Chapter 1: Introduction to Signals

Problem 1.1:

1) z[m,n,k] is a three dimensional (3D) DT signal. The independent variables are given by m, n, and &,
while z is the dependent variable. Digital video is an example of a 3D DT signal of the form z[m,n,k]. The
intensity z of the pixels in a frame is a function of the spatial coordinates (m,n) and frame number £.

i1) I(x,y,z,f) is a four dimensional (4D) CT signal. The independent variables are given by x, y, z, and ¢,
while [/ is the dependent variable. Atmospheric pressure is an example of a 4D DT signal of the form
1(x,y,z,t) if recorded continuously in time and space. The atmospheric pressure / is a function of the spatial
coordinates (x,y,z) and time ¢. I

Problem 1.2:

The CT signals can be plotted using the following MATLAB code. The CT signals are plotted in Fig.
S1.2. The students should also try plotting them by hand.

cos(3nt/4 + n/8) sin(-3nt/8 + /2)

xA(t)
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Fig S1.2: CT signals plotted for Problem 1.2.
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% MATLAB code for Problem 1.2
clf

% signal defined in part (i)
tl =-1:0.01:2 ;

x1 = cos(3*pi*tl/4+4pi/8) ;
subplot(3,2,1), plot(tl, x1),
xlabel ('t");

ylabel ('x1(t)"');
title('cos(3\pi t/4 + \pi/8)")
% signal defined in part (ii)
t2 =-1:0.01:2 ;

x2 = sin(=3*pi*t2/8+pi/2) ;
subplot (3,2,2), plot(t2, x2),
xlabel ('t");
ylabel ('x 2(t)");

title('sin(-3\pi t/8 + \pi/2)"

Q

% signal defined in part (iii)
t3 =-2:0.01:2 ;

x3 = 5*t3+ 3*exp(-t3);
subplot(3,2,3), plot(t3, x3),
xlabel ('t');

ylabel ('x 3(t)"');

title('5t + 3exp(-t)"');

% signal defined in part (iv)
td =-1:0.01:2;

x4 = sin(3*pi*td/4+pi/8);

x4 =x4.*x4;

subplot (3,2,4), plot(t4d4, x4),
xlabel ('t'");

ylabel ("x 4(

title (' (sin(

t) ")

[o)

% signal defined in part (v)
t5 =-2:0.01:3 ;

3\pi t/4+\pi/8))"2

grid on;

I4

grid on;

) ;

grid on

grid on;

')

x5 = cos(3*pi*t5/4) + sin(pi*t5/2);

subplot (3,2,5), plot(t5, x5),
xlabel ('t");
ylabel ('x 5(t)"');

grid on;

title('cos(3\pi t/4) + sin(\pi t/2)");

% signal defined in part (vi)
t6 =-2:0.01:3 ;

X6 = t6.*exp (-2*t6)

subplot (3,2,6), plot(t6, x6),
xlabel ('t");

grid on;
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Solutions

Label of Y-axis
Title

%

ylabel ('x 6(t)"');

title('t exp(-2t)");

Save the figure as a TIFF

file

o)
o

print -dtiff plot.tiff;

Problem 1.3:

<5 is shown in the following table.

<k

(i) The value of x1[k] for -5

—0.92 | 0.92

0.38

0.38

—0.92

0.92

—0.38

—0.38

0.92

—0.92

0.38

x1[A]

The sketch of x1[k] is shown in the top left figure in Fig. S1.3.

The other functions can be plotted in a similar way. However, we use MATLAB to plot the six DT. Fig.
S1.3 contains the subplots for these sequences followed by the MATLAB code used to generate them.
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Fig S1.3: DT signals for P1.3

$ MATLAB code for Problem 1.3

clf

clear figure

%

(1)

signal defined in part

%

=-5:5 ;

k1l




4 Chapter 1

x1 = cos(3*pi*kl/4+pi/8);

subplot (3,2,1), stem(kl, x1, 'filled'),

grid on;
xlabel ('
ylabel ('

X ")
title (' co

")
1[]

os (3\pi k/4 + \pi/8)"');
% signal defined in part (ii)

k2 =-10:10 ;

x2 = sin(-3*pi*k2/8+pi/2);

subplot (3,2,2), stem(k2, x2, 'filled'),

grid on;

xlabel ('k'");
ylabel ('x 2[
title('sin (-3

1) 7

\pi k/8 + \pi/2)");
% signal defined in part (iii)
k3 =-5:5 ;

x3 = 5*k3+ 3.7(-k3);

subplot(3,2,3), stem(k3, x3, 'filled'),

grid on;
xlabel('k'):;
ylabel ('x 3[k]");

title('5k + 3~{-k}");

% signal defined in part (iv)
k4 =-6:10 ;

x4 = abs(sin (3*pi*k4/4+pi/8)) ;

subplot (3,2,4), stem(k4, x4, 'filled'),

grid on;
xlabel ('k");
ylabel ('x 4[k]"');

title('|sin(3\pi k/4 + \pi/8)|");
axis([-6 10 0 11);

% signal defined in part (v)

k5 =-10:10 ;

x5 = cos(3*pi*k5/4) + sin(pi*k5/2) ;

subplot (3,2,5), stem(k5, x5, 'filled'),

grid on;
xlabel ('k'");

ylabel ('x 5[k]");
title('cos (3\pi k/4) + sin(\pi k/2)");

(o)

% signal defined in part (vi)
k6 =-10:10 ;
X6 = k6.*4.” (-abs (k6)) ;

subplot (3,2,6), stem(k6, x6, 'filled'),

grid;
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Solutions

xlabel ('k');

ylabel ('x 6[k]");
title('k 4°{-1kIl}"):

Problem 1.4:

Because x,(¢) has a fundamental period of 7;, and x,(¢) has a fundamental period of 7,,
x(O)=x¢+T) and x,(1)=x,(t+T,).
Evaluating the g(¢+nT;), we obtain,
gt+nl))=ax,(t+nT)+bx,(t+nT) =ax,(t + nl})+ bx,(t + mT,) = ax,(¢) + bx, () = g(?),

which proves that g(¢) is periodic with period T, .

Problem 1.5:
(1) All CT sinusoidal signals are periodic. The function x1(#) can be simplified as follows:
x1(t) = sin (=57t/8+ z/2) = sin (/2 -571/8) = cos (571 /8) = cos (w1 ), w, =57 /8.

Therefore, x1(¢) is periodic with fundamental period

— 2z — 2z _ 16

1~ w,  57/8  5°
(i) x2(¢)=|sin(-57¢/8+ 7/2)|=|cos(5xt/8)|.
The signal x2(z + T) can be simplified as follows:
x2(t+T) =|cos(5rt/8+ 57T /8)
=|cos(571/8)|=x2(t) if 5xT/8=rmorif T=8/5
In other words, x2(¢) is periodic with 7, = 8/5.
(iii) Looking at the individual terms

x3(t) =sin(671/7) + 2 cos(3t/5)

periodic periodic

— 2z _7 —2x _10x
Tif(w 773 T273'57 3

Because L_ 73 _ 7 # rational number » X;(¢) is not a periodic signal.

T, 10z/3 10z

(iv) All CT complex exponentials are periodic.
5

Therefore x4(¢) = exp(j(5¢ + 7/4)) is also periodic with fundamental period 7, = 2.

(v) Looking at the individual terms
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x5(t) = exp(j 371/8) + exp(7t/86)

periodic not periodic

—_2z __16
7'1_3”/8_3

We observe that the second term is not periodic. Therefore, the overall function x5(¢) is not periodic.

(vi) The function x6(¢) can be simplified as follows
x6(1) = 2 cos(42) *sin” (18) = 2 cos (42) x (1 cos (%))

—cos(4”’) cos(“”’)cos(”’)—cos(“m I:COS 4 _%)t+cos(4?ﬁ+%)t]
= cos(45*) ~ fcos (253 1) —  cos (2550 1)
%,—/
perlodlc periodic periodic
=3 =55 =i

x6(f) will be periodic if all possible combinations 7'/ T», Ty / T3, and T, / T; are rational numbers.

Since

T
1 _ 5., 127-160 _ 127-160 _ 1 __ 40 :
=5 X 550 = 28 =1 — 27 # rational number,
12

x6(¢) is not a periodic signal.

(vil) x7(t)= 1, +sin20z +cos(301 + 7 /3)

constant Pe”"’dw periodic
L=35=7% h=4=Z
Since
T o153 :
—- = {5 X2 =+ =rational number,
Vid 2
T,
x7(¢) is periodic. The fundamental period of x7(¢) is 27, =37, =% . I

Problem 1.6:

() xI[k]=5x (=) =5¢/™

For the complex exponential term, 2n/w, = 2, which is a rational number. Hence, x1[k] is periodic
with a period of K| = 2mm/wy = 2 by setting m = 1.

(i1) Considering the two terms separately in x2[£],

x2[k]1=exp(j(77k/4))+exp(j(3k/4))

2x_ 27 _8_pati 2z_2x 87
o ‘—7”./4—7—fatmnal, =343 i'rattonal
periodic signal with K=8 aperiodic signal

we note that the 2™ complex exponential term exp(j(34/4)) is not periodic. Signal x2[k] is, therefore,
not periodic.

(iii) Considering the two terms separately in x3[k],

x3[k]=exp(j (77k/4))+exp(j (37k/4))

27r 27r _8_ 2r__ 2x _8_ .
g=5=rational S =vrr=3=rational,

perlodlc 51gnal with K=8 periodic signal with K=8
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we note that both complex exponential terms are periodic with the same period K = 8. Signal x3[£] is,
therefore, periodic with an overall period of 8.

(iv) Considering the two terms separately in x4[k],
x4[k]=sin(37k/8) + cos(637k/64)

27 27 _16 _sq4i, 2x__2x 128 _ .4
=3 8737ratzonal, = ara=6 =rational,

periodic”signal with K=16  periodic signal with K=128

we note that both complex exponential terms are periodic with two different period of 16 and 128.
Since the ratio of the two periods is 1/8, a rational number, therefore, x4[k] is a periodic signal. The
fundamental period is given by 16n = 128m, which equals 128 by setting n =8 and m = 1.

(v) Considering the two terms separately in x5[k],

x5[k] =exp(j(77rk/4)) +cos(47k/T+ 1)

27 27 8yt 27 27 _T i
3—7”/4—7—ratmnal, TerTa rational ,

Q B .
periodic signal with K=8 periodic signal with K=7

we note that both complex exponential terms are periodic with two different period of 8 and 7. Since
the ratio of the two periods is 8/7, a rational number, therefore, x5[k] is a periodic signal. The
fundamental period is given by 8n = 7m, which equals 56 by setting n =7 and m = 8.

(vi) Considering the two terms separately in x6[k],
x6[k] = sin(3nk /8)cos(63mk /64) = Lsin(87mk/64) — Lsin(39nk/64)

%/—/ %/—J
2n/Q,=128/87=>rational  2n/Q,=128/39=>rationa/
periodic signal with K=128  periodic signal with K=128

we note that both complex exponential terms are periodic with the same period K = 128. Signal x6[k]
is, therefore, periodic with an overall period of 128.

Problem 1.7:

(1) xI(z) = cos(nt)sin(37wt) = %sin(4nt) + %sin(2nt)

perioidic withTy=1/2  perioidic with T, =1

We note that x1(t) is periodic with the fundamental period 7 = 1. Since periodic signals are always
power signals, x1(¢) is a power signal.

The total energy E,; in x1(¢) is infinite.

Based on Problem 1.10, the average power in a sinusoidal signal x(¢) = A, sin(w;z + ¢) + A4, sin(wyt +
0,) is given by (4,)*/2 + (4,)*/2 if ®; # ®,. The average power in x1() is, therefore, given by 1/8 + 1/8
=1/4.

(ii) For the CT signal x2(¢)=exp(-2¢),

the total energy and average power are given by

Total Energy: E,= I eVdt = —%[e_‘"} = %6400 =00

—
Il
—_
=
8
o0
gl
<
N
N
|
N
N
I._I

T
Average Power: P,, = lim L.[ “Hdt = lim L[ew
verage Powe o = lim o7 Je dt Jim o7 [

T T-ow
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Applying the L’Hopital’s rule

P,= hm [4e4T +4e 4T] .

Since the signal has infinite energy and infinite power, the signal is neither an energy signal nor a
power signal.

(iii) Since x3(¢) is a complex signal, the total energy and average power are given by

Energy: E 5= He_jzt dt = Ildt =0
Power: P _TIE}:QZT ” e dt_TlEBo_ J-ldtzz lim —[T (-1)]=1.

The signal x3(¢) is a power signal.

(iv) The energy in x4(¢) is finite and given by

E.= je—”u(t)dt =[f_;‘)]: =—1o-1]=1

The average power is zero and x4(¢) is an energy signal.

(v) Since x5(¢) is a finite duration signal with finite magnitude, it must be an energy signal. The total
energy in x5(¢) is given by

3 3
= J' cos’(3t)dt :%J. [1 + cos(67zt)] dt = %I:t + #Sil’1(67rt):|i3 =
-3 -3

The signal x5(¢) has finite (non-zero) energy, and hence is an energy signal. Average power P,s in
x5(¢) is zero.

(vi) Since x6(¢) is a finite duration signal with finite magnitude, it must be an energy signal. The total
energy in x6(%) is given by

E., jtdt+j(4—t) dr =%

0

ECE) !
3

:I_&
=1

Since x6(¢) has finite energy, it is an energy signal. Average power P, in x6(%) is zero. I

-3-[o-

W oo

2

Problem 1.8:

(i) xI[k]=cos(nk/4)sin(3nk /8) = Lsin(5nk/8) + Lsin(mk/8)

perioidic with Ny=16  perioidic with N,=16

We note that x1[k] is periodic with an overall period of Ny = 16. Since periodic signals are always
power signals, x1[k] is a power signal. Based on Problem 1.10, the average power in a sinusoidal
sequence x[k] = A; sin(wk + ¢;) + 4, sin(mk + @) is given by (41)/2 + (4,)*/2 if ©; # ©,. the
average power is given by P, = 1/4 + 1/4 = 1/2. The total energy E,; in x1[¢] is infinite.
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(i1) Since x2[k] is a finite duration signal of length 11 with finite magnitude, it must be an energy signal.
The total energy in x2[k] is calculated as follows.

0 0
Ep= Y cos’(3uk/16) = Y oot/ Z 1 ZCOS@“’”S)

k=-10 k7710 k=-10 k=-10
217 Zej,’mk/S +1 z —j3nk/8
k=-10 k=-10

Using the GP series, we obtain

0
Zej3nk/8 _¢

3n/8
k=10 (1-e”™%)

—j30n/8(1_ej33n/8)

=0.3244 + j0.1344

0TI (1 _ i3I8y

0
and Ze—J3nk/8 —
k=-10

The total energy is, therefore, given by £,,= 5.5 + 0.1622 = 5.6622.

_e ) =0.3244-0.1344 .

The average power P,, in x2[k] is zero.

i) [x3[k] =|(-D*|=1.

We note that the signal x3[k] is a power signal with an average power of 1. The total energy E,; in
x3[k] is infinite.

@) [xa[k] = |exp(j(zk/2 + 7/8)) =

We note that the signal x4[k] is a power signal with an average power of 1. The total energy E,4 in
x4[k] is infinite.

(v) Since x5[k] is a finite duration signal of length 16 with finite magnitude, it must be an energy signal.
The total energy in x5[k] is given by

Etszi Zj: ( )+5 2052.

k=0

The average power P,s in x5[k] is zero. I

Problem 1.9:

The CT signal x(¢) = A4 sin(myt + 0) is periodic with the fundamental period 7, = 27/w. Its average power
is calculated as follows:

j (o) de = jsm (@t + O)dt = 4 j [1-cos(2amy +26)]dr [sin® 0 =1 {1-cos(20)} |

T,
- £ j Achos(zwot+29)dt_ [T, - 0]~ 45 x 55 [sin2ay + 20) |7
0

- ZA;O x T, — ><[sm(2w0T +20) —sin(20)] = 4 - ZTO x [sin(47 +26) - sin(20)] [ T,=2, @, = 27z]

@

:ATZ 4/1 [sm(2¢9) sin(20)] =4,
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which proves the result. Note that the power of a sinusoid does not depend on its initial phase 6. I

Problem 1.10:

The CT signal y(¢) = A, sin(wt + ¢1) + 4, sin(wyf + ¢,) is the sum of two sinusoids and may not be always
periodic. It is periodic only when w;/m; is a rational number. To consider the general case, where y(¢) is
not necessarily periodic, we will use the general formula to evaluate the power in the signal.

T T
. 2 . . . 2
P, = ;13010% j v dt = ;1230% J. |4 sin(,t + 4,) + A, sin(w,t + ¢,)| dt

= hm 57 I A sin’ (ot + ¢,)dt + llm N7 I A sin®(wyt + ¢, )dt + 11m 2’4*’12 j sin(m,t + ¢,) sin(w,t + ¢, )t

-T
=P =P, =P,

The right hand side of the above equation includes three integrals. The first integral P, represents the
power of a periodic signal A, sin(w¢ + ¢;). Based on Problem 1.9, the average power P, is given by
(4,)*/2. Similarly, the secong integral P, = (4,)*/2. The third integral is evaluated by substituting

2sin(of + ¢;) sin(of + ;) = cos(®f + ¢; + 0yt + ¢y ) —cos(wf + ¢ — w2t — )

to get
T T
Py = lim 22 [ cos[(e; +0,)f + (&) + )l + lim 2 [ cosf(@, — )+ (4 — )]s
T 2T i T—>w 2T i

Case ®; # o,: In such a case, both integrals result in finite values giving

4,4,

2T

P = lim
T—o

T—w©

Case ®; = m,: In such a case, we obtain

P, =lim 47 4% x (finite value # 1) + lim 47+ A% j cos[(¢ — @,)]dt

=0+ hrg A4 02T cos[(4 —@,)] = A A4, cos[(¢ —¢,)].

Combining the above results, we obtain
rav] a%a
A712+A722+ A4, cos(d—¢) o=,
Problem 1.11:
The power of the CT signal x(¢) is calculated as follows:

=[x(0)f =x(0)x"(t)=(De™" )(D'e™ )= DD" =| D[,

which proves the result. I

Problem 1.12
The average power of the CT signal x(¢) is given by



Solutions

_hm 0 x(t) a’t—hm T x(t)x" (t)dt—hm N D,e’® 3 D e /" |dt
[oramt ] [ (Soe o)

—0.5T —0.5T —0.57 \ n=l1 m=1
0.5T i
j(w,—o,)t
D D dt
—0.57 n=1 m=1

Changing the order of the integral and summation, we obtain

N N 0.5T
P, = ZZD,,D:{ lim L j ef“”n“”m)’dtJ

T—ow
m=1n=1 —0.5T

The above integral has two different sets of values for o, = ®,, and ®, # @,

05T 0.5T
Case I (0, = m,): lim % J-ef(‘”"_mm)tdt hm J-l dt = lim —>< T=1
T—ow Tow ! T—w
—0.5T —0.5T
Case Il (o, # ®,):
0.5T
limL | &/ “dt=1lim L [ i ]0'” = lim 5172 /sin(0.5(w, - @, )T)]
T—o r - T%oc J(@,~0,) | os51 - Tow Jj(o,~o,)T J m
-0.5T
=lim T X [ﬁmte Value] 0
T—o0 07
Combining the two cases, we obtain,
N N . N N . N 5
Px:ZZDan(l)+ZZDan(O): |Dm >
m=1 n=1 m=1 n=1 m=1
n=m n+m

which proves the result.
Problem 1.13:

Note that the energy of the signal in one period (7= 1) is given by

E, f x(0f dt = Z[ | IX(t)Izdthi( [ ldt]:i[z-z'"_z-zm—l}

m=0\ p-2m-1 g-2m-1 m=0

= (1/4)"-0.5>.(1/4)" =0.5) (1/4)" =0.5x 1 ! :%,
m=0 m=0

—1
m=0 4

Therefore, the average power is given by, P =2/3 (as period=1).

Problem 1.14:

(1) x1(t) = 2sin(27rt)[2 + 005(4”’)]

=even

=even

=odd

11
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We note that x1(z) is a product of an odd term with an even term. Overall, x1(?) is, therefore, an odd
function.

(ii) x2(1)= ﬁ +cos(3t)

=even
=even

=even

We note that x2(¢) is a sum of two even terms. Overall, x2(¢) is, therefore, an even function.

(D) x3(7)= ¢ sin(3nr)

#even,odd
odd

#even,odd

We note that x3(¢) is a product of a neither-even-nor-odd term with an odd term. Overall, x3(¢) is,
therefore, a neither-even-nor-odd function.

To evaluate the even and off components of x3(¢), we evaluate
x3(~t) = ¢ sin(=3zt) = —¢” sin (371).
The even and odd components are given by
Even Component:
x3,,,(0) =4[ x3(¢) + x3(=t) | =4[ ¢ sin(37¢) - " sin(37¢) | = 4 (™ — " )sin (37¢).
0Odd Component:
x3,0(0) =4[ x3(t) = x3(~t) ] =4[ ™ sin(37¢) + ¢ sin (37¢) | = 4 (™ + " )sin (37¢).

The even and odd components of x3(¢) are shown in Fig. S1.14.1.

x3(t) = exp(-3t) x sin(3nt)

time (t)
x3(-t) = -exp(3t) x sin(3xt)

time (t)

x3 = 0.5( + &%) sin(3rt)

even(l)

x3(t): Even Component

time (t)
X3, 4(t) = 0.5(3 + e sin(3r 1)

x3(t): Odd Component

time (t)
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Fig. S1.14.1: CT functions x3(?), its reflection x3(—¢), and its even and odd components
for Problem 1.14(iii). Only the range between (-1 < ¢ < 1) is plotted.

(V) xa(e)= ¢ sin(5)

We note that x4(7) is a product of two odd terms. Overall, x4(z) is, therefore, an even function.

M) w5()= 1 uly)

- —_
=odd #even,odd

#even,odd

We note that x5(7) is a product of an odd term with a neither-even-nor-odd term. Overall, x5(¢) is,
therefore, a neither-even-nor-odd function.

To evaluate the even and off components of x5(¢), we evaluate
x5(—t) =—tu(-t).
The even and odd components of x5(¢) are given by
Even Component: X5p0n (1) = %[xS(t) + x5(—t)] = %tu(t) — %tu(—t) = %|t| .
Odd Component: x5 500 () = L [x5(t) = x5(-0)|= L u(t) + Ltu(-1) = L+

The even and odd components for x5(t) are plotted in Fig. S1.14.2 within the range (-1 <7< 1).
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time (t)

X5 = 0.5x(1]

even(t)

x5(t): Even Component

x5(t): Odd Component

time (t)

Fig. S1.14.2: CT functions x5(¢), its reflection x5(—¢), and its even and odd components for
Problem 1.14(v). Only the range between (—1 < ¢ < 1) is plotted.

(vi) The function x6(t) is a neither-even-nor-odd function.

To evaluate the even and off components of x6(¢), we evaluate

-3t 0<-—<L2 =3t -2<t<0

Y6(—t) = 2S—t£4: 6 —4<t<-2
3(t+6) 4<—t<6 |3(t+6) —6Zt<-4

0 elsewhere 0 elsewhere.

The even and odd components of x6(¢) are given by

Even Component:



X6C’V€H (t) = %

0Odd Component:

X60dd (t) = %

Solutions

3(t+6) —-6<t<-4
6 —4<t<-2

3t 0<t<2 =3t —2<t<0
-3¢ -2<¢t<0

6 2<t<4 6 —4<t<2
+ =1 3t 0<r<2

3(-t+6) 4<t<6 3(t+6) —6<t<-4
6 2<t<4

0 elsewhere 0 elsewhere
3(-t+6) 4<t<6
0 elsewhere.
=3(t+6) —-6<r<-4
—6 —4<t<-2

3t 0<r<2 -3¢ —2<¢t<0
3¢ -2<¢t<0

6 2<t<4 6 —4<t<2
- =2 3¢ 0<¢t<L2

3(-t+6) 4<t<6 3(t+6) —-6<t<-4
6 2<t<4

0 elsewhere 0 elsewhere
3(-t+6) 4<t<L6
0 elsewhere.

The even and odd components for x6(t) are plotted in Fig. S1.14.3 within the range (-6 < < 6).

X6(t)
° \
R et e [ [t ety St [ e e
22— — — — R l— — — — — - — — = e S [ - — — — — e [
= | | | | | | | | | | |
g 0 T T T T T ===~ 1T T mT T~ [ E i
2 - — = = L - — — — — - — — — | | - — — — — |
| | | | | | | | | | |
A= T T a7 T T T [ - -~ L T T T - -~ L e
5 | | | | | | | | | | |
6 5 4 3 2 B 0 1 2 3 4 5 6
time (t)
X6()
6
I I I I I I I I I I
4-——-—-- D0t Bt |—=——-- [t il sttty Sttt |- ———= ———-- Lttt s B
ol T (B [ T~ 1 [ [ S
= | | | | | | | | | | |
oA e Etli Eli (A [ T T T T T T T T
Y S Lo [ [ Lo [, [ Lot
| | | | | | | | | | |
A= ToTT oI [t [ TTT T - [ r--- T - - -
5 | | | | | | | | | | |
6 5 4 3 2 1 1 2 3 4 5 6
even!
= T
5
c |
S |
g | | | |
© I | I + + -
Q. | | | ) | | |
w | | | | | | | | | | |
EA4r---- L (i [ i (i [ [t Bttty B |
L 5 | | | | | | | | | | |
5 5 4 3 2 1 0 1 2 3 4 5 6
time (t)
Xogq)
6 \ \ \ \ \ \ \ \ \
44— — — - e e - = — - ———— e — = — |- — — = — - - [
| | | |

x6(t): Odd Component
o

4

I
|
| |
| | | |
= - —t—-——=—4 === =- === ===t - = ==t == = - == === I===== Fr-—t === ===
o - o The— - - _ =t _ 1 __ |l _ - L1 ___1____
| | | | | | |
A= L [ | L . [ L e
6 | | | 1 1 1 1 1 1 | 1
-6 -5 -4 3 2 -1 0 1 2 3 4 5 6
time (t)

Fig. S1.14.3: CT functions x6(?), its reflection x6(—¢), and its even and odd components

for Problem 1.14(vi). Only the range between (-6 < ¢ < 6) is plotted.
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Problem 1.15:
(1) x1[k]=sin(4k)+cos(2zk/3)
H/_/ %K—J

=odd =even

We note that the DT signal x1[k] is a sum of an odd term with an even term. Overall, x1[k] is,
therefore, a neither-even-nor-odd function.

The even and odd components of x1[k] are given by

Even component: xl,, [k]= %{xl[k] + xl[—k]} =cos(2zk/3).
Odd component: xl ,[k]= %{xl[k] - xl[—k]} = sin(4k).

The even and odd components are plotted in Fig. S1.15.1 followed by the Matlab code used to
generate the two components.
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Fig. S1.15.1: Odd and Even components of x1[k] in Problem 1.15(i) for (=20 < £ < 20).

% MATLAB code for Problem 1.15(i)

Q

% clear figure

clf
% signal defined in part (1)
kl =-20:20;

x1 = sin(4*kl) + cos(2*pi*kl/3);
subplot (3,1,1), stem(kl, x1, 'filled'), grid on

xlabel ('k"); % Label of X-axis
ylabel ("x1[k] ") % Label of Y-axis

axis([-20, 20, -2, 2]1) ;
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%

kl =-20:20;

xl even = cos (2*pi*kl/3);

subplot(3,1,2), stem(kl, x1 even, 'filled'), grid on
xlabel ('k"); % Label of X-axis
ylabel ('x1[k]: Even Component') % Label of Y-axis

axis([-20, 20, -2, 21)

% signal defined in part (i)
x1l odd = sin(4*kl);
subplot(3,1,3), stem(kl, x1 odd, 'filled'), grid on

xlabel ('k"); % Label of X-axis

ylabel ('x1[k]: Odd Component ') % Label of Y-axis

axis([-20, 20, -2, 21) ;

print -dtiff plot.tiff ; % Save the figure as a TIFF file

(i) x2[k]=sin(7k/3000)+ cos(27k/3)

=odd =even

We note that x2[k] is the sum of an even with an odd component. Therefore, the DT signal is
neither even nor odd.

The even and odd components of x2[k] are given by

Even component: x2,  [k]= %{x2[k] + x2[—k]} =cos(2xzk/3).
Odd component: x2_,[k]= %{xZ[k] - x2[—k]} =sin(zk /3000).

The even and odd components are plotted in Fig. S1.15.2. Note that the odd component is close to 0
for the plotted values of k. This is because sin(nk/3000) =~ sin(O) =0 for (-20 < £ <20).
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Fig. S1.15.2: Odd and Even components of x2[k] in Problem 1.15(ii) for (-20 < k£ < 20).

(iii)

x3[k]

=exp(j7xk/4)+cos(4xk/T+rn)=cos(Txk/4)+ jsin(7xk/4)—cos(4xk/T)
=cos(7rk/4)—cos(drxk/T)+ jsin(Tzk/4)

=even =odd

Therefore, the DT signal is neither even nor odd.

The even and odd components of x3[4] are given by

Even component: x3

k]=3{x3[k]+ x3[—k]} = cos(Tzk / 4) — cos(4rk / 7).

even [

Odd component: x3,,,lk]= %{xS[k] - x3[—k]} = jsin(7zk/4).

The even and odd components are plotted in Fig. S1.15.3. Since x3[k] is complex, we plot the real
and imaginary components of x3[k] separately. Although the real component of x3[k] is even and
the imaginary component is odd, x3[k] is neither-even-nor-odd. This is the reason why the even
component of x3[k] is the same as its real component and the odd component is the same as the

imaginary component.

x3[k]: Even Component x3[K]: Imaginary Component x3[K]: Real Component

x3[k]: Odd Component

PSRN F . AN

X3 o[kl = cos(7nk/4)-cos(4nk/7)

1,hﬁ ,ITiﬂi.H*ﬂ.,

- - [ [ [ B T~ T~ [ I

I | I I I I I I
Ty ™ ® g [niaiibaie. Sl 1~ " "o ® o h

I I I
[

I I I I

) S R [P P -2 -2 - - [FEE . R QO [E

I I I I I I I I
2 | | 1 | 1 | 1 |
-20 -15 10 -5 0 5 10 15 20

k

Fig. S1.15.3: Odd and Even components of x3[k] in Problem 1.15(iii) for (-20 < k < 20).

iv) x4[k]=sin(37k/8)cos(637k/64)

=odd =even

=odd
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We note that x4[k] is a product of an odd function with an even function. Therefore, the DT signal
x4[k] is odd.

Computing the time reversed form of

-1F k>0

we obtain xS[—k] = {(_1)k ~k=20_ {(-Dk k<0 { 0 k>0

0 —k<0 0 k>0 |(=1) k<0

Since x5[k] # £ x5[—k], the DT signal x5[k] is neither-even-nor-odd. The even and odd components of
x5[k] are given by

-D" k<0 | 0
Even component: x5, [k]= %{xS[k] 4 xS[—k]} _1 i—0 - =
L= k=0
(-D)* k>0
D% k<0
Odd component: X5 oqa[K] =1 {xS[k]1 = x5[-k1}=3 0 k=0
-D*  k>o.
The even and odd components are plotted in Fig. S1.15.4. I
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, el

§:°TTTTTTT TT 1 TTT I T LT

777777777777777777777777777777777777777777777777777777777777777
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Fig. S1.15.4: Odd and Even components of x5[k] in Problem 1.15(v) for (20 < k£ < 20).

Problem 1.16:

(a) Assume x(¢) to be an even function for 7= T,. Using x(¢) = x(—t), we get

2T, 2nT, 2T,
3sm(2;U ’; ) 3s1n( 2;“ ’; )——3s1n(2m+ L )

x(1) x(=t)

or, 3s1n(2;” MT) 3 m(zm + 2 4 om+ l)n)

The above expression implies that

2nT, 2nT
——=c=—=+(C2m+Dnr,
or, T, = 5(2Zz+1)
withm e Z'.

(b) Assume x(¢) to be an odd function for 7= T,. Using x(¢) = —x(—f), we obtain

. 2 2 2
3s1n(%——’f”):—3s1n( 2mt ’;T) 3s1n(2’”+ ”T)

x(1) x(=1)

. 27T, 27T,
or, 351n(%— ’;) 3Sll’l(2m+ % —2m7r).

The above expression implies that

— Sm
or, 1, =-r.

withm e Z'.

Problem 1.17:

(a) Neither-even-nor-odd; aperiodic; and energy signal.
Energy = 5% x (0.5) + 5* x (0.5) = 25 and Power = 0.

(b) Odd signal; periodic signal with period 1; and power signal.
Power = [2.5% x (0.5) + 2.5% x (0.5)]/1 = 6.25 and Energy = .

(c) Neither-even-nor-odd; aperiodic; and energy signal.

Energy: E,= T(e—l.mu( t))z di = T€_3ldt _ [_ e: T _

—0 0

Power = 0.

(d) Odd signal; periodic signal with period 3; and power signal.
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1G-25 1

25
3 35/3) |, 15

[25°-(-257 ==

1 ¢3
Power: LN e P 2 g
P 3[0(3t 2.5)dt =

Energy = . I

Problem 1.18:

The waveforms of the signals are shown in Fig. S1.18, where the individual components are plotted in the
top subplot followed by the overall signal.

3
2 2u(t - 3)
1 u(f)
: > !
-2 710 -84, 48 1218 —u(t-9)
-2 s —21(E = 6)
-3
3 | x1@
2
1
» !

>

-12 -10 -8 -4 0 4 8 12 16
(i) x1(¢)=u(t)+2u(t—3)—2u(t—6)—u(r-9)

sin(nt)

3

2
rect(t/6)e—w0 1
rect(t/4),\§ ..........
rect(t/2) ~—1>_i

— i .

-8 -6 -4 -2 0 2 4 6 8

3| x3(0

2

> ¢

8 6 4 -2 0 2 4 6 8
(iii) x3(¢)=rect(7/6)+ rect(/4)+rect(/2)
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Figure S1.18: Waveforms for CT signals specified in Problem 1.18 (i) — (iii).

0

v
~

8 -6 4 2 o 24 6 3

) e 2u(t—4)

* -2)
31 x40

>

8 -6 4 2 0 2 4 6 8
(iv) x4 (1) = r(t)— r(t —2) - 2u(t - 4)

14 e u(f)
o, e u(l)
> t
-2 -1 0 1 2
1 x5(2)
» t
-2 -1 0 1 2
V) xS(t) = (exp(—t) - exp(—St))u(t)
3 x6(2)
2
3sgn(?) - rect(t/4)
281+ 1)/I 1
> t
-8 -6 4 - 0 . 214 6 8
-38(t-3)
-3

(Vi) x6(r)=3sgn(t)- rect(t/4)+25(t +1)—35(t - 3)

Figure S1.18 (contd.): Waveforms for CT signals specified in Problem 1.18 (iv) — (vi).

Problem 1.19:
(i)  Expressing e/2M*3 = &3 (cos(2nr) + jsin(2mr) )

gives the real and imaginary components as
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Xy () = € cos(2nt) and  xljp,, () = € sin(2nt) .

The real and imaginary components are plotted separately in Fig. S1.19.1, where we note that the
fundamental period is 1 s. The fundamental frequency is, therefore, given by fo = 1 Hz.

x1(f) = exp(j2 mt +3)

40

)
S

Real Component
(=

>
>

|
=

L

I
[S]
L
n

|
n
o

o
n

n

[N

'S
S

20

Imaginary Component
o

-2 -1.5 -1 -0.5 0 0.5 1 15 2
time (t)

Fig. S1.19.1: Real and imaginary components of x1(f) = e’ i3

e/2mH3t _ e3t(cos(27'ct) + jsin(27tt))

(i)  Expressing
gives the real and imaginary components as
X2 () =€ cos(2nt) and  x2i,. (1) =€ sin(2nr).

The real and imaginary components are plotted separately in Fig. S1.19.2, where we note that x2(¢)
is not periodic but is instead a rising exponential modulated with a sine wave.

600

N
o
o

Real Component
N
o 8

N}
=1
3

time (t)

100

£
O -100
g —200 /
2

-300

-1 0.5 0 0.5 1 15 2
time (t)
Fig. $1.19.2: Real and imaginary components of x2(r) = e/?™*" .
(iii) Expressing e T2 = cos(31 — 21) + jsin(3t — 2mt)

gives the real and imaginary components as

X31eal(t) =c0s(3t —27t) and X3y, () =sin(37 —2nz) .

The real and imaginary components are plotted separately in Fig. S1.19.1.The fundamental
frequency is, therefore, given by fo = 1 — 3/(2n) Hz.
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x3(f) = exp(—2nt + 3f)

Real Component
o

time (1)

Imaginary Component
o

-1 -0.5 0 0.5 1 15 2
time (t)

Fig. S1.19.3: Real and imaginary components of x3(¢) = o2

(iv) — (vi) The remaining three signals are all sinusoidal signals. x4(¢) has the fundamental period of 1s,
x5(#) has the fundamental period of 2 s, and x6(¢) has the fundamental period of 2 s. The fundamental
frequencies are 1, 1/2, and 1/2 Hz for x4(¢), x5(¢), and x6(%), respectively. The three waveforms are plotted
in Fig. $1.19.4. |

Xx4(t) = cos(2nt + 3)

1

x5(t)
o

X6(t)

Fig. S1.19.4: Signals x4(?), x5(¢), and x6(¢) for Problem 1.19.
Problem 1.20:
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2059 | 6305

Solutions

665

211

65

19

ulk] + u[k-3] -u[k-5] - u[k-7]

0
0

(i) x1[K]

Table S1.20: Values of x1[k] and x3[k] for —3 <k <8 in Problem 1.20

x1[K] | 0
X3[k] | 0

The value of x1[k] and x3[k] for —-3<k <8 is shown in Table. The corresponding waveforms for the
above signals are shown in Fig. S1.20. The waveforms for the remaining signals are plotted in a similar

way, and are shown in Fig. S1.20.
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Figure S1.20: Waveforms for DT signals specified in Problem 1.20.

Program 1.20. MATLAB Program for generating subplots (i) and (iii)

% MATLAB code for Problem 1.20 (i) and (iii)

(o)

% clear figure

clf
% signal defined in part (i)
kl =-2:8 ;

xl1 = [001 1122110 0];

subplot(2,1,1), stem(kl, x1, 'filled'), grid on
xlabel ('k'") Label of X-axis
yvlabel ("x1[k]") Label of Y-axis
axis([-2, 8, 0, 31) ;

o°

o°

Q

% signal defined in part (iii)

k3 = -2:8 ;

x3 = (3.7k3-2.7k3).*(k3>=0) ;

subplot(2,1,2), stem(k3, x3, 'filled'), grid on

xlabel ('k'") Label of X-axis
ylabel ('x3[k]") Label of Y-axis
axis([-2, 8, 0, 7000]) ;

o°

o°

o°

print -dtiff plot.tiff ; Save the figure as a TIFF file

Problem 1.21:

(i) Using the impulse function property f(¢) 6(¢ — to) = f(ty) O(¢ — ty), we obtain

5+2(1)+1°

2t + 12 21 +12
M M d(t-1)= m( ~)=— 8(t—1).

o —1)=
7+¢2 + % 7+ +1*

t=1

(i1) Using the impulse function property f{(¢) o(¢ — o) = f{to) 6(t — t;), we obtain

sin(?) 5(0) = 1 sin(?)

1
o(t)y=—
2t 2 ©

t=0

lim Sm(l) 5()=18(0)

=1
where the L’Hopital’s rule is applied to evaluate the value of sin(¢)/¢ at t = 0.
(ii1) Using the impulse function property f{¢) 6(¢ — t,) = f(ty) 6(¢ — to), we obtain

0= =22 505 = 5(0-5). 1

| ( _ )_ w1
w2+25 w=5 @*+2| =5

Problem 1.22:

) [(t=1)5(c=5)de = [ 45(1—5)dr =4[ 6(1-5)ar =4.
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6 6 6
(ii) [(t-1)8(t-5)dt=[45(t=5)dt=4] 5(t-5)dt=4.
(i) [(1=1)8(c=5)di = [45(e=5)de = 4 6 (- 5)de 0.

6 6 6
(iv) T(2t/3—5)5(3t/4—5/6)dt:T( t-5)5(3(t-12))d gf dt

which simplifies to
=%T[%X%—5J5(f—%)df=%75(f—%)df=%-

(v) T exp(t—1)sin (7 (¢+5)/4)5(1-t)dt = T exp(¢—1)sin (7 (¢+5)/4)5(t - )dt

which simplifies to

= T exp(0)sin(76/4)5(t —1)dt =sin(76/4) ]E 8(t—1)dt =sin(37/2) = -

t=—1

(Vi) [ [sin(3m1/4)+ > 8 (~(e+1))de = [ [sin(3mt/4)+ |5 (e 1)de = [sin(3z1/4) + |

-0

which simplifies to
1

=sin(-37/4)+¢ =€’ —sin(3z/4)=¢’ -+.

(vii) j [u(t=6)—u(t—10)sin(371/4)5 (¢ =5)dt =[u(t = 6)—u(t—10)]sin(371/4)| _

which s;mpliﬁes to
=[u(5-6)—u(5-10)]sin(375/4) =[0-0]sin(157/4) =

(viii) By noting that only the impulses located at ¢t =20 (m =—-4),t=—-15(m=-3),t=-10(m=-2), t =
—S(m=-1),t=0m=0),t=5m=1),t=10(m=2),¢t=15 (m = 3), and ¢t = 20 (m = 4) lie within

the integration range of (—21 <z <21), the integral reduces to

_ T [ ité(z—Sm)Jdt - zf [ itS(t—Sm)jdt.

_21\m=—00 —_21\m=—4

Changing the order of summation and integration, we obtain

4 21
=3 jté(r Sm)dt = ZSm 5(-4-3-2-1+0+1+2+3+4)=0 |
m=—4_21 m=—4

Problem 1.23:

(1)  Equation 1.43(a) is satisfied as



28 Chapter 1

—*&— =lim - =0 provided ¢ # 0.

m
e>0 T +e7) g0

o8] 0
Integrating Igl_r)r(l) pE )dt—lgr(l) e +S) ——[tan (S)F

confirming that Equation (1.43b) is also satisfied.

(i1))  Equation 1.43(a) is satisfied as

m — 2?28+ - = lim 4sz2 =0 provided # 0.
g0 4T € e—04r

0 0
Integratin I = hm—dt = lim 2¢
g g e—0 4n 22 £—>0 4%t +¢
—00 —00
o0 o0
Substituting x = 2nz gives [ = lim | =24 = L]jm 2y =1
e—0 J X +e? 2 e o ) x4e
—0o0 —o0

confirming that Equation (1.43Db) is also satisfied.
(iii) Equation 1.43(a) is satisfied as

lim —sm(st) O provided ¢ # 0.
e—>0 "

0

0 0
Integrating I= J-limisin(st)dt = lim J-Mdt =lim £ sinc(g—t)dt.
g0 ™ >0 ™ e—>07" T
—0o0

Using the CTFT pairs discussed in Chapter 5, it can be shown that (see below)

T 1
i t)dt =—.
J;SIHC(O' ) .
From Table 5.2, we know: rect =2L J"ESII’l c( e/ dw.

—00

0
Substituting ¢ = 0 in both side, we obtain ZL jrsm clx “” dco =1,

which implies that Jsm cl= dco = 2n . By changing variables, we obtain:
T

j sinc(o t)dt =

—00

o

Applying the above identity, the integral is simplified as:

T B
I-}gl(}fr smc(;)dt £1_r)13ﬂ>< =1
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confirming that Equation (1.43b) is also satisfied.

(iv) Equation 1.43(a) is satisfied as

=0 provided ¢ # 0.

e
Integrating 1= J‘slao e exp( )— &!gr(l) 2n ex p( & )dt =1,

—00

confirming that Equation (1.43b) is also satisfied. The last result is observed by noting that a
normal distribution is being integrated, which must equal 1.

Problem 1.24:

(a) The waveforms for signals x(¢ — 3), x(—2¢ — 3), and x(—0.75¢ — 3) are shown in Fig. S1.24.

(b) The analytical expressions, directly from the x(¢) definition, are obtained below.

(t-3)+2 -2<t-3<-1 [¢-1 1<t<2

1 —-1<r-3<1 1 2<t<4
x(t-3)= =
—(t-3)+2 1<¢t-3<2 —t+5 4<¢t<5
0 elsewhere 0 elsewhere.
(2t-3)+2 -2<2t-3<-1 2t—1 1212 2t—1  1/2<t<1
1 —-1<2r-3<1 1 2<2t<4 1 1<t<2
x(2t-3)= = =
—2t-3)+2 1<2r-3<2 2t+5 4<2t<5 —2t+5 2<¢<L5/2
0 elsewhere 0 elsewhere 0 elsewhere.
(2t-3)+2 2<-2¢t-3<-1 [2t—1 1<-2¢<L2
1 —-1<-2¢-3<1 1 2<-2t<4
x(=2t-3)= =
—(2t-3)+2 1<-2t-3<L2 2t+5 4<-2¢t<5
0 elsewhere 0 elsewhere
2t—1 —-1<r<-1/2
B 1 -2<r<-1
Sl 2r45 —5/2<t<-2
0 elsewhere.

29
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(-0.75t-3)+2 -2<-0.75t-3<-1 [-0.75t—1 1<-0.75t<2
X(-0.75(—3) = 1 -1<-0.75t-3<1 _ 1 2<-0.75t<4
—(-0.75¢t-3)+2 1<-0.75t-3<2 0.75t+5 4<-0.75t<5
0 elsewhere 0 elsewhere
-0.75t-1 -8/3<t<-4/3
1 -16/3<t<-8/3
“1075t+5 —20/3<¢<-16/3
0 elsewhere.

It is observed that the plots in Fig. S1.24 match with the analytical expressions obtained.

x(t)
4
1

/ 1\

4 3 -2 -1 0 1 2 3 4 5

v
~

:

4 3 2 -1 0 1 2 3 4 5

x(2t —3)

v
~

4 -3 -2 -1 0 1 2 3 4 5

x(-2t -3)

v
~

4 -3 2 -1 0 1 2 3 4 5
1] x(=32-3)
/I—!\
1 1
] ]
1 1 > ¢
1—6 -15 -4 —31—2 {1 0 1 2 3 4 5

|
W oo
|
[SIEN
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Figure S1.24: Waveforms for the shifted and scaled signals specified in Problem 1.24.

Problem 1.25:

(i)  To obtain the waveform for g(¢) from f{¢), one possible order of transformations is:

f(t) reflect about y—axis 5 f(—f) shift to the left by 9 f(—(t _ 9)) — f(9 _ t) scale by a factor of 3 f(9 _ 3f) ]

The final waveform for g(¢) = f(—3¢+9) is sketched in Fig. S1.25.

f@®
2]
4 —3\1K 0 2 3 4 5
(-t-3) / _Z\‘/(StB -3)
£(9-3)
21 (=5t +12)
Va
>

4 3 2 -1 o1 2\3/4 5
1 NGr-12)

Figure S1.25: Waveform for Problem 1.25.

(i1)  Since f(¥) is a finite duration signal, it is an energy signal. The average power in f{¢) is 0, while its
total energy is given by
) 0 3 0 3
E, = j FH(t)dt = j(z+3)2dz+j(§z—3)2dt = j(ﬁ +6z+9)dr+j(29—5t2 —10¢ +9)dt
—w 0 0

-3 -3

- Bﬁ +3¢ +9t] +[§—§t3 —5¢ +9t]

0 3
-3 0
=16.

=—(-9+27-27)+(25-45+27)=9+7

—St+12 2<¢<3

(iii) The function g(t) can be represented as g(¢) =

£ b g0 3 12 32124
Since g(¢) is a finite duration signal, it is an energy signal. The average power in g(¢) is 0, while its
total energy is given by

® 3 4 3 4
E, = j 2> (t)dt = J.(—5t+12)2dt+ j (3t—12)’dt = j (256> =120t + 144)dt + j (9¢% =72t +144)dt
—00 2 3 2 3

=[20 60 +1440 ] +[3r =36¢° +1441 ] = ?
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Problem 1.26:

(1) The function g(¢) = f(-2¢+6) is shown in Fig. S1.26.

(i) The end and odd components of f{¢) are also shown in Fig. S1.26.

VAU)

A

+-3
NG
A
11
6 5 4 3 2 -1 |0 I -
+-3
f(<2+6)
A
>N T
2 3 4 5 g

Figure S1.26: Waveforms for Problem 1.26.
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Problem 1.27:

The waveforms for g(¢) and g(2¢) are plotted in Fig. S1.27. I

f(@®

1

-4 -3 -2 -1 (01 2 3 4 5

f@+2)—f(@+2)
A

1

\4
~

-4 -3 -2 -1 |01 2 3 4 5

g =tlf(t+2)-f(t+2)]

1..

v
~

-4 -3 -2 - 01 2 3 4 5
229
A
1..
> !
-4 3 -2 - 01 2 3 4 5

Fig. P1.27: Waveforms for Problem 1.27.
Problem 1.28:
The values for x1[k] and x2[k] for (—6 < k <5) are shown in Table S1.28.

Table S1.28: Values of x1[k] and x2[k] in Problem 1.28.

k | -6|]-5]|-4]-3]=2 -1 0 1 2 3 4 5
x1 0 0 4 3 2 1 0 1 2 3 0 0
x2 1 0 1 1 1 1 1 1 1 1 1 0

The sketch of x1[k] and x2[k] is shown in Fig. S1.28. The remaining figures are obtained by applying
translation, inversion and scaling procedures, and are also shown in Fig. S1.28. Note that all functions,
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except x1[k/2] are uniquely defined. The function x1[4/2] is not uniquely defined when k is odd. Here, we
have used linear interpolation, defined as follows, to calculate the odd samples.

xl[ﬂ:%{xl[%]+ xl[%]} when k=+1,43,45,.... i

(iv) x[6—2k]

x,[3k]

(vi) x,[3k]

x,[2k] + x,[3k]

(Vii) x,[k/2] (viii) x[2k]+ x, [3k]

8
T x,[2k] x,[ k]
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(ix) x;[3—k]x,[6 - 2k] () x1[2k]x; [~ &]

Fig. S1.28: Waveforms for Problem 1.28.

Program 1.28: MATLAB Program

(¢}

% clear figure

clf
% signal defined in part (i)
kl =-6:6 ;

xl = [004 321012300 071;

subplot(2,2,1), stem(kl, x1, 'filled'), grid on

xlabel ('k'") % Label of X-axis
ylabel ("x1[k]") % Label of Y-axis
axis([-6, 6, 0, 5]) ;

% signal defined in part (iii)

x1flip = fliplr(x1l) ; % inverted x1

subplot (2,2,2), stem(kl+5, x1flip, 'filled'), grid on

xlabel (k") % Label of X-axis
ylabel ('x1[3-k]") % Label of Y-axis

axis([-1, 11, 0, 51) :

Q

% signal defined in part (v)

x1 compress = x1(l:2:1length(x1l)); % decimated by 2
subplot (2,2,3), stem([-3:3], x1 compress, 'filled'), grid on
xlabel ('k'") % Label of X-axis

ylabel ('x1[2k]") % Label of Y-axis

axis([-3, 3, 0, 51) ;

% signal defined in part (vii)

k4 = [-12:12] ;

xl expand = [0 0 0O 2 4 3.5 3 2.5 2

subplot (2,2,4), stem(k4, x1 expand, 'filled'), grid on

xlabel ('k") % Label of X-axis

ylabel ('x1[2k]") % Label of Y-axis

axis([-12, 10, O, 51) ;

print -dtiff plot.tiff % Save the figure as a TIFF file

Problem 1.29
The classification of the ECG signal is explained below.

Continuous-time vs discrete-time: The signal generated by heart is continuous-time in nature. However,
the ECG signal produced by the ECG instrument can be CT or DT, depending on the instrument type. In
the older days, the signals were typically CT. However, with advances in digital technology, the modern
ECG instruments are generally discrete-time. However, when a discrete time signal is generated with a
high sampling rate, and plotted, the plot looks continuous-time (your eyes are fooled).

Analog vs. Digital: The signal can be CT or DT depending on the instrument type.
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Deterministic vs Random: The heartbeat of a person is generally random in nature (otherwise you could
predict heart attack).

Periodic vs. Aperiodic: The ECG signals looks like a periodic signal where the pattern repeats itself
roughly every 0.4-1 second (i.e., once in every heart beat). However, the heart beat rate is not constant.
During sleep, it is the lowest, and during exercise, it is the highest. Therefore, it is not periodic in strict
mathematical sense.

Power vs. Energy signal: The ECG signal corresponding to a person is a bounded (the amplitude does
not exceed a few milli-volt) and time-limited. Therefore, it is an energy signal.

Even or Odd: A random signal is generally neither even nor odd. Also, how do you define t=0 point for
an ECG signal? Even if you look at just one pattern, it does not look like an even or odd function.
Therefore, the ECG signal is neither even nor odd.

Problem 1.30:

t t>0
Recall that the ramp function r(t) = tu(t) =
0 <0
Therefore, f{t) can be expressed as
F@O =L2r@xu@®) - u(t - 2)]-Lr=0)x [u(t + 6) —u(@)]. i
Problem 1.31:
The MATLAB code is given in Program S1.31. The plots are shown in Fig. S1.31. I

Program S1.31: MATLAB code for Problem 1.31.
Problem 1.31 from Mandal and Asif text

oo

% part (1)
t = -1:0.001:1;
X = exp(-2*t) .*sin(10*pi*t);

subplot (5,1,1)

plot (t,x);

xlabel ('t'");

title (' (i) exp(-2t) sin(10\pit)"');
grid on

axis tight

Q

o\

o

part (ii)

t = -10:0.001:15;

x = sawtooth (2*pi*t/5);

subplot (5,1,2)

plot (t,x);

xlabel ('t');

title('(ii) Sawtooth wave with a period of 5s');
grid on

axis tight

oe

o

part (iii)

= -10:0.001:10;

= 0.5%(1 + sign(t));
subplot (5,1, 3)

Xt




plot (t,x);

xlabel('t');
title (' (iii) u(t)");
grid on

axis([-10 10 -0.1 1.11);

o\

% part (iv)

t = -10:0.001:10;

unit stepl = 0.5*(1 + sign(t + 5));
unit step2 = 0.5*(1 + sign(t - 5));
x = unit stepl - unit step2;
subplot (5,1,4)

plot (t,x);

xlabel ('t'):;

title (' (iv) rect(t/10)"');

grid on

axis([-10 10 -0.1 1.11);

oo

% part (v)

t = -12:0.001:12;

X = 3*square (2*pi* (t+1)/6,100/3);
subplot (5,1,5)

plot (t,x);

xlabel ('t'):;

title('(v) Square wave');

grid on

axis([-10 10 -3.1 3.11);

Solutions

37
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Figure S1.31: Plots for Problem 1.31.
Problem 1.32:
The MATLAB function mydecimate is given in Program S1.32. I

Program S1.32: MATLAB code for Problem 1.32.

function [y] = mydecimate (x, N)
% MYSCALE: computes y[k] = x[k/N]
% where

oe

X is a column vector containing the DT input signal
N is the scaling factor greater than 1
y 1s a column vector containing the DT output signal time expanded by N

o

o

y = x(1:N:1length(x));
y = vy';
end

Problem 1.33:
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The MATLAB function myinterpolate is given in Program S1.33.

Program S1.33: MATLAB code for Problem 1.33.

39

function [y] = myinterpolate (x, N)
% MYINTERPOLATE: computes y[k] = x[k/N]
% where

oe

x 1s a column vector containing the DT input signal
N is the scaling factor greater than 1
y 1s a column vector containing the DT output signal time expanded by N

o\

o

all but last = x(l:length(x)-1);
all but first = x(2:length(x));

y = all but last;
for i = 2:N,

y(:,1) = y(:,1) + (i-1)/N * (all but first - all but last);

% linear interpolation is used to predict the unknown values.
end

y =vy';

y = y(:);

y(length(y)+1l) = x(length(x));
end

Problem 1.34:
The MATLAB code is given in Program S1.34. The plots are shown in Fig. S1.34.

Program S1.34: MATLAB code for Problem 1.34.
Problem 1.34 from Mandal and Asif text

o

% Define the signal

k = 0:120;

x = (1 - exp(-0.003*k)) .*cos (pi*k/10);
x =x';

% part (i) -- plot the signal

subplot (311) ;
stem(k, x) ;

xlabel ('k");

ylabel ("x[k]");

title('x[k] = (1 - exp(-0.003k)) cos (\pik/20)");

% part (ii) -- Decimation followed by interpolation

z1l = myinterpolate (mydecimate (x,5),5);
subplot (312) ;
stem(k, zl);

xlabel ('k");

ylabel('z 1[k]");

title('z 1[k] = y[5k] where y[k] = x[k/5]");

% part (iii) -- Interpolation followed by decimation

z2 = mydecimate (myinterpolate(x,5),5);
subplot (313);

stem(k, z2);

xlabel ('k'");
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ylabel ('z 2[k]");
title('z 2[k] = y[k/5] where y[k] = x[5k]");

x[k] = (1 - exp(-0.003k)) cos(nk/20)
0.4
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T W FEp %ﬁ

x[K]

-0.2—
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0

= 1 S - Wo@?ﬁ??% S Q‘PTTTTT% @?TTTTT?@ ?TTWTT? ?TTﬂ
S
= 0‘1 TR, . 1% @?TWT@ ?TTWTT? ?TTWTT? ?ﬂﬁ
x T o NS TE 7 '\Mw) %Mi& %Mi%

k

Fig. 1.34: Output for Problem 1.34.

Note that decimation followed by interpolation distorts the signal such that the reconstructed signal is
different from the original signal. By doing decimation first, we lose 4 out of every 5 samples.
Interpolation can only reconstruct the lost samples approximately.

On the other hand, interpolation followed by decimation reconstructs the signal exactly. Interpolation
introduces 5 additional samples in between every two neighboring samples. Decimation removes the
interpolated values so the original signal is not affected.



