Chapter 8: Case Studies for CT Systems

Problem 8.1:
(a) The AM signal is given by
s(t) = Al1+ 3k sin(2xf;t) + 2k cos(2nf,t)]cos(2nf,t) .
To ensure that the envelope of s(t) > 0 for all t

(1+ 3k sin(2xf;t) + 2k cos(2mnf,t)) > 0.

Taking the worst case scenario, i.e., both sin(2xft) and cos(2xf,t) take their minimum values of —1
at the same time, we get

(1-3k —2K)> 0
or, k<0.2.
(b) Expressing S(t) = Acos(2nf.t) +[3k sin(2xf;t) + 2k cos(2nf,t)]cos(2nf.t) ,

s(t) = Acos(2nf ) + 28K sin(2n( f, + f)t) + 38K sin(2m( f, - f))t)
+ Ak cos(2n( f, + fy)t) + Ak cos(2m( f, — f,)t).

or,

Assuming f; # f, £ f;, the power in the modulated signal is composed of

Power in the carrier = % A?

and Power in the modulating signal = 2 x (3Ak2/2) +2x (A;) = %(Ak)2 :

1
1+6.5k? °

Hence, the ratio of power lost in the carrier and the total power =

(c) The power spectrum of s(t) is given by
S(f) = An[8(w—2nf,) + 8(w+ 2f,)]
+ J A [3(w+ 2n(f, + f) = 8(w—2n(f, + )]
+ J A2 [3(w+ 2n(f, - f)) — (0 —2n(f, - f)]
+ Akn[8(w+ 2m( f, + f5) +8(—2n( f, + f,)]
+ Akn[8(w+ 2m( f, — o)+ 8(w—2n( f, - f,)].

For f; = 10 kHz, f, =20 kHz, and f.= 50 kHz, the power spectrum is shown in Fig. S8.1 (a).

(d)  Signal x(t) can be reconstructed using the synchronous detector shown in Fig. S8.1(b).

The information signal X(t) can be extracted from the output of the above system by using an
amplifier with a gain of 2/A” and removing the dc offset.
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Figure S8.1: (a) Spectrum for the AM modulated signal s(t) in Problem 8.1(c). (b) synchronous detector
in Problem 8.1(d).

Problem 8.2:
(a) The AM signal is given by
s(t) = Al + ksin ¢(5x10°t)] cos(2nf .t) .

To ensure that the envelope of s(t) > 0 for all t

(1+ksinc(5x10°t))> 0.
The minimum value of sinc(at) = sin(rat)/mat occurs at mat = 37/2, or t = 3/2a and is given by
—2/3m.
Therefore, (1-2k/3m)>0, or, k <3m/2.
(b) Expressing s(t) = Acos(2nft) + Ak sin (5 x 10%t) cos(2nf.t),
Assuming f, # 5 x 103, Power in the carrier = % AZ.

Because the information signal is a sinc function that decays with time, therefore, the average
power in the modulating signal is zero. Instead, we compare the energy used to transmit the carrier
and the information signal.

For simplicity, we assume that the sinc function has a duration of five side lobes on each side of the
main lobe. The duration of the main lobe is 2 x 10™* seconds, hence, the approximated duration of
the sinc function is 12 x 2 x 10~ = 2.4 x 10~ seconds. The energy consumed in transmitting the
carrier is, therefore, given by 1.2 x 107°A%

To compute the energy in the modulating signal, we use the Parseval’s theorem
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Energy in the modulating signal = I g2(t)dt = 2L HG 2 (m)‘dm ,
T

where g(t) = Ak sinc(5x10%t) cos(2nf.t).
Calculating the CTFT, we obtain

G(w) =2 pwn rect[zxsgozn] *71[8(0 — 2nf, ) + 8(w + 27if, )],
or, G(w)=10"*Ak rect[‘” 27: ] +107* Ak re t[mznf ] .
Hence, Energy in the modulating signal = 1074 (Ak)?.

Ratio of energy lost in the carrier and the total energy = 1+kl e

(¢) The power spectrum of s(t) is given by

S(f) = An[d(w - 2nf,) + 8(w+ 2nf,)]

+107* Ak rect[w 27: ] +107* Ak rec t[mznf ]
For f=20 kHz, the power spectrum is shown in Fig. S8.2(a).
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Figure S8.2: (a) Spectrum for the AM modulated signal s(t) in Problem 8.2(c), (b) synchronous detector
in Problem 8.2(d).

(d) Signal x(t) can be reconstructed using the synchronous detector shown in Fig. S8.2(b).

The information signal X(t) can be extracted from the output of the above system by using an
amplifier with a gain of 2/A’ and removing the dc offset.
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Problem 8.3
For a sinusoidal tone as the information signal, the AM signal is given by
s(t) = All+ k sin(2xf,t)] cos(2xf . t)
= Acos(2nf t) + % Ak sin(2n(fy + f)t) + % Ak sin(2r( fy — fo)t).
The power used to transmit the carrier is given by 0.5A%, while the power used to transmit the modulating
signal is given by 2 x (Ak/2)*/2 = 0.25 A’k>. The fraction of power in the information signal is given by

n= 0.25A°k>  _ _K?
0.5A?+0.25A%k>  2+k*
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Figure S8.3: Relative power in the information signal as a function of the modulation index k .

Fig. S8.3 plots the fractional power in the information signal as a function of the modulation index k. For
k=10.7, n=0.1968. The value of 1 increases as the modulation index K is increased. I

Problem 8.4
The modulated signal is given by  s(t) =[1+ 2k sin(2nf;t)]cos(2nft) .
Demodulating with cos[2n(f; + Af )t] gives
s(t)x c(t) =[1+ 2k sin(2xf;t)]cos(2nf t) cos(2n( f, + Af)t),
which can be expressed as
s(tyxc(t) = %[1 + 2k sin(2nf,t)] cos(2mAft) + %[1 + 2k sin(2nft)]cos(2m(2 f. + Af )t) .
The output y(t) of the lowpass filter with a cutoff frequency of 2 f; Hz is given by
s(t)x o(t) = [1+ 2k sin(2xf;t)] cos(2mAft).
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Figure S8.4: Spectrum for the demodulated signal s(t) in Problem 8.4.
The magnitude spectrum of the demodulated signal is shown in Fig. S8.4. Distortion introduced by the
difference in the frequencies of the carriers used at the modulator and demodulator is generally difficult to
remove. I

Problem 8.5

The following block diagram can be used to recover X;(t) and X,(t) directly from the QAM signal.

;/\ ~ Lowpass filter with 5
\}(/ i cutoff frequency f, 0.5A7 (1+kyx (1)
c,(t) = A cos(2nf 1)
s) —»
QAM signal c,(t) = A sin(2rf t)
~/l\ -~ Lowpass filter with 2
\>_</ i cutoff frequency f, 0.5A7 (1+kyX; (1))

By removing the dc offset and adjusting the gain, the information signals X;(t) and X,(t) can be derived
from the two outputs.

Problem 8.6

With r = 0, the input-output relationship for the spring damping system is given by
d?y

M—2
dt

+Kky(t) = x(t).
Taking the Laplace transform, we get
(Ms® +K)Y (s) = X(s),

which results in the transfer function

_ Y (S) _ 1
X(s) (Ms?+k)’

H(s)

The impulse response is obtained by expressing the transfer function as
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=T - L M

CX(s) M (s>+k/M)’

and taking the inverse Laplace transform

H(s)=

\/lvsin[\/k/_M tlut).

Note that the poles of the above system are located at the imaginary axis at s =1 j,/k/M . The system
is, therefore, marginally stable. i

Problem 8.7
Integrating by parts, we obtain

¢ e—mnt e—mnt
jk;nte*‘”n dt =K.t —k! % ~+C
(o) (—p)

which reduces to Eq. (8.42). I

Problem 8.8

With L, = 0, the input-output relationship for the armature circuit is given by

d|

ro(t) =V, (1)
%f_/
emf (t)
The torque and load equations will remain same as Eqs. (8.30) and (8.34), and are given by

m = kmia(t)

d’0 do
+r—=T -T, ~T assumingT,=0
> d¢ ™ ¢ " [ eT,=0]

Taking the Laplace transform of the above three equations, we obtain

Rala(s) + ka(s) :Va(s)
T,(8)=k,1.(s)
352 + rs] 6(s)=T,.(s).

Rearranging the terms in the above three equations, we obtain
06s) _ K

H S)= =
®) Vo(s)  RIS™+[Rr+kk |s

To obtain h(t), we rearrange the terms of H(S) as follows:
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k,/R,J p Rar+knk; K.,
H(s)= 2 Rorkoky L o2 {a’ T TR B = }
s’+=—Tls S +as R,J

a

_é[l_ ! }
__a S S+a

Calculating the inverse Laplace transform of H(S), we obtain h(t) as follows:

h(t) :5(1 —e " Ju().

The transfer function has two poles, at S=0 and at S=—« . Because, « is always positive, the second
pole always lies in the left-half of the s-plane. As the first pole is located on the imaginary axis, the
overall system is a marginally stable system. The system will be unstable only if a DC (constant) signal is
applied at the input.

I

Problem 8.9
Case I (§,> 1): Express the irnpulse response as
ha)— [z [ et _gone tJm
(QIRY &n -1
__ kn [Ie@n e Dodgy  [oenlE- )wtdt}
nEn —

which reduces to
k! Ve Dot k! (énﬂ/éﬁ Do,t

h(t) = )
20 \/‘t-;n_l _(gn \/‘in_l)mn 20 \/‘t-;n_1 _(Z‘:n"'\/‘t:n_l)wn

kr"ne_énmnt e_mn E.!ﬁ_lt B emn éﬁ_lt
20pyE2 —1 | @pln + O EE—1)  @pEy — oy ER 1

Case II (&, < 1): Recall that the integral

or, h(t) =

Lxmnqn) Bcos(Bt)]+C.

Ieat sin(Bt)dt =

h(t) =

mn\/l g2 it Tonfi—g @i+

Substituting the value of a and 3 proves Eq. (8.44). I
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Problem 8.10

—18

€
(s+7)
Substituting the above value of P(S) in Eq. (8.56) gives

Substituting Eq. (8.54) in Eq. (8.55), we get P(s) = A(S).

_pupe ™ —o(s+y)
B($)= (S+A)(S+7) ACS)-

Substituting the value of A(S) from Eq. (8.53) in the above equation, we get

_ upe " —o(s+y) ~
B = G BTG [G(s)-nB(s)].

Rearranging terms including B(S) on the left side of the equation gives

B(s) 14 NP " —o+ ]| _ phe ™ —o(s+y) 5 o
(S+A)(S+y)s—a) | (S+A)(s+y)s—a) ’

which results in the transfer function

_B() _ npe ™ —o(s+y)

NG T s 6o+ nuPe ® oG]
Problem 8.11
Note that V,(s) = d;(S) - O(S)
and V5 (5) = KiG(s)V; (5) = KiG(s)[9 (5) - 0(s)].

Substituting 6(s) = V»(S)/s in the above equation, we get
Va(8) = KiG(9)[01(8) -V (5) /5]

sK,G(s)
or, V,(s) =——L2222_ 4 (s).
» () s+ KG(s) 01 (s)
sK,G(s)
The output V(s) =KV, (s)= K, —L=2L 4 (s),
p (s) V2 (8) ZS+K1G(S)¢1()
which results in the transfer function H(s) = V) _ KK, _SGE) .
o(s) s+ K,G(s)
Differentiator: For the PLL to behave as an ideal differentiator, its transfer function H(s) = Ks, i.e.,
H(s) = Ks = K,K,—C®)
s+ K,G(s)
or, K(s+K,G(9)) = K;K,G(s).

K

Solving in terms of G(S), we obtain G(s)=——s.
Ki(Ky —K)
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Another way of obtaining an ideal differentiator is to set K; — oo in the transfer function as shown below:

lim H(s)= lim K,—°®&) __x s I
K, - K=o = s/K; +G(S)

Problem 8.12
The simulink model for the simulation is shown in Fig. S8.12a. The results of the simulation are plotted in

Fig. S8.12b. While the number of antigens rises at an alarming rate, the plasma cells are not produced to
compensate for this increase in antigens. Consequently, the antibodies are destroyed by the antigens.
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Fig. S8.12a: Simulink model for the immune response system of humans for Problem 8.12.
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Fig. S8.12b: Time evolution of the number of antigens a(t), plasma cells p(t), and antibodies b(t)
in Problem 8.12.



