
 

Chapter 9: Sampling and Quantization 
 

 
Problem 9.1 

(a)  ( )1
1 200 200( ) 5sinc 200 sinc
40

tx t t π π
π π

×⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. Therefore 

   ( )1 400

1/ 40 2001( )= rect
0 200 .40

X ω
π

ω π
ω

ω π
⎧ ≤

= ⎨ >⎩
 

 The maximum frequency is given by 100 Hz. Based on the Nyquist theorem, the maximum 

sampling period is          1 5 
200sT s ms= = . 

(b) ( ) ( )2

max 100 max 50

max 100

( ) 5sinc 200 8sin 100
freq Hz freq Hz

freq Hz

x t t tπ
= =

=

= + . 

 Therefore, maximum sampling period is given by 

  1 5 
200sT s ms= = . 

 
Fig. S9.1: A(f ) denotes the spectrum of sinc(200t) and B(f ) denotes the spectrum of sin(100πt). X3(f ) 

is the sum of two shifted replicas of A(f), and is non-zero within the band [−150,150] Hz. 

(c) Since x3(t) is a product of sinc(200t) and sin(100πt), the spectrum of x3(t) can be obtained by 
convolving the spectrums of sinc(200t) and sin(100πt). From the theory of CT convolution, it can 
easily be seen that (see Fig. S9.1), the maximum frequency present in x3(t) is 150 Hz. Therefore, the 
maximum sampling period is given by 
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  1 3.33 
2 150sT s ms= =

×
. 

(d) Since x4(t) is a convolution product of sinc(200t) and sin(100πt), the spectrum of x4(t) can be 
obtained by multiplying the spectrums of sinc(200t) and sin(100πt). As the spectrum of sin(100πt) 
includes two impulses at 50 Hz and −50 Hz, the spectrum of x4(t) will only include two impulses at 
50 Hz and −50 Hz. As the maximum frequency present in x4(t) is 50 Hz, the maximum sampling 
period is given by 

  1 10 
2 50sT s ms= =

×
. ▌ 

Problem 9.2 

(a) From Table 5.2, we know that  ( ) ( )2sinc rectW Wt
W
ω

π π ↔ .  

 Applying the time-shifting property of the CTFT (see Table 5.4), we obtain 

  ( ) ( )( 2) 2
2sinc rectW t jW
W e ωω

π π
− −↔ . 

 The uncertainty principle is satisfied as x1(t) is a bandlimited signal but NOT a time limited signal 
since a sinc function has infinite length. 

(b) From Table 5.2, we know that ( )2 ( ) sincW Wtx t π π= .  

 The uncertainty principle is satisfied as x2(t) is a bandlimited signal but NOT a time limited signal 
since a sinc function has infinite length. 

(c) From Table 5.2, we know that  ( ) ( )2sinc rectW Wt
W
ω

π π ↔ .  

 Applying the frequency-shifting property of the CTFT (see Table 5.4), we obtain 

  ( ) ( )00
2sinc rectj tW Wt
We ω ωω

π π
−↔   

 and ( ) ( )00
2sinc rectj tW Wt
We ω ωω

π π
+− ↔ . 

 In other words, ( ) ( ) ( )0 0 2
3 0( ) sinc sinc sinc cos( )j t j tW Wt W Wt W Wtx t e e tω ω

π π π π π π ω−= + = ,  

 which is not a time-limited signal.  

 The uncertainty principle is satisfied as x3(t) is a bandlimited signal but NOT a time limited signal 
since a sinc function has infinite length. 

(d) Express ( )0

0

1.50 0
4 0 0

1 2
( ) ( ) ( 2 )    =  rect

0 elsewhere
X u u ω ω

ω

ω ω ω
ω ω ω ω ω −< <⎧

= − − − = ⎨
⎩

. 

 From Table 5.2, we know that 

  ( ) ( )0 0

0

(0.5 ) (0.5 )sinc recttω ω ω
π π ω↔ .  

 Applying the frequency-shifting property of the CTFT (see Table 5.4), we obtain 

  ( ) ( )0 0 00

0

(0.5 ) (0.5 ) 1.51.5sinc rectt j teω ω ω ωω
π π ω

−↔ . 



Solutions       3 

 

 In other words, ( ) ( )0 0 0 00 0(0.5 ) (0.5 ) 1.5 1.5
4 2 2( ) sinc sinct tj t j tx t e eω ω ω ωω ω

π π π π= = ,  

 which is not a time-limited signal. The uncertainty principle is satisfied as x4(t) is a bandlimited 
signal but NOT a time limited signal since a sinc function has infinite length ▌ 

Problem 9.3 

(a) Express [ ] ( )1 0 0 2( ) cos( ) ( ) ( ) = cos( )rect t
Tx t t u t T u t T tω ω= + − − . 

 From Table 5.2, we know that ( ) ( )2
2 2rect 2 sinct T

T T ω
π↔  

 and ( ) ( ) ( )0 0 0cos tω π δ ω ω δ ω ω↔ − + +⎡ ⎤⎣ ⎦ . 

 Applying the frequency-convolution property of the CTFT (see Table 5.4), we obtain 

  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ){ }0 0

21
0 0 02 2 2

0 0

( ) ( )

cos( )rect 2Tsinc

                                T sinc

                                T sinc sinc

t T
T

T

T T

t ω
π π

ω
π

ω ω ω ω
π π

ω π δ ω ω δ ω ω

δ ω ω δ ω ω

− +

⎡ ⎤↔ ∗ − + +⎣ ⎦

⎡ ⎤= ∗ − + +⎣ ⎦

= +

. 

 We note that X1(ω) is a summation of two sinc functions and is, therefore, not a band-limited signal. 
As x1(t) is a time-limited signal, the converse of the uncertainty principle is satisfied. 

(b) From Table 5.2, we know that ( ) ( )2rect sinct ωτ
τ πτ↔ .  

 Applying the time-convolution property of the CTFT (see Table 5.4), we obtain 

  ( ) ( ) ( ) ( ){ } ( )2 2
2 2 2rect rect sinc sinc sinct t ωτ ωτ ωτ

τ τ π π πτ τ τ∗ ↔ × = . 

 We note that X2(ω) is a product of two sinc functions and is, therefore, not a band-limited signal. As 
x2(t) is a time-limited signal, the converse of the uncertainty principle is satisfied. 

(c) ( )3
/ 2 / 2( ) rect

0

t
t t e tx t e

otherwise

α
α

τ
τ τ−

− ⎧ − < <⎪= = ⎨
⎪⎩

. 

 Calculating the CTFT, we obtain 

  

( )

( )
( )

2 2

/ 2

2 2 2 2

2 2

/ 2 / 2
/ 2

3 0
/ 2 0

/ 22

( ) 2 cos( ) 2 cos sin

          2 cos( / 2) sin( / 2)

cos( / 2) sin( / 2)

tt j t t e

e

X e e dt e t dt t t

e

α

ατ

τ τ
τα ω α

α
τ

α α

ατ
α

ω

α
ω ω

ω

ω ω α ω ω ω

α ωτ ω ωτ

α α ωτ ω ωτ

−

−

− − −

−

−

+

+ +

+

⎡ ⎤= ⋅ = = − +⎣ ⎦

⎡ ⎤= − + +⎣ ⎦
⎡ ⎤= + − +⎣ ⎦

∫ ∫
 

 We note that X3(ω) is not a band-limited signal. As x3(t) is a time-limited signal, the converse of the 
uncertainty principle is satisfied. 

(d) Taking the CTFT, we get  
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{ } { } { } { }5 5

4

5 5

( ) ( 5) ( 5) ( ) ( )

2cos(5 )

j j

j j

X t t e t e t

e e

ω ω

ω ω

ω δ δ δ δ

ω

−

−

= ℑ − + ℑ + = ℑ + ℑ

= + =
 

 We note that X4(ω) is not a band-limited signal. As x4(t) is a time-limited signal, the converse of the 
uncertainty principle is satisfied.  ▌ 

Problem 9.4 

(a)  Applying the width property (in frequency domain) of the CT convolution, we know that x(t) is a 
bandlimited signal with maximum frequency 650 Hz. The minimum value of the sampling rate fs 
that does not introduce any aliasing is 1300 samples/sec or 1300 Hz. 

(b) The signals v1(t) and v2(t) are bandlimited to 300 Hz and 500 Hz, respectively. The spectrum of the 
produce x(t) = v1(t)v2(t) is shown in Fig. S9.4(a). It is observed that x(t) is a bandlimited signal with 
maximum frequency of 800 Hz. The minimum value of the sampling rate fs that does not introduce 
any aliasing is 1600 samples/sec or 1600 Hz. 

(c) A sampling interval of 2 ms implies a sampling frequency is 500 Hz. The spectrum of the sampled 
signal is a periodic function with a period of 1000π rad/s, and is shown in Fig. S9.4(b). It is 
observed that the spectrum is aliased, and hence x(t) cannot be recovered from the sampled signal. 
The spectrum can be plotted by hand or the following Matlab code may be used to generate Fig. 
S9.4(b). 
>> % MATLAB Program for Problem 9.4(c) 
>> X_1p =[0:1/1200:1,  ones(1,799), 1:-1/1200:0]; 
>> kX_1p = [-1600:1600]; 
>> plot([-1600:1600],X_1p) 
>> ylabel('Spectrum (x 0.001/PI)');  
>> xlabel('radian frequency') 
>> axis([-1700 1700 0  1.2]) 
>> print -dtiff plot.tiff 
>> [kX, X] = shiftadd(kX_1p, X_1p, -5, 5, 1000); 
>> plot(kX,X); 
>> ylabel('Spectrum (x 0.001/PI)');  
>> xlabel('radian frequency'); 
>> %axis([-1600 1600 0  2]); 
>> print -dtiff plot.tiff 

(d) A sampling interval of 0.1 ms implies a sampling frequency is 10,000 Hz. The spectrum of the 
sampled signal will be a periodic function with a period of 20,000π rad/s, and is shown in Fig. 
S9.4(c). It is observed that there is no aliasing in the spectrum, and hence x(t) can easily be 
recovered from the sampled signal using a lowpass filter. 
>> % MATLAB Program for Problem 9.4(d) 
>> X_1p =[0:1/1200:1,  ones(1,799), 1:-1/1200:0]; 
>> kX_1p = [-1600:1600]; 
>> plot([-1600:1600],X_1p) 
>> ylabel('Spectrum (x 0.001/PI)');  
>> xlabel('radian frequency') 
>> axis([-1700 1700 0  1.2]) 
>> print -dtiff plot.tiff 
>> [kX, X] = shiftadd(kX_1p, X_1p, -1, 1, 20000); 
>> plot(kX,X); 
>> ylabel('Spectrum (x 0.001/PI)');  
>> xlabel('radian frequency'); 
>> axis([-25000 25000 0  1.2]); 
>> print -dtiff plot.tiff ▌ 
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(a) 

  
(b)                                                                      (c) 

Fig. S9.4: Plots for Problem 9.4. 

 

 

 

Problem 9.5 

The CTFT of x(t) is given by 

 ( ) ( ){ } ( ){ } ( ){ }
[ ] [ ]

( ) sin 400 2cos 150 sin 400 2 cos 150

( 400 ) ( 400 ) 2 ( 150 ) ( 150 )

X t t t t

j

ω π π π π

π δ ω π δ ω π π δ ω π δ ω π

= ℑ + = ℑ + ℑ

= + − − + + + −
 

and is shown in Fig. S9.5. 
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Fig. S9.5. Fourier transform X(ω) of the original CT signal. 

Note that the maximum frequency in x(t) is 400π rad/s, or, 200 Hz. Therefore, the Nyquist sampling rate 
is given by 400 samples/second. A lower sampling rate will cause aliasing and it will not be possible to 
reconstruct the signal perfectly. 

(a) fs = 100 samples/s: 

 The sampling rate us given by 200π rad/s and the sampling interval by 0.01s. The CTFT of the 
sampled signal is given by  

  ( ) ( )1 1( ) 200
s ss sT T

m m

X X m X mω ω ω ω π
∞ ∞

=−∞ =−∞

= − = −∑ ∑ . 

 The CTFT Xs(ω) is shown in Fig. S9.5a(i). It is observed that the impulses located at ω = ±50π, 
±150π, ±250π, ±350π, ... have an area of 2π/Ts, while the impulses located at ω = 0, ±200π, 
±400π, ±600π, ±800π, ... have an area with alternating values of jπ/Ts and −jπ/Ts. Note that the 
impulses with area jπ/Ts will cancel the impulses with area −jπ/Ts, and therefore, there will not be 
any impulses at ω = 0, ±200π, ±400π, ±600π, ±800π, .... The revised plot of CTFT Xs(ω) is shown 
in Fig. S9.5a(ii). 

 When the sampled signal is passed through a lowpass filter with transfer function 

  | | 100
( )

0 elsewhere
sT

H
ω π

ω
≤⎧

= ⎨
⎩

,  

 a CT signal y(t) will be reconstructed. The spectrum Y(ω) of the signal y(t) is shown in Fig. 
S9.5a(iii) and can be expressed as 

  [ ]( ) 2 ( 50 ) ( 50 )Y ω π δ ω π δ ω π= + + − . 

 Calculating the inverse CTFT, we obtain the reconstructed signal  

  ( ) 2cos(50 )y t tπ= . 

 Since the sampling rate does not satisfy the Nyquist criterion, the reconstructed signal is different 
from the original signal.  
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Fig. S9.5a. Spectrum of the sampled signal and the reconstructed signal in Problem 9.5(a). 

 

You may be wondering – why does the sin(400πt) term totally disappear when sampled at 100Hz? 
Calculate the sampled signal to see what happens. 

1
100100       T 0.01s sF = ⇒ = = . 

The sampled signal is then given by 

( ) ( ) ( ) ( )
( ) ( )

( )
0

( ) sin 400 2cos 150 sin 400 0.01 2cos 150 0.01

sin 4 2cos 1.5

2cos 0.5

s s sx kT kT kT k k

k k

k

π π π π

π π

π
=

= + = × + ×

= +

=

 

If you sample, sin(400πt) with a sampling frequency 100 Hz (at time instances kTs), the sampled 
output or the sin(400πt) component is always zero. 

(b) fs = 200 samples/s: 

 The sampling rate us given by 400π rad/s and the sampling interval by 0.005s. The CTFT of the 
sampled signal is given by  

  ( ) ( )1 1( ) 400
s ss sT T

m m

X X m X mω ω ω ω π
∞ ∞

=−∞ =−∞

= − = −∑ ∑ . 
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(i) 

 
(ii) 

 
(iii) 

Fig. S9.5b. Spectrum of the sampled signal and the reconstructed signal in Problem 9.5(b). 

 The CTFT Xs(ω) is shown in Fig. S9.5b(i). It is observed that the impulses located at ω = ±150π, 
±250π, ±550π, ±650π, ... have an area of 2π/Ts, while the impulses located at ω = 0, ±400π, 
±800π, ... have an area with alternating values of jπ/Ts and −jπ/Ts. Note that the impulses with area 
jπ/Ts will cancel the impulses with area −jπ/Ts, and therefore, there will not be any impulses at ω = 
0, ±400π,  ±800π, .... The revised plot of CTFT Xs(ω) is shown in Fig. S9.5b(ii). 

 When the sampled signal is passed through a lowpass filter with transfer function 

  | | 200
( )

0 elsewhere
sT

H
ω π

ω
≤⎧

= ⎨
⎩

,  

 a CT signal y(t) will be reconstructed. The spectrum Y(ω) of the signal y(t) is shown in Fig. 
S9.5b(iii) and can be expressed as 
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  [ ]( ) 2 ( 150 ) ( 150 )Y ω π δ ω π δ ω π= + + − . 

 Calculating the inverse CTFT, we obtain the reconstructed signal  

  ( ) 2cos(150 )y t tπ= . 

 Note that the sampling rate does not satisfy Nyquist criterion in this case. As a result, the 
reconstructed signal is different from the original signal.  

  

You may be wondering – why does the sin(400πt) term totally disappear when sampled at 200Hz? 
Calculate the sampled signal to see what happens. 

1
200200       T 0.005s sF = ⇒ = = . 

The sampled signal is then given by 

( ) ( ) ( ) ( )
( ) ( )

( )
0

( ) sin 400 2cos 150 sin 400 0.005 2cos 150 0.005

sin 2 2cos 0.75

2cos 0.75

s s sx kT kT kT k k

k k

k

π π π π

π π

π
=

= + = × + ×

= +

=

 

If you sample, sin(400πt) with a sampling frequency 200 Hz (at time instances kTs), the sampled 
output for the the sin(400πt) component is always zero. 

(c) fs = 400 samples/s: 

 The sampling rate us given by 800π rad/s and the sampling interval by 0.0025s. The CTFT of the 
sampled signal is given by  

  ( ) ( )1 1( ) 800
s ss sT T

m m

X X m X mω ω ω ω π
∞ ∞

=−∞ =−∞

= − = −∑ ∑ . 

 The CTFT Xs(ω) is shown in Fig. S9.5c(i). It is observed that the impulses located at ω = ±150π, 
±650π, ±950π, ... have an area of 2π/Ts, while the impulses located at ω = 0, ±400π, ±800π, ... have 
an area with alternating values of jπ/Ts and −jπ/Ts. Note that the impulses with area jπ/Ts will cancel 
the impulses with area −jπ/Ts, and therefore, there will not be any impulses at ω = 0, 
±400π,  ±800π, .... The revised plot of CTFT Xs(ω) is shown in Fig. S9.5c(ii). 

 When the sampled signal is passed through a lowpass filter with transfer function 

  | | 400
( )

0 elsewhere
sT

H
ω π

ω
≤⎧

= ⎨
⎩

,  

 a CT signal y(t) will be reconstructed. The spectrum Y(ω) of the signal y(t) is shown in Fig. 
S9.5b(iii) and can be expressed as 

  [ ]( ) 2 ( 150 ) ( 150 )Y ω π δ ω π δ ω π= + + − . 

 Calculating the inverse CTFT, we obtain the reconstructed signal  

  ( ) 2cos(150 )y t tπ= . 
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Fig. S9.5c. Spectrum of the sampled signal and the reconstructed signal in Problem 9.5(c). 

Note that the sampling rate does not satisfy Nyquist criterion in this case. As a result, the 
reconstructed signal is different from the original signal. 

(d) fs = 500 samples/s: 

 The sampling rate us given by 1000π rad/s and the sampling interval by 0.002s. The CTFT of the 
sampled signal is given by  

  ( ) ( )1 1( ) 1000
s ss sT T

m m

X X m X mω ω ω ω π
∞ ∞

=−∞ =−∞

= − = −∑ ∑ . 

 The CTFT Xs(ω) is shown in Fig. S9.5d(i). Note that none of the impulses overlap and hence there 
is no cancellation of impulses. The CTFTXs(ω) is shown in Fig. S9.5d(ii). 

 When the sampled signal is passed through a lowpass filter with transfer function 

  | | 500
( )

0 elsewhere
sT

H
ω π

ω
≤⎧

= ⎨
⎩

,  

 a CT signal y(t) will be reconstructed. The spectrum Y(ω) of the signal y(t) is shown in Fig. S9.d(ii), 
and can be expressed as 

  [ ] [ ]( ) 2 ( 150 ) ( 150 ) ( 400 ) ( 400 )Y jω π δ ω π δ ω π π δ ω π δ ω π= + + − + + − − . 

 Calculating the inverse CTFT, we obtain the reconstructed signal 

  ( ) 2cos(150 ) sin(400 )y t t tπ π= + . 

 Note that because the sampling rate satisfies the Nyquist sampling criterion in this case, the 
reconstructed signal is identical to the original signal.  ▌ 
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(i) 

 
(ii) 

Fig. S9.5d. Spectrum of the (i) sampled signal and the (ii) reconstructed signal in Problem 9.5(d). 

Problem 9.6 

The CT signal x(t) is sketched in Fig. S9.6a. 

 
Figure S9.6a: The CT signal x(t) for Problem 9.6. 

(a) From Table 5.2, entry (18), we know the following CTFT pair 

  )(sinc
otherwise0

1
)( 2

2CTFT
π

ωτ
τ τ⎯⎯ →←

⎪⎩

⎪
⎨
⎧ τ≤−

=Δ t
t

t t
. 

 The input signal can be expressed in terms of the function Δ(t) as follows 

  )(75.0
otherwise0

3175.0

otherwise0
30)3(25.0

)( 3
3 t

t ttt
tx Δ=

⎪
⎩

⎪
⎨

⎧ ≤⎟
⎠
⎞⎜

⎝
⎛ −

=
⎩
⎨
⎧ ≤≤−

=  
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 Therefore, ( ) ( )π
ω

π
ω =×=ω 2

32
2
32 sinc25.2sinc375.0)(X . 

 Note that the signal is not band limited. In other words, the maximum frequency present in this 
signal is infinite. Therefore, the Nyquist sampling frequency is also infinite.  

(b) The CTFT X(ω) is sketched in Fig. S9.6b. It is observed that the maximum value of X(ω) = 2.25 at 
ω = 0. From Fig. S9.6a, it is clear that 

  62.5for0225.0)( >ω<ωX  radians/s. 

 The MATLAB code used to plot Fig. S. 9.6b is given below 

 
>> clf ;  
>> w =-10:0.01:10  ;  
>> s = sinc(3*w/(2*pi)) ;  
>> X = 2.5*s.^2 ; 
>> subplot(3,1,1), plot(w, X), grid on 
>> xlabel('w')              % Label of X-axis 
>> ylabel('X(w)')          % Label of Y-axis 
>> axis([-10, 10, 0, 3]) ; 
>> subplot(3,1,2), plot(w, X), grid on 
>> xlabel('w')              % Label of X-axis 
>> ylabel('X(w)')          % Label of Y-axis 
>> axis([-10, 10, 0, 0.03]) ; 
>> subplot(3,1,3), plot(w, X), grid on 
>> xlabel('w')              % Label of X-axis 
>> ylabel('X(w)')          % Label of Y-axis 
>> axis([5.5, 5.7, 0.02, 0.03]) ;print -dtiff plot.tiff ;% Save figure as a TIFF file 
>> k= -5:5 ; 
>> x = 0.25*(3-abs(k)).*((abs(k)<4)) ; 
>> stem(k, x, 'filled'),grid 
>> ylabel('x[k]');  
>> xlabel('k') 
>> print -dtiff plot.tiff 

 

Figure S9.6b: CTFT X(ω) in Problem 9.6. 

It is observed that 62.5for0225.0)( >ω<ωX radians/s. 
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 Expressed in Hz, the maximum effective frequency in the signal is given by B = 5.62/2π = 0.89 Hz. 
Therefore, the Nyquist sampling rate would be 2 × 0.89 = 1.78 samples/second. 

(c) The discrete signal x[k] for the interval (−5 ≤ t ≤ 5) is plotted in Fig. S9.6(c). 

 

 
Figure S9.6c: DT signal x[k] in Problem 9.6(c). 

 

(d) The quantizer in Example 9.3 has eight reconstruction levels rm as follows: 

  rm = −0.875, −0.625 , −0.375 , −0.125, 0.125, 0.375, 0.625, 0.875. 

 The decision levels are given by  

  dm = −1V, −0.75V, −0.5V , −0.25V , 0V, 0.25V, 0.50V, 0.75V, 1V. 

 Note that the quantizer generates  

  [ ]1
12[ ] m m my k r d d += = +   

 where 1[ ]m md x k d +≤ < . 

The quantization error is shown in Table S9.6a, and is plotted in Fig. S9.6d. The Matlab code used 
to generate Fig. S9.6d is given below: 
>> % MATLAB program for Fig. 9.6d 
>> k = [-5  -4  -3  -2  -1  0  1  2  3  4  5]; 
>> x = [0   0  0  0.25   0.50   0.75  0.50   0.25   0   0   0]; 
>> q = [0.125 0.125 0.125 0.375 0.625 0.875 0.625 0.375 0.125 0.125 0.125]; 
>> e = x-q; 
>> subplot(4,1,1),plot(k, x),grid on 
>> xlabel('t'), ylabel('x(t)') 
>> %title('The Original Continuous Signal') 
>> subplot(4,1,2),stem(k, x),grid on 
>> xlabel('k'), ylabel('x[k]') 
>> %title('The Original Discrete Signal') 
>> subplot(4,1,3),stem(k, q),grid on 
>> xlabel('k'), ylabel('q[k]') 
>> %title('The Quantized Discrete Signal') 
>> subplot(4,1,4),stem(k, e),grid on 
>> xlabel('k'), ylabel('e[k]') 
>> %title('The Error Signal') 
>> print -dtiff plot.tiff 
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Table S9.6a: Quantized sample values and the quantization errors 

t k x[k] Q{x[k]} e[k] 
−5 −5 0 0.125 −0.125 
−4 −4 0 0.125 −0.125 
−3 −3 0 0.125 −0.125 
−2 −2 0.25 0.375 −0.125 
−1 −1 0.50 0.625 −0.125 
0 0 0.75 0.875 −0.125 
1 1 0.50 0.625 −0.125 
2 2 0.25 0.375 −0.125 
3 3 0 0.125 −0.125 
4 4 0 0.125 −0.125 
5 5 0 0.125 −0.125 

 

 The theoretical maximum quantization error for this quantizer is 0.25/2 = 0.125. It is observed that 
the maximum error occurs at all values of k. 

(e) The decision and reconstruction levels for the 16-level quantizer are shown in Table S9.6b. The 
quantized sample values are shown in Table S9.6, while the quantization error values are plotted in 
Fig. S9.6e. 

Table S9.9b: Decision and reconstruction levels for the 16-level quantizer 

m Decision 
levels 

Reconstruction 
levels 

 m Decision 
levels 

Reconstruction 
levels 

0 −1.000 −0.9375  8 0 0.0625 
1 −0.875 −0.8125  9 0.125 0.1875 
2 −0.750 −0.6875  10 0.25 0.3125 
3 −0.625 −0.5625  11 0.375 0.4375 
4 −0.500 −0.4375  12 0.50 0.5625 
5 −0.375 −0.3125  13 0.625 0.6875 
6 −0.250 −0.1875  14 0.75 0.8125 
7 −0.125 −0.0625  15 0.875 0.9375 

 

Table S9.9c: Quantized sample values 
t k x[k] Q{x[k]} e[k] 

−5 −5 0 0.0625 −0.0625 
−4 −4 0 0.0625 −0.0625 
−3 −3 0 0.0625 −0.0625 
−2 −2 0.25 0.3125 −0.0625 
−1 −1 0.50 0.5625 −0.0625 
0 0 0.75 0.8125 −0.0625 
1 1 0.50 0.5625 −0.0625 
2 2 0.25 0.3125 −0.0625 
3 3 0 0.0625 −0.0625 
4 4 0 0.0625 −0.0625 
5 5 0 0.0625 −0.0625 
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Figure S9.6d: Quantization error e[k] in Problem 9.6(d). 

 

The theoretical maximum quantization error for this quantizer is 0.125/2 = 0.0625. It is observed 
that the maximum error occurs at all values of k. The MATLAB code for Fig. S9.6e is given below: 
>> % MATLAB program for Figure S9.6e 
>> k = [-5  -4  -3  -2  -1  0  1  2  3  4  5]; 
>> x = [0   0  0  0.25   0.50   0.75  0.50   0.25   0   0   0]; 
>> q = [0.0625 0.0625 0.0625 0.3125 0.5625 0.8125 0.5625 0.3125 0.0625 0.0625 
0.0625]; 
>> e = x-q; 
>> subplot(2,1,1),stem(k, q),grid on 
>> xlabel('k'), ylabel('q[k]') 
>> %title('The Quantized Discrete Signal') 
>> subplot(2,1,2),stem(k, e),grid on 
>> xlabel('k'), ylabel('e[k]') 
>> %title('The Error Signal') 
>> print -dtiff plot.tiff ▌ 
 



16      Chapter 9 

 

 
Figure S9.6e: The quantization error signal e[k] in Problem 9.6(e). 

 

Problem 9.7 

Recall that ∑
∞

−∞=
τ −δ∗=

k
s

t kTttr )()(rect)(  

is a periodic signal with rect(t/τ) repeated. The individual replicas are separated by a duration of Ts. 

Applying CTFS, the periodic signal r(t) can be represented as 

 ∑
∞

−∞=

ω=
n

tjn
n

seDtr )(  

where ωs = 2π/Ts. The CTFS coefficient is given by 

 ∫∫
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Problem 9.8 

(a)   Consider the bandpass signal x(t) with CTFT 

  21 ||and||for0)( ω>ωω<ω=ωX  

 The spectrum of x(t) is shown in Fig. P9.8(a) with an additional constraint that ω1 > (ω2 – ω1). 
Sampling by a periodic impulse train 

  ∑∑
∞

−∞=

ππ
∞

−∞=
−ωδ⎯⎯ →←−δ

m
T
m

T
k

s ss
kTt )()( 22CTFT , 

 the spectrum of the periodic signal xs(t) is given by 
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)(

21CTFT

)(

)()()(

ω

∞

−∞=

π
∞

−∞=
∑∑ −ω⎯⎯ →←−δ×

s

ss

s X
m

T
m

T

tx
k

s XkTttx . 

 shown in Fig. P9.8(b). Note that the original signal x(t) can be perfectly reconstructed by filtering 
with a bandpass signal provided there is no overlap with (m = 0) replica. This would require 

 Right corner of (m = −1) replica:  )(or,, 12
2

12
2 ω−ω≥ω≤ω+− ππ

ss TT . 

 and 

 Left corner of (m = 1) replica:  1
2

11
2 2or,, ω≤ω−≤ω+− ππ

ss TT . 

 Combining the two conditions, we get  1
2

12 2)( ω≤≤ω−ω π
sT . 

 Note that this rate is less than the Nyquist baseband sampling rate of 2ω2 radians/s. 

(b) The minimum sampling rate is (ω2 – ω1) radians/s. 

(c) For the signal to be constructed, the transfer function of the bandpass filter is given by 

 
⎩
⎨
⎧ ω≤ω≤ω=ω .elsewhere0

||)( 21s
bp

TH  ▌ 

Problem 9.9 

(a) Using the CTFT )(2))(exp( 2
CTFT

212
1 21 ttj ω+ω+ωπδ⎯⎯ →←ω+ω− . 

Hence, )())(exp()( 2
CTFT

212
1 21 tXtjtx ω+ω+ω⎯⎯ →←ω+ω−∗  

Fig. S9.9 plots the spectra of the signals at the output of the multiplier q(t) (Fig. S9.9(a)), at the 
output of the lowpass filter (Fig. 9.9(b)), and at the output of the impulse train multiplier (Fig. 
S9.9(c)). 

(b) From Fig. 9.9(b), it is clear that the output of the lowpass filter is a baseband signal with the highest 
frequency of ωmax =  0.5(ω1 +ω2). Using Nyquist sampling theorem, the sampling frequency is 
given by )( 212

1 ω+ω≥ πsf . 

The sampling interval is limited by )(2 21 ω+ωπ≤sT . 

(c) If the sampling frequency is set to the Nyquist rate, i.e., 

 )( 212
1 ω+ω= πsf , 

 then the original signal x(t) is obtained from xs(t) by filtering with a bandpass filter with the transfer 
function 

  
⎩
⎨
⎧ ω≤ω≤ω

=ω
elsewhere.0

1
)( 21H    
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)(ωsX

0 ωs−ωs

ω
2ωs−2ωs 2

)( 12 ω−ω− 2
)( 12 ω−ω

sT
1 )(ωsX

0 ωs−ωs

ω
2ωs−2ωs 2

)( 12 ω−ω− 2
)( 12 ω−ω

sT
1

 
(c) 

Fig. S9.9: Spectra of the signals: (a) at the output of the multiplier q(t);  (b) at the output of the 
lowpass filter; and (c) at the output of the impulse train multiplier. 

 

 For any other sampling frequency,   )( 212
1 ω+ω> πsf , 

 the original signal x(t) is obtained from xs(t) by filtering with a lowpass filter with the transfer 
function 

  
⎩
⎨
⎧ ω+ω≤ω≤

=ω
elsewhere0

2/)(01
)( 21H    

 and then multiplying the resulting baseband signal with 2cos(π((ω1 +ω2)t). ▌ 

Problem 9.10 

(a) The CTFS of the sawtooth wave is given by 

 ∑
∞

−∞=

π=
n

sn TtnjDts )/2exp()(  

where the CTFS coefficients are given by 
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which simplifies to 
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The CTFT of z(t) = x(t) × s(t) is given by 

 ∑
∞

−∞=
π π−ωδπ∗ω⎯⎯ →←×

n
sn TnDXtstx )/2(2)()()( 2

1CTFT , 

or, ∑
∞

−∞=

π−ω=ω
n

sn TnXDZ )/2()( . 

(b) The spectrum of the CTFT of the sampled signal z(t) is shown in Fig. S9.10. 
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Fig S9.10: Spectrum of z(t) sampled with a periodic sawtooth wave with ωs = 2π/Ts. 

(c) From Fig. S9.10, the original signal x(t) can be recovered from z(t) if the main replica at ω = 0 does 
not overlap with the replica at ω = ωs. In other words, ωs ≥ 4πβ. Thus the fundamental frequency of 
the sawtooth saw wave is the same as the Nyquist sampling rate for x(t).  

The original signal x(t) can be recovered from z(t) by filtering z(t) with a lowpass filter specified 
below 

⎩
⎨
⎧ ω≤ω≤

=ω
.otherwise0

5.002
)( sH  

(d) Signal z(t) is different from the sampled signal xs(t) obtained by ideal impulse train sampling in the 
following two ways. First, all replicas at even multiples of ωs, (i.e., ω = 2kωs) are missing. Second, 
the magnitudes of the odd-numbered replicas are not constant and decrease with the increasing 
frequency.  ▌ 

Problem 9.11 

(a) The CTFS of the alternating sign impulse train with period T = 2Ts is given by 

 ∑
∞

−∞=

π=
n

sn TtjnDts )/exp()(  

where the CTFS coefficients are 
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The CTFT of z(t) = x(t) × s(t) is given by 

 ∑
∞

−∞=
π π−ωδπ∗ω⎯⎯ →←×

n
sn TnDXtstx )/(2)()()( 2

1CTFT , 

or, ∑
∞

−∞=

π−ω=ω
n

sn TnXDZ )/()( . 

(b) The spectrum of the CTFT of the sampled signal z(t) is shown in Fig. S9.10. 
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3ωs−3ωs  
Fig S9.11: Spectrum of z(t) sampled with an alternating sign impulse train with ωs = π/Ts. 

(c) From Fig. S9.11, the original signal x(t) can be recovered from z(t) if the first replica at ω = ωs does 
not overlap with the replica at ω = 3ωs. In other words, ωs ≥ 2πβ. Thus the fundamental frequency 
of the alternating sign impulse train is half the Nyquist sampling rate for x(t). 

The original signal x(t) can be recovered from z(t) by multiplying z(t) with cos(ωst) and then 
passing the resulting output through a lowpass filter specified below 

⎩
⎨
⎧ ω≤ω≤

=ω
.otherwise0

5.00
)( ssT

H  

(d) All replicas at even multiples of ωs, (i.e., ω = 2kωs, for k = 0, ±1, ±2, ±3, …) are missing in the 
spectrum of z(t). This is the only difference between the spectrum of the sampled signal xs(t) 
obtained by ideal impulse train and that of z(t). ▌ 

Problem 9.12 

(a) The CTFS of the alternating sign impulse train with period T = Ts is given by 

 ∑
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sn TtnjDts )/2exp()(  

where the CTFS coefficients are 
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The CTFT of z(t) = x(t) × s(t) is given by 

 ∑
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(b) The spectrum of the CTFT of the sampled signal z(t) is shown in Fig. S9.10. 
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Fig S9.11: Spectrum of z(t) sampled with an alternating sign impulse train with ωs = π/Ts. 

(c) From Fig. S9.11, the original signal x(t) can be recovered from z(t) if the first replica at ω = 0 does 
not overlap with the replica at ω = ωs. In other words, ωs ≥ 4πβ. Thus the fundamental frequency of 
the sampling train is the same as the Nyquist sampling rate for x(t). 

The original signal x(t) can be recovered from z(t) by filtering z(t) with a lowpass filter specified 
below 

⎩
⎨
⎧ ω≤ω≤

=ω
.otherwise0

5.005.0
)( ssT

H  

(d) Compared with the ideal impulse train sampling, the replicas are attenuated by a factor of 
2 )cos(

sT
nΔ . ▌ 

Problem 9.13 

In terms of the sampling frequency fs, the sampled signal is given by 

∑
∞

−∞=

π−ω=ω
m

sss fmXfX )2()( . 

The output of the bandlimited channel is given by 

[ ]( ) ( 4 ) ( 6 ) ( 8 )ch s USB s s LSB sX f X f X f X fω ω π ω π ω π= ± + ± + ±  

where XUSB(ω) is the upper side band of X(ω) given by 
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and XLSB(ω) is the lower side band of X(ω) given by 
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X  

Note that  )()()( ω+ω=ω USBLSB XXX  

and X(ω) is a baseband signal with a bandwidth of B = πfs. 

The original signal X(ω) can be recovered from Xch(ω) by first multiplying with cos(6πfst) and then 
filtering the output with a lowpass filter whose transfer function is given by 

1/ 0
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s sf f
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 ▌ 
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Problem 9.14 

Given that the maximum quantization noise (Δ/2) is limited to ±p percent of the peak-to-peak value Vpp, 
therefore,  

ppVp ×=
Δ 01.0
2

, or, ppVp ×=Δ 02.0 , 

implying that 1501
02.0

)( Levels of No. +=+
×

=
pVp

V
L

pp

pp , 

and [ ] [ ] [ ]1log32.3
)2(log
1log

1loglevelper  bits of No. 50
10

10

50
1050

2 +=
+

=+≥ p
p

p . 

For p << 1, the above expression reduces to 

 [ ]p
50

10log32.3levelper  bits of No. ≥ . ▌ 

Problem 9.15 

(a) Based on the Nyquist sampling theorem, the sampling frequency fs is given by 

 80002 =≥ Bf s samples/s. 

 The maximum sampling period is given by Ts ≤ 1/8000 = 0.125ms. 

(b) Based on Problem 9.14, 

[ ] 32.3log32.3levelper  bits of No. 5
50

10 =≥ . 

 Rounding off to the nearest whole number, length of the code word = 4 bits/sample. 

(c) The data rate of PCM is 4 bits/sample × 8000 samples/s = 32 kbits/s.  ▌ 

Problem 9.16 

Sampling Rate = 2 × 103 samples/s. 

Transmission Speed = 2 × 106 bits/s. 

Maximum number of bits per sample = 
6

3

2 10 10
2 10

×
=

×
. 

Number of Levels (L) = 1010 = 1024. 

As the input amplitude range is 1±  V, the quantization step size is given by, 2 0.00195
1024

Δ = ≈ . 

The maximum distortion is given by, / 2 0.000977Δ ≈ . ▌ 

Problem 9.17 

The input-output relationship of the ideal sampling system is given by 
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 the system is a linear system. 

(ii) Time Invariance: For inputs x1(t) and x2(t) = x1(t − T), the outputs are given by 

  

( )

1 1 1

2 1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( 2)

s s
k

s s
k

x t x kT t kT y t

x t x t T x kT t kT x t T y t

δ

δ

∞

=−∞

∞
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→ − =

= − → − = − − =

∑

∑
 

 If 2 1( ) ( )x t x t T= − , then 2 2 1( ) ( ) ( ) ( ) ( )s s s s
k k

y t x kT t kT x kT T t kTδ δ
∞ ∞

=−∞ =−∞

= − = − −∑ ∑ . 

 Since 1 1 2( ) ( ) ( ) ( )s s
k

y t T x kT t T kT y tδ
∞

=−∞

− = − − ≠∑ , the system is NOT time invariant. 

(iii)  Memoryless: The system output at time st kT=  depends only on the input value at t = kTs. 
Therefore, the system is memoryless. 

(iv)  Causality: Since the system is memoryless, it is also causal. 

(v)  Stability: Assume that the input is bounded |x(t)| ≤ M. Then, the absolute output can be expressed 
as: 

( ) ( ) ( ) ( ) ( ) ( )s s s s s
k k k

y t x kT t kT x kT t kT M t kTδ δ δ
∞ ∞ ∞

=−∞ =−∞ =−∞

= − = − < −∑ ∑ ∑  

 Note that because of the CT impulse functions, |y(t)| is not strictly a bounded function. Therefore, 
the system is NOT BIBO stable. 

(vi) As discussed in chapter 9, the ( )x t  can be reconstructed from the samples, if the sampling rate is 
greater than Nyquist sampling rate. Therefore, the system is in general not invertible. However, if 
the sampling theorem is satisfied, the input can be reconstructed using the following equation: 

( )( ) sinc ( )sx t f t y t= ∗  

 where fs is the sampling frequency.  ▌ 
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Problem 9.18 

The input-output relationship of the ideal sampling system is given by 

{ } [ ]1
1 12[ ] [ ] [ ] for [ ]m m m mx k Q x k d d y k d x k d+ +→ = + = ≤ < . 

(i) Linearity: In a linear system, there is one-to-one correspondence between input and output values. 
In other words, no two different input signal values will produce the same output value. In the 
above quantization system, this is not the case. Note that all signal values in the range [dm, dm+1) 
produce the same output value, which is 0.5[dm + dm+1]. In other words, the quantization system is 
nonlinear. 

(ii) Time Invariance: From the input-output relationship of the system, it is observed that the output 
value depends on the input value (and the decision levels), and does not depend anyway on the time 
factor, i.e., when the output is calculated. Therefore, if we have an input output pair, [ ] [ ]x k y k→ , 
and if we delay [ ]x k , the output [ ]y k  will also be delayed by the same amount. Hence, the system 
is time-invariant. 

(iii) Memoryless: The system output at time k  depends only on the input value at the same time k . 
Therefore, the system is memoryless. 

(iv) Causality: Since the system is memoryless, it is also causal. 

(v) Stability: In a quantizer, the output must be equal to one of the reconstruction levels, and the 
reconstruction levels are always finite valued. Therefore, the system is BIBO stable. 

(vi) In an invertible system, there is unique correspondence between input and output values. In other 
words, no two different input signal values will produce the same output value. In the above 
quantization system, this is not the case. If the output of the system is 0.5[dm + dm+1], the input 
could be of any value in the range [dm, dm+1). So, it is not possible to uniquely determine the input 
values. In other words, the quantization system is NOT invertible.  ▌ 

Problem 9.19 

(a) The space required to store each audio sample (per channel) is 16 bits. As there are two channels,  

Space needed to represent each stereo audio sample = 32 bits = 4 bytes 

An audio clip has an average duration of 5 minutes (300 s). Therefore, 

Number of audio samples/clip = 644100 300 13.23 10× = ×  samples. 

To store an audio clip, 

Required storage space = 6 613.23 10 4 52.92 10× × = ×  bytes. 

(b) As the mp3 format reduces the file size to 1/8th of its original size, to store an mp3 audio clip, 

Required storage space = 6 652.92 10 /8 6.615 10× = ×  bytes. 

(c) Number of mp3-compressed audio clips = 
6

6
1024 10 154.8
6.615 10

×
≈

×
. ▌ 

Problem 9.20 

(a)  The space required to store each color (3 channels) pixel is 24 bits or 3 bytes. As there are 2560 × 
1920 pixels in an image, therefore, 
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Space needed to represent each image = 62560 1920 3 14.746 10× × = ×  bytes. 

(b) The image in JPEG format requires one-tenth of the uncompressed storage space. Therefore, 

Space needed to represent each image (JPEG) = 61.475 10×  bytes 

(c) The camera has 512 × 106 bytes of memory. Therefore, 

  Number of JPEG-compressed that can be stored = 
6

6
512 10 347

1.475 10
×

≈
×

. ▌ 


