 0,  c2 = 
−A, and c3 = 0. 

(c) Using Definition 4.4, the CT function x3(t) can be represented as x3(t) = c1φ1(t) + c2φ2(t) + c3φ3(t) 
with the coefficients cn, for n = 1,2, and 3, given by 
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 In other words, x3(t) = 0.5A(φ1(t) − φ2(t)), which can also be proved by inspection. ▌ 

Problem 4.2 

Computing the integral 
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Since the function inside the integral is even with respect to t, therefore, 
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For the functions to be orthogonal,  .301 3 =⇒=− KK  ▌ 

Problem 4.3 

The following derivation shows that the individual functions {Pn(x), n = 0, 1, 2, 3} have nonzero finite 
energy. We use the notation Pm,n to represent the integral 

  Pm,n = 
1

1

( ) ( )m nP x P x dx
−
∫ . 

Computing the integrals 

  [ ]
1

1
0,0 1

1

1.1 2P dx x
−

−

= = =∫ , 

  
1

12 31 2
1,1 3 31

1

P x dx x
−

−

 = = = ∫ , 

  ( )
1 1

12 2 4 2 5 39 91 1 1 1 2
2,2 4 4 4 5 2 5 51

1 1

(3 1) 9 6 1 2 ( 2 1)P x dx x x dx x x x
−

− −

 = − = − + = − + = − + = ∫ ∫ , 

and  ( )
1

16 4 2 7 5 325 251 1 1 2
3,3 4 4 7 2 7 71

1

25 30 9 6 3 ( 6 3)P x x x dx x x x
−

−

 = − + = − + = − + = ∫ , 

which shows that the functions Pn(x) have nonzero finite energy. 

To show that the functions are orthogonal with respect to each other, we determine the integrals 
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Problem 4.4 

The following derivation shows that the individual functions {Tn(x), n = 0, 1, 2, 3} have nonzero finite 
energy. We use the notation Tm,n to represent the integral 
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and similarly, the higher order Tm,n‘s can be proven to be nonzero for m = n. 

To show that the functions are orthogonal with respect to each other, we determine the integrals 
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and similarly, the higher order Tm,n‘s can be proven to be zero for m ≠ n.  ▌ 

Problem 4.5 

Case I (m = p, n = q): [ ] [ ]∫∫∫ −==
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Problem 4.6 

(a) By inspection, we note that the time period T0 = 2π, which implies that the fundamental frequency 
ω0 = 1. 

 Since the CTFS coefficient a0 represents the average value of the signal, therefore, a0 = 3/2. 

 Using Eq. (4.31), the CTFS cosine coefficients an’s, for (n ≠ 0), are given by 
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 Using Eq. (4.32), the CTFS sine coefficients bn’s are given by 
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(b) By inspection, we note that the time period T0 = 2T, which implies that the fundamental frequency 
ω0 = π/T. 

 Since the CTFS coefficient a0 represents the average value of the signal, therefore, a0 = 0.75. 

 Using Eq. (4.31), the CTFS cosine coefficients an’s, for (n ≠ 0), are given by 
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 Since x2(t) is even, therefore, the CTFS sine coefficients bn = 0. 

(c) By inspection, we note that the time period T0 = T, which implies that the fundamental frequency 
ω0 = 2π/T. 

 Since the CTFS coefficient a0 represents the average value of the signal, therefore, a0 = 1/2. 

 Since the function [x3(t) − 0.5] is odd, therefore, the CTFS cosine coefficients an = 0, for (n ≠ 0). 

 Using Eq. (4.32), the CTFS sine coefficients bn’s are given by 
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(d) By inspection, we note that the time period T0 = 2T, which implies that the fundamental frequency 
ω0 = π/T.  

 Using Eq. (4.30), the CTFS coefficient T0 is given by 
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 Using Eq. (4.31), the CTFS cosine coefficients an’s, for (n ≠ 0), are given by 
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 Since x4(t) is even, therefore, the CTFS sine coefficients bn = 0. 

(e) By inspection, we note that the time period T0 = 2T, which implies that the fundamental frequency 
ω0 = π/T.  

 Using Eq. (4.30), the CTFS coefficient T0 is given by 
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 Using Eq. (4.31), the CTFS cosine coefficients an’s, for (n ≠ 0), are given by 
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 where Integrals A and B are simplified as 
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 Using Eq. (4.32), the CTFS sine coefficients bn’s are given by 
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 where Integrals C and D are simplified as 
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 ▌ 

Problem 4.7 

By inspection, we note that the time period T0 = T, which implies that the fundamental frequency ω0 = 
2π/T. 

Using Eq. (4.30), the CTFS coefficient a0 is given by  
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Using Eq. (4.31), the CTFS cosine coefficients an’s are given by 
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Using Eq. (4.31), the CTFS sine coefficients bn’s are given by 
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The value for bn can also be derived by noting that x(t) is an even function. For such functions, the 
CTFS coefficient bn = 0.  ▌ 

Problem 4.8 

(i) x1(t) = cos(7t) + sin(15t + π/2) = cos(7t) + cos(15t). 

 The fundamental frequency of cos(7t) is given by ω1 = 7, which implies that the time period of 
this term is T1 = 2π/7. The fundamental frequency of cos(15t) is given by ω2 = 15, which implies 
that the time period of this term is T2 = 2π/15.  

 Since the ratio 
7
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2
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 is a rational number, x1(t) is periodic with the overall period T0 = mT1 = nT2 = 2π. The 
fundamental frequency is given by ω0 = 1. 

 The CTFS expansion  ( )∑
∞

=

++=
1

0 )sin()cos()(
n

nn ntbntaatx  

 we note that .1and,1,0 1570 === aaa  

 The remaining coefficients are all zero. 

 In other words, 

  0andotherwise0
15,71

,00 =


 =

== nn b
n

aa , 

 with the fundamental frequency ω0 = 1. 

(ii) The fundamental frequency of sin(2t) is given by ω1 = 2, which implies that the time period of this 
term is T1 = π. 

 The fundamental frequency of cos(4t + π/4) is given by ω2 = 4, which implies that the time period 
of this term is T2 = π/2. 

 Since the ratio 2
2

1 =
T
T  

 is a rational number, therefore, x2(t) is periodic with the overall period T0 = mT1 = nT2 = π. The 
fundamental frequency is given by ω0 = 2. 

 Comparing x2(t) = 3 + sin(2t) + cos(4t + π/4) = 3 + sin(2t) + 0.707cos(4t) − 0.707sin(4t) 
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 with the fundamental frequency ω0 = 1. 

(iii) The fundamental frequency of exp(j2t) is given by ω1 = 2, which implies that the time period of 
this term is T1 = π. 

 The fundamental frequency of exp(j5t) is given by ω2 = 5, which implies that the time period of 
this term is T2 = 2π/5. 

 The fundamental frequency of exp(−j3t) is given by ω3 = 3, which implies that the time period of 
this term is T3 = 2π/3. 
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 are all rational numbers, therefore, x3(t) is periodic with the overall period T0 = mT1 = nT2 = 
pT3 = 2π. The fundamental frequency is given by ω0 = 1. 
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 with the fundamental frequency ω0 = 1. 

(iv) Because of the exp(t + 1) term, the signal x4(t) is not periodic. Therefore, the CTFS expansion 
cannot be obtained. ▌ 
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Problem 4.9 

By definition, ∫
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which is expressed as  
��� 
��� 	���� 
��� 	�

B

T
tjn

A

T

tjn
n dtetx

T
dtetx

T
D ∫∫ ω−

−

ω− +=
2

00

0

20

0

0

0

0 )(1)(1 . 

Substituting t = −α in Integral A, we get 
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Since x(t) is an even function, therefore, x(−α) = x(α) and the above integral reduces to 
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Substituting the value of Integral A from the above expression, the exponential CTFS coefficients are 
given by 
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Problem 4.10 
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Substituting t = −α in Integral A, we get 
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Since x(t) is an odd function, x(−α) = −x(α) and the above integral reduces to 
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Substituting the value of Integral A from the above expression, the exponential CTFS coefficients are 
given by 
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Problem 4.11 

(a) By inspection, we note that the time period T0 = 2π, which implies that the fundamental frequency 
ω0 = 1. Using Eq. (4.44), the DTFS coefficients Dn’s are given by 
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 The magnitude and phase spectra are given by 
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 The magnitude and phase spectra are shown in row 1 of the subplots included in Fig. S4.11. 

(b) By inspection, we note that the time period T0 = 2Τ, which implies that the fundamental frequency 
ω0 = π/T. Since x(t) is an even function, therefore, the DTFS coefficients Dn’s are given by 
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 For (n ≠ 0), the DTFS coefficients are given by 
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 Combining the above results, we get 
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 The magnitude and phase spectra are given by 
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 The magnitude and phase spectra are shown in row 2 of the subplots included in Fig. S4.11. 

(c) By inspection, we note that the time period T0 = Τ, which implies that the fundamental frequency 
ω0 = 2π/T. Using Eq. (4.44), the DTFS coefficients Dn’s are given by 
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 For (n ≠ 0), the DTFS coefficients are given by 
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 Combining the two cases, we get 
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 The magnitude and phase spectra are given by 
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 The magnitude and phase spectra are shown in row 3 of the subplots included in Fig. S4.11. 

(d) By inspection, we note that the time period T0 = 2Τ, which implies that the fundamental frequency 
ω0 = π/T. Since x(t) is an even function, the DTFS coefficients Dn’s are given by 
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 For (n ≠ 0), the DTFS coefficients are given by 
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 Combining the two cases, we get 
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 Since Dn is always positive, its phase spectrum is 0. 

 The magnitude and phase spectra are shown in row 4 of the subplots included in Fig. S4.11. 

(e) By inspection, we note that the time period T0 = 2Τ, which implies that the fundamental frequency 
ω0 = π/T. For (n = 0), the exponential DTFS coefficients is given by 

  
( ) ( )

[ ]

2

0
0 0 0 0

0

2 2 2 4

2 4 2 4 2 2/

1 1 1 1

1 1 1 1 1 1 1

( ) 1 0.5sin sin

cos( ) cos( ) cos(0)

T T T T
t t

T T

Tt
T

T T T T

T T

D x t dt dt dt dtπ π

π
π ππ π

 = = − = − 

= + × = + − = −  

∫ ∫ ∫ ∫  

 For (n = 0), the exponential DTFS coefficients is given by 



136     Chapter 4 
 

 

  ( ) ( )0 0 0

0 0 0
2 2 4
1 1 11 0.5sin sin

T T T
jn t jn t jn tt t

n T T

A B

T T TD e dt e dt e dtω ω ωπ π− − −

= =

 = − = − ∫ ∫ ∫
��	�
 ����	���


. 

 Solving for Integrals A and B, we get 
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Fig. S4.11: Magnitude and phase spectra calculated in P4.11 for the periodic functions 

shown in Fig. P4.6. 
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For n = ± 1, Integral B reduces to 
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Combining, the above cases, the CTFS coefficients can be expressed as 
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 The expressions for the magnitude and phase spectra are given by 
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 The magnitude and phase spectra are shown in row 5 of the subplots included in Fig. S4.11.         
▌ 

Problem 4.12 

By inspection, we note that the time period T0 = T, which implies that the fundamental frequency ω0 = 
π/T. 

Using Eq. (4.44), the exponential CTFS coefficient Dn’s are given by 
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The magnitude spectrum |Dn| is constant at 1/T for all values of n. The phase spectrum <Dn is always 0.  
▌ 

Problem 4.13 

In each case, we show that the exponential CTFS coefficients obtained directly from Eq. (4.44) are 
identical to those obtained from the trigonometric CTFS coefficients. 

(a) From the solution of Problem P4.6(a), we know that 
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 Using Eq. (4.45), the exponential CTFS coefficients for x1(t) are given by 
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(b) From the solution of Problem P4.6(b), we know that 
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Using Eq. (4.45), the exponential CTFS coefficients for x2(t) are given by 
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(c) From the solution of Problem P4.6(c), we know that 

  π=== nnn baa 1
2
1

0 and,0, . 

 Using Eq. (4.45), the exponential CTFS coefficients for x3(t) are given by 
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(d) From the solution of Problem P4.6(d), we know that 

  0 2
1a = , 
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2
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2
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0
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a

n oddπ
π

= = − − =   =
, and 0nb = . 

 Using Eq. (4.45), the exponential CTFS coefficients for x4(t) are given by 
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. 

(e) From the solution of Problem P4.6(e), we know that 
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 Using Eq. (4.45), the exponential CTFS coefficients for x5(t) are given by 

 (n = 0): 0 2 2
1 1D π= −   

 (n = 1): ( ) ( ) ( )1 1 1
1
2 2 4 8

2 1 1 1jD a jb jπ π= − = − − = −  
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 Combining the above results, we obtain 
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 ▌ 

Problem 4.14 

Problem 4.11(b) computes the exponential DTFS coefficients of x2(t) as 

  )5.0sin(5.0)(2 CTFS π
π

−= →← n
n

Dtx x
n  

with fundamental frequency ω0 = π/T. Differentiating x2(t) with respect to t, we get 

  
���� 
���� 	����� 
���� 	�

)(5.0)(5.0

)25.0(5.0)25.0(5.0)(2

Ttg
m

tg
k

kTTtkTTt
dt

tdx

+

∞

−∞=

∞

−∞=
∑∑ −+δ−−−δ= , 

where the first term g(t) represents an impulse train with period T0 = 2T and with impulses located at 
(T/2 + 2kT). Using the time differentiation property, 

  )5.0sin(
2
1)5.0sin(5.0)(2

0
CTFS π−=π

π
−×

π
=ω →← n

T
jn

nT
jnDjn

dt
tdx x

n  

implying that )5.0sin(
2
1)(5.0)(5.0 CTFS π− →←+− n
T

jTtgtg . 

Using the time shifting property, 

  ( ) ( )πω −=− →←+− jng
n

Tjng
n eDeDTtgtg 11)()( 0CTFS  

with g
nD  representing the exponential CTFS coefficients of g(t). Hence, 

  ( ) )5.0sin(11 π−=− π n
T

jeD jng
n  
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or,  
T

e
nje

n
T

j
e

n
T

jD
jn

jnjn
g
n 2))5.0sin(2(

)5.0sin(1
1

)5.0sin(
2
1 2/

2/

π−

ππ =
π−

π
−=

−
π

−= . ▌ 

Problem 4.15 

(i) As shown in Problem P4.8(i), x1(t) is periodic with the overall period T0 = 2π and fundamental 
frequency ω0 = 1. The function x1(t) can be expressed as follows: 

 7 7 15 151 1 1 1
1 2 2 2 2( ) cos(7t) + cos(15t) = j t j t j t j tx t e e e e− −= + + + . 

 Comparing with the exponential CTFS expansion with ω0 = 1, 

  ∑
∞

=

=
1

)exp()(
n

n jntDtx , 

 we note that .5.0and5.0 151577 ==== −− DDDD  

 The remaining coefficients are all zero. 

(ii) As shown in Problem P4.8(ii), x2(t) is periodic with the overall period T0 = π and fundamental 
frequency ω0 = 2. Expanding 

  x2(t) = 3 + sin(2t) + cos(4t + π/4) 

 as tjjtjjtjtj
j eeeeeetx 44/

2
144/

2
12

2
12

2
1

2 3)( −π−π− ++−+=  

 Comparing with the exponential CTFS expansion with ω0 = 2, 

  ∑
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=
1

)2exp()(
n

n ntjDtx , 

 we note that 

  4/
2
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1

1
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2
1

2 and,3,, π
−

π−
− =−==== jj eDjDDjDeD . 

 The remaining coefficients are all zero. 

(iii) As shown in Problem P4.8(iii), x3(t) is periodic with the overall period T0 = 2π and fundamental 
frequency ω0 = 1. Expanding 

  )23()25(12
3 2.1)( +−++ ++++= tjtjtj eeetx  

 as tjjtjjtj eeeeeetx 32522
3 2.1)( −− ×+×+×+= . 

 Comparing with the exponential CTFS expansion with ω0 = 1, 

  ∑
∞

=

=
1

)exp()(
n

n jntDtx , 

 we note that 

  2
520

2
3 and,,2.1, jj eDeDDeD ==== −

− . 

 The remaining coefficients are all zero. 
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(i) Since the signal is not periodic because of the exp(t + 1) term, the exponential CTFS expansion 
cannot be obtained. ▌ 

Problem 4.16 

For the impulse train ( )
π

= →←π−δ= ∑
∞

−∞= 2
12)( CTFS

n
k

Ekttp  

with period T0 = 2π and fundamental frequency ω0 = 1.   

Expressing ( ) ( )
�� 
�� 	��� 
�� 	�
)4/(

4

)4/(

4 22)(

π−

∞

−∞=

π

π+

∞

−∞=

π ∑∑ π−−δ−π−+δ=

tp
k

tp
k

ktkt
dt

tdx , 

and using the time shifting property, we observe that 

   n
jn

n
jn EeEe

dt
tdx 4/4/CTFS 00
)( πω−πω − →← . 

Substituting ω0 = 1, we get nEnj
dt

tdx )25.0sin(2)( CTFS π →← . 

Using the time differentiation property, 

  nn EnjDjn )25.0sin(20 π=ω , 

or,  nnn EnD )25.0sin(2 π= . 

Substituting En = 1/2π, we get sin(0.25 )1 1 1
4 0.25 4sin(0.25 ) sinc(0.25 )n

n n nD n nπ
π ππ= = × = . ▌ 

Problem 4.17 

Example 4.14 derived the exponential DTFS coefficients of the square wave with the duty cycle (τ/T) as  

( )T
n

TnD ττ= sinc . 

(i) For T = 5 ms, the fundamental frequency is f0 = 1/T = 1/5ms = 200 Hz, while the fundamental 
angular frequency is ω0 = 2πf0 = 400π radians/s. With τ = 1ms, the exponential CTFS coefficients 
are given by  

   ( )55
1 sinc n

nD = , 

 which are plotted in Fig. S4.17(a) in terms of two scales: (a) number n of the CTFS coefficients; 
and (b) the corresponding frequency f = nf0 in Hz. 

(ii) For T = 10 ms, the fundamental frequency is f0 = 1/T = 1/10ms = 100 Hz, while the fundamental 
angular frequency is ω0 = 2πf0 = 200π radians/s. With τ = 2ms, the expression for the exponential 
CTFS coefficients stay the same as in part (i) and is given by  

  ( )55
1 sinc n

nD = , 

 which are plotted in Fig. S4.17(b) in terms of two scales: (a) number n of the CTFS coefficients; 
and (b) the corresponding frequency f = nf0 in Hz.  
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Fig. S4.17: DTFS coefficients for Problem 4.17. 

 (iii) Finally, for T = 20 ms, the fundamental frequency is f0 = 1/T = 1/20ms = 50 Hz, while the 
fundamental angular frequency is ω0 = 2πf0 = 100π radians/s. With τ = 4ms, the expression for the 
exponential CTFS coefficients stay the same as in parts (i) and (ii) and is given by  

  ( )55
1 sinc n

nD = , 

 which are plotted in Fig. S4.17(b) in terms of two scales: (a) number n of the CTFS coefficients; 
and (b) the corresponding frequency f = nf0 in Hz.  

 From Fig. S4.17, we make the following observations. 

 DC Coefficient: Keeping the duty cycle (τ/T) of the square wave constant maintains the same dc 
or average value of the signal. Therefore, the dc coefficient D0 stays the same for the three 
representations.  

 Zero Crossings: Since the duty cycle (τ/T) is kept constant, the width of the main lobe and side 
lobes of the discrete sinc function stay the same in the discrete (n) domain. A change in the 
fundamental frequency causes the widths to be different in Hertz.  ▌ 

Problem 4.18 

(a) In time domain, the average power of x1(t) is given by 

  .
2
99

2
1)(11

00

2
1 =

π
== ∫∫

π

dtdttx
T

P
T

x  

 Using the Parseval’s theorem, the average power of x1(t) is given by 
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 Using the results of Problem 4.21, we know that 
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(b) In time domain, the average power of x2(t) is given by 
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 Using the Parseval’s theorem, the average power of x2(t) is given by 
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 Using the results of Problem 4.21, we know that 
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π

×
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(c) In time domain, the average power of x3(t) is given by 
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 Using the Parseval’s theorem, the average power of x3(t) is given by 
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 Using the results of Problem 4.23, we know that 
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(d) In time domain, the average power of x4(t) is given by 
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 Using the Parseval’s theorem, the average power of x2(t) is given by 
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 Using the result 
96

0147.1...
9
1

7
1

5
1

3
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2

4444
π

==+++++  

 which gives 
3
1
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8

4
1 2

24 =
π

×
π

+=xP . ▌ 

Problem 4.19 

(a) Within one period t = [0, 2π], function x1(t) is absolutely integrable as 

  .33)(1
0

2

0

π== ∫∫
ππ

dtdttx  

 Function x1(t) has only one maxima and one minima within one period, hence, has bounded 
variations. 

 Finally, there are only two discontinuities within one period. 

 Function x1(t) satisfies the Dirichlet conditions. 

(b) Within one period t = [0, 2Τ], function x2(t) is absolutely integrable as 

  .5.1)(2
2

0

Tdttx
T

=∫  

 Function x2(t) has only one maxima at and two minimas within one period t = [0, Τ], hence, has 
bounded variations. 

 Finally, there are only two discontinuities t = T/2 and 3T/2 within one period t = [0, Τ]. 

 Function x2(t) satisfies the Dirichlet conditions. 

(c) Within one period t = [0, Τ], function x3(t) is absolutely integrable as 

  
2

)(3
0

Tdttx
T

=∫ . 

 Function x3(t) has only one minima and one maxima within one period t = [0, Τ], hence, has 
bounded variations. 

 Finally, there are only one discontinuity at t = 0 within one period t = [0, Τ]. 

 Function x3(t) satisfies the Dirichlet conditions. 

(d) Within one period t = [0, 2Τ], function x4(t) is absolutely integrable as 

  Tdttx
T

=∫
2

0

)(4 . 

 Function x4(t) has only one minima and one maxima within one period t = [0, 2Τ], hence, has 
bounded variations. 

 Finally, there is no discontinuity within one period t = [0, 2Τ]. 

 Function x4(t) satisfies the Dirichlet conditions. 

(e) Within one period t = [0, 2Τ], function x5(t) is absolutely integrable as 
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π

−π
=∫ 2

)1()(5
2

0

Tdttx
T

. 

 Function x5(t) has only one minima and two maximas within one period t = [0, 2Τ], hence, has 
bounded variations. 

 Finally, there is no discontinuity within one period t = [0, 2Τ]. 

 Function x5(t) satisfies the Dirichlet conditions.  ▌ 

Problem 4.20 

Determine if the following functions satisfy the Dirichlet conditions and have CTFS representation. 

(i) ttx /1)( = , t = (0, 2] and )2()( += txtx ; 

(ii) )2/cos()( ttg π= , t = (0, 1] and )1()( += tgtg ; 

(iii) ))sin(ln()( tth = , t = (0, 1] and )1()( += thth . 

Solution: 

(i) ∞=−== ∫∫
2

0
2

2

0

2

0 2
11)(
t

dt
t

dttx  

As the function x(t) is not absolutely integrable, x(t) does not satisfy the Dirichlet conditions. 

(ii) As shown in Fig. S4.20 (top plot), function g(t) has an infinite number of maximas and minimas 
in one period. Therefore, g(t) does not satisfy the Dirichlet conditions. 

(ii) As shown in Fig. S4.20 (bottom plot), function h(t) appears to satisfy the Dirichlet conditions. 
However, Matlab is not able to plot all the peaks because of its limited resolution. When 

(0,1]t = , ln( ) ( ,0]t = −∞  and is a CT function. The function sin(ln( ))t  will have a maxima every 
2π  interval of ln( )t  implying that the total number of maxima’s are infinite. The function h(t) 
therefore does not satisfy the Dirichlet conditions. 
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  Fig. S4.20: One period of the functions g(t) and h(t) in Problem 4.20(ii) and (iii).  
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Problem 4.21 

Example 4.9 derived the trigonometric CTFS coefficients of the triangular wave f(t), shown in Fig. 
S4.21, as follows 

( ) ( ) ( ) ( ) ( ) 



 +π+π+π+π
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=π
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= ∑
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Substituting (t = 0) on both sides, we get 
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  Figure S4.21: Periodic signal f(t) considered in Problem 4.21. 

From Fig. S4.21, we note that 3)0( =f . 

Equating the above two equations, we obtain 
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Problem 4.22 

From the solution of Problem 4.6(c), we know that the trigonometric CTFS expansion of the half 
sawtooth wave is given by 
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Substituting t = T/4, we get 
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Since x3(T/4) = (1 – (T/4)/T) = 0.75, therefore, 
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Problem 4.23 

From the solution of Problem 4.11(c), we know that the exponential CTFS expansion of the half 
sawtooth wave is given by 
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Computing the power from the exponential CTFS coefficients, we get 
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Computing the power in the time domain, we obtain 
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Equating the two expressions for the power 
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Problem 4.24 

(i) The transfer function H(ω) is given by  
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(ii) Since the transfer function H(ω) is real valued, therefore, its magnitude spectrum 
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  Fig. S4.24: Magnitude spectrum for h(t) = exp(−2|t|) 

 The magnitude spectrum |H(ω)| is shown in Fig. S4.24. 

(iii) The exponential CTFS coefficients En of the output signal y(t) are given by En = Dn H(ω0) where 
ω0 = 2π/T and Dn are the exponential CTFS coefficients for the input signal. As found in P4.12, 
the exponential CTFS coefficients for the input impulse train are given by: 
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 The exponential DTFS coefficients En are then given by 
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 In the time domain, the output signal is expressed as 
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Problem 4.25 

(i) The transfer function H(ω) is given by 
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(ii) The magnitude response is given by 
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 The magnitude spectrum |H(ω)| is shown in Fig. S4.25. 
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  Fig. S4.25: Magnitude spectrum for h(t) = [exp(−2t) − exp(−4t)] u(t). 

 

(iii) The exponential CTFS coefficients En of the output signal y(t) are given by En = Dn H(ω0) with ω0 
= π/T. For the raised cosine wave, the exponential CTFS coefficients Dn are given by 
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 Therefore, the CTFS coefficients En of the output signal y(t) are given by 
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 In the time domain, the output signal is expressed as 
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Problem 4.26 

(i) The transfer function H(ω) is given by 
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(ii) The magnitude response is given by 
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 The magnitude spectrum |H(ω)| is shown in Fig. S4.26. 
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  Fig. S4.26: Magnitude spectrum for h(t) = t exp(−4t) u(t). 

 

(iii) The exponential CTFS coefficients En of the output signal y(t) are given by En = Dn H(ω0) with ω0 
= π/T. For the sawtooth wave, the exponential CTFS coefficients Dn are given by 
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 Therefore, the CTFS coefficients En of the output signal y(t) are given by 
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 In the time domain, the output signal is expressed as 
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Problem 4.27 

(i) (a) Expressing 
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 we note that the signal x1(t) contains the fundamental component sin(8πt) and its harmonics. 
Therefore, the signal is periodic, and the fundamental frequency for x1(t) is given by ω0 = 8π 
radian/sec. The fundamental period is T0 = 2π/ω0 = 0.25 sec. 
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 the signal is odd. 

 (c) The following MATLAB code is used to reconstruct the function in the time domain. The 
number n of harmonics is set to 4000. 

% initializing CTFS parameters 
nterms = 4000; 
w0 = 8*pi; 
t = -1:0.001:1; 
a0 = 0; 
an = zeros(1,nterms); 
nnz = 1:2:nterms; 
bn2d = zeros(2,nterms/2); 
bn2d(1,:) = 1./nnz; 
bn = reshape(bn2d,1,nterms); 
% calculating time-domain function 
x1 = (7/pi)* ictfs(w0,t, a0,an,bn); 
plot(t,x1); 
xlabel('t');   
ylabel('x1(t)'); 
axis([-1  1  -3  3]), grid on; 
title ('Reconstruction from CTFS') 

 (d) The resulting waveform is shown in Fig. S4.27. 
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Fig. S4.27: Signal x1(t) reconstructed from the first 4000 trigonometric 

 CTFS coefficients in Problem 4.27(a). 

(ii) (a) Expressing 
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 we note that the signal x2(t) contains the fundamental component cos(2πt) and its harmonics. 
Therefore, the signal is periodic, and the fundamental frequency for x2(t) is given by ω0 = 2π 
radian/sec. The fundamental period is T0 = 2π/ω0 = 1 sec. 
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 the signal is even. 

 (c) The following MATLAB code is used to reconstruct the function in the time domain. The 
number n of harmonics is set to 4000. 

 
% initializing CTFS parameters 
nterms = 4000 ; 
w0 = 2*pi ; 
t = -4:0.001:4 ; 
a0 = 1.5 ; 
nnz = 1:4:nterms; 
an2d = zeros(4,nterms/4); 
an2d(1,:) = 1./nnz ; 
an = reshape(an2d,1,nterms)  ; 
bn = zeros(1,nterms) ; 
% calculating time-domain function 
x2 = ictfs(w0,t,a0,an,bn);  
plot(t,x2) 
xlabel('t');   
ylabel('x2(t)'); 
axis([-2  2  -2  5]), grid on 
title ('Signal Reconstruction from CTFS') 

 (d) The resulting waveform is shown in Fig. S4.27. ▌ 
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Fig. S4.27: Signal x2(t) reconstructed from the first 4000 trigonometric 
CTFS coefficients in Problem 4.27(b). 

. 

Problem 4.28 

From Example 4.8, the CTFS coefficients are given by 

 7079.10 =a , 2251
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n
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The periodic signal g(t) is, therefore, given by 
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with the fundamental frequency ωo = 1 radians/s. 

The following MATLAB code is used to reconstruct the function in the time domain. The number n of 
harmonics is set to 4000. 

 
% initializing CTFS parameters 
nterms = 2000 ; 
n = 1:nterms; 
w0 = 1 ; 
t = -12:0.01:12 ; 
a0=1.7079 ; 
an = 3.4157./(1+25*n.*n) ; 
bn = 17.0787*n./(1+25*n.*n) ; 
% calculating time-domain function 
g = ictfs(w0,t, a0,an,bn) ; 
% plotting the function 
plot(t,g) 
xlabel('t');   
ylabel('g(t)'); 
axis([-12  12  0  4]), grid on 
title ('Reconstruction of g(t) from CTFS') 

The resulting waveform is shown in Fig. S4.28. It is observed that the plot is identical to that of Fig. 
4.10.  
  ▌ 
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Fig. S4.28: Signal g(t) reconstructed from the first 2000 trigonometric  

CTFS coefficients in Problem 4.28. 

Problem 4.29 

From Example 4.9, the CTFS coefficients are given by 
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with the fundamental frequency ωo = 0.5π radians/s. 
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The following MATLAB code is used to reconstruct the function in the time domain. The number n of 
harmonics is set to 2000.  

 
% initializing CTFS parameters 
nterms = 2000 ; 
an = zeros(1,nterms); 
nnz = 1:2:nterms; 
w0 = 0.5*pi ; 
t = -8:0.01:8 ; 
a0=0 ; 
an2d = zeros(2,nterms/2); 
an2d(1,:) = 24./(pi*pi*nnz.*nnz) ; 
an=reshape(an2d,1,nterms) ; 
bn = zeros(1,nterms); 
% calculating time-domain function 
x = ictfs(w0,t, a0,an,bn) ; 
% plotting the function 
plot(t,x) 
xlabel('t');   
ylabel('f(t)'); 
axis([-8  8  -4  4]), grid on 
title ('Reconstruction of f(t) from CTFS') 

The resulting waveform is shown in Fig. S4.29. It is observed that the plot is identical to that of Fig. 
4.11. 
  ▌ 
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Fig. S4.29: Signal f(t) reconstructed from the first 2000 trigonometric  

CTFS coefficients in Problem 4.29. 

Problem 4.30 

From Example 4.12, the CTFS coefficients are given by 

 0.3416
0.2n jnD +≈ . 

The periodic signal g(t) is, therefore, given by 

 ( )∑
∞

−∞=
ο+ ω=

n
jn tjntg exp)( 2.0

3416.0  

with the fundamental frequency ωo = 1 radians/s. 

The following MATLAB code is used to reconstruct the function in the time domain. The number n of 
harmonics is set to 4000.  
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% initializing CTFS parameters 
nterms = 4000 ; 
n=(-nterms/2):nterms/2; 
dn = 0.3416./(0.2+i*n); 
nnz = 1:2:nterms; 
w0 = 1; 
t = -12:0.01:12 ; 
% calculating time-domain function 
g = ictfs(w0,t,dn) ; 
% plotting the function 
plot(t,g) 
xlabel('t');   
ylabel('g(t)'); 
axis([-12  12  0  4]), grid on 
title ('Reconstruction of g(t) from CTFS') 

The resulting waveform is shown in Fig. S4.30. It is observed that the plot is identical to that of Fig. 
4.10. 

   ▌ 
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Fig. S4.30: Signal g(t) reconstructed from the first 4000 exponential  

CTFS coefficients in Problem 4.30. 

Problem 4.31 

From Example 4.13, the CTFS coefficients are given by 
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The periodic signal f(t) is, therefore, given by 
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with the fundamental frequency ωo = π/2 radians/s. 

The following MATLAB code is used to reconstruct the function in the time domain. The number n of 
harmonics is set to 4000. 
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% initializing CTFS parameters 
nterms = 4000 ; 
w0 = 0.5*pi ; 
t = -8:0.01:8 ; 
nnz = 1:2:nterms; 
dn2d = zeros(2,nterms/2); 
dn2d(2,:) = 12./(pi*pi*nnz.*nnz) ; 
dn=reshape(dn2d,1,nterms) ; 
dn = [fliplr(dn(2:length(dn))), dn]; 
% calculating time-domain function 
f = ictfs(w0,t, dn) ; 
% plotting the function 
plot(t,f) 
xlabel('t');   
ylabel('f(t)'); 
axis([-8  8  -4  4]), grid on 
title ('Signal Reconstruction from CTFS') 

The resulting waveform is shown in Fig. S4.31. It is observed that the plot is identical to that of Fig. 
4.11. 
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Fig. S4.31: Signal f(t) reconstructed from the first 4000 exponential  

CTFS coefficients in Problem 4.31. 

Problem 4.32 

From the solution of Problem 4.24, the exponential CTFS coefficients are given by 
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with the time domain representation 
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where ωo = 2π/Τ  = 2π radians/s 

The following MATLAB code is used to reconstruct the function in the time domain. The number n of 
harmonics is set to 4000. 
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% initializing CTFS parameters 
nterms = 4000 ; 
T = 1;  
w0 = 2*pi/T; 
t = -6:0.01:6; 
nnz = 0:nterms; 
en = (4*T)./(4*T^2 + (nnz*pi).^2); 
en = [fliplr(en(2:length(en))), en]; 
% calculating time-domain function 
y = ictfs(w0,t, en) ; 
% plotting the function 
plot(t,y) 
xlabel('t');   
ylabel('y(t)'); 
axis([-6  6  0  2.5]), grid on 
title ('Signal Reconstruction from CTFS') 
print -dtiff plot.tiff; 

The resulting waveform is shown in Fig. S4.32. 

 
Fig. S4.32: Signal y(t) reconstructed from the first 4000 exponential  

CTFS coefficients in Problem 4.32. 
 

Problem 4.33 

From the solution of Problem 4.25, the exponential CTFS coefficients are given by 
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with the time domain representation 
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where ωo = 2π/Τ  = 2π radians/s 

The following MATLAB code is used to reconstruct the function in the time domain. The number n of 
harmonics is set to 4000. 



Solutions        159 
 

 

 
% initializing CTFS parameters 
nterms = 4000 ; 
T = 1;  
w0 = 2*pi/T; 
t = -6:0.01:6; 
n = -nterms:nterms; 
en = -(T^2*sin(0.5*n*pi))./((n+eps)*pi.*(2*T+j*n*pi).*(4*T+j*n*pi)); 
en(n == 0) = 3/16; 
% calculating time-domain function 
y = ictfs(w0,t, en) ; 
% plotting the function 
plot(t,real(y))     % imaginary part of y(t) is 0 
xlabel('t');   
ylabel('y(t)'); 
axis([-6  6  0.12  0.26]), grid on 
title ('Signal Reconstruction from CTFS') 
print -dtiff plot.tiff; 

The resulting waveform is shown in Fig. S4.33. 

 
Fig. S4.33: Signal y(t) reconstructed from the first 4000 exponential  

CTFS coefficients in Problem 4.33. 
 


