Chapter 15: FIR Filter Design
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Combining the above results, we obtain, N [K]= o
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For the special case of m=0 (zero delay), Ny [K]=1 i
Ch k=0,
Problem 15.2
(1) The normalized cut-off frequency is given by 2 = % =0.5.

The ideal lowpass filter for the above normalized cut-off frequency is given by (see Table 14.1 in the text)

hip[k]1=0.5sinc(0.5k ) = SlH(OEﬂk)
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(i1) The normalized cut-off frequency is given by Q = 2 =0.25.

The ideal lowpass filter for the above normalized cut-off frequency is given by
i in(0.257k
hy, (k1= 0.25sinc(0.25k ) = S02579)

2
44.1/2

(iii) The normalized cut-off frequency is given by 0 = =0.0907 .

The ideal lowpass filter for the above normalized cut-off frequency is given by

hy, [K] = 0.0907sin ¢ (0.0907k ) = Sn(0-0077) :

Problem 15.3

The amplitude of the 5-tap (N = 21) rectangular, Hanning, Hamming, and Blackman windows are listed in
the following table, and plotted in Fig. S15.3. I

Table: Amplitude of the 5-tap (N = 5) Rectangular, Hanning,
Hamming, and Blackman windows.

Window Time Index (k)
0 1 2 3 4
Rectangular 1 1 1 1 1
Hanning 0 0.5 1 0.5 0
Hamming 0.08 0.54 1 0.54 0.08
Blackman 0 0.34 1 0.34 0

Rectangular
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Hamming

0.6

Window Amplitude

Hanning

0.2

Blackman
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k

Fig. S15.3: 5-tap (N = 5) rectangular, Hanning, Hamming, and
Blackman windows. The markers (x,0) corresponds to the
actual amplitude of the discrete windows.
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Program 15.3: MATLAB code to generate the amplitude of
S5-tap (N = 5) Rectangular, Hanning, Hamming, and
Blackman windows.

N=5;

k=0:N-1;

hannw = 0.5-0.5*cos(2*pi*k/(N-1))
hammw = hamming(N)

blacw = blackman(N)

rectw = ones(1,5);

plot(k,rectw,k,hannw,k,hammw,k,blacw) ;
axis([-1 5 0 1.1

xlabel (k")

ylabel (*Window Amplitude®);

print -dtiff plot. tiff

Problem 15.4

The minimum stopband attenuation is 35 dB. From Table 15.2 in the text, it is observed that Hanning,
Hamming and Blackman windows will satisfy the stopband attenuation requirement.

AQ, Q-Q, 037
T T m

0.3

The normalized transition bandwidth, AQ) =

Using Table 15.2, the length corresponding to various windows is given by

Hanning: N > 62 = 62 =20.66,0r N =21
AQ. 03
. 6.6 6.6 : .
Hamming: N > ——=——=22. N =22 . If an odd-length filter is desired, N=23.
AQ. 03
11 11
Blackman: N >——=——=36.66,0r, N =37. I
AQ. 0.3

n

Problem 15.5

As the minimum stopband attenuation is 35 dB, Eq. (15.20) in the text yields,
£ =0.5842(35-21)"* +0.0789(35-21) =1.6789 +1.1046 ~ 2.783..

It was shown in the solution of Problem 15.4 that AQ = 0.3. Therefore, the length of the Kaiser window
is obtained from Eq. (15.21) as follows:

A-795 _ 35795 _ .

T 22857xAQ,  22857x03

which is rounded off to the closest higher odd number as 13. I
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Problem 15.6

The normalized cut-off frequency, Q = 2 = l Therefore, the impulse response of the DT filter is given
T T

by

hy,[k]=Lsinc(X)

¥
The rectangular window with 51 taps is given by

1 0<k<s0
WR[k] = .
0 otherwise

Right-shifting the ideal lowpass filter impulse response by 25 time units, and multiplying with the
rectangular window, the designed FIR filter impulse response is obtained as:

N [K] = h“p[k]WR[k] = {
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Figure S15.6: Filter design using windows in Problem 15.6. (a) 51 tap filter obtained
using the rectangular window, (b) amplitude gain (in absolute scale) of the filter, and (c)

amplitude gain (in dB scale) of the filter.
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In order to make the DC gain unity, the filter impulse response is divided by Zhr'ect[k] =0.9754:
hr.. [k
hrect[k] = rect[ ] :
0.9754
The impulse response h,,[k] and the frequency characteristics of the filter are shown in Fig. S15.6. I
Program 15.6: MATLAB Program for calculating and plotting the Filter responses
clear; clf clear; clf
N=51;; % Number of filter taps N=51;; % Number of filter taps
M=(N-1)/2; M=(N-1)/2;
k=0:N-1; k=0:N-1;
filter_ideal = (1/pi)*sinc((k-M)/pi) ; filter_ideal = (1/pi)*sinc((k-M)/pi) ;
window_rect = ones(1,N) ; window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ;
filter rect = filter_ideal.*window_rect ; filter hamming = filter ideal.*window_hamming ;
S=sum(filter_rect) S=sum(filter hamming)
filter_rect = filter_rect/S; filter hamming = filter hamming/S;
% the filter impulse response is scaled so that the % the filter impulse response is scaled so that the
% the DC gain is one. % DC gain is one.
% Plotting the filter impulse response % Plotting the filter impulse response
stem(k, filter rect, 'filled'),grid stem(k, filter hamming, 'filled"),grid
ylabel('Filter Impulse Response'); ylabel('Filter Impulse Response');
xlabel('k") xlabel('k")
print -dtiff plot.tiff print -dtiff plot.tiff
% Calculating the freq. response % Calculating the freq. response
[H, w] = freqz(filter_rect,1) ; [H, w] = freqz(filter_ hamming,1) ;
%PIlot in absolute scale %PIlot in absolute scale
plot(w, abs(H)), grid plot(w, abs(H)), grid
axis([0 pi 0 1.1]); axis([0 pi 0 1.1]);
xlabel('Frequency (rad/s)") xlabel('Frequency (rad/s)")
ylabel('Amplitude Gain'); ylabel('Amplitude Gain');
print -dtiff plot.tiff print -dtiff plot.tiff
%Plot in dB scale %Plot in dB scale
Hr = 20*log10(abs(H)+eps) ; H =20*log10(abs(H)+eps) ;
plot(w, Hr), grid plot(w, H), grid
axis([0 pi -50 2]); axis([0 pi -80 5]);
xlabel('Frequency (rad/s)") xlabel('Frequency (rad/s)")
ylabel('Amplitude Gain (in dB)"); ylabel('Amplitude Gain (in dB)");
print -dtiff plot.tiff print -dtiff plot.tiff
%Plot in dB scale
plot(w, H,w,Hr), grid
axis([0 pi -80 5]);
xlabel('Frequency (rad/s)")
ylabel(' Amplitude Gain (in dB)");
print -dtiff plot.tiff
Problem 15.7
The normalized cut-off frequency, Q = 2 = l Therefore, the impulse response of the DT filter is given
T T
by

K= ()=
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The Hamming window with 51 taps are given by

0.54—0.46c0s(2) 0<k <50
w, [k]=

0 otherwise

Right-shifting the ideal lowpass filter impulse response by 25 time units, and multiplying with the
Hamming window, the designed FIR filter impulse response is obtained as:

110.54-0.46cos () [sinc(¥52%) 0<k <50
e (K1 = P LK I, [K] = d (8) JincC29 _
0 otherwise.
In order to make the DC gain unity, the filter impulse response is divided by Zhﬁ,amm[k] =0.9982:
hect[K]

h [k]=—retl™d
e K] 0.9982

The impulse response h,, . [k] is shown in Fig. S15.7(a). The frequency characteristic of the filter is

shown in Fig. S15.7(b) and (¢). Fig. S15.7(d) compares the frequency characteristics of the designed filter
with that of the filter obtained in Problem 15.6.
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Figure S15.7: Filter design using Hamming window in Problem 15.7. (a) Impulse response of
the 51-tap FIR filter, (b) the amplitude gain characteristics of the filter in absolute scale, (c)
the amplitude gain characteristics of the filter in dB scale and (d) comparison of the
amplitude gain characteristic with the filter obtained in Problem 15.6 (using Rectangular
window).
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Problem 15.8
(a) As the minimum stopband attenuation is 45 dB, several windows such as Hamming, Hanning, and
Blackman will satisfy the specification.
(b) The cut-off frequency of the filter is calculated to be
f. = passband edge frequency + 0.5*transition bandwidth = 10.025 KHz + 0.5 KHz = 10.525 KHz

The normalized cut-off frequency is given by

~10.525
" 44.1/2

The ideal lowpass filter for the above normalized cut-off frequency is given by

=04773.

hy[k] = S2O04B70 _ 0.4773sinc (0.4773K).

The normalized transition bandwidth, A2 = % =0.0454.

From Table 14.3, we know that for Hamming window, A£2, = % )

Therefore, N > A%n = % =145.4. We can choose, N=146 (even length) or 147 (odd length). Note that

the 146 tap filter will have a fractional delay (72.5 units) and the 147 tap filter will have an integer delay
of 73 time units.

Case 1: N=146
The Hamming window is given by
{0.54 ~0.46c0s(22£) 0<k <145
w, [k]=

0 otherwise

Right-shifting the ideal lowpass filter by 73 time units, and multiplying with the Hamming window, the
designed FIR filter impulse response is obtained as:

0.4773[0.54—0.46cos(22) |sinc(0.4773(k —72.5)) 0<k <145

145

0 otherwise.

h{k] = hy[KJw, [K] ={
In this case, Zh[k] =1.0004, and hence the scaling of h[K] can be ignored.

Case 2: N=147
The Hamming window is given by
0.54—0.46c0s(2£) 0<k <146
w, [k]= _
0 otherwise

Right-shifting the ideal lowpass filter by 73 time units, and multiplying with the Hamming window, the
designed FIR filter impulse response is obtained as:

0.4773| 0.54—-0.46 zk) Isinc(0.4773(k —73)) 0<k <146
hik]=h[klw,[k]= [ COS( 73 )]Sln ( ( )) |
0 otherwise.
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In this case, Zh[k] =1.0005, and hence the scaling of h[K] can be ignored.

(c) The frequency response of the 146-tap and 147-tap filters is shown in Fig. S15.8(i), and Fig. S15.8(ii),
respectively. Note that, because of the shift, both filters are causal.
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Figure S15.8(i). 146-tap FIR filter designed using Hamming Window. a) The impulse response, b) the
blow up of the impulse response showing the middle 40 impulses, ¢) the amplitude-frequency
response in absolute scale, and (d) the amplitude-frequency response in dB scale. Note that as the
filter has even number of taps, the middle two impulses in Fig (b) have identical amplitude.
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Figure S15.8(ii). 147-tap FIR filter designed using Hamming Window. a) The impulse response, b)
the amplitude-frequency response in absolute scale, (c) the amplitude-frequency response in dB scale,
and (d) the blow-up of amplitude-frequency response near the cut-off frequency.

Program 15.8: MATLAB Program for calculating and plotting the Filter responses

clear; clf
N=146; ;
M=(N-1)/2 ;
k=0:N-1;

% Number of filter taps

filter _ideal = 0.4773*sinc(0.4773*(k-M)) ;
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ;
%win_hamm = hamming(N) ;

filter hamming = filter ideal.*window hamming ;
S=sum(filter hamming)

filter hamming = filter hamming/S;

% the filter impulse response is scaled so that the
% sum is one.

% Plotting the filter impulse response
stem(k, filter hamming, 'filled"),grid
ylabel('Filter Impulse Response');
xlabel('k")

clear; clf
N=147; ;
M=(N-1)/2 ;
k=0:N-1;

% Number of filter taps

filter _ideal = 0.4773*sinc(0.4773*(k-M)) ;
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ;
%win_hamm = hamming(N) ;

filter hamming = filter ideal.*window hamming ;
S=sum(filter hamming)

filter hamming = filter hamming/S;

% the filter impulse response is scaled so that the
% sum is one.

% Plotting the filter impulse response
stem(k, filter hamming, 'filled"),grid
ylabel('Filter Impulse Response');
xlabel('k")
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print -dtiff plot.tiff

% Calculating the freq. response
[H, w] = freqz(filter hamming,1) ;

%PIlot in absolute scale
plot(w/pi*22.05, abs(H)), grid
axis([0 230 1.1));
xlabel('Frequency (in KHz)")
ylabel("Amplitude Gain');
print -dtiff plot.tiff

%Plot in dB scale

H =20*log10(abs(H)+eps) ;
plot(w/pi*22.05, H), grid

axis([0 23 -80 2]);
xlabel('Frequency (in KHz)")
ylabel('"Amplitude Gain (in dB)");
print -dtiff plot.tiff

print -dtiff plot.tiff

% Calculating the freq. response
[H, w] = freqz(filter_hamming,1) ;

%Plot in absolute scale
plot(w/pi*22.05, abs(H)), grid
axis([0 230 1.1]);
xlabel('Frequency (in KHz)")
ylabel('Amplitude Gain');
print -dtiff plot.tiff

%Plot in dB scale

H =20*logl10(abs(H)+eps) ;
plot(w/pi*22.05, H), grid

axis([0 23 -80 2]);
xlabel('Frequency (in KHz)")
ylabel('Amplitude Gain (in dB)');
print -dtiff plot.tiff

Problem 15.9

As the normalized cut-off frequency 2 =0.4773, the ideal (IIR) impulse response is given by

h[k]=0.4773sinc(0.4773k).

The passband ripples requirement is not specified. The stopband attenuation should be at least 45 dB.
Therefore, A=45. The shape parameter is then calculated to be

B =0.5842(A—21)"* +0.078(A—21) = 0.5842(45—21)"* +0.078(45—21) ~ 3.9548

The normalized transition bandwidth, A

given by
45-7.95
~ 7.18%0.0454

T 22.05KHz

=113.78 or 114.

=0.0454 . Therefore, the window length N is

Substituting B = 3.9548 and N = 114 in Eq. (15.18), the Kaiser window is given by

l, {3.9548(\/1 ~[(k-56.5)/56.5] ﬂ

0<k<113

Wkaiser [k] =

1,[3.9548]

otherwise.

By applying a right-shift to the ideal lowpass filter by 56.5 time units, and multiplying with the Kaiser
window, the designed FIR filter impulse response is given by

h[k] = hilp[k]wkaiser[k] = {

0.4773sin¢(0.4773(k —56.5)) Wyeo [k] 0<k <113

otherwise.

In this case, Zh[k] =1.0006, and hence the scaling of h[K] can be ignored.
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The magnitude response of the designed filter is plotted in Fig. S15.9, and it is observed that the given

specifications of the filter are satisfied.
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Figure S15.9. 114-tap FIR filter designed using Kaiser Window. (a) The impulse response, (b) the blow
up of the impulse response showing the middle 40 impulses, and (¢) the frequency response.

Program 15.9: MATLAB Program for Problem 15.9

clear; clIf

A=45 ;
beta =
21)
NTB = 1/744.1

N = (A-7.95)/(14.36*NTB)
N=ceil (N)

0.5842*((A-21)"0.4) + 0.078*(A-

M=(N-1)/2 ;
k = 0:N-1;

Ffilter_ideal=0.4773*sinc(0.4773*(k-M));
filter_kaiser =

filter_ideal .*(kaiser(N,beta))" ;
S=sum(Filter_kaiser)

filter_kaiser = filter_kaiser/S;

% Plotting the filter impulse response
stem(k, filter_kaiser, "filled"),grid
ylabel ("Filter Impulse Response®);
xlabel (k™)

print -dtiff plot_tiff

% Calculating the frequency response
[H, w] = freqz(filter_kaiser,1) ;

H = 20*logl0(abs(H)+eps) ;

plot(w,H) ;

plot(w/pi*22.05, H), grid
axis([0O 23 -80 2]);

xlabel ("Frequency (in KHz)")
ylabel ("Amplitude Gain (in dB)");
print -dtiff plot_tiff
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Problem 15.10

The cut-off frequency Q. of the filter is given by Q_=0.647-0.37/2=0.497 . The normalized cut-off

frequency Q, of the filter is Q. / © = 0.49. The impulse response of the ideal high pass filter with a cut-off
frequency of 0.49 is given by

hie [K]= & [k —m]—0.49sinc[0.49(k —m)].

The maximum passband ripple is 0.002, and the maximum stopband ripple is 0.005. As the ripple
characteristics are similar in passband and stopband, the effective maximum ripple = min(0.002, 0.005) =

0.002. The minimum attenuation A is therefore given by A =20log , 0.002 ~ 54 dB.

The shape parameter is evaluated from Eq. (15.20) as follows:
£ =0.1102(A-8.7) =4.99..

The transition band AQ. for the FIR filter is (€2, — €)) = 0.3n. The normalized transition band AQ, is
therefore given by AQ./ = 0.3. Using AQ, = 0.3, the length N of the Kaiser window is given by

54-7.95
©2.2857%0.3

Rounding off to the higher closest odd number, we obtain N = 23.

=21.38.

The expression for the Kaiser window is given by

[eo{(F T )

Weier K] = 1, [4.99]

0 otherwise.

0<k<22

The impulse response of the highpass FIR filter is given by
hhp [k] ihp [k]Wkalser [k]

where hIhp [k] is specified above with m = 11. The filter gain at Q = 7 is given by

N-1 N-1

= > h,[k]- > h,[k]=1.0002.

k=0,2,... k=L,3....

As H(r)~1, the coefficients of h[k] need not be normalized.

The magnitude response of the highpass FIR filter is plotted in Fig. S15.10, and it is observed that the
given specifications of the filter are satisfied. I
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Fig. S15.10. Magnitude response of the highpass FIR filter designed in Problem 15.10.

Program 15.10: MATLAB Program for Problem 15.10

13

wn = 0.49 ; % Normalized cutoff frequency
beta = 4.99; % Shape parameter

N = 23; % Impulse response length

M = (N-1)/2; % Delay

k = [0:(N-1)];

d = [zeros(1,M) 1 zeros(1,M)]; % delayed impulse
hihp = d - wn*sinc(wn*(k-M))

h = hihp.* kaiser(N,beta)" ;

S=sum(h.*((-1) .-~(k-1))); % =0.9999

[H, w] = freqz(h,1,512);

freq = (W/pi) ; % Horizontal axis for plotting freq. response
H2dB 20*1ogl0(abs(H)) ;

plot(freq, H2dB), grid

axis(JO 1 -80 5]);
%title("Kaiser Window")

xlabel (*Normalized Frequency"®)
ylabel ("Magnitude Response (in dB)");
plot(freq, abs(H)), grid
axis(JO 1 0 1.1]);
title("Highpass Filter"™)
xlabel (*Normalized Frequency"®)
ylabel ("Magnitude Response®);
print -dtiff plot.tiff

Problem 15.11
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The cut-off frequencies of the bandpass filter are given by
Q,=05(027+0.47)=0.37 and

Q,,=0.5(0.67+0.87)=0.77.

The normalized cut-off frequencies are given by Q  =Q_/7=0.3 and Q_,=Q_, /7 =0.7. The impulse
response of an ideal bandpass filter is given by

hi, [K] = 0.7sinc[0.7(k —m)] - 0.3sinc[0.3(k —m)].

The maximum ripple = min(0.02,0.009) = 0.009. Therefore, the minimum attenuation
A=20log,,0.009 ~ 41 dB.

The shape parameter 3 of the Kaiser window is computed as
B =0.5842(A-21)"* +0.0789(A-21) =3.51.
The transition bands AQ;; and AQ, for the bandpass FIR filter are given by
AQ , =04r-027 =027 and
AQ ,=087-0.67r=02r,

which lead to the normalized transition BW of AQ, =
The length N of the Kaiser window is given by

41-7.95
©2.2857%0.2

Rounded to the closest higher odd number, N = 25 and the value of m is 12. The expression for the Kaiser

window is as follows:
|0{3.51(\/1—[&—12)/12]2 ﬂ

W ] = 1,[3.51]

0, otherwise.

=23.02.

0<k<24

The impulse response of the bandpass FIR filter is given by
bP [k] hlbp[k]wkaiser[k]’

where hIhp [k] is specified above with m = 12. The filter gain at Q= 0.5z (mid passband) is given by
N-I _
2 (0.57)=>"h, [kl "™ =0.995.
k=0

Therefore, the coefficients of h[k] are normalized, as h,, [k] =h, [k] /0.995.

The magnitude response of the bandpass FIR filter is plotted in Fig. S15.11, and it is observed that the
given specifications of the filter are satisfied. I
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Fig. S15.11. Magnitude response of the bandpass FIR filter designed in Problem 15.11.

Program 15.11: MATLAB Program for Problem 15.11

wnl = 0.3 ; % Normalized cutoff frequency-1
wn2 = 0.7 ; % Normalized cutoff frequency-2
beta = 3.51; % Shape parameter

N = 25; % Impulse response length

M = (N-1)/2; % Delay

k = [0:(N-1)];

hibp = wn2*sinc(wn2*(k-M)) - wnl*sinc(wnl1*(k-M));

h = hibp.* kaiser(N,beta)"
S=sum(h.*exp(-J*0.5*pi*(k-1))) % =0.9950

h = h/abs(S) ;

[H, w] = freqz(h,1,512);
freq = (W/pi) ; % Horizontal axis for plotting freq. response
H2dB = 20*logl0(abs(H)) ;

plot(freq, H2dB), grid

axis(JO 1 -80 5]);

%title("Kaiser Window")

xlabel ("Normalized Frequency"®)

ylabel ("Magnitude Response (in dB)");
print -dtiff plot.tiff

Problem 15.12

The cut-off frequencies of the bandstop filter are given by
§%1=05(Q3ﬂ+414ﬂ)=035ﬂ2md

Q,, =0.5(0.67 +0.77) = 0.657 .
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The normalized cut-off frequencies are given by Q =035 and Q , =0.65. The impulse response of
an ideal bandstop filter is given by

his [k] = 5[k —m] —0.65sinc[0.65(k —m)]+ 0.35sinc[0.35(k —m)].
The maximum ripple = 0.05. Therefore, the minimum attenuation A= 20log,,0.05~26.02 dB.
The shape parameter 3 of the Kaiser window is computed as
B =0.5842(A-21)"* +0.0789(A-21) =1.51.

The transition bands AQ.; and AQ, for the bandpass FIR filter are given by

AQ,, =(0.47 - 0.37r) =0.17 and

AQ, =(0.77-0.67)=0.1r,
which leads to the normalized transition BW of AQ,=0.1.

The length N of the Kaiser window is given by

S 26.02-7.95
- 2.2857x0.1

Rounded to the closest higher odd number, N = 27 and the value of m is 13.

=25.17.

The expression for the Kaiser window is as follows:

Io[l.SI[\/l—[(k—13)/13]2ﬂ

Waier [K] = 1,[1.51]

, 0<k<26

0, otherwise.
The impulse response of the bandstop FIR filter is given by
hos [K] = Pigs [K] Wiiser [K] -
where h,, [K] is specified above with m = 13.

The magnitude response of the bandstop FIR filter is plotted in Fig. S15.12. It is observed that the
bandstop filter satisfies the design specifications.
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Fig. S15.12. Magnitude response of the bandstop FIR filter designed in Problem 15.12.

Program 15.12: MATLAB Program for Problem 15.12
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wnl = 0.35 ; % Normalized cutoff frequency-1
wn2 = 0.65 ; % Normalized cutoff frequency-2
beta = 1.51; % Shape parameter

N = 27; % Impulse response length

M = (N-1)/2; % Delay

k = [0:(N-1)];

d = [zeros(1,M) 1 zeros(1,M)]; % delayed impulse
hibs = d - wn2*sinc(wn2*(k-M)) + wnl*sinc(wnl*(k-M));
h = hibs.* kaiser(N,beta)" ;

S=sum(h) % =0.
h = h/abs(S) ;

[H, w] = freqz(h,1,512);
freq = (Ww/pi) ; % Horizontal axis for plotting freq. response
HdB = 20*logl0(abs(H)) ;

plot(freq, HdB), grid

axis(JO 1 -80 5]);

title("Kaiser Window")

xlabel (*Normalized Frequency (\Omega)")
ylabel ("Magnitude Response, 20log_{ 10}|H(\Omega)|");
print -dtiff plot.tiff

%

plot(freq, abs(H)), grid

%axis(JO 1 -80 5]);

title("Kaiser Window")

xlabel ("Normalized Frequency (\Omega)")
ylabel ("Magnitude Response (|H])");
print -dtiff plot.tiff

The solution of Remaining problems (15.13-15.25) will be added soon.





