Chapter 3: Time Domain Analysis of LTIC Systems

Problem 3.1
Linearity: For x3(¢) = o x(¢) + B x»(¢) applied as the input, the output y;(¢) is given by
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Rearranging the terms on the right hand side of the equation, we get
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Expressing the higher order derivatives of x;(¢) and x,(¢) in terms of y,(¢) and y,(¢), we get
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which implies that y3(@®) =0y, () + By, (1).
The system is therefore linear.
Time-invariance: For x(¢ — ¢)) applied as the input, the output y,(¢) is given by
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Substituting T = ¢ — ¢, (which implies that df = dt), we get
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Comparing with the original differential equation representation of the system, we get
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() =y(t+t) or, y(v)=y(t—1),

proving that the system is time-invariant. Note that the time invariance property is only valid if the
coefficients a,’s and b,’s are constants. If @,’s and b,’s are functions of time, then the substitution (t = ¢ —
to) will also affect them. Clearly, y(t) # yi(t + %) in such a case and the system will NOT be time-

invariant.

Problem 3.2

A PO +4p()+8y(t)=x(t)+x(t) with x(¢)=e " u(t),y(0)=0, and (0)=0.

(a) Zero-input response of the system: The characteristic equation of the LTIC system (i) is

(b)

s*+4s+8=0
which has roots at s = -2 £ 2. The zero-input response is given by
v,i(t)= A cos(2t) + Be™ sin(2¢)

for ¢ > 0, with 4 and B being constants. To calculate their values, we substitute the initial conditions

y(07)=0 and y(0") =0 in the above equation. The resulting simultaneous equations are

A=0
-2A+2B=0

that has the solution, 4 = 0 and B = 0. The zero-input response is therefore given by
Yzi (t)=0.
Because of the zero initial conditions, the zero-input response is also zero.

Zero-state response of the system: To calculate the zero-state response of the system, the initial
conditions are assumed to be zero. Hence, the zero state response y.,(f) can be calculated by solving
the differential equation

with initial conditions, »(0”")=0 and y(0")=0, and input x(¢) = exp(—4¢)u(?). The homogenous
solution of system (i) has the same form as the zero-input response and is given by

y M (1) = Cle™ cos(2t) + Coe > sin(2t)

for t > 0, with C; and C, being constants. The particular solution for input x(¢) = exp(—4¢)u(?) is of
the form

y0) = Ke™u(r).

Substituting the particular solution in the differential equation for system (i) and solving the
resulting equation gives K = —3/8. The zero-state response of the system is, therefore, given by

y. ()= (Cle_Zt cos(21) + Cye*' sin(2r) —%e“”)u(z) .

To compute the values of constants C; and C,, we use the initial conditions, »(07) = 0 and

y(07)=0 assumed for the zero-state response. Substituting the initial conditions in y.(¢) leads to
the following simultaneous equations
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C-3=0
—2C,+2C,+3=0

with solution C;=3/8 and C, = —3/8. The zero-state solution is given by
y. ()= %(efzf cos(2t) —e ! sin(2) —e ¥ )u(t) .

Overall response of the system: The overall response of the system is obtained by summing up the
zero-input and zero-state responses, and is given by

y(t) = %(e*” cos(2t) —e ! sin(2t) — e ¥ )u(t) .

Steady state response of the system: The steady state response of the system is obtained by applying
the limit, # — oo, to y(¢) and is given by

y(t) = lim %(e_zt cos(2t) —e ' sin(2t) —e ¥ )u(t) =0.
t—w

@)+ 6y(t)+4y(t)=x(¢)+x(¢t) with x(¢)=cos(6t)u(t),y(0)=2, and y(0)=0.
Zero-input response of the system: The characteristic equation of the LTIC system (i) is
s24+6s+4=0 ,
which has roots at s = -3 £2.2361 = —-5.2361 and —0.7639. The zero-input response is given by
v ()= 4 o 32361 p 07639

for ¢ > 0 with 4 and B being constants. To calculate their values, we substitute the initial conditions

y(07)=2 and y(0") =0 in the above equation. The resulting simultaneous equations are

A+B=2
—5.23614-0.7639B =0

that has a solution, 4 =—-0.3416 and B = 2.3416. The zero-input response is therefore given by
v ()= (— 0.3416¢ 231 1 2.3416¢70-763% )u(t) .

Zero-state response of the system: To calculate the zero-state response of the system, the initial
conditions are assumed to be zero. Hence, the zero state response y.,(¢) can be calculated by solving
the differential equation

2
Q+6Q+4=ﬁ+x(t)
dt? dt dt

with initial conditions, y(0")=0 and »(0")=0, and input x(¢) = cos(6¢)u(t). The homogenous
solution of system (ii) has the same form as its zero-input response and is given by

h -5.2361¢ —0.7639¢
yP(0)=Ce +Cye

for ¢ > 0, with C, and C, being constants. The particular solution for input x(¢) = cos(6¢)u(?) is of the
form

Yy P(1) = K, cos(6t) + K, sin(6¢) .
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Substituting the particular solution in the differential equation for system (ii) and solving the
resulting equation gives

(-36K, cos(61) — 36K, sin(61)) + 6(— 6K, sin(6r) + 6K, cos(61))
+4(K cos(61) + K, sin(61)) = —6sin(61) + cos(6¢)

Collecting the coefficients of the cosine and sine terms, we get
(-36K, +36K, +4K, —1)cos(6t) +(~36K, —36K; +4K, +6)sin(6f) = 0
or,

—32K, +36K, =1
—36K1 —32K2 = —6

which has the solution, K; = 0.0793 and K, = 0.0983. The zero-state response of the system is
v, ()= (cle—5-236” +Cre 799 10,0793 cos(61) +0.0983 sin(6t))u(t) .

To compute the values of constants C; and C,, we use the zero initial conditions, y(07) = 0 and
y(07)=0 assumed for the zero-state response. Substituting the initial conditions in y.,(¢) leads to
the following simultaneous equations

C,+Cy+0.0793=0
~5.2361C, —0.7639C, +6(0.0983) = 0

with solution C; =0.1454 and C, = —0.2247. The zero-state solution is given by

y. ()= (0. 1454752301 _0.2247¢70763% 1 0.0793 cos(6¢) + 0.0983 sin(6t))u(z) .

Overall response of the system: The overall response of the system is obtained by summing up the
zero-input and zero-state responses, and is given by

y(t) = (— 0.3416¢ 2301 4 2.3416e*°-7639t) u(t)
+ (0_ 1454¢752361 _ () 2247707639 ,=0763% | () 0793 cos(67) + 0.0983 Sin(6t)) u(t)

or, y(f)= (— 0.1962¢ 2231 1 2.1169¢7%763 1 0.0793 cos(67) + 0.0983 sin(6t)) u(t)

Steady state response of the system: The steady state response of the system is obtained by applying
the limit, # — oo, to y(¢) and is given by

y(£) = (0.0793 cos(6¢) + 0.0983 sin(6¢) ) u(?) .

PO +20(t)+ y(1)=3(r) with x(r) =[cos(r) +sin(21)]u(r), (0) =3, and y(0)=1.
Zero-input response of the system: The characteristic equation of the LTIC system (iii) is
s242s5+1=0 ,

which has roots at s = —1, —1. The zero-input response is given by

y,.(t)y=Ae”" + Bte™*
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for ¢ > 0, with 4 and B being constants. To calculate their values, we substitute the initial conditions

y(07)=3 and y(07) =1 in the above equation. The resulting simultaneous equations are

A=3
~A+B=1

that has a solution, 4 = 3 and B = 4. The zero-input response is therefore given by

v, ()= (3e_t +4te”! )u(t) .

Zero-state response of the system: To calculate the zero-state response of the system, the initial
conditions are assumed to be zero. Hence, the zero state response y.,(¢) can be calculated by solving
the differential equation
4y
dt?

dy ..
+2—4+1=X(¢
i xX(1)

with initial conditions, y(0")=0 and p(07)=0, and input x(¢f) = [cos(f) + sin(¢)]u(¢). The
homogenous solution of system (iii) has the same form as the zero-input response and is given by

yg’)(t) =Ce ' +Cyte”

for ¢ > 0, with C, and C, being constants. The particular solution for input x(¢) = [cos(¢) + sin(¢)]u(?)
is of the form

yP1) = K, cos(t) + K, sin(r) + K5 cos(2t) + K, sin(2¢).

Substituting the particular solution in the differential equation for system (iii) and solving the
resulting equation gives

(= K, cos(t) — K, sin(t) — 4K 5 cos(21) — 4K 4 sin(21)) + 2(= K, sin(¢) + K, cos(t) — 2K ; sin(2¢)
+2K, cos(2t))+ 1(K1 cos(t) + K, sin(?) + K5 cos(2t) + K4 sin(2t)) = —cos(t) — 4sin(2¢)

Collecting the coefficients of the cosine and sine terms, we get

(- K; +2K, + Ky +1)cos(r) +(= K, —2K; + K, )sin(t) +
(4K, + 4K, + K3 )cos(2t) +(-4K, —4K; + K, +4)sin(21) =0

which gives K; =0, K, =—0.5, K5 = 0.64, and K, = 0.48. The zero-state response of the system is
V. ()= (Cle_t + Czte_t —0.5sin(¢) + 0.64 cos(2¢t) + 0.48 sin(Zt))u(t) .

To compute the values of constants C; and C,, we use the initial conditions, »(07) = 0 and

y(07) =0. Substituting the initial conditions in y,,(¢) leads to the following simultaneous equations

C,+0.64=0
—C +Cy—0.5+0.48 =0

with solution C; =—-0.64 and C,=—1.1. The zero-state solution is given by
V. (1) = (— 0.64e”" —1.1te™" —0.5sin(¢) + 0.64 cos(2t) + 0.48 sin(2t))u(t) .

Overall response of the system: The overall response of the system is obtained by summing up the
zero-input and zero-state responses, and is given by

or, y(t) = (3e*’ +4te”! )u(t) + (— 0.64e~ — 1.1t — 0.5sin(f) + 0.64 cos(2t) + 0.48 sin(2t))u(t)
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or, y(t) = (2.36e*f +2.9t¢™ — 0.5sin(f) + 0.64 cos(2t) + 0.48 sin(2t))u(t) ‘

Steady state response of the system: The steady state response of the system is obtained by applying
the limit, # — oo, to y(¢) and is given by

y(¢) = lim (2.36e_t +2.9te”" —0.5sin(¢) + 0.64 cos(2¢) + 0.48 sin(2t)) u(t)
t—0

or, y(t) = (= 0.5sin(r) + 0.64 cos(2¢) + 0.48sin(2¢)) u(t)

y()+4y(t)=5x(t) with x(z)=4te"u(t),y(0)=-2, and »(0)=0.
Zero-input response of the system: The characteristic equation of the LTIC system (iv) is
sP+4=0
which has roots at s = +j2. The zero-input response is given by
v,i(t) = Acos(2t) + Bsin(2t)

for ¢ > 0, with 4 and B being constants. To calculate their values, we substitute the initial conditions

y(07)=-2 and y(0") =0 in the above equation. The resulting simultaneous equations are

A=-2
2B=0

that has a solution, 4 =—2 and B = 0. The zero-input response is therefore given by
V,i(t) =—=2cos(2t)u(t)

Zero-state response of the system: To calculate the zero-state response of the system, the initial
conditions are assumed to be zero. Hence, the zero state response y.,(f) can be calculated by solving
the differential equation

J2

C 4 4=5x0)

dt

with initial conditions, y(07)=0 and »(07) =0, and input x(¢) = 4¢ exp(—t) u(¢). The homogenous
solution of system (iv) has the same form as the zero-input response and is given by

y M (1) = €, cos(21) + C, sin(21)
where C and C, are constants. The particular solution for input x(¢) = 4¢ exp(—f) u(¢) is of the form
y P = Kie™ +Kote™ .

Substituting the particular solution in the differential equation for system (iv) and solving the
resulting equation gives

(Kle_’ —Kye' —K,e™' + Kzte_t) + 4(Kle_[ + Kzte_t)z 20te™
Collecting the coefficients of exp(—¢) and fexp(—t), we get
(Kle_t ~Kye' —K,e' + 4K1e“) + (Kzte_t + 4K2te")= 20te™

which gives K| = 1.6 and K, = 4. The zero-state response of the system is given by
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Y. ()= (C1 cos(2t) + C, sin(2t) + 1.6~ +4te™ )

To compute the values of constants C; and C,, we use the initial conditions, y(07) = 0 and

y(07) =0. Substituting the initial conditions in y,,(¢) leads to the following simultaneous equations

C,+1.6=0
2C,-1.6+4=0

with solution C; = —1.6 and C, = —1.2. The zero-state solution is given by
v ()= (— 1.6 cos(2t) —1.2sin(2¢) +1.6e™" + 4te”™ )u(t) .

Overall response of the system: The overall response of the system is obtained by summing up the
zero-input and zero-state responses, and is given by

or, y(t) =—-2cos(2t)u(t) + (— 1.6cos(2t) —1.2sin(2t) + 1.6~ +4te”™" )u(t)
or, y(t) = (— 3.6c0s(2t) —1.2sin(2t) + 1.6~ +4te”™ )u(t) )

Steady state response of the system: The steady state response of the system is obtained by applying
the limit, # — oo, to y(¢) and is given by

y(f) = lim (— 2.32cos(2f) — 0.24sin(2¢) + 0.32¢ ™" +0.8t¢”" )u(z) = (—2.32cos(2¢) — 0.24sin(20)) u(r)
t—0

‘;:f ) fhy (6 =x(t) with x(t) = 2u(t), y(0) = 5(0) = 5(0) =0, and H(0)=1.

Zero-input response of the system: The characteristic equation of the LTIC system (v) is

sY425+1=0

which has roots at s = +j1, 1. The zero-input response is given by
V()= Ae’" + Bte!' + Ce ™" + Dte™",

for > 0, with 4 and B being constants. To calculate their values, we substitute the initial conditions
in the above equation. The resulting simultaneous equations are

A +C 0
j4  +B -jC +D = 1
-4 +j2B -C —-j2D 0
-j4 =3B +j;C -3D =0

that has a solution, 4 = —j0.75 B=-0.25, C = j0.75 and D = —0.25. The zero-input response is
y..(t) = (— j0.75¢7" —0.25te”" + j0.75¢ 7" — O.25te_jt)u(t)’
which reduces to
v, (t)=(1.5sinz —0.5¢cost)u(t)

Zero-state response of the system: To calculate the zero-state response of the system, the initial
conditions are assumed to be zero. Hence, the zero state response y.,(f) can be calculated by solving
the differential equation
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d4y
dr

+250 4y = (1)

with all initial conditions set to 0 and input x(¢) = 2u(¢). The homogenous solution of system (v) has
the same form as its zero-input response and is given by

y W ()= Cie/ + Cyte’ + Cye/ + Cyte™
where C;’s are constants. The particular solution for input x(¢) = 2 u(¢) is of the form

vP) = Ku().

Substituting the particular solution in the differential equation for system (v) and solving the
resulting equation gives

O+2(0)+K:2, OI‘,K=2,
The zero-state response of the system is given by
Y (0)=Cie’ +Cyte’ +Cye™" + Cyte™ +2,

for (¢ > 0). To compute the values of constants C;’s, we use zero initial conditions. Substituting the
initial conditions in y,,(¢) leads to the following simultaneous equations

A +C = -2
jA4 +8B -jC +D =0
-4 +j2B -C —-j2D = 0
-j4 =3B +jC -3D =0

with solution C, = -1, C,=0.5, C3= -1, and C4= —j0.5. The zero-state solution is given by
V()= (—ejt + j0.5te’ — e —jO.Ste_jt)u(t),
which reduces to

y..(t)=(=2cost —tsint)u(r).

(¢) Overall response of the system: The overall response of the system is obtained by summing up the
zero-input and zero-state responses, and is given by
or, y(t)= (1.5 sint —0.5¢ cost)u(t) + (— 2cost—t sint)u(t)
or, y(t) = (1.5 sint —2cost —tsint —0.5¢cost + 2) u(t)
(d) Steady state response of the system: The steady state response of the system is obtained by applying
the limit,  — oo, to y(¢) and is given by
y(t)= lim(l.S sint—2cost—tsint —0.5¢cost + Z)u(t) —> 0 I
—
Problem 3.3
(i)  To evaluate the impulse response, set x(¢) = 3(¢). The resulting equation is

h(t)=28(t) = h(t)=2 J.S(t)dt +C=2u(t)+C

—00
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where C is a constant that can be evaluated from the initial condition. Since the initial condition is
0, then C=0.

To solve parts (ii)-(vi), we make use of the following theorem.

Theorem S2.1: The impulse response of an LTIC system initially at rest and described by the
differential equation

n
a’y _
Zap o =x(¢)

p=0

n
d’h _
P gep =0
p=0

is given by

with initial condition %(OU = ai . The remaining lower order initial conditions are all zero.
Based on Theorem S2.1, the impulse response of system (ii) is given by
h(t) + 6h(1) =0
with initial condition 4#(0") = 1. The characteristic equation for the homogenous equation is
s+6=0
which has a root at s = —6. The impulse response is given by
h(t) = Ce™™

for ¢t > 0, with C; being a constant. Use the initial condition h(0+) =1, the value of C; = 1. The
impulse response of system (ii) is given by

h(t) = e u(r) .

Assume w(t) = dx/dt. System (iii) can, therefore, be represented as a cascaded combination of two
systems

dx(t)
dt

System S1(iii): w(t) =

System S2(iii): 2y() +5y() = w(t)

Based on Theorem S2.1, the impulse response of system S2(iii) is given by
2hy (t)+5hy (1) = 0

with initial condition h2(0+) = 1/2. The characteristic equation for the homogenous equation is

(2s+5)=0
which has a root at s = —5/2. The impulse response is given by

hy(t)=Ce™"?
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for ¢ > 0, with C; being a constant. Use the initial condition h2(0 ) = 1/2, the value of C, = 1/2. The
impulse response of system S2(iii) is

hy(t)=1e™"?u()

for > 0. Combining the cascaded configuration, the impulse response of the overall system is

h(r) = t(t) 2(1 e_s’/zu(t))—% U250~ Lx 3¢ 2(r) = L3(1) S ).

(iv) System (iv) is represented as a cascaded combination of two systems

System S1(iv): w(t) =250 1+ 3x(r)
System S2(iv): () +3y(t) = w(t)
Based on Theorem S2.1, the impulse response of system S2(iv) is given by

Iy () +3h, (1) =0
with initial condition h2(0+) = 1. The characteristic equation for the homogenous equation is

(s+3)=0
which has a root at s = —3. The impulse response is given by
hy(t) = Cie™

for ¢ > 0, with C; being a constant. Use the initial condition h2(0+) =1, the value of C; = 1. The
impulse response of system S2(ii) is

hy(t)=eu(t)
for > 0. Combining the cascaded configuration, the impulse response of the overall system is
h(t) =222 4 3p, (1) = 2%(6_3tu(t))+ 3¢ u(r)
= 2e—3f5(t) —6eu(t) + 3¢ u(t) = 28(t) - 3¢ u(t)

(v) Based on Theorem S2.1, the impulse response of system (v) is given by
h(f)+5h(t) + 4h(t) =0

with initial conditions d/(0")/dt = 1 and #(0") = 0. The characteristic equation for the homogenous
equation is

(s> +5s+4)=0
which has roots at s = —1 and —4. The impulse response is given by
hy(f)=Cie™" +Cye™
for t > 0, with C; and C, being constants. Using the initial conditions

—C1—4C2=1

which has the solution C; = 1/3, C, = —1/3. The impulse response of system (V) is given by
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h(t) = (%e_’ —%e“‘t)u(t) ‘

(vi) Based on Theorem S2.1, the impulse response of system (vi) is given by
h(t) + 2h(t) + h(t) = 0
with initial conditions d/(0")/dt = 1 and #(0") = 0. The characteristic equation for the homogenous
equation is
(s> +2s+1)=0
which has two roots at s = —1. The impulse response is given by
hy(t)=Cie™" +Cyte”™
for t > 0, with C; and C, being constants. Using the initial conditions
C, =0
-C+C, =1
which has the solution C, =0, C, = 1. The impulse response of system (vi) is given by
h(t)=te™" u(r). i
Problem 3.4
(i)  Functions x(t) = exp(—art)u(t), A(t) = exp(—prt)u(t), and is A(—t) = exp(Prt)u(—rt) are plotted,

respectively, in Fig. S3.4(a)-(c). The function A(z — t) = A(—(t — ¢) is obtained by shifting 4(—t) by
time ¢ in Fig. S3.4(d). We consider the following two cases of .

Case 1: For 7 < 0, the waveform /(¢ — 1) is on the left hand side of the vertical axis. As apparent in
the subplot for step 5a in Fig. 3.7, waveforms for /(¢ — 1) and x(t) do not overlap. In other words,
x(t)h(t —7)=0 for all 1, hence, y(¢) = 0.

Case 2: For ¢ > 0, we see from the subplot for step 5b in Fig. 3.7 that the nonzero parts of A(z — t)
and x(t) overlap over the duration ¢ = [0, ¢]. Therefore,

()=

t
e MBI gr = e_BtIe_(a_B)T dr. (S3.4.1)
0

S — ~

Since (a # ), therefore, the exponential term can be integrated as

NS CE o ) )
Ho)=e B{ } B O T S |

~(@-P)],

. 0 t<0
Combining the two cases, we get y(f) = ﬁ[eiﬁt ~ e"”] 50
which is equivalent to y(t) = (ﬁla) [e_p’t - e_w] u(t).
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x(7) ()
1 1
eoy(t) ePu(t)
> T > T
0 0
(a) Waveform for x(t) (a) Waveform for A(t)
h(=1) h(t—T)
1
» T > T
0 t 0
(c) Waveform for A(-7) (d) Waveform for /(¢ — 1)
Case 1:1<0 X(e) =) Case2:1>0 X(©) i)
1 1
/‘ » T » T
t 0 0 t
(e) Overlap between x(t) and A(f — t) for 1< 0 (f) Overlap between x(t) and A(f — t) fort> 0

Fig. S3.4.1: Convolution between x(t) = exp(—at)u(t) and A(t) = exp(—t)u(t) in Problem 3.4.

(i1)) For o=, Eq. (S3.4.1) reduces to

t t
y(t)= eiBtJ‘ef(O‘*ﬁ)T dr = eiBtJ-Idr —te P
0

The output y(¢) is therefore given by
y(t) = te Plu(t) = te u(?).

(iii) Part (ii) is a special case of part (i) as the result for part (ii) can be obtained by applying the limit, o
— P, to the solution of part (i). Since applying the limit results in a 0/0 case, we apply the
L’Hopital’s rule to get

y(t) = OILIE)I}S (B—la) [e_w ] u(t)= llmﬁ( 5 [ o —O] u(t) =te"“u(t). |

Problem 3.5
(i)  The output y(¢) is given by

0 0

W(t) = u(t) *u(t) = ju(r)u(t _)dt= J-u(t —1)dr.

—00 0



(i)

(iii)

(iv)

V)

Solutions

1 if(t<9)

Recall that u(t-v= {0 if(t>1)

Therefore, the output y(¢) is given by

(6 = {3 2 ) = 1 = ()

The aforementioned convolution can also be computed graphically.

The output y(?) is given by

© 0
W(t) = (1) * u(~t) = J' u(=tu(t—t)dt = J' u(t—1t)d.
The output y(?) is given by
. 0 if (¢ > 0)

_ _Jo [0 if(t=0)
y(0) = Ju(e-yde= [utc-ryar if(t<0)_{—t if(¢ < 0) = )

t
The aforementioned convolution can also be computed graphically.
The output y(¢) is given by
y(0) = [u(0) = 2ut = V) +u(t = 2)]* [u(t + 1) —u(t - 1))
Using the properties of the convolution integral, the output is expressed as

y(0) = [u(0) = u(t + )] = [u() = ut = 1)) = 2[u(c = 1) = u(t +1)]
+ 20wt = 1) xut = 1)+ [u(e = 2) % u(t + 1)) = [u(t = 2) *u(t - 1)]

Based on the results of part (i), i.e., u(¢) * u(f) = r(t), the overall output is given by
y@)=r@+)—-r@-D)-2r@)+2r@t-2)+r¢-1)-ri-3).

The output y(?) is given by

o0 0
(1) = e u(=t) * e u(t) = Jezru(—r)e_S(t_T)u(t —T)dt=e"" JeSTu(t -1)dr.

Solving for the two cases (¢ > 0) and (¢ < 0), we get

t

-3t 5t
e e dt (t<0
e f s _'[O (<0 1 (1<0)
y(t)=e J.e u(t—rt)dr= 0 =17 _3
—0 -3t J' 5t ge (t 2 O)
e e dt (t20)

—0o0

Therefore, the output y(¢) is given by

y(6) =Lt u=0+ e u).

The output y(?) is given by
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y(@)=x(t)*h(t) = T sin(277) [u(z’ -2)—u(r— 5)] [u(t -7)—u(t—-7- 2)] dr
—© =0 for 1<2,r>5

5

= jSiH(ZET) [u(t —7)—u(t—-7- 2)] dr = jsin(27rr)u(t —7)dtr— jsin(2m’)u(t —7-2)dr

2 2
=4 =B
Calculating Term A and Term B separately, we get
0 t<2
0 <2
A= jsin(zm)dr 2<r<5=dmm p<<s
; 0 125
Isin(Z;rr)dr t>5
2
0 t-2<2
0 t<4 0 t<4
-2
B={ [ sin@7r)dr 2<1-2<5= 103D 4<p<Todlen 4<<T
i 0 127 0 127
Isin(27rr)dr t—22>5
2
The overall output is given by
0 t<2,t27

Therefore, y(t)=A-B= 2 (1 ~cos2) pursd

-3 (l-cos2zt)  5<t<7

(vi) Considering the two cases (¢ < 0) and (¢ > 0) separately

t 0 0
Case I (< 0): y(t) = J'eztefs(tﬂ)dr + J.eztes(tfr)dr + J‘efzres(tft)dr
—o t 0
t 0 ©
which reduces to y(t)=e Iehdr + eSIJ‘e_hdr +e ! J‘ e dr
-0 t 0
_ 5t 1 Tt 5t l(—3t_) 5t 1 _ 1,2 4 -5, 1 -8t
or, y(t)=e xse +e x3le l)+e xz==e e e
0 t 0
Case Il (1>0):  y(t)= Jezre_s(t_r)dr + Ie_zre_s(t_r)dr + Je_zTeS(t_T)dr
-0 0 t
0 t e
which reduces to y(t)=e Iehdr + eiStJ'e%dt + eiStj-eqtdr

-0 0 t



Solutions

_ tl(3t_) =S5t 1 -7t _ 1 1 1 1
or, y(t) = e "te x3le I)]+e xze ' =2e +3e ye  +5

Hence, the overall expression for y(¢) is given by

(vii) Note that

sin(£)u(z) * cos(t)u(t) = ( e/t )u(t) * L1 (e-f’ + e—-f’)u(t)
[ Mu(r) *e”u(t)] [ ffu(t)*e-f’u(t)]

+4L[€”u(t)*e f’u(t)] [ jt”(f)*efjt“(t)]

= Lleuys ef’u(t>]—4—j [e Tty e (o)

1

2
-1

4j

Based on the result of Problem 3.4, we know that
e u(t)x e u(r) = te " u(t)
and e’ u(t) * e u(r) = te’ u(r) .
Hence, the output is given by
y(t) = %jtejtu(t) - %jte_ﬂu(t) = Lesin(t)u(r).

Note that the above convolution can also be performed directly as follows:

y(1) = [sin(0)u(r) | *[cos(t)u(r)] = T sin(7)u(r)cos(t — T)u(t — 7)dr = Tsin(r) cos(t —1)u(t—7)dr
= jsin(r) cos(t—7)dr t>0 [»(t)=0,1<0]

= jsin(r) [cos(t) cos(7)+sin(t) sin(r)] dr= cos(t)j sin(7)cos(7)d7 + sin(t)j sin’(7)dr

0

0

=0.5c08(¢)[ sin(27)d +0.5sin(r) [[1-cos(20)]dr = 0.5 cos(t)[%“”]; +0.5sin()[ 7 - 222 |
0 0

=0.5cos(t)[£ 4 cos(21)]+0.5sin(r) [t — L sin(21)| = L cos(¢) + L £ sin(t) — | cos(r) cos(2¢) + sin(¢) sin(27)

=cos(2t—t)=cos(t)

=1rsin(r) ++cos(t) — L cos(¢) = L ¢sin(r)

Problem 3.6

91

(i)  Using the graphical approach, the convolution of x(f) with itself is shown in Fig. S3.6.1, where we

consider six different cases for different values of ¢.
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x()

-

0 1 2

(a) Waveform for x(t)

L x(t) x(t-1)

t=2| t-1 t 0
-1

(d) Overlap btw x(t) and x(¢—) for (z <

Jz

0)

L x(t) x(t-1)

(g) Overlap btw x(t) and x(¢—7) for

Case I (z < 0): Since there is no overlap,

(2<1<3)

-2 -1 0
-]

(b) Waveform for x(—t)

1 x(t) x(t-1)

2| t-1 0t 1 2
,1~~

(e) Overlap btw x(t) and x(z—7) for (0<t<1)

. x(1) x(t-1)

1.

1¢-2] 2)t-1 t

(h) Overlap btw x(t) and x(¢#—) for (3<t<4)

x(t)*x(t)

y1(t)

1

(j) Convolution output ()

1 x(t-1)

-

(c) Waveform for x(z—7)

. x(7) x(t-1)

t-2]
1

-1 1t |2

(f) Overlap btw x(t) and x(#—) for
(1==2)

1 x(7) x(t-1)

|

(i) Overlap bt

Fig. S3.6.1: Convolution of x(¢) with x(¢) in Problem 3.6(i).

Case Il (0<t<1):

CasellI (1 <1<2):

»n@=0.

t
yl(t):.[l.ldr:t.
0

t-1

t-1

() = j( 1).1dt + jl 1dr+j1( I)dr

——(t D+ (1—t+1)— (t 1)=4-3t.

t-1

Case IV 2 <t<3): M= j( 1).1dt + j( 1).(~Ddr+ jl( 1)de

t—

—(1—t+2)+(t 1-1)—(2—1+1)=3r-8.

2

t-1

|_|
1|_z| 1_2|_:-1| f

w x(t) and x(z—7) for

(>4)



(i)

Solutions

2
Case V(3 <t<4): (1) = j(—l).(—l)dt —(2—t+2)=4-1.
-2

Case VI (¢ > 4): Since there is no overlap, y(t) =0.

Combining all the cases, the result of the convolution y,(¢) = x(¢) * x(¢) is given by

t 0<t<])
4-3t) (1<t<?2)
N =13t-8) (2<t<3)
4-1) ((B<Lt<4)

0 elsewhere.

The output is y(¢) plotted in Fig. S3.6.1(j).

Using the graphical approach, the convolution of x(¢) with z(¢) is shown in Fig. S3.6.2, where we
consider six different cases for different values of 7.

Case I (t <-1): Since there is no overlap, y,(#)=0.

t
Case 11 (-1 <7< 0): yz(t)zjl,wh:%_%,
-1

t-1

V()= J-(—I).Td’l?-i- jl.rdr
-1

t-1

N N G Vi P S 1
——( > _Ej+(7_ > )——szf—z-

Case lII (0<r<1):

t—1

1
¥, (1) = j (~1)ade + [1.de

Case IV (1 <t<2): ) 1
_ (@ -2 L @=DY_ 23
__( 2 2 )JF(E_ 2 J_—7+3.
1 (1-2)* 2
Case V(2 <t<3): Y, (t) = j(—l).rdrzT—%z%—ZtJr%.
t-2

Case VI (¢ > 4): Since there is no overlap, y,(¢) =0.

Combining all the cases, the result of the convolution y,(¢) = x(¢) * z(¢) is given by

-1 (-1=1<0)
—L42-1 (0<e<)
M=y -L+3 (1<t<2)

S-2+3  (2<1<3)
0

elsewhere.

The output is y,(¢) plotted in Fig. S3.6.2(j).
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l__Z(T) . x(T) . x(-7)
Il T T T
1 b 1 o v T2 2 0
-1 -1 -1
(a) Waveform for z(t) (b) Waveform for x(t) (c) Waveform for x(-7)

. x(t-1) 2(7) x(t-1)

L 1 NERAGE
T l r T
2| -1 t =2 -1 t -1 0 1 ! 1 T

(f) Overlap btw z(t) and x(¢—) for
(-1=£<0)

NECRG) NECRG) 1<|%—r)
/I T 1 T 1 + T
PI) I P 4 O —1|t/—2 -1 1 ¢ -1\/<l>t—2 1t-1 ¢
H ] -1

(1) Overlap btw z(t) and x(#—) for
(2=t<3)

(d) Waveform for x(z—t) (e) Overlap btw z(t) and x(+—7) for (1<-1)

(g) Overlap btw z(t) and x(z—t) for

(0<t<1) (h) Overlap btw z(t) and x(¢—1) for (1<t<2)

0.5

y2(t) = x(t)z(t)

0.5
-1

(j) Convolution output ), (1)

Fig. S3.6.2: Convolution of x(#) with z(¢) in Problem 3.6(i1).

(iii) Using the graphical approach, the convolution of x(#) with w(¢) is shown in Fig. S3.6.3, where we
consider six different cases for different values of ¢.

Case I (¢ <-1): Since there is no overlap, y;(¢)=0.

t
Case I (-1 < ¢ < 0): y3(t) = Il.(1+ Ddr=U0 = L
-1
t—1 0 t
y3(t) = I (~1).(1+ T)dr + j 1L.(1+ t)dr + j 1.(1-1)dt
Case I (0<¢<1): e 1 0

__ﬁ_)(i_i)_ a0 1\ 3.1
_(2 0+22(2 2_2+t+2'
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K . x(T) 1“5((!1:)
} ' T T T

(a) Waveform for z(t) (b) Waveform for x(t) (c) Waveform for x(¢—7)

. w(T) x(t-1) . w(t) x(t-1) . w(T) x(t-1)
/] \
T / T / \ T

t-2 t-1 t_1 0 1 -2 -1 ¢t 0 1 t-2| —12-1 0 ¢ 1
-1 -1 i

(d) Overlap btw w(t) and x(¢—7) for (e) Overlap btw w(t) and x(¢#—7) for
(t=<-1) (-1<£<0)

NEGEG! KH) KH)
/ \ T T T
—1t-2 -1 1 ¢ -1 t-2] 1t-1 t -1 1 t-2 t-1 t
Hi -1 -1

(g) Overlap btw w(t) and x(¢—t) for (h) Overlap btw w(t) and x(¢—t) for
(1==2) (2<<3)

(f) Overlap btw w(t) and x(¢—7) for (0<t<1)

(i) Overlap btw w(t) and x(¢—t) for (>3)

x(t)yw(t)

y3(t)

(j) Convolution output ), (t)

Fig. S3.6.3: Convolution of x(¢) with w(¢) in Problem 3.6(iii).

0 t—1 1
y3(t) = I (~1).(1+ T)dr + .[(—1).(1 ~)dt+ j 1.(1-1)dt
Case IV (1 <t<2): 2 0

t—1
_ (1@ (=2 1 -0 _ 3 7
(B ) 0- 5
1

3-1)° 2
Case V(2 <t<3): y3(t)=j(—l).(l—r)dr=0—%=—%+3z—%.
-2

Case VI (¢ > 4): Since there is no overlap, y;(¢) =0.

Combining all the cases, the result of the convolution y;(¢) = x(¢) * w(¢) is given by
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Cor+l  (-1=1<0)

— vl (0<e<))

0= -5+ (1<1<2)
C43-2  (2<1<3)

0 elsewhere.

The output is y5(¢) plotted in Fig. S3.6.3(j).

(iv) Using the graphical approach, the convolution of x(¢) with v(¢) is shown in Fig. 3.6.4, where we
consider six different cases for different values of ¢.

. w(v) . x(t) . x(t-1)
o2 o2t
T T T
_1 o 1 0 1 2 ') S ¢
-1 -1 -1
(a) Waveform for v(1) (b) Waveform for x(t) (c) Waveform for x(¢—7)
w(t) x(t-1) W(T) x(t-7) . w(t) x(t-1)
,/ ™ : ol ™ : Fafiln :
= t 1 1 t=2| 1| 7 ¢ 1 12| -1 t o1
-1

-1

(e) Overlap btw v(t) and x(¢—7) for (-1<¢<0) (f) Overlap btw v(t) and x(¢—7) for (0<t<1)

(1) x(t-1)

(d) Overlap btw v(t) and x(¢—7) for (z<-1)

w(7) x(-7) w(t) X(+-1)

Y, AN N |

t-2| 1¢-1 t -1 162 -1 t

_u=2| [t 1 ¢ _1
Ll

(g) Overlap btw v(t) and x(¢—1) for (1<¢<2) (h) Overlap btw v(t) and x(¢—1) for (2<¢<3) (i) Overlap btw v(t) and x(z—t) for (£>3)

(j) Convolution output y, (t)

Fig. S3.6.4: Convolution of x(¢) with v(¢) in Problem 3.6(iv).

Case I (r <—1): Since there is no overlap, y,(¢#)=0.



V)

Solutions

t
Case Il (-1 << 0): ya(t)= J.l.ezrdr = %(ezz —672)
-1

t—1 0 t
ya(t) = j(—l).ezfdw j 1.e*dt+ j le 2dr
-1 t—1 0

Case III (0 <¢<1): = —%(ez(t_l) - e_2)+%(1 —ez(f—l>)+%(1 o)

=D +%e_2 +1- %e_zt.

0 t—1 1
y4(t) = j (~1).e¥dt+ j (~1).e ¥ du+ jl.e*dx
-2 0 t—1

(e—z(z—n —1)+(_1—2)(e_2 _e—2(t—1))

N |—

Case IV (1 <t<2): _ _%(l_ez(z—z))Jr

:%62(1‘—2)_1_%6—2 420D

1
Case V (2<t<3): yu(t) = J.(—l).e_ztdt = g(e‘2 —e 27D )
t-2

Case VI (¢ > 4): Since there is no overlap, y,(¢) =0.

Combining all the cases, the result of the convolution y,(¢) = x(¢) *v(¢) is given by

%ezt_%eﬂ (-1<t<0)
—N Lo 1oL (0<i<))
ya()=11 Q2072 4 _%e—2 +e 20D (1< <2)
le? L2072 (2<1<3)

0 elsewhere.

The output is y4(¢) plotted in Fig. S3.6.4(j).

Using the graphical approach, the convolution of z(¢) with z(¢) is shown in Fig. 3.6.5, where we
consider four different cases for different values of 7.

Case I (¢ <-2): Since there is no overlap, ys(t)=0.

t+1 "
ys(t) = jr(t —T)dt = an —%1:3]_1
Case I (-2 <t <0): -1

= Bt(t+1)2 —%t]—[%(tﬂf +§]=g(t3 —6t—4).
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s(t) = jr(t —T)dt = [%ttz —%1311_1
Case IIT (0 << 2): =1 .
= [%t—%t(t—l)z]—[%—%(t —1)3]: —%(ﬁ + 6t+4).

(a) Waveform for z(t)

Nz(r) <‘>z(t—1:)
1 1 NECEC
" I\ " T
T

10 1 1N\ o 01 I\ i }
-1 t t+1] -1 0 1
-1 -1
-1

5 3 (d) Overlap btw z(t) and z(+—7)
(b) Waveform for z(—1) (c) Waveform for z(#—7) for (1<-2)

lmt) [%T) lmﬂ
I\ : I\

t t T : T
=1 | X1 I1 1| +1 tN\Jt+1 —1 11 EN ]
-1 -1 -1

(e) Overlap btw z(t) and z(¢#—1) for . (g) Overlap btw z(t) and z(¢—7)
(—2<1<0) (f) Overlap btw z(t) and z(z—t) for (0<t<2) for (52)

(h) Convolution output Vs (¢)

Fig. S3.6.5: Convolution of z(¢) with z(¢) in Problem 3.6(v).

Case IV (¢ > 2): Since there is no overlap, ys(z) = 0.

Combining all the cases, the result of the convolution y5(¢) = z(¢) * z(¢) is given by
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Solutions 99

1 -1-2  (2<1<0)
ys()=3-L1r+142  (0<t<2)
0 elsewhere

The output is ys(#) shown in Fig. S3.6.5(h).

(vi) Using the graphical approach, the convolution of w(#) with z(¢) is shown in Fig. 3.6.6, where we
consider six different cases for different values of ¢.

(a) Waveform for w(t)

KT)
T T T
-1 t 1] -1 0 1

-1

(d) Overlap btw w(t) and z(¢+—7) for
(1<=2)

/ﬁ&wﬁ)
T

(b) Waveform for z(t)
|

NN

(c) Waveform for z(¢+—7)

W)
T

T
t-1 t t+1] 1

1

(e) Overlap btw w(t) and z(#—) for
(—2=1<-1)

. w(t) 2(¢=7)
T

T T
=1 -1 ¢t N+ 1
-1

(f) Overlap btw w(t) and z(#—) for
(-1=t<0)

N_ﬁ
I\ v

T T
-1 +1 t t+1
-1

(g) Overlap btw w(t) and z(¢—7) for
(0=t<1)

T T
-1 -1 1t t+]]
-1

(h) Overlap btw w(t) and z(¢—) for
(1=<2)

Problem 3.6(vi)
T

w(t)z(t)

y6(t)

(j) Convolution output Y, (t)

(i) Overlap btw w(t) and z(z—t) for
(>2)

Fig. S3.6.6: Convolution of w(#) with z(¢) in Problem 3.6(vi).

Case I (1 <-2): Since there is no overlap, ys(¢#)=0.
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t+1
1
Ve(t) = J.(1+t)(t—r)dt—[tr+ It ——12—%13]i
-1
Case Il (-2 <1 <-1): 1 ) PO PO W

1
2

t+1

ye(t) = j 1+ 1)t —1)dt+ ja )t - 1)dt

Case Il (-1 <¢<0):
_ L2 1.2 _ 1.3 [+
—[['C‘F—t'f —2 ] [t’f +§T 0
[z+ 1]+ [ 141+ 1 ] —%t3+%t2+t.
ye(t) = j 1+ 1)t —1)dt+ j (-1t —1)dt
Case IV (0<t<1): 0 |
=[tr+%m:2—2 13] p [tt 1e +11:3]0
1,3 ,1 1 1 1]
—[gt + = _Et_€]+ El‘—g——gl‘ _Et + 7.

Ye(t) = J.(l r)(t—r)dr—[n_in T L1 T3]1H

Case V (1 <1<2); - [t—%t—%+%]—[t(t—l)—%t(t—l)z ~Le-12 4 Le-1y]

1
6

Case VI (¢ > 2): Since there is no overlap, y4(¢) =0

Combining all the cases, the result of the convolution y(¢) = z(¢) * w(¢) is given by

141 -2 (2<i<-D

éﬁ ;t2+t (-1<1<0)

o) =1-1F -1+ (0<t<D)
1P+ (1<t<2)

0 elsewhere.

The output is ye(#) shown in Fig. S3.6.6(j) at the end of the solution of this problem.

(vii) Using the graphical approach, the convolution of v(¢) with z(¢) is shown in Fig. 3.6.7, where we
consider six different cases for different values of ¢.



(a) Waveform for v(1)

/K)
I\ .
1

(d) Overlap btw v(t) and z(z—t) for (+<-2)

. w(T) z(t-1)

T T
-1#+1 |0t #+1
-1

(g) Overlap btw v(t) and z(#—t) for (0<t<1)

(b) Waveform for z(t)

. W(t) z(t-1)

Ny
1 A%L__O 1

(e) Overlap btw v(t) and z(¢—) for (—2<t<-1)

. (1) z(t-1)

T T
-1 0#11 ¢ 1]
-1

(h) Overlap btw v(t) and z(z—7) for (1<t<2)

T

(i) Convolution output Y, ()

Solutions 101

(c) Waveform for z(#—1)

T T
=1-1 ¢ 23| I
-1

(f) Overlap btw v(t) and z(¢—7) for
(—1=£<0)

(i) Overlap btw v(t) and z(¢#—) for
(2)

Fig. S3.6.7: Convolution of v(¢) with z(¢) in Problem 3.6(vii).

Case I (£ <-2): Since there is no overlap, y;(¢)=0.

Case Il (-2<¢<-I):

t+1

-1

t+1

y(0)= [P a-vde= L -ve + L]

o1 2aey 1 2(”1)]_[L 21 72]
—[ e +ye S(E+De " +5e

2

__1,20e+) 1,2 3 -2
= 46 2t€ 46 .
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0 t+1
= e t-1vdi+ |e 2 (t-1)dr
Y7
-1 0
0 t+1
z[%(t—t)ezr-k%ezr] 1+[—%(l—t)e—21+%e_2"']0+
Case III (-1 <¢<0): -
I P R T | —2] [_L S241) 1 _L]
—[+2t+4 2te g + g +2t 4
3 20+ _ 1,2 3 -2
=3€ 2te d +1.
0 1
Yo (t) = J.eZT(t ~t)dt+ je—2f(t —1)dt
t—1 0
0 1
=L-veT+Le”| 4Ll -ne T+l
Case IV (0<¢<1): 2 47 A2 4 0
i1 2<z—1)] [_L 2.3 ,2.1 _l]
—[2t+4 7€ + 2te +4e +2t 4
3200 _1,-2,3 -2
= 46 2f€ +4€ + .
1 1
()= [e > (t-v)de= [— Le-ve? +1e™ ] .
t—1
Case V (1 <t<2): = [—%ez(t“) +%e2(t+1)]— [%(t +1)e? +%e_2]
_ 1,2 _1,,-2 ,3 -2
= 46 216 +4€ .

Case VI (¢ > 2): Since there is no overlap, y,(¢)=0.

Combining all the cases, the result of the convolution y,(f) = z(¢) * v(¢) is given by

_%ez(m) _%te,z _%ﬁ (-2<t<-1)
3 o 2(+D) -1 te? _%6*2 +t  (-1<t<0)
() = _%62(t—1)_%te_2 +%e‘2+z 0<t<)
1,-20-1) _1,,-2 3 -2
i€ 2te t5e€ (1<t<2)
0 elsewhere.

The output is y;() shown in Fig. S3.6.7(j) at the end of the solution of this problem.
(viii) Since w(f) = 1 — [1], therefore, the expression for w(z — 1) is

_ _J1=(@-1) ift<t
W(’_T)‘1_|1_T|‘{1—(r—t) if1>1.

Using the graphical approach, the convolution of w(#) with w(¢) is shown in Fig. 3.6.8, where we
consider six different cases for different values of ¢.
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1 w(®) | w(=T)

(a) Waveform for w(t) (b) Waveform for w(-t)
) w(t) w(t-1)

w(t) w(e=)

H ¥ ' i T T
1 t #+1 ] 0 1 0 1 -1-1 t |0 #1]
-1 -1 -1

(d) Overlapf(k:;"("t;”_(g and w(t-) (e) Overlap btw w(t) and w(t—) for (—2<t<-1) (f) Overlap btw w(t) and w(¢—7) for (—1<¢<0)

w(t) w(t-1)

RSN YA
.l

() Overla;;Ot;tsz(;l) )and wit=1) (h) Overlap btw w(t) and w(¢—r) for (1<¢<2) (i) Overlap btw w(t) and w(z—t) for (£>2)

(j) Convolution output Vg ()

Fig. S3.6.8: Convolution of w(#) with w(f) in Problem 3.6(viii).

Case I (r <-2): Since there is no overlap, yg(¢)=0.

t+1
ye(t) = j 1+ 1)1 +1-1)dr
-1

t+1 t+1

1

Case 11 (—2§t<—1); — J‘(I—Tz)d‘t+t I(I+T)d’fz[‘t—%‘c3 +%t(1+T)2]i
-1 —1

13,2 4
—6t +1 +2z+3.
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Case Il (-1 <¢<0):

t+1

ye(t) = j(1+r)(1 t+1)dt+ j A+ 1)1+ —T)dr+ J‘(l D)1+ —1)dr

-1
t 0 t+1 t+1

j(lﬂ) dr— tJ.(1+r)dr+J.(1 T )dr+tj(1+r)dr+ J-(l 1) dr+tj(1 1)dt
-1 -1

=LA+ |-t a+0? |- te+1e? |+ |18 =Ll e+ - L +1)?
La+o |- ][][H ][ |

Case IV (0<t<1):

yg(t)_I(1+r)(1—t+r)dr+j(1 r)(1+z—r)dr+j(1 (141 —1t)dr

t-1
0

I(l+r) dr—tj(l+r)dr+j(l 1) dr+tj(1 r)dr+j(1 1) dr+tj(1 1)dt

:t[_l ] z[ ] [ 3(10 1)’ +1 ]+z[z t2]+[§(1[—t)3]+t[%(1—t)2]

2 2,13
AL

1
ye(t) = j(l—r)(l—t+T)dr

t-1

1 1
Case V(1<t<2): = I(I—Tz)dT—t I(]—‘C)d’t: [‘C—%f' —t(‘c—%rz)]i_l .

t—1 t—1

1.3, .2 4
o+t 2t+3

Case VI (¢ > 2): Since there is no overlap, yg(¢) =0.

Combining all the cases, the result of the convolution yg(#) = w(?) * w(¢) is given by

Lo vau+d (22<i<-)

2 t2—§t3 (-1<1<0)

(=1 2-t +;z3 (0<r<1)
—%t +12 —2+%  (11<2)

0 elsewhere.

The output is ys(¢) shown in Fig. S3.6.8(j) at the end of the solution of this problem.

(ix) Using the graphical approach, the convolution of v(¢) with w(?) is shown in Fig. 3.6.9, where we
consider six different cases for different values of ¢.
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lwlw(z—x)
T

(a) Waveform for v(t)

(b) Waveform for w(t)

. w(t) w(t-1)

r)gir)
T

' T T
1 t #l -1 1
-1

T T T
0 1 1 t -1 0 1
-1 -1

(c) Waveform for w(t—1)

e
2
' T

PEEINI PP
-1

(d) Overlap btw v(t) and w(z—) for (t<-2) (e) Overlap btw v(t) and w(z—1) for (-2<t<-1) (f) Overlap btw v(t) and w(t—) for (—1<¢<0)

1 w(1) w(t=1)

T ' T
-1+1 [0 1 #1
-1

(g) Overlap btw v(t) and w(t—) for (0<¢t<1) (h) Overlap btw v(t) and w(z—t) for (1<1<2)

(j) Convolution output Y, (t)

Since w(f) = 1 — [¢], therefore, the expression for w(¢ — 1) is

_ _J1=(@-7) ift<t
W“‘ﬂ‘k¢‘ﬂ‘%—m—g ifr>t.

Case I (r <-2): Since there is no overlap, y,(¢)=0.

r;gir)

(i) Overlap btw v(t) and w(z—t) for (£>2)

Fig. S3.6.9: Convolution of v(¢) with w(#) in Problem 3.6(ix).
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t+1 t+1 t+1

Yo(t) = jezf (I—t+0)dt=(1+1) jezrdr - j e¥dt
-1 -1 -1

Case Il (-2 =<¢<-1): = %(1 + [)(ez(m) —e? )— (% (t+ 1)e2(’+1) —%ez(m) + %e‘z +%e_2)

:%ez(wl) _%te—z_%e—z.
t 0 t+1
yg(t)=jeZT(l—Hr)deezf(lH—r)dH J'e—zf(lﬂ—r)dr
1 t 0
_ IPL L P2 S L 1 20| 120 1 2|0
—(l—t)[ze T]_l +[31:e K -g€ T]_l +(1+t)[ie T]t —[Ere t —4e T]t
Case III (-1 <¢<0):
+(1+ t)[—le_h]m - [—lre_zT —le_zr]t“
2 0 2 4 0
=%e_2(t+1) —%ezr +%te_2 +%e_2 +t+1.
0 ‘ 1
Yo(t) = je2’~'(1—z+r)dwjezf(l—z+r)dr+je—2f(1+t—r)dr
-1 0 1
_ 23 EOR P 2 e £ 23 L P LS 1
—(l—t)[ze T];_1+[3Te t —e T]H +(1—t)[ze T]0+[Ere t—ze T]o

Case IV (0<t<1):
1

1.2t 1 —27:]
4e t

+ (1+t)[—%e_2T]1 - [—Ere

1200 1,2t 1.2 ,1 -2
=ge ye Zte + e t+1.

1 1 1
Yo(t) = I e (1=t +1)de=(1-1) j e Ty j e de

t—1 t—1 t—1

Case V(1 <1<2): =-1a- t)(e‘2 - e_z(t_l))+ (—%e‘2 e+ d@r-ne? N+ %e‘“"l)).
= %e_z(t_l) + %te_2 - % e 2.
Case VI (¢ > 2): Since there is no overlap, Yo(t)=0.

Combining all the cases, the result of the convolution yq(¢) = v(¢) * w(t) is given by



Yo(t) =

Solutions

120D Ly 272 (-2<t<-1)
L2 Lo Lpe2 y Lo p4l (-1<1<0)
1201 1 -2 1,2, 1 -2
1€ Se Ste "+ e t+1 0<t<)
1,201, 1,,-2 5 -2
7€ +5te Se (1<£t<2)
0 elsewhere.

The output is y9(f) shown in Fig. S3.6.9(j) at the end of the solution of this problem.
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(x)  Using the graphical approach, the convolution of v(f) with v(¢) is shown in Fig. 3.6.10, where we
consider six different cases for different values of ¢.

w(t -T)
1 1
o pes Wm
T > T

(a) Waveform for v(t)

Casel: (t+1)<-1

-1 0 1 t-1 t t+1

(b) Waveform for v(—1) (c) Waveform for v(¢—1)

Case2: (t+1)>-1

(t+1)<0 BL0)
1
2T 3—2!

Case3: (t+1)>0

b1G)
1
/\ . -
1 t 0 1

t- t+1 -1

(d) Overlap btw v(t) and v(t—1)

for (1<-2)
Case4: (¢ +1)>1
(t-1)<0 )
1
e €

(t+1<1 50}
1
T

t-1 -1 ¢t 0 ¢+1 1

t-1 t -1 t+10 1

(e) Overlap btw v(t) and v(z—1) for

(—2<t<-1) (f) Overlap btw v(t) and v(z—1) for (—1<¢<0)

Case 5: (- 1)>0 Case 6: (1—1)>1

-1 ¢-10 1 t+1

(g) Overlap btw v(t) and v(—7)
for (0<t<1)

(t-D<1 (0 (1)
1 1
e e e et ’/\‘
T
-1 0 1r-1 t+1

-1 0¢-11 t+1

(h) Overlap btw v(t) and v(¢—) for
(1=1<2)

(1) Overlap btw v(t) and v(z—7) for (£>2)

(j) Convolution output (?)

Fig. S3.4.10: Convolution of v(f) with v(¢) in Problem 3.6(x).

Case I (# <-2): Since there is no overlap, Y10(6)=0.

Case Il (-2<¢t<-1):
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t+1 t+1 40 P! a+l) | -4
_2(t— _ _ _ - 1 (24—
Y10(t) = J‘ezre 2t-1) gp = o2 J-e‘“dtze 2{2 } —e 2:{6 e :Izz[ezz+4_e (2t 4)]

-l -1 1 4
! 0 t+1
yio(t) = Iezrez(t_r)dt + J-eZTe_z(’_T)dr + J-e‘ZTe—Z(f—T)dT
Case IIT (-1 << 0): =(t+De” +1e7 (1 — et )+ (t+1)e

_ ;)2t( g)zt
—(t+4e +t+4e.

0 t 1

Yio(t) = J.ezrez(t_r)dt + Ie‘zrez(t_T)dr + J.e‘ZTe—Z(f—T)dT
t-1 0 p
oot | am0e siefce theacoe

= (%—t)ezt +(%—t)e_2t.

1
Case V (1 <t<2): Yio(®) = Je‘zrez(t_r)dt = %ezt(e_‘w_l) - e_4) .
t-1

Case VI (¢ > 2): Since there is no overlap, Y1io(®) =0.
Combining all the cases, the result of the convolution y,,(¢) = v(¢) *v(¢) is given by

%(ez”“ - e‘(z"“)) (-2<t<-1)
(t+%)62t+(t+%)62t (-1<1<0)
no@0=1E-r)e¥ +(-r)e  (0<i<)
%e”(e*‘““n —et) =<2

0 elsewhere.

The output y;(?) is shown in Fig. S3.6.10(j).

Problem 3.7
(a) Distributive property: By definition, x,(¢) * z(¢) = J-xl (1)z(t —Tt)dr.

Substituting z(¢) = x,(¢) + x3(¢), we obtain



(b)

(©)

Solutions

0

10 * (50 + x30)= [ 1@ =)+ x; (-0

—00

or, X () * (6, () + x5 (1)) = jxl (0)x, (t — T)dt + j X, (T)x3 (¢ — T)dt
X, (8)*x, (1) X, (2)*x5 (1)
or, x, () * (30 (£) + X3.(0)) = x, (1) * X5 (£) + X, (1) * X3(2) .

Associative property: By definition, x;(¢) * w(z) = .[xl (Ow(t —1)dr.

—00

Substituting W(t) = x, (1) % x3(£) = jx3 (a)x, (f — a)dor,

—00

we obtain X, (£) * (3, (£) * x3.(1)) = j X, (r){ jx3 (a)x, (£ —T— a)daJdr.

—00 —00

Changing the order of integrations, the above equation simplifies to

—00 —00

51 (0)* () *x30)= | x3<a)[ [ @, (z—r—a)dr}da.
Similarly, expanding

(0 x5, (0)* x5 0) = | xg(r){ (BTG a)da}dr.

—00 —o0

Since the right hand side of the two expressions are equal, we obtain the following.
x(0)* (15 (0) % x3(0) = (30, (1) * 2, (1) * 253.0)
Scaling Property: We consider the two cases o > 0 and a < 0 separately.

Case I: (o = k) where £ is a positive constant.

By definition, x; (kt) * z(kt) = jxl (kv)z(kt — kt)dr

Substituting p = kt, we get x;(kt) * z(kt) = I x(p)z(kt — p)df = %y(kt) .
Case II: (o0 = —k) where £ is a positive constant.

By definition, X, (=kt) * z(—kt) = j X, (—kt)z(=kt + kt)dr

—0o0

109
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—00

Substituting p = —kt, we get x,(—kt) * z(—kt) = I X (p)z(—kt — p)% .

o0

By changing the order of the upper and lower limits

0

% (k) 2(k) === [ 5 (Bt = p)dp = y(k)

) 4
Collectively, Cases I and II prove the scaling property. I
Problem 3.8
We know that u(t) > (1—e Hu().
Then 40 - )]
8(1)
which simplifies to 3(¢) = 8(¢) + e "u(t) — e '3(¢t)
or, 3(t) = e”"u(t).
Hence, the impulse response is given by h(t)=e u(t). I
Problem 3.9

Convolution of two signals that are, respectively, nonzero over the range [#,, #,1] and [#z, t,2] is nonzero
over the range [#; + tp, t,1 + t,n]. Therefore, t, + t,, =—5 and t,; + ¢,, = 6. By substituting, #,; = -2 and ¢,
= 3, the values of t, = -5+ 2 = -3 and ¢, = 6 — 3 = 3. The possible nonzero range of the impulse
response /A(f) is therefore [-3, 3].

Problem 3.10

In Example 3.8, it was shown that

0 t<0
» 1-¢r 0<r<1 »
[x(t)ze u(t)]* h(t)= =9 2-t-2e 0<r<1
0 otherwise —(t-1) s
e —2e t>1.

Using the commutative property, Eq. (3.3), we interchange the impulse response and the input to obtain

0 t<0
I1-r 0<¢<1 , ,
y@)=|x(t)= ] *[h(z):e_ u(t)]: 2—-t-2e 0<¢<L1
0 otherwise (-1 =
e —2e t>1.

Problem 3.11

By inspection, we note that x'(f) =x (¢ — 2) and 4'(f) = h (¢ — 4). Using the shifting property, Eq. (3.40),
the output
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V(@)y=x't)«h'(t)=x(t-2)*h(t—4)=y(t—-06).
Therefore, the convolution output for the shifted input x'(¢) = x (¢ — 2) and shifted impulse response %'(¢)
=h (¢t —4) is given by
0 (t-6)<0
V() =p(t-6)=12—-(t—6)-2¢"9 0<(@-6)<1
e (O 26770 (1 _6)>1,

0 t<6
or, Vi(t)=1 8—t-20 6<r<7 i
e 77 07 (t76) t>17.

Problem 3.12

(i)  System 21(¢) is NOT memoryless since 21(f) # 0 for ¢ # 0.
System £1(¢) is causal since 41(¢) = 0 for ¢ < 0.
System £1(¢) is BIBO stable since

f | hl(t)|dt = f 5(t)dt+w eu)dt=1+| -+t N :§< © .
o5

(i)  System A2(¢) is NOT memoryless since 43(f) # 0 for ¢ # 0.
System Ah2(¢) is causal since 42(f) = 0 for £ < 0.
System A2(¢) is BIBO stable since

00 o0 0 © 1
_ -2t _ -2t g, __ | _1 72t _
J.|h2(t)|dt— je u(t)dt—_([e dt=[-te™] = <.
iii) System A3(¢) is NOT memoryless since 43(¢) # 0 for ¢ # 0.
(iii) Sy ry
System /3(¥) is causal since 43(f) = 0 for £ < 0.
System 43(¢) is BIBO stable since
j | h3(t) | dt = j e sin(2nt)u(t)dt = j ¢ sin(2mt)dt < o .
0

—00 —00

(iv) System h4(¢) is NOT memoryless since h4(f) # 0 for ¢ # 0.
System £4(f) is NOT causal since 44(¢) # 0 for ¢ < 0.
System £4(¢) is BIBO stable since

T| h4(t) | dt = Te2’d1+Te_2’dt+ jldt =3<w.
—®© —0 0 -1

(v)  System 45(¢) is NOT memoryless since A5(¢) # 0 for ¢ # 0.
System A5(¢) is NOT causal since 25(f) # 0 for ¢ < 0.
System A45(¢) is BIBO stable since
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(vi)

(vii)

Chapter 3

© 4 l24
h5(t)|dt= |tdt=—| =16<.
[1ns@y)ar= | 2| 10e

System 46(¢) is NOT memoryless since 26(¢) # 0 for ¢ # 0.
System A6(¢) is NOT causal since 46(f) # 0 for ¢ < 0.
System £6(f) is NOT BIBO stable since

I|h6(t)|dt: I|sin(10t)|dt:oo

—0o0 —00

Consider the bounded input signal sin(10¢). If this signal is applied to the system, the output can
be calculated as:

y(t) = j x(D)h(t—17)dr = j sin(107)sin(10¢ — 107)dz

—00

The output at /=0 is given by,

1(0) = j sin(107)sin(~107)dz = — j sin*(107)dr = -4 j (1-cos(207))d

=—1 [ dr+4 [ cos(20r)dr = —0
—00 —00
=© = finite value

It is observed that the output becomes unbounded even if the input is always bounded. This is
because the system is not BIBO stable.

System A7(¢) is NOT memoryless since 47(¢) # 0 for ¢ # 0.
System h7(¢) is causal since 47(t) = 0 for ¢ < 0.
System A7(¢) is NOT BIBO stable since

j \W7(2) | dt = jcos(Sz)dz -
0

Consider the bounded input signal cos(5¢). If this signal is applied to the system, the output can be
calculated as:

y(t) = T x(t—7)h(7)dr = T cos(5t —5t)cos(57)u(r)dr = Tcos(St —57)cos(57)dr -

-0 —o0 0

The output at =0 is given by,

0

(0) = J.cos(—Sr) cos(57)dr = Tcosz(Sr)dr = %T 1+ cos(107))d

0 0
=4fdr+1 j cos(107)dz = o
0 0

=®© = finite value
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It is observed that the output becomes unbounded at =0 even if the input is always bounded. This
proves that the system is not BIBO stable.

(viii) System £8(#) is NOT memoryless since 48(f) # 0 for ¢ # 0.
System A8(¢) is NOT causal since A8(f) # 0 for ¢ < 0.
System 48(¢) is BIBO stable since

IOI h8(t) | dt = Ioo.%’dt = 2I0.95fdz = 2I "y = 17095 595) [eme ]

=L[O—l]=—;:39<oo
In(0.95) In(0.95)
(ix) System 49(¢) is NOT memoryless since A8(¢) # 0 for ¢ # 0.

System 49(¢) is NOT causal since £8(¢) = 0 for ¢ < 0.
System A8(¢) is BIBO stable since

]9|h9(t)|dt=j.1dt=2<oo, I

-0 -1

Problem 3.13
D) y()=x(@0)*h@t) = x()*[6(t) - 5(t—2) | = x(1) — x(1 = 2) -

From the input-output relationship, we observe that the output at time ¢ depends on the values of the
input at time (¢ — 2). Therefore, the system is NOT memoryless. However, it is causal.

() y@)=x(@O)*h(t) = x(t) *rect(t/2) = T rect(t/2)x(t —7)dr = j x(t—7)d7-

s -1
From the input-output relationship, we observe that the output at time ¢ depends on the values of the
input from time (¢ — 1) to (¢ + 1). Therefore, the system is NOT memoryless and NOT causal.

(1) y(r)=x(0)*h(r) = T x(0)h(t—7)dr = 2T e u(t-1)x(r)dr = 2j e x(r)dr =2 j e x(r)dr -

—0

From the input-output relationship, we observe that the output at time ¢ depends on the values of the
input from time (—oo, f). Therefore, the system is NOT memoryless. However, it is causal.

0 t

(V) y(t) = x(6)*h(t) = T x(0)h(t-1)dr = j (1= Ju(t - o)x(z)dr = j [1-¢*7 |x(z)dr -

—0 —0

From the input-output relationship, we observe that the output at time ¢ depends on the values of the
input from time (—oo, f). Therefore, the system is NOT memoryless. However, it is causal.

Problem 3.14

(1)  System (i) is invertible with the impulse response /1,(¢) of its inverse system given by

(1) =+8(t+2).

(i)  System (ii) will be invertible if there exists an impulse response /2,(¢) such that
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h2(t)*h2,;(t) =08(t) .
Substituting the value of 42(7), we get
h2,(6)+h2;(t+2)=05(t)
which simplifies to h2;(t)=0(—-2)—h2;(t-2).
Substituting the value of 42;(t —2) =38(¢ —4) — h2,(t —4) in the earlier expression gives
h2;(t)=0(t—2)—-0(t—-4)+ h2,(t—4).
Iterating the above procedure yields,

h2.(f) = i(—l)’””&(r —-2m).

m=1
Therefore, the system is invertible with the impulse response of the inverse system given above.
(iii) System (iii) will be invertible if there exists an impulse response /43,(¢) such that
h3(t)* h3,;(t) = 8(1).
Substituting the value of 43(¢), we get
h3;(t+1)+h3,(t—1)=5(¢)
which simplifies to h3;(t)=0(t—-1)—h3;(t-2).
Substituting the value of 43;(t —2) =8(t —3) — h3,;(¢—4) in the earlier expression yields
h3;(t)=0(t-1)—03(t—-3)+ h3;(t—4).
Iterating the above procedure yields,
h3;(t) = i(—l)’"”S(r +1-2m).
m=1
(iv) System (iv) will be invertible if there exists an impulse response /4.(¢) such that
h4(t) * hd;(t) = 5(¢) .
Substituting the value of /44(7), we get

j ha (Dt — )dr = 8(t)

—00

t
which simplifies to I h4;(t)dt = 06(¢) .

—0o0

Differentiating both sides of the above expression with respect to ¢, we obtain
ha;(t) = (3(1)).

In other words, system (iv) is an integrator. As expected, its inverse system is a differentiator.



V)

(vi)

Solutions

System (v) will be invertible if there exists an impulse response /5,(¢) such that
h5(1) % h5,(t) = () .
Substituting the value of 45(¢), we obtain

j 1S (Drect(55)dt = 8(1),

—00

t+4
which simplifies to thi(r)dt =9(1),
-4
t+4 t—4
which is expressed as IhS ((Ddt - IhSi(r)dr =9(1),

Substitute a=1—4  Substitute a=1+4
t t
or, thi(a+4)da— thi(a—4)da =3(0)
Taking the derivative of both sides of the equation with respect to ¢, we obtain

hS (t+4)—h5,(t—4)="L(5(r)).

which can be expressed as
5, (0) =)L (8(t—4—8m)).
m=0

System (vi) will be invertible if there exists an impulse response 46.(¢) such that
h6(t) * h6, (1) = 8(¢).
Substituting the value of 46(), we obtain

jh6i(r)e‘2<t‘f>u(t —0)dt=8(t),

—00

t
which simplifies to e j 16 . (v)e*dr = 8(t)

—00

t
or, j 16, (v)e> dr = 8(t)e™ .

—00

Taking the derivative of both sides of the equation with respect to ¢, we obtain
16, () =< (5(0)e™ )= €2 L (5(1))+ 25(1)e™

or, h6,(1)=-4(3(t))+25(¢) .
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Problem 3.15

By inspection, v(¢) = x(¢) + hy () * y(¢), and y(¢) = v(t) * Iy (¢) .

Therefore,  y(¢)= [x(t) +h, (1) * y(t)] *h (1) =x(t)*h () + hy(t)*h () * y(t).
By rearranging the terms on both sides of the equation, we obtain

[8(1) = Ay (2) * Iy (6)]* ¥(2) = Iy (£) % x(2). i

Problem 3.16
The output of the system is given by

Y(O) = x(t)xh(t) =" *h(t) = [ h(z)e™dr =& [ h(z)e ™ dz .

Defining H(w) = jh(t)ej “’dt , the output is given by

—00

Y1) =" H(®) |y, - |

Problem 3.17
In P3.16, it is shown that e’ - e H(w)|,_, =e""H(w,).
Applying the linearity property, we obtain
A’ = (Aeje ) e’ — (Aeje ) ¢ H(w,) = A" H(w,).

By expressing H(®) in polar format, H(®) = |H (co)| /<1 with |H(»)| being the magnitude and <H(w)
being the phase of H(w), we obtain

Aej(a)ot+0) N Aej(a)ot+0+<H(wo)) |H(a)0)|
Decomposing the above expression into its real and imaginary components

Acos(wyt +0)+ jAsin(w,z +0) — 4cos(w, + 0+ < H(mo)]H(mo )| + jdsin(o,f + 0+ < H(coo)]H(mo )|

Since the impulse response of the system is real-valued, the real part of the output arises due to the real
part of the input, and the imaginary part of the output arises due to the imaginary part of the input.
Therefore, by separating the real and imaginary components, we obtain:

Acos(oyt +0)— A|H(0)O )| cos(w,t + 0+ < H(wy))
and Asin(w,t+0)— A|H(c00 )| sin(w,f + 0+ < H(wyp)).

The above result implies that an LTIC system only changes the magnitude and phase of the sinusoidal
input. The output is still sinusoidal with the same fundamental frequency as that of the input signal.

Problem 3.18

Express —3sin(2nz + 1/ 4) — 5cos(2mt)



Solutions

as 3sin(27t+57/4) = 5sin(2xt + 7/2) =3x(5/3)sin (27t +57/4-37/4).
Comparing with Asin(w,t+0)—> A|H((1)0 )| sin(w,z + 0+ < H(ay)),
we note that |H(w,)|=5/3 and <H(w,)=-37/4.

The transfer function of the system at ® = 27 is therefore given by

5 —j3n/4
fianﬂm:ZR :-gefj .

Problem 3.19
(1) y()+4y()+8y(t)=x(t)+x(¢t) with x(¢)= e"“u(t),y(O) =0, and y(0)=0.

The Matlab code is included below with both the analytical and computational plots included in

Fig. $3.19.1.

Analytical Solution

Computed Solution

Fig. S3.19.1: Analytical (top) and computational (bottom) plots for Problem 3.2 part (i)
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% MATLAB Code for Problem 3.19 (1)

tspan = [0:0.02:20];

$Analytical Solution from Problem 3.2

t = tspan;

yanalytical = 3/8* (exp(-2*t) .*cos (2*t)-exp(-2*t) .*sin (2*t)-exp(-4*t));
subplot (211) ;

plot (t,yanalytical);

title('Problem 3.19(i)"'");

xlabel ("time (t)"'):;

ylabel ('Analytical Solution');

grid on

$Computational Solution

y0 = [0; 0]

[t2,v] ode23 ('myfuncdproblem3 19a', tspan,y0);

subplot (212) ;

plot (t2,vy(:,2));

xlabel ("time (t)"'):;

ylabel ('Computed Solution');
grid on

)

% Include the following function in a separate file < myfuncédproblem3 19a.m>
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(i)

function [ydot] = myfuncédproblem3 19%a(t,y)

ydot (1,1) = -4*y(l) - 8*y(2) - 3*exp(-4*t)*(t >= 0);
ydot (2,1) = y(1);

5-—--end of the function-------------——-—————————

$()+67(1) + 4y(t) = ¥(£) + x(t) with x(¢) = cos(61)u(?), p(0) =2, and j(0)=0.

The Matlab code is included below with both the analytical and computational plots included in
Fig. S3.19.2.

Problem 3.19(ii)
2
I I I I I I I I I
= | | | | | | | | |
g | | | | | | | | |
L A A
2 | | | | | | | | |
© | | | | | | | |
Q | | | | | | | | |
L e e ! S N NS ) i
s | | | | ] | | | |
| | | | | | | | |
< | | | | | | | | |
_1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
time (t)
2 T T T T T T T T T
I I I I I I I I I
c | | | | | | | | |
2 | | | | | | | | |
=}
r= T i R e e i e ity
o | | | | | | | | |
B | | | | | | | |
2 0F - - - TSMOAGA A A AR A A
g | | | | | | | |
o L L L L
_1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Fig. S3.19.2: Analytical (top) and computational (bottom) plots for Problem 3.2 part (ii)

% MATLAB Code for Problem 3.19(ii)

tspan = [0:0.02:20];

$Analytical Solution from Problem 3.2

t = tspan;

yanalytical = -0.1962*%exp (-5.2361*t)+2.1169%exp (0.7639*t)+0.0793*cos (6*t) ;
yanalytical = yanalytical+0.0983*sin(6*t);

subplot (211) ;

plot (t,yanalytical);

title('Problem 3.19(ii)");

xlabel ('time (t)"');

ylabel ('Analytical Solution');

myaxis = axis;

grid on

$Computational Solution

y0 = [0; 2]

[t2,y] = ode23('myfuncdproblem3 19b', tspan,y0);
subplot (212) ;

plot(t2,y(:,2));

xlabel ('time (t)');

ylabel ('Computed Solution');

axis (myaxis) ;

grid on

% Include the following function in a separate file < myfuncdproblem3 19b.m>
function [ydot] = myfuncéd4problem3 19b(t,y)

ydot (1,1) = -6*y(l) - 4*y(2) - 6*sin(6*t) + cos(6*t);
ydot (2,1) = y(1);




Solutions

(i) P@)+29()+ y(t)=x() with x(¢)= [cos(t) + sin(2t)] u(t), y(0)=3, and y(0)=1.

The Matlab code is included below with both the analytical and computational plots included in

Fig. $3.19.3.

Problem 3.19(ii)

Analytical Solution

Computed Solution

Fig. S3.19.3: Analytical (top) and computational (bottom) plots for Problem 3.2 part (iii)
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% MATLAB Code for Problem 3.19(iii)

tspan = [0:0.02:20];

$Analytical Solution from Problem 3.2

t = tspan;

yanalytical = 2.36%*exp(-t)+2.9*t.*exp(-t);
yanalytical = yanalytical - 0.5*sin(t)+0.64*cos(2*t)+0.48*sin(2*t);
subplot (211) ;

plot (t,yanalytical);

title('Problem 3.19(iii)"');

xlabel ('time (t)');

ylabel ('Analytical Solution');

myaxis = axis;

grid on

$Computational Solution

y0 = [1; 3]

[t2,y] = ode23('myfuncdproblem3 19c', tspan,y0);
subplot (212) ;

plot(t2,y(:,2));

xlabel ('time (t)');

ylabel ('Computed Solution');

axis (myaxis) ;

grid on

% Include the following function in a separate file < myfuncdproblem3 19c.m>
function [ydot] = myfuncéd4problem3 19c(t,y)

ydot (1,1) = -2*y(l) - y(2) - cos(t) - 4*sin(2*t);

ydot (2,1) = y(1);

(iv)  $()+4y(t)=5x(t) with x(¢)=4te " u(t), y(0)=-2, and 7(0)=0.




120 Chapter 3

)

The Matlab code is included below with both the analytical and computational plots included in
Fig. S3.19.4.

Problem 3.19(iv)

Analytical Solution

Computed Solution

Fig. S3.19.4: Analytical (top) and computational (bottom) plots for Problem 3.2 part (iv)

% MATLAB Code for Problem 3.19(iv)

tspan = [0:0.02:20];

$Analytical Solution from Problem 3.2

t = tspan;

yanalytical = -3.6*cos(2*t)-1.2*sin(2*t)+1l.6%exp(-t)+4*t.*exp(-t);
subplot (211) ;

plot (t,yanalytical);

title ('Problem 3.19(iv)");

xlabel ('time (t)');

ylabel ('Analytical Solution');

myaxis = axis;

grid on

$Computational Solution

y0 = [0; -2]

[t2,y] = ode23('myfuncdproblem3 19d', tspan,y0);
subplot (212) ;

plot(t2,y(:,2));

xlabel ('time (t)');

ylabel ('Computed Solution');

axis (myaxis) ;

grid on

% Include the following function in a separate file < myfuncdproblem3 19d.m>
function [ydot] = myfuncé4problem3 19d(t,y)

ydot (1,1) = - 4*y(2) +5*4*t.*exp(-t);

ydot (2,1) = y(1);

dy 4 d’y . . .

L2292 1y =x(t) with  x(t)=2u(t), y(0) = $(0) = #(0) =0, and y(0)=1.

The Matlab code is included below with both the analytical and computational plots included in
Fig. S3.19.5.



Solutions 121

Problem 3.19(V]

40

20F - --

Analytical Solution

-20
0

40

i
|
|
] ----
|
|
|

Computed Solution

-20
0

Fig. S3.19.5: Analytical (top) and computational (bottom) plots for Problem 3.2 part (v)

% MATLAB Code for Problem 3.19(iii)
tspan = [0:0.02:20];
%Analytical Solution from Problem 3.2

t = tspan;
%yanalytical = -0.25%exp(t)-0.75%exp(-t)-cos(t)+0.5*sin(t)+2;

yanalytical = 1.50*sin(t)-2*cos(t)-t.*sin(t)-0.5*t.*cos(t) +2;
subplot (211) ;

plot (t,yanalytical);

title('Problem 3.19(v)"');

xlabel ('time (t)"'):

ylabel ('Analytical Solution');

myaxis = axis;

grid on

$Computational Solution

y0 = [0; O0; 1; O];

[t2,y] = ode23('myfuncd4problem3 19e', tspan,y0);

subplot (212) ;

plot(t2,y(:,4));

xlabel ('time (t)"');

ylabel ('Computed Solution');

axis (myaxis);

grid on

% Include the following function in a separate file < myfuncdproblem3 19e.m>
function [ydot] = myfunc4dproblem3 19%e(t,y)

ydot (1,1) = -2*y(2) - y(4) + 2;

ydot (2,1) = y(1);
ydot (3,1) = y(2);
ydot (4,1) = y(3);




