
 

Chapter 8: Case Studies for CT Systems 
 

 

Problem 8.1: 

(a) The AM signal is given by 

)2cos()]2cos(2)2sin(31[)( 21 tftfktfkAts cππ+π+= . 

 To ensure that the envelope of s(t) ≥ 0 for all t 

0))2cos(2)2sin(31( 21 ≥π+π+ tfktfk . 

 Taking the worst case scenario, i.e., both sin(2πf1t) and cos(2πf2t) take their minimum values of −1 
at the same time, we get 
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 Assuming f1 ≠ f2 ≠ fc, the power in the modulated signal is composed of 
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 Hence, the ratio of power lost in the carrier and the total power = 25.61
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(c) The power spectrum of s(t) is given by 
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 For f1 = 10 kHz, f2 = 20 kHz, and  fc= 50 kHz, the power spectrum is shown in Fig. S8.1 (a). 

(d) Signal x(t) can be reconstructed using the synchronous detector shown in Fig. S8.1(b). 

 The information signal x(t) can be extracted from the output of the above system by using an 
amplifier with a gain of 2/A2 and removing the dc offset. ▌ 
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Figure S8.1: (a) Spectrum for the AM modulated signal s(t) in Problem 8.1(c). (b) synchronous detector 
in Problem 8.1(d). 

 

Problem 8.2: 

(a) The AM signal is given by 

)2cos()]105(csin1[)( 3 tftkAts cπ×+= . 

 To ensure that the envelope of s(t) ≥ 0 for all t 

0))105(csin1( 3 ≥×+ tk . 

 The minimum value of sinc(αt) = sin(παt)/παt occurs at παt = 3π/2, or t = 3/2α and is given by 
−2/3π. 

 Therefore, 0)321( ≥π− k , or, 23π≤k . 

(b) Expressing )2cos()105(csin)2cos()( 3 tftAktfAts cc π×+π= , 

 Assuming fc ≠ 5 × 103,  2
2
1carrier in thePower A= .  

 Because the information signal is a sinc function that decays with time, therefore, the average 
power in the modulating signal is zero. Instead, we compare the energy used to transmit the carrier 
and the information signal. 

 For simplicity, we assume that the sinc function has a duration of five side lobes on each side of the 
main lobe. The duration of the main lobe is 2 × 10−4 seconds, hence, the approximated duration of 
the sinc function is 12 × 2 × 10−4 = 2.4 × 10−3 seconds. The energy consumed in transmitting the 
carrier is, therefore, given by 1.2 × 10−3A2. 

 To compute the energy in the modulating signal, we use the Parseval’s theorem 
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(c) The power spectrum of s(t) is given by 
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 For  fc= 20 kHz, the power spectrum is shown in Fig. S8.2(a). 
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Figure S8.2: (a) Spectrum for the AM modulated signal s(t) in Problem 8.2(c), (b) synchronous detector 
in Problem 8.2(d). 

 

(d) Signal x(t) can be reconstructed using the synchronous detector shown in Fig. S8.2(b). 

 The information signal x(t) can be extracted from the output of the above system by using an 
amplifier with a gain of 2/A2 and removing the dc offset.  ▌ 
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Problem 8.3 

For a sinusoidal tone as the information signal, the AM signal is given by 
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The power used to transmit the carrier is given by 0.5A2, while the power used to transmit the modulating 
signal is given by 2 × (Ak/2)2/2 = 0.25 A2k2. The fraction of power in the information signal is given by 
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Figure S8.3: Relative power in the information signal as a function of the modulation index k . 

Fig. S8.3 plots the fractional power in the information signal as a function of the modulation index k. For 
k = 0.7, η = 0.1968. The value of η increases as the modulation index k is increased.  ▌ 

 

Problem 8.4 

The modulated signal is given by    )2cos()]2sin(21[)( 1 tftfkts cππ+= . 

Demodulating with cos[2π(fc + Δf )t] gives 

 ))(2cos()2cos()]2sin(21[)()( 1 tfftftfktcts cc Δ+πππ+=× , 

which can be expressed as 

 ))2(2cos()]2sin(21[)2cos()]2sin(21[)()( 12
1

12
1 tfftfkfttfktcts c Δ+ππ++Δππ+=× . 

The output y(t) of the lowpass filter with a cutoff frequency of 2 fc Hz is given by 

 )2cos()]2sin(21[)()( 12
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 Solutions        5 

  

)(ωS

Δf

π5.0

f1 + Δf

f1 + Δf

−(f1 + Δf)

−(f1 −
Δf)

f1−f1 −Δf

π5.0
πk πkπk πk

ω

)(ωS

Δf

π5.0

f1 + Δf

f1 + Δf

−(f1 + Δf)

−(f1 −
Δf)

f1−f1 −Δf

π5.0
πk πkπk πk

)(ωS

Δf

π5.0 π5.0

f1 + Δf

f1 + Δf

−(f1 + Δf)

−(f1 −
Δf)

f1−f1 −Δf

π5.0 π5.0
πk πkπkπk πkπkπk πkπkπk πkπk

ω

 
Figure S8.4: Spectrum for the demodulated signal s(t) in Problem 8.4. 

The magnitude spectrum of the demodulated signal is shown in Fig. S8.4. Distortion introduced by the 
difference in the frequencies of the carriers used at the modulator and demodulator is generally difficult to 
remove. ▌ 

Problem 8.5 

The following block diagram can be used to recover x1(t) and x2(t) directly from the QAM signal. 
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By removing the dc offset and adjusting the gain, the information signals x1(t) and x2(t) can be derived 
from the two outputs. ▌ 

Problem 8.6 

With r = 0, the input-output relationship for the spring damping system is given by 

 )()(
2

txtky
dt

ydM =+ .  

Taking the Laplace transform, we get  

 )()()( 2 sXsYkMs =+ ,  

which results in the transfer function 
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The impulse response is obtained by expressing the transfer function as  
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and taking the inverse Laplace transform  
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Note that the poles of the above system are located at the imaginary axis at Mkjs ±= . The system 
is, therefore, marginally stable.  ▌ 

Problem 8.7 

Integrating by parts, we obtain 
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which reduces to Eq. (8.42). ▌ 

Problem 8.8 

With La = 0, the input-output relationship for the armature circuit is given by 
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The torque and load equations will remain same as Eqs. (8.30) and (8.34), and are given by 
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Taking the Laplace transform of the above three equations, we obtain 
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To obtain h(t), we rearrange the terms of H(s) as follows: 
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Calculating the inverse Laplace transform of H(s), we obtain h(t) as follows: 

( )( ) 1 ( )th t e u tαβ
α

−= − . 

The transfer function has two poles, at 0s =  and at s α= − . Because, α  is always positive, the second 
pole always lies in the left-half of the s-plane. As the first pole is located on the imaginary axis, the 
overall system is a marginally stable system. The system will be unstable only if a DC (constant) signal is 
applied at the input. 

 ▌ 

Problem 8.9 

Case I (ξn > 1): Express the impulse response as 
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Case II (ξn < 1): Recall that the integral 
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Substituting the value of α and β proves Eq. (8.44). ▌ 
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Problem 8.10 

Substituting Eq. (8.54) in Eq. (8.55), we get )(
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Problem 8.11 

Note that )()()( 11 sssV θ−φ=  

and [ ])()()()()()( 11112 sssGKsVsGKsV θ−φ== . 

Substituting θ(s) = V2(s)/s in the above equation, we get 
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Differentiator: For the PLL to behave as an ideal differentiator, its transfer function H(s) = Ks, i.e.,  
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Another way of obtaining an ideal differentiator is to set K1 → ∞ in the transfer function as shown below: 
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Problem 8.12 

The simulink model for the simulation is shown in Fig. S8.12a. The results of the simulation are plotted in 
Fig. S8.12b. While the number of antigens rises at an alarming rate, the plasma cells are not produced to 
compensate for this increase in antigens. Consequently, the antibodies are destroyed by the antigens.  ▌ 

 

 
Fig. S8.12a: Simulink model for the immune response system of humans for Problem 8.12. 
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Fig. S8.12b: Time evolution of the number of antigens a(t), plasma cells p(t), and antibodies b(t) 

in Problem 8.12. 


