
  

Chapter 3: Time Domain Analysis of LTIC Systems 
 

 
Problem 3.1 

Linearity: For x3(t) = α x1(t) + β x2(t) applied as the input, the output y3(t) is given by 
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Rearranging the terms on the right hand side of the equation, we get 
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Expressing the higher order derivatives of x1(t) and x2(t) in terms of y1(t) and y2(t), we get 
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or,  
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which implies that  )()()( 213 tytyty β+α= . 

The system is therefore linear. 

Time-invariance: For x(t – t0) applied as the input, the output y1(t) is given by 
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Substituting τ = t – t0 (which implies that dt = dτ), we get 
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Comparing with the original differential equation representation of the system, we get 
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  )()(or,)()( 0101 tyytyy −τ=τ+τ=τ , 

proving that the system is time-invariant. Note that the time invariance property is only valid if the 
coefficients ar’s and br’s are constants. If ar’s and br’s are functions of time, then the substitution (τ = t – 
t0) will also affect them. Clearly, y(τ) ≠ y1(τ + t0) in such a case and the system will NOT be time-
invariant.  ▌ 

Problem 3.2 

(i) 4( ) 4 ( ) 8 ( ) ( ) ( ) with ( ) ( ), (0) 0,  and (0) 0.  ty t y t y t x t x t x t e u t y y−+ + = + = = =  

(a) Zero-input response of the system: The characteristic equation of the LTIC system (i) is  

  0842 =++ ss , 

 which has roots at s = −2 ± j2. The zero-input response is given by 

)2sin()2cos()( 22 tBetAety tt
zi

−− +=  

 for t ≥ 0, with A and B being constants. To calculate their values, we substitute the initial conditions 
0)0( =−y  and 0)0( =−y  in the above equation. The resulting simultaneous equations are  

022
0

=+−
=

BA
A  

 that has the solution, A = 0 and B = 0. The zero-input response is therefore given by 

.0)( =tyzi  

 Because of the zero initial conditions, the zero-input response is also zero. 

(b) Zero-state response of the system: To calculate the zero-state response of the system, the initial 
conditions are assumed to be zero. Hence, the zero state response yzs(t) can be calculated by solving 
the differential equation 

 )(842
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+=++   

 with initial conditions, 0)0( =−y  and 0)0( =−y ,  and input x(t) = exp(−4t)u(t). The homogenous 
solution of system (i) has the same form as the zero-input response and is given by 

)2sin()2cos()( 2
2

2
1

)( teCteCty tth
zs

−− +=  

 for t ≥ 0, with C1 and C2 being constants. The particular solution for input x(t) = exp(−4t)u(t) is of 
the form  

  )(4)( tu Ke(t) y tp
zs

−= . 

 Substituting the particular solution in the differential equation for system (i) and solving the 
resulting equation gives K = −3/8. The zero-state response of the system is, therefore, given by 

  ( ) )()2sin()2cos()( 4
8
32

2
2

1 tueteCteCty ttt
zs

−−− −+= . 

 To compute the values of constants C1 and C2, we use the initial conditions, y(0−) = 0 and 
0)0( =−y  assumed for the zero-state response. Substituting the initial conditions in yzs(t) leads to 

the following simultaneous equations 
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 with solution  C1 = 3/8 and C2 = −3/8. The zero-state solution is given by 

( ) )()2sin()2cos()( 422
8
3 tuetetety ttt

zs
−−− −−= . 

(c) Overall response of the system: The overall response of the system is obtained by summing up the 
zero-input and zero-state responses, and is given by 

( ) )()2sin()2cos()( 422
8
3 tuetetety ttt −−− −−= . 

(d) Steady state response of the system: The steady state response of the system is obtained by applying 
the limit, t → ∞, to y(t) and is given by 

 ( ) 0)()2sin()2cos(lim)( 422
8
3 =−−= −−−

∞→
tuetetety ttt

t
. 

(ii) ( ) 6 ( ) 4 ( ) ( ) ( ) with ( ) cos(6 ) ( ), (0) 2,  and (0) 0.  y t y t y t x t x t x t t u t y y+ + = + = = =  

(a) Zero-input response of the system: The characteristic equation of the LTIC system (ii) is  

  0462 =++ ss , 

 which has roots at s = −3 ± 2.2361 = −5.2361 and −0.7639. The zero-input response is given by 
tt

zi BeAety 7639.02361.5)( −− +=  

 for t ≥ 0 with A and B being constants. To calculate their values, we substitute the initial conditions 
2)0( =−y  and 0)0( =−y  in the above equation. The resulting simultaneous equations are  

07639.02361.5
2

=−−
=+

BA
BA  

 that has a solution, A = −0.3416 and B = 2.3416. The zero-input response is therefore given by 

( ) )(3416.23416.0)( 7639.02361.5 tueety tt
zi

−− +−= . 

(b) Zero-state response of the system: To calculate the zero-state response of the system, the initial 
conditions are assumed to be zero. Hence, the zero state response yzs(t) can be calculated by solving 
the differential equation 
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 with initial conditions, 0)0( =−y  and 0)0( =−y ,  and input x(t) = cos(6t)u(t). The homogenous 
solution of system (ii) has the same form as its zero-input response and is given by 

tth
zs eCeCty 7639.0

2
2361.5

1
)( )( −− +=  

 for t ≥ 0, with C1 and C2 being constants. The particular solution for input x(t) = cos(6t)u(t) is of the 
form  

  )6sin()6cos( 21
)( tKt K(t) y p

zs += . 
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 Substituting the particular solution in the differential equation for system (ii) and solving the 
resulting equation gives  

  ( ) ( )
( ) )6cos()6sin(6)6sin()6cos(4

)6cos(6)6sin(66)6sin(36)6cos(36
21

2121
tttKtK

tKtK tKtK
+−=++

+−+−−  

 Collecting the coefficients of the cosine and sine terms, we get 

  ( ) ( ) 0)6sin(643636)6cos(143636 212121 =++−−+−++− tKKK tKKK  

 or, 

  63236
13632

21
21

−=−−
=+−

KK
KK  

 which has the solution, K1 = 0.0793 and K2 = 0.0983. The zero-state response of the system is  

  ( ) )()6sin(0983.0)6cos(0793.0)( 7639.0
2

2361.5
1 tutteCeCty tt

zs +++= −− . 

 To compute the values of constants C1 and C2, we use the zero initial conditions, y(0−) = 0 and 
0)0( =−y  assumed for the zero-state response. Substituting the initial conditions in yzs(t) leads to 

the following simultaneous equations 

0)0983.0(67639.02361.5
00793.0

21
21

=+−−
=++

CC
CC  

 with solution  C1  = 0.1454 and C2 = −0.2247. The zero-state solution is given by 

( ) )()6sin(0983.0)6cos(0793.02247.01454.0)( 7639.02361.5 tutteety tt
zs ++−= −− . 

(c) Overall response of the system: The overall response of the system is obtained by summing up the 
zero-input and zero-state responses, and is given by 

( )
( ) )()6sin(0983.0)6cos(0793.02247.01454.0

)(3416.23416.0)(
7639.07639.02361.5

7639.02361.5

tutteee

tueety
ttt

tt

++−+

+−=
−−−

−−

 

 or, ( ) )()6sin(0983.0)6cos(0793.01169.21962.0)( 7639.02361.5 tutteety tt +++−= −−
. 

(d) Steady state response of the system: The steady state response of the system is obtained by applying 
the limit, t → ∞, to y(t) and is given by 

 ( ) )()6sin(0983.0)6cos(0793.0)( tuttty += . 

(iii) [ ]( ) 2 ( ) ( ) ( ) with ( ) cos( ) sin(2 ) ( ), (0) 3,  and (0) 1.  y t y t y t x t x t t t u t y y+ + = = + = =  

(a) Zero-input response of the system: The characteristic equation of the LTIC system (iii) is  

  0122 =++ ss , 

 which has roots at s =  −1, −1. The zero-input response is given by 
tt

zi BteAety −− +=)(  
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 for t ≥ 0, with A and B being constants. To calculate their values, we substitute the initial conditions 
3)0( =−y  and 1)0( =−y  in the above equation. The resulting simultaneous equations are  

1
3

=+−
=

BA
A  

 that has a solution, A = 3 and B = 4. The zero-input response is therefore given by 

( ) )(43)( tuteety tt
zi

−− += . 

(b) Zero-state response of the system: To calculate the zero-state response of the system, the initial 
conditions are assumed to be zero. Hence, the zero state response yzs(t) can be calculated by solving 
the differential equation 

 )(122

2
tx

dt
dy

dt
yd

=++   

 with initial conditions, 0)0( =−y  and 0)0( =−y ,  and input x(t) = [cos(t) + sin(t)]u(t). The 
homogenous solution of system (iii) has the same form as the zero-input response and is given by 

tth
zs teCeCty −− += 21

)( )(  

 for t ≥ 0, with C1 and C2 being constants. The particular solution for input x(t) = [cos(t) + sin(t)]u(t) 
is of the form  

  )2sin()2cos()sin()cos( 4321
)( tKtKtKt K(t) y p

zs +++= . 

 Substituting the particular solution in the differential equation for system (iii) and solving the 
resulting equation gives  

 ( ) (
) ( ) )2sin(4)cos()2sin()2cos()sin()cos(1)2cos(2

)2sin(2)cos()sin(2)2sin(4)2cos(4)sin()cos(
43214

3214321
tttKtKtKtKtK

tKtKtK tKtKtKtK
−−=+++++

−+−+−−−−  

 Collecting the coefficients of the cosine and sine terms, we get 

  ( ) ( )
( ) ( ) 0)2sin(444)2cos(44

)sin(2)cos(12
434343

212121
=++−−+++−

++−−++++−
tKKK tKKK

tKKK tKKK  

 which gives K1 = 0, K2 = −0.5, K3 = 0.64, and K4 = 0.48. The zero-state response of the system is 

  ( ) )()2sin(48.0)2cos(64.0)sin(5.0)( 21 tutttteCeCty tt
zs ++−+= −− . 

 To compute the values of constants C1 and C2, we use the initial conditions, y(0−) = 0 and 
0)0( =−y . Substituting the initial conditions in yzs(t) leads to the following simultaneous equations 

048.05.0
064.0

21
1

=+−+−
=+

CC
C  

 with solution C1 = −0.64 and C2 = −1.1. The zero-state solution is given by 

( ) )()2sin(48.0)2cos(64.0)sin(5.01.164.0)( tutttteety tt
zs ++−−−= −− . 

(c) Overall response of the system: The overall response of the system is obtained by summing up the 
zero-input and zero-state responses, and is given by 

 or, ( ) ( ) )()2sin(48.0)2cos(64.0)sin(5.01.164.0)(43)( tutttteetuteety tttt ++−−−++= −−−−  



82    Chapter 3 

 or, ( ) )()2sin(48.0)2cos(64.0)sin(5.09.236.2)( tutttteety tt ++−+= −−
. 

(d) Steady state response of the system: The steady state response of the system is obtained by applying 
the limit, t → ∞, to y(t) and is given by 

( ) )()2sin(48.0)2cos(64.0)sin(5.09.236.2lim)( tutttteety tt
t

++−+= −−

∞→
 

or, ( ) )()2sin(48.0)2cos(64.0)sin(5.0)( tutttty ++−= . 

(iv) ( ) 4 ( ) 5 ( ) with ( ) 4 ( ), (0) 2,  and (0) 0.  ty t y t x t x t te u t y y−+ = = = − =  

(a) Zero-input response of the system: The characteristic equation of the LTIC system (iv) is  

  042 =+s , 

 which has roots at s =  ±j2. The zero-input response is given by 

)2sin()2cos()( tBtAtyzi +=  

 for t ≥ 0, with A and B being constants. To calculate their values, we substitute the initial conditions 
2)0( −=−y  and 0)0( =−y  in the above equation. The resulting simultaneous equations are  

02
2

=
−=

B
A  

 that has a solution, A = −2 and B = 0. The zero-input response is therefore given by 

)()2cos(2)( tuttyzi −=  

(b) Zero-state response of the system: To calculate the zero-state response of the system, the initial 
conditions are assumed to be zero. Hence, the zero state response yzs(t) can be calculated by solving 
the differential equation 

 )(542

2
tx

dt
yd

=+   

 with initial conditions, 0)0( =−y  and 0)0( =−y ,  and input x(t) = 4t exp(−t) u(t). The homogenous 
solution of system (iv) has the same form as the zero-input response and is given by 

)2sin()2cos()( 21
)( tCtCty h

zs +=  

 where C1 and C2 are constants. The particular solution for input x(t) = 4t exp(−t) u(t) is of the form  

  ttp
zs teKe K(t) y −− += 21

)( . 

 Substituting the particular solution in the differential equation for system (iv) and solving the 
resulting equation gives  

  ( ) ( ) ttttttt teteKeK teKeKeKeK −−−−−−− =+++−− 204 212221  

 Collecting the coefficients of exp(−t) and texp(−t), we get 

  ( ) ( ) ttttttt teteKteK eKeKeKeK −−−−−−− =+++−− 2044 221221  

 which gives K1 = 1.6 and K2 = 4. The zero-state response of the system is given by 
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  ( )tt
zs teetCtCty −− +++= 46.1)2sin()2cos()( 21 . 

 To compute the values of constants C1 and C2, we use the initial conditions, y(0−) = 0 and 
0)0( =−y . Substituting the initial conditions in yzs(t) leads to the following simultaneous equations 

046.12
06.1

2
1

=+−
=+

C
C  

 with solution C1 = −1.6 and C2 = −1.2. The zero-state solution is given by 

( ) )(46.1)2sin(2.1)2cos(6.1)( tuteettty tt
zs

−− ++−−= . 

(c) Overall response of the system: The overall response of the system is obtained by summing up the 
zero-input and zero-state responses, and is given by 

 or, ( ) )(46.1)2sin(2.1)2cos(6.1)()2cos(2)( tuteetttutty tt −− ++−−+−=  

 or, ( ) )(46.1)2sin(2.1)2cos(6.3)( tuteettty tt −− ++−−= . 

(d) Steady state response of the system: The steady state response of the system is obtained by applying 
the limit, t → ∞, to y(t) and is given by 

( ) ( ) )()2sin(24.0)2cos(32.2)(8.032.0)2sin(24.0)2cos(32.2lim)( tutttuteettty tt
t

−−=++−−= −−

∞→
. 

(v) .1)0(,0)0()0()0(),(2)()()(2 2

2

4

4

======++ yandyyytutxwithtxty
dt

yd
dt

yd  

(a) Zero-input response of the system: The characteristic equation of the LTIC system (v) is  

  0124 =++ ss , 

 which has roots at s =  ±j1, ±j1. The zero-input response is given by 
jtjtjtjt

zi DteCeBteAety −− +++=)( , 

 for t ≥ 0, with A and B being constants. To calculate their values, we substitute the initial conditions 
in the above equation. The resulting simultaneous equations are  

033
022
1
0

=−+−−
=−−+−
=+−+
=+

DjCBjA
DjCBjA

DjCBjA
CA

 

 that has a solution, A = −j0.75 Β = −0.25, C =  j0.75 and D = −0.25. The zero-input response is  

( ) )(25.075.025.075.0)( tuteejteejty jtjtjtjt
zi

−− −+−−= , 

 which reduces to 

( ) )(cos5.0sin5.1)( tuttttyzi −= . 

(b) Zero-state response of the system: To calculate the zero-state response of the system, the initial 
conditions are assumed to be zero. Hence, the zero state response yzs(t) can be calculated by solving 
the differential equation 
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 )()(2 2

2

4

4

txty
dt

yd
dt

yd =++   

 with all initial conditions set to 0 and input x(t) = 2u(t). The homogenous solution of system (v) has 
the same form as its zero-input response and is given by 

jtjtjtjth
zs teCeCteCeCty −− +++= 4321

)( )(  

 where Ci’s are constants. The particular solution for input x(t) = 2 u(t) is of the form  

  )()( t Ku(t) y p
zs = . 

 Substituting the particular solution in the differential equation for system (v) and solving the 
resulting equation gives  

  2)0(20 =++ K , or, K = 2.  

 The zero-state response of the system is given by 

  2)( 4321 ++++= −− jtjtjtjt
zs teCeCteCeCty , 

 for (t ≥ 0). To compute the values of constants Ci’s, we use zero initial conditions. Substituting the 
initial conditions in yzs(t) leads to the following simultaneous equations 

033
022
0

2

=−+−−
=−−+−
=+−+

−=+

DjCBjA
DjCBjA

DjCBjA
CA

 

 with solution C1 = −1, C2 = j0.5, C3 = −1, and C4 = −j0.5. The zero-state solution is given by 

( ) )(5.05.0)( tutejetejety jtjtjtjt
zs

−− −−+−= , 

 which reduces to 

( ) )(sincos2)( tuttttyzi −−= . 

(c) Overall response of the system: The overall response of the system is obtained by summing up the 
zero-input and zero-state responses, and is given by 

 or, ( ) ( ) )(sincos2)(cos5.0sin5.1)( tuttttutttty −−+−=  

 or, ( ) )(2cos5.0sincos2sin5.1)( tuttttttty +−−−= . 

(d) Steady state response of the system: The steady state response of the system is obtained by applying 
the limit, t → ∞, to y(t) and is given by 

 ( ) ∞→+−−−=
∞→

)(2cos5.0sincos2sin5.1lim)( tuttttttty
t . ▌ 

Problem 3.3 

(i)   To evaluate the impulse response, set x(t) = δ(t). The resulting equation is 

  CtuCdttthtth
t

+=+δ=⇒δ= ∫
∞−

)(2)(2)()(2)(  
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 where C is a constant that can be evaluated from the initial condition. Since the initial condition is 
0, then C = 0. 

 

 To solve parts (ii)-(vi), we make use of the following theorem. 

 Theorem S2.1: The impulse response of an LTIC system initially at rest and described by the 
differential equation 

  )(
0

txa
n

p
dt

yd
p p

p

=∑
=

 

 is given by 0
0

=∑
=

n

p
dt

hd
p p

p
a  

 with initial condition 
n

n

n

adt
hd 1)0(1

1
=+

−

−

. The remaining lower order initial conditions are all zero. 

 

(ii) Based on Theorem S2.1, the impulse response of system (ii) is given by 

  0)(6)( =+ thth  

 with initial condition h(0+) = 1. The characteristic equation for the homogenous equation is  

  6 0s + =  

 which has a root at s = −6. The impulse response is given by 
teCth 6

1)( −=  

 for t ≥ 0, with C1 being a constant. Use the initial condition h(0+) = 1, the value of C1 = 1. The 
impulse response of system (ii) is given by 

  )()( 6 tueth t−= . 

(iii) Assume w(t) = dx/dt. System (iii) can, therefore, be represented as a cascaded combination of two 
systems 

 System S1(iii): dt
tdxtw )()( =  

 System S2(iii): )()(5)(2 twtyty =+  

 Based on Theorem S2.1, the impulse response of system S2(iii) is given by 

  0)(5)(2 22 =+ thth  

 with initial condition h2(0+) = 1/2. The characteristic equation for the homogenous equation is  

  0)52( =+s  

 which has a root at s = −5/2. The impulse response is given by 
2/5

12 )( teCth −=  
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 for t ≥ 0, with C1 being a constant. Use the initial condition h2(0+) = 1/2, the value of C1 = 1/2. The 
impulse response of system S2(iii) is  

  )()( 2/5
2
1

2 tueth t−= . 

 for t ≥ 0. Combining the cascaded configuration, the impulse response of the overall system is 

  ( ) )()()()()()( 2/5
4
5

2
12/5

2
5

2
12/5

2
12/5

2
1)(2 tuettuetetueth tttt

dt
d

dt
tdh −−−− −δ=×−δ=== . 

(iv) System (iv) is represented as a cascaded combination of two systems 

 System S1(iv): )(32)( )( txtw dt
tdx +=  

 System S2(iv): )()(3)( twtyty =+  

 Based on Theorem S2.1, the impulse response of system S2(iv) is given by 

  0)(3)( 22 =+ thth  

 with initial condition h2(0+) = 1. The characteristic equation for the homogenous equation is  

  0)3( =+s  

 which has a root at s = −3. The impulse response is given by 
teCth 3

12 )( −=  

 for t ≥ 0, with C1 being a constant. Use the initial condition h2(0+) = 1, the value of C1 = 1. The 
impulse response of system S2(ii) is  

  )()( 3
2 tueth t−= . 

 for t ≥ 0. Combining the cascaded configuration, the impulse response of the overall system is  

  
( )

)(3)(2)(3)(6)(2

)(3)(2)(32)(
3333

33
2

)(2

tuettuetuete

tuetuethth
tttt

tt
dt
d

dt
tdh

−−−−

−−

−δ=+−δ=

+=+=
. 

(v) Based on Theorem S2.1, the impulse response of system (v) is given by 

  0)(4)(5)( =++ ththth  

 with initial conditions dh(0+)/dt = 1 and h(0+) = 0. The characteristic equation for the homogenous 
equation is  

  0)45( 2 =++ ss  

 which has roots at s = −1 and −4. The impulse response is given by 
tt eCeCth 4

212 )( −− +=  

 for t ≥ 0, with C1 and C2 being constants. Using the initial conditions 

  14
0

21
21

=−−
=+

CC
CC  

 which has the solution C1 = 1/3, C2 = −1/3. The impulse response of system (v) is given by 
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  ( ) )()( 4
3
1

3
1 tueeth tt −− −= . 

(vi) Based on Theorem S2.1, the impulse response of system (vi) is given by 

  0)()(2)( =++ ththth  

 with initial conditions dh(0+)/dt = 1 and h(0+) = 0. The characteristic equation for the homogenous 
equation is  

  0)12( 2 =++ ss  

 which has two roots at s = −1. The impulse response is given by 
tt teCeCth −− += 212 )(  

 for t ≥ 0, with C1 and C2 being constants. Using the initial conditions 

  1
0

21
1

=+−
=

CC
C  

 which has the solution C1 = 0, C2 = 1. The impulse response of system (vi) is given by 

  )()( tuteth t−= . ▌ 

Problem 3.4 

(i) Functions x(τ) = exp(−ατ)u(τ), h(τ) = exp(−βτ)u(τ), and is h(−τ) = exp(βτ)u(−τ) are plotted, 
respectively, in Fig. S3.4(a)-(c). The function h(t − τ) = h(−(τ − t) is obtained by shifting h(−τ)  by 
time t in Fig. S3.4(d). We consider the following two cases of t. 

 Case 1: For t < 0, the waveform h(t − τ) is on the left hand side of the vertical axis. As apparent in 
the subplot for step 5a in Fig. 3.7, waveforms for h(t − τ) and x(τ) do not overlap. In other words, 
x(τ)h(t − τ) = 0   for all τ, hence, y(t) = 0. 

 Case 2: For t ≥ 0, we see from the subplot for step 5b in Fig. 3.7 that the nonzero parts of h(t − τ) 
and x(τ) overlap over the duration t = [0, t]. Therefore, 

 ( ) .
0

)(

0

)( ∫∫ τ=τ= τβ−α−β−τ−β−ατ−
t

t
t

t deedeety  (S3.4.1) 

 Since (α ≠ β), therefore, the exponential term can be integrated as 

( ) [ ] [ ].1
)( )(

1)(
)(

1

0

)(
tttt

t
t eeeeeety β−α−

α−β
β−α−β−

α−β

τβ−α−
β− −=−=













β−α−
= . 

 Combining the two cases, we get [ ]





≥−

<
= α−β−

α−β 0

00
)(

)(
1 tee

t
ty tt , 

 which is equivalent to [ ] )()( )(
1 tueety tt α−β−

α−β −= . 
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τ
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1

h(τ)

0
τ

e−βτu(τ)
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(a) Waveform for x(τ) (a) Waveform for h(τ) 
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1
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τ
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t 0
τ

1
e− β(t−τ) u(t−τ)

h(t−τ)

t

e− β(t−τ) u(t−τ)

h(t−τ)

t 0  
(c) Waveform for h(−τ) (d) Waveform for h(t − τ) 

τ

1
x(τ) h(t−τ)

0t

Case 1: t < 0

τ

1
x(τ) h(t−τ)

0tt

Case 1: t < 0

 
τ

1
x(τ) h(t−τ)

0 t

Case 2: t > 0

τ

1
x(τ) h(t−τ)

0 tt

Case 2: t > 0

 
(e) Overlap between x(τ) and h(t − τ) for t < 0 (f) Overlap between x(τ) and h(t − τ) for t ≥ 0 

Fig. S3.4.1: Convolution between x(τ) = exp(−ατ)u(τ) and h(τ) = exp(−βτ)u(τ) in Problem 3.4. 

 

(ii) For α = β, Eq. (S3.4.1) reduces to 

( ) t
t

t
t

t tededeety β−β−τβ−α−β− =τ=τ= ∫∫
00

)( 1 . 

 The output y(t) is therefore given by 

)()()( tutetutety tt α−β− == . 

(iii) Part (ii) is a special case of part (i) as the result for part (ii) can be obtained by applying the limit, α 
→ β, to the solution of part (i). Since applying the limit results in a 0/0 case, we apply the 
L’Hopital’s rule to get 

[ ] [ ] )()(0lim)(lim)( )1(
1

)(
1 tutetutetueety tttt α−α−

−β→α

β−α−
α−ββ→α

=−−=−= . ▌ 

 

Problem 3.5 

(i) The output y(t) is given by 

∫∫
∞∞

∞−

ττ−=ττ−τ=∗=
0

)()()()()()( dtudtuutututy . 
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 Recall that  




>τ
≤τ=τ− ).(if0

)(if1)( t
ttu  

 Therefore, the output y(t) is given by 

  ).()()0(if0
)0(if)( trttut

ttty ==




<
≥=  

 The aforementioned convolution can also be computed graphically. 

(ii) The output y(t) is given by 

∫∫
∞−

∞

∞−

τ−τ=τ−ττ−=−∗−=
0

)()()()()()( dtudtuutututy . 

 The output y(t) is given by 

  ).()0(if
)0(if0

)0(if)(

)0(if0
)()(

0
0

ttutt
t

tdtu

t
dtuty

t

−−=




<−
≥=









<τ−τ

≥

=τ−τ= ∫∫
∞−

 

 The aforementioned convolution can also be computed graphically. 

(iii) The output y(t) is given by 

[ ] [ ])1()1()2()1(2)()( −−+∗−+−−= tutututututy  

 Using the properties of the convolution integral, the output is expressed as 

[ ] [ ] [ ]
[ ] [ ] [ ])1()2()1()2()1()1(2

)1()1(2)1()()1()()(
−∗−−+∗−+−∗−+

+∗−−−∗−+∗=
tutututututu

tututututututy  

 Based on the results of part (i), i.e., u(t) * u(t) = r(t), the overall output is given by 

)3()1()2(2)(2)1()1()( −−−+−+−−−+= trtrtrtrtrtrty . 

(iv) The output y(t) is given by 

∫∫
∞−

τ−
∞

∞−

τ−−τ− ττ−=ττ−τ−=∗−=
0

53)(3232 )()()()()()( dtueedtueuetuetuety tttt . 

 Solving for the two cases (t ≥ 0) and (t < 0), we get 

  






≥

<
=












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=ττ−= −

∞−

τ−

∞−

τ−

∞−

τ−

∫

∫
∫ ).0(

)0(

)0(

)0(
)()( 3

5
1

2
5
1

0
53

53
0

53

te
te

tdee

tdee
dtueety t

t

t

t
t

t  

 Therefore, the output y(t) is given by 

  ).()()( 3
5
12

5
1 tuetuety tt −+−=  

(v) The output y(t) is given by 
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[ ]

[ ]

0  2, 5

5 5 5

2 2 2

( ) ( )* ( ) sin(2 ) ( 2) ( 5) ( ) ( 2)

sin(2 ) ( ) ( 2) sin(2 ) ( ) sin(2 ) ( 2)
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A B

y t x t h t u u u t u t d

u t u t d u t d u t d

τ τ

πτ τ τ τ τ τ

πτ τ τ τ πτ τ τ πτ τ τ

∞
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 
 = = − − − − − − −
  

= − − − − = − − − −

∫

∫ ∫ ∫

 

 Calculating Term A and Term B separately, we get 

  

1 cos2
2

2
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2

2
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5

2

0                      2
0             2

sin(2 ) 2 5 2 5

0      5

sin(2 )      5
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2 2
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  
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
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 The overall output is given by  

  
1

2

1
2

0                        2, 7

(1 cos 2 )      2 4
Therefore,   ( )

0                            4 5

(1 cos 2 )    5 7

t t

t t
y t A B

t

t t

π

π

π

π

≤ ≥


− ≤ ≤
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− − ≤ ≤

 

(vi) Considering the two cases (t < 0) and (t ≥ 0) separately 

 Case I (t < 0): ∫∫∫
∞

τ−τ−τ−τ

∞−

τ−−τ τ+τ+τ=
0

)(52
0

)(52)(52)( deedeedeety t

t

t
t

t  

 which reduces to ∫∫∫
∞
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 or, ( ) tttttttt eeeeeeeety 8
3
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7
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7
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3
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7
15 1)( −−−−− +−=×+−×+×=  

 Case II (t ≥ 0): ∫∫∫
∞

τ−τ−τ−−τ−

∞−

τ−−τ τ+τ+τ=
t

t
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tt deedeedeety )(52
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∞
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t
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 or, ( ) ttttttttt eeeeeeeeety 12
7
15

3
12

3
15

7
17

7
153

3
155

7
1 1)( −−−−−− +−+=×+−×+= . 

 Hence, the overall expression for y(t) is given by 
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

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(vii) Note that 

  

( ) ( )
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 Based on the result of Problem 3.4, we know that 

  )()()( tutetuetue jtjtjt −−− =∗  

 and )()()( tutetuetue jtjtjt =∗ . 

 Hence, the output is given by 

  )()sin()()()( 2
1

4
1

4
1 tutttutetutety jt

j
jt

j =−= − . 

 Note that the above convolution can also be performed directly as follows: 
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 ▌ 

Problem 3.6 

(i) Using the graphical approach, the convolution of x(t) with itself is shown in Fig. S3.6.1, where we 
consider six different cases for different values of t. 
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(d) Overlap btw x(τ) and x(t−τ) for (t < 
0) (e) Overlap btw x(τ) and x(t−τ) for (0≤t<1) (f) Overlap btw x(τ) and x(t−τ) for 

(1≤t<2) 
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(g) Overlap btw x(τ) and x(t−τ) for 
(2≤t<3) (h) Overlap btw x(τ) and x(t−τ) for (3≤t<4) (i) Overlap btw x(τ) and x(t−τ) for 

(t>4) 
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 (j) Convolution output 1( )y t   

Fig. S3.6.1: Convolution of x(t) with x(t) in Problem 3.6(i). 

 

 Case I (t < 0): Since there is no overlap,  0)(1 =ty . 

 Case II (0 ≤ t < 1): ∫ =τ=
t
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1 1.1)( . 

 Case III (1 ≤ t < 2): 
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 Case IV (2 ≤ t < 3): 
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 Case V (3 ≤ t < 4): ttdty
t

−=+−=τ−−= ∫
−

4)22()1).(1()(
2

2
1 . 

 Case VI (t  > 4): Since there is no overlap, )(1 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(1 txtxty ∗=  is given by 
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 The output is y1(t) plotted in Fig. S3.6.1(j). 

(ii) Using the graphical approach, the convolution of x(t) with z(t) is shown in Fig. S3.6.2, where we 
consider six different cases for different values of t. 

 Case I (t < −1): Since there is no overlap, 0)(2 =ty . 

 Case II (−1 ≤ t < 0): ..1)( 2
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 Case IV (1 ≤ t < 2): 
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. 

 Case VI (t  > 4): Since there is no overlap, )(2 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(2 tztxty ∗=  is given by 
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 The output is y2(t) plotted in Fig. S3.6.2(j). 
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(g) Overlap btw z(τ) and x(t−τ) for 
(0≤t<1) (h) Overlap btw z(τ) and x(t−τ) for (1≤t<2) (i) Overlap btw z(τ) and x(t−τ) for 

(2≤t<3) 
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Fig. S3.6.2: Convolution of x(t) with z(t) in Problem 3.6(ii). 

 (iii) Using the graphical approach, the convolution of x(t) with w(t) is shown in Fig. S3.6.3,  where we 
consider six different cases for different values of t. 
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(a) Waveform for z(τ) (b) Waveform for x(τ) (c) Waveform for x(t−τ) 
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(d) Overlap btw w(τ) and x(t−τ) for 
(t<−1)  

(e) Overlap btw w(τ) and x(t−τ) for 
(−1≤t<0) (f) Overlap btw w(τ) and x(t−τ) for (0≤t<1)
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(g) Overlap btw w(τ) and x(t−τ) for 
(1≤t<2) 

(h) Overlap btw w(τ) and x(t−τ) for 
(2≤t<3) (i) Overlap btw w(τ) and x(t−τ) for (t>3) 
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Fig. S3.6.3: Convolution of x(t) with w(t) in Problem 3.6(iii). 
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 Case VI (t  > 4): Since there is no overlap, )(3 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(3 twtxty ∗=  is given by 
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 The output is y3(t) plotted in Fig. S3.6.3(j). 

(iv) Using the graphical approach, the convolution of x(t) with v(t) is shown in Fig. 3.6.4,  where we 
consider six different cases for different values of t. 
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(a) Waveform for v(τ) (b) Waveform for x(τ) (c) Waveform for x(t−τ) 

τ
t −2 t −1 t

v(τ) x(t−τ)
1

−1

1−1
τ

t −2 t −1 tt −2 t −1 t

v(τ) x(t−τ)
1

−1

1−1 1−1

 

τ
t −2 t −1 t

v(τ) x(t−τ)
1

−1

1−1
τ

t −2 t −1 tt −2 t −1 t

v(τ) x(t−τ)
1

−1

1−1 1−1

    

τ
t −2 t −1 t

v(τ) x(t−τ)
1

−1

1
−1 τ

t −2 t −1 tt −2 t −1 t

v(τ) x(t−τ)
1

−1

1
−1

 

(d) Overlap btw v(τ) and x(t−τ) for (t<−1)  (e) Overlap btw v(τ) and x(t−τ) for (−1≤t<0) (f) Overlap btw v(τ) and x(t−τ) for (0≤t<1) 
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(g) Overlap btw v(τ) and x(t−τ) for (1≤t<2) (h) Overlap btw v(τ) and x(t−τ) for (2≤t<3) (i) Overlap btw v(τ) and x(t−τ) for (t>3) 
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Fig. S3.6.4: Convolution of x(t) with v(t) in Problem 3.6(iv). 

 

 Case I (t < −1): Since there is no overlap, 0)(4 =ty . 
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 Case VI (t  > 4): Since there is no overlap, )(4 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(4 tvtxty ∗=  is given by 
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 The output is y4(t) plotted in Fig. S3.6.4(j). 

(v) Using the graphical approach, the convolution of z(t) with z(t) is shown in Fig. 3.6.5,  where we 
consider four different cases for different values of t. 
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 (h) Convolution output 5 ( )y t   

Fig. S3.6.5: Convolution of z(t) with z(t) in Problem 3.6(v). 

 

 Case IV (t  > 2): Since there is no overlap, )(5 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(5 tztzty ∗=  is given by 
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 The output is y5(t) shown in Fig. S3.6.5(h). 

(vi) Using the graphical approach, the convolution of w(t) with z(t) is shown in Fig. 3.6.6,  where we 
consider six different cases for different values of t. 
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Fig. S3.6.6: Convolution of w(t) with z(t) in Problem 3.6(vi). 

 

 Case I (t < −2): Since there is no overlap, 0)(6 =ty . 
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 Case V (1 ≤ t < 2): 
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 Case VI (t  > 2): Since there is no overlap, )(6 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(6 twtzty ∗=  is given by 
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 The output is y6(t) shown in Fig. S3.6.6(j) at the end of the solution of this problem. 

(vii) Using the graphical approach, the convolution of v(t) with z(t) is shown in Fig. 3.6.7,  where we 
consider six different cases for different values of t. 
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Fig. S3.6.7: Convolution of v(t) with z(t) in Problem 3.6(vii). 

 

 Case I (t < −2): Since there is no overlap, 0)(7 =ty . 

 Case II (−2 ≤ t < −1): 
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 Case III (−1 < t < 0): 
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 Case IV (0 < t < 1): 
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 Case V (1 ≤ t < 2):  
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 Case VI (t  > 2): Since there is no overlap, 0)(7 =ty . 

 Combining all the cases, the result of the convolution )()()(7 tvtzty ∗=  is given by 
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 The output is y7(t) shown in Fig. S3.6.7(j) at the end of the solution of this problem. 

(viii) Since w(t) = 1 − |t|, therefore, the expression for w(t – τ) is  





>τ−τ−
<ττ−−=τ−−=τ− . if)(1

 if)(11)( tt
ttttw  

 Using the graphical approach, the convolution of w(t) with w(t) is shown in Fig. 3.6.8,  where we 
consider six different cases for different values of t. 
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t t+1t−1

1

−1

w(τ) w(t−τ)

0 1−1 t t+1t−1 t t+1t−1

1

−1

w(τ) w(t−τ)

0 1−1

1

−1

w(τ) w(t−τ)

0 1−1 t t+1t−1
τ

1

−1

w(τ) w(t−τ)

0 1−1 t t+1t−1 t t+1t−1
τ

1

−1

w(τ) w(t−τ)

0 1−1
τ

1

−1

w(τ) w(t−τ)

0 1−1

 

τ

1

−1

w(τ) w(t−τ)

1−1 t t+1t−1
τ

1

−1

w(τ) w(t−τ)

1−1 t t+1t−1
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for (0≤t<1) (h) Overlap btw w(τ) and w(t−τ) for (1≤t<2) (i) Overlap btw w(τ) and w(t−τ) for (t>2) 
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 (j) Convolution output 8 ( )y t   

Fig. S3.6.8: Convolution of w(t) with w(t) in Problem 3.6(viii). 

 

 Case I (t < −2): Since there is no overlap,  0)(8 =ty . 
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 Case III (−1 < t < 0): 
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 Case VI (t  > 2): Since there is no overlap, )(8 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(8 twtwty ∗=  is given by 
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 The output is y8(t) shown in Fig. S3.6.8(j) at the end of the solution of this problem. 

(ix) Using the graphical approach, the convolution of v(t) with w(t) is shown in Fig. 3.6.9,  where we 
consider six different cases for different values of t.  
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 (j) Convolution output 9 ( )y t   

Fig. S3.6.9: Convolution of v(t) with w(t) in Problem 3.6(ix). 

 

 Since w(t) = 1 − |t|, therefore, the expression for w(t – τ) is  
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 Case I (t < −2): Since there is no overlap, 0)(9 =ty . 
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 Case II (−2 ≤ t < −1): ( ) ( )
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 Case III (−1 < t < 0): 
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 Case IV (0 < t < 1): 
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 Case V (1 ≤ t < 2): ( ) ( )
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Case VI (t  > 2): Since there is no overlap,  0)(9 =ty . 

Combining all the cases, the result of the convolution )()()(9 twtvty ∗=  is given by 
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The output is y9(t) shown in Fig. S3.6.9(j) at the end of the solution of this problem. 

(x) Using the graphical approach, the convolution of v(t) with v(t) is shown in Fig. 3.6.10,  where we 
consider six different cases for different values of t. 
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00 1−1

e2τ

t +1tt −1 t +1tt −1 tt −1

Case 2: (t + 1) > −1
(t + 1) < 0  

   

τ

e−2τ

1
y(t)

0 1−1

e2τ

t +1tt −1

Case 3: (t + 1) > 0
(t + 1) < 1

τ

e−2τ

1
y(t)

0 1−1

e2τ

τ

e−2τ

1
y(t)

0

1
y(t)

0

y(t)

00 1−1

e2τ

t +1tt −1 t +1tt −1 tt −1

Case 3: (t + 1) > 0
(t + 1) < 1

(d) Overlap btw v(τ) and v(t−τ) 
for (t<−2)  

(e) Overlap btw v(τ) and v(t−τ) for 
(−2≤t<−1) (f) Overlap btw v(τ) and v(t−τ) for (−1≤t<0)

e−2τ

1
y(t)

0 1−1

e2τ

t +1t −1

Case 4: (t + 1) > 1
(t – 1) < 0

e−2τ

1
y(t)

0 1−1

e2τ e−2τ

1
y(t)

0

1
y(t)

0

y(t)

00 1−1

e2τ

t +1t −1 t +1t −1t −1

Case 4: (t + 1) > 1
(t – 1) < 0

τ

e−2τ

1
y(t)

0 1−1

e2τ

t +1t −1

Case 5: (t − 1) > 0
(t – 1) < 1

τ

e−2τ

1
y(t)

0 1−1

e2τ

τ

e−2τ

1
y(t)

0

1
y(t)

0

y(t)

00 1−1

e2τ

t +1t −1 t +1t −1t −1

Case 5: (t − 1) > 0
(t – 1) < 1

τ

e−2τ

1
y(t)

0 1−1

e2τ

t +1t −1

Case 6: (t − 1) > 1

τ

e−2τ

1
y(t)

0 1−1

e2τ

τ

e−2τ

1
y(t)

0

1
y(t)

0

y(t)

00 1−1

e2τ

t +1t −1 t +1t −1t −1

Case 6: (t − 1) > 1

(g) Overlap btw v(τ) and v(t−τ) 
for (0≤t<1) 

(h) Overlap btw v(τ) and v(t−τ) for 
(1≤t<2) (i) Overlap btw v(τ) and v(t−τ) for (t>2) 

 

-4 -2 0 2 4
0

0.5

1

1.5

2

2.5

v(
t)*

v(
t)

 

 (j) Convolution output 10 ( )y t   

Fig. S3.4.10: Convolution of v(t) with v(t) in Problem 3.6(x). 

 

Case I (t < −2): Since there is no overlap,  0)(10 =ty . 

Case II (−2 ≤ t < −1): 
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 [ ].
4
1

44
)( )42(42

4)1(4
2

1

1

4
2

1

1

42
1

1

)(22
10

−−+
−+

−
+

−

τ
−

+

−

τ−
+

−

τ−−τ −=










 −
=












=τ=τ= ∫∫ tt

t
t

t
t

t
t

t
t eeeeeeedeedeety  

Case III (−1 < t < 0): ( )

( ) ( )
















+++=

++−++=

τ+τ+τ=

−−

+
τ−−τ−τ−−τ

−

τ−τ ∫∫∫

.

)1(1)1(

)(

2
4
52

4
3

242
4
12

1

0

)(22
0

)(22

1

)(22
10

tt

tttt

t
t

t

t
t

t

etet

eteeet

deedeedeety

. 

Case IV (0 < t < 1): ( )

( ) ( )
















−+−=

−+−+−=

τ+τ+τ=

−

−−

τ−−τ−τ−τ−

−

τ−τ ∫∫∫

.

)1(1)1(

)(

2
4
32

4
5

242
4
12

1
)(22

0

)(22
0

1

)(22
10

tt

tttt

t

t
t

t

t

t

etet

eteeet

deedeedeety

 

Case V (1 ≤ t < 2): ( ).)( 4)1(42
4
1

1

1

)(22
10

−−−

−

τ−τ− −=τ= ∫ eeedeety tt

t

t . 

Case VI (t  > 2): Since there is no overlap,  )(10 ty  = 0. 

Combining all the cases, the result of the convolution )()()(10 tvtvty ∗=  is given by 

 

( )
( ) ( )
( ) ( )

( )


















<≤−

<≤−+−

<≤−+++

−<≤−−

=

−−−

−

−−+

elsewhere.0

)21(

)10(

)01(

)12(
4
1

)(

4)1(42
4
1

2
4
32

4
5

2
4
52

4
3

)42(42

10

teee

tetet

tetet

tee

ty

tt

tt

tt

tt

 

The output y10(t) is shown in Fig. S3.6.10(j). ▌ 

 

Problem 3.7 

(a) Distributive property: By definition, ∫
∞

∞−

ττ−τ=∗ dtzxtztx )()()()( 11 . 

 Substituting z(t) = x2(t) + x3(t), we obtain 
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  ( ) ( )∫
∞

∞−

ττ−+τ−τ=+∗ dtxtxxtxtxtx )()()()()()( 321321  

 or, ( )

)()(

31

)()(

21321

3121

)()()()()()()(

txtxtxtx

dtxxdtxxtxtxtx

∗

∞

∞−

∗

∞

∞−
∫∫ ττ−τ+ττ−τ=+∗  

 or, ( ) )()()()()()()( 3121321 txtxtxtxtxtxtx ∗+∗=+∗ . 

(b) Associative property: By definition, ∫
∞

∞−

ττ−τ=∗ dtwxtwtx )()()()( 11 . 

 Substituting  ∫
∞

∞−

αα−α=∗= dtxxtxtxtw )()()()()( 2332 ,  

 we obtain ( ) ∫ ∫
∞

∞−

∞

∞−

τ













αα−τ−ατ=∗∗ ddtxxxtxtxtx )()()()()()( 231321 . 

 Changing the order of integrations, the above equation simplifies to 

  ( ) α













τα−τ−τα=∗∗ ∫ ∫

∞

∞−

∞

∞−

ddtxxxtxtxtx )()()()()()( 213321 . 

 Similarly, expanding 

  ( ) ∫ ∫
∞

∞−

∞

∞−

τ













αα−τ−ατ=∗∗ ddtxxxtxtxtx )()()()()()( 213321 . 

 Since the right hand side of the two expressions are equal, we obtain the following. 

  ( ) ( ) )()()()()()( 321321 txtxtxtxtxtx ∗∗=∗∗ . 

(c) Scaling Property: We consider the two cases α > 0 and α < 0 separately. 

 Case I: (α = k) where k is a positive constant. 

 By definition, ∫
∞

∞−

ττ−τ=∗ dkktzkxktzktx )()()()( 11  

 Substituting p = kτ, we get )(1)()()()( 11 kty
kk

dppktzpxktzktx =−=∗ ∫
∞

∞−

. 

 Case II: (α = −k) where k is a positive constant. 

 By definition, ∫
∞

∞−

ττ+−τ−=−∗− dkktzkxktzktx )()()()( 11  
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 Substituting p = −kτ, we get ∫
−∞

∞
−

−−=−∗−
)(

)()()()( 11 k
dppktzpxktzktx . 

 By changing the order of the upper and lower limits 

  ∫
∞

∞−

−=−−
−

−=−∗− )(1))(()(
)(

1)()( 11 kty
k

dpptkzpx
k

ktzktx  

 Collectively, Cases I and II prove the scaling property. ▌ 

Problem 3.8 

We know that )()1()( tuetu t−−→ . 

Then [ ])()1(
)(

)( tue t
dt
d

t
dt

tu −

δ

−→ , 

which simplifies to )()()()( tetuett tt δ−+δ→δ −−  

or, )()( tuet t−→δ . 

Hence, the impulse response is given by )()( tueth t−= . ▌ 

Problem 3.9 

Convolution of two signals that are, respectively, nonzero over the range [tℓ1, tu1] and [tℓ2, tu2] is nonzero 
over the range [tℓ1 + tℓ2, tu1 + tu2]. Therefore, tℓ1 + tℓ2 = −5 and tu1 + tu2 = 6. By substituting, tℓ1 = −2 and tu1 
= 3, the values of tℓ2 = −5 + 2 = −3 and tu2 =  6 – 3 = 3. The possible nonzero range of the impulse 
response h(t) is therefore [−3, 3].  ▌ 

Problem 3.10 

In Example 3.8, it was shown that 

 [ ]









>−

≤≤−−

<

=


















 ≤≤−

=∗=
−−−

−−

.12
1022

00

otherwise0

101
)()()(

)1( tee
tet

t
tt

thtuetx
tt

tt  

Using the commutative property, Eq. (3.3), we interchange the impulse response and the input to obtain 

 [ ]









>−

≤≤−−

<

==∗


















 ≤≤−

==
−−−

−−

.12
1022

00
)()(

otherwise0

101
)()(

)1( tee
tet

t
tueth

tt
txty

tt

tt  

 ▌ 

Problem 3.11 

By inspection, we note that x´(t) = x (t − 2) and h´(t) = h (t − 4). Using the shifting property, Eq. (3.40), 
the output 
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)6()4()2()()()( −=−∗−=′∗′=′ tythtxthtxty . 

Therefore, the convolution output for the shifted input x´(t) = x (t − 2) and shifted impulse response h´(t) 
= h (t − 4) is given by 










>−−

≤−≤−−−

<−

=−=′
−−−−−

−−

,1)6(2

1)6(02)6(2

0)6(0

)6()(
)6()1)6((

)6(

tee

tet

t

tyty
tt

t  

or, 










>−

≤≤−−

<

=′
−−−−

−−

.72

7628

60

)(
)6()7(

)6(

tee

tet

t

ty
tt

t  ▌ 

Problem 3.12 

(i) System h1(t) is NOT memoryless since h1(t) ≠ 0 for t ≠ 0. 
System h1(t) is causal since h1(t) = 0 for t < 0. 
System h1(t) is BIBO stable since  

5 51
5 0

6| 1( ) | ( ) ( ) 1
5

t th t dt t dt e u t dt eδ
∞ ∞ ∞

∞− −

−∞ −∞ −∞

 = + = + − = < ∞ ∫ ∫ ∫ . 

(ii) System h2(t) is NOT memoryless since h3(t) ≠ 0 for t ≠ 0. 
System h2(t) is causal since h2(t) = 0 for t < 0. 
System h2(t) is BIBO stable since  

2 2 21
2 0

0

1| 2( ) | ( )
2

t t th t dt e u t dt e dt e
∞ ∞ ∞

∞− − −

−∞ −∞

 = = = − = < ∞ ∫ ∫ ∫ . 

(iii) System h3(t) is NOT memoryless since h3(t) ≠ 0 for t ≠ 0. 
System h3(t) is causal since h3(t) = 0 for t < 0. 
System h3(t) is BIBO stable since 

∫ ∫∫
∞

∞−

∞
−

∞

∞−

− ∞<π=π=
0

55 )2sin()()2sin(|)(3| dttedttutedtth tt . 

(iv) System h4(t) is NOT memoryless since h4(t) ≠ 0 for t ≠ 0. 
System h4(t) is NOT causal since h4(t) ≠ 0 for t < 0. 
System h4(t) is BIBO stable since  

∞<=++= ∫∫∫∫
−

∞
−

∞−

∞

∞−

31|)(4|
1

10

2
0

2 dtdtedtedtth tt . 

(v) System h5(t) is NOT memoryless since h5(t) ≠ 0 for t ≠ 0. 
System h5(t) is NOT causal since h5(t) ≠ 0 for t < 0. 
System h5(t) is BIBO stable since  
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∫ ∫
∞

∞− −−

∞<=== 16
2

|)(5|
4

4

24

4

ttdtdtth . 

(vi) System h6(t) is NOT memoryless since h6(t) ≠ 0 for t ≠ 0. 
System h6(t) is NOT causal since h6(t) ≠ 0 for t < 0. 
System h6(t) is NOT BIBO stable since  

∞== ∫∫
∞

∞−

∞

∞−

dttdtth |)10sin(||)(6| . 

Consider the bounded input signal sin(10 )t . If this signal is applied to the system, the output can 
be calculated as: 

( ) ( ) ( ) sin(10 )sin(10 10 )y t x h t d t dτ τ τ τ τ τ
∞ ∞

−∞ −∞

= − = −∫ ∫  

The output at t=0 is given by, 

( )2 1
2

1 1
2 2

=  

(0) sin(10 )sin( 10 ) sin (10 ) 1 cos(20 )

cos(20 )

finite value

y d d d

d d

τ τ τ τ τ τ τ

τ τ τ

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞

−∞ −∞

∞ =

= − = − = − −

= − + = −∞

∫ ∫ ∫

∫ ∫
 

It is observed that the output becomes unbounded even if the input is always bounded. This is 
because the system is not BIBO stable. 

 

(vii) System h7(t) is NOT memoryless since h7(t) ≠ 0 for t ≠ 0. 
System h7(t) is causal since h7(t) = 0 for t < 0. 
System h7(t) is NOT BIBO stable since  

∞==∫ ∫
∞

∞−

∞

0

)5cos(|)(7| dttdtth . 

Consider the bounded input signal cos(5 )t . If this signal is applied to the system, the output can be 
calculated as: 

0

( ) ( ) ( ) cos(5 5 )cos(5 ) ( ) cos(5 5 )cos(5 )y t x t h d t u d t dτ τ τ τ τ τ τ τ τ τ
∞ ∞ ∞

−∞ −∞

= − = − = −∫ ∫ ∫ . 

The output at t=0 is given by, 

( )2 1
2

0 0 0

1 1
2 2

0 0
=  

(0) cos( 5 )cos(5 ) cos (5 ) 1 cos(10 )

cos(10 )

finite value

y d d d

d d

τ τ τ τ τ τ τ

τ τ τ

∞ ∞ ∞

∞ ∞

∞ =

= − = = +

= + = ∞

∫ ∫ ∫

∫ ∫
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It is observed that the output becomes unbounded at t=0 even if the input is always bounded. This 
proves that the system is not BIBO stable. 

 

(viii) System h8(t) is NOT memoryless since h8(t) ≠ 0 for t ≠ 0. 
System h8(t) is NOT causal since h8(t) ≠ 0 for t < 0. 
System h8(t) is BIBO stable since  

[ ]

ln(0.95) ln(0.95)

0
0 0

2| 8( ) | 0.95 2 0.95 2
ln(0.95)

2 2                  0 1 39
ln(0.95) ln(0.95)

t t t th t dt dt dt e dt e
∞ ∞ ∞ ∞

∞

−∞ −∞

 = = = =  

= − = − = < ∞

∫ ∫ ∫ ∫
 

(ix) System h9(t) is NOT memoryless since h8(t) ≠ 0 for t ≠ 0. 
System h9(t) is NOT causal since h8(t) = 0 for t < 0. 
System h8(t) is BIBO stable since  

∞<==∫ ∫
∞

∞− −

21|)(9|
1

1

dtdtth . ▌ 

Problem 3.13 

(i)  [ ]( ) ( )* ( ) ( )* ( ) ( 2) ( ) ( 2)y t x t h t x t t t x t x tδ δ= = − − = − − .  

 From the input-output relationship, we observe that the output at time t depends on the values of the 
input at time (t − 2). Therefore, the system is NOT memoryless. However, it is causal. 

(ii) 
1

1

( ) ( )* ( ) ( )* ( / 2) ( / 2) ( ) ( )y t x t h t x t rect t rect x t d x t dτ τ τ τ τ
∞

−∞ −

= = = − = −∫ ∫ . 

 From the input-output relationship, we observe that the output at time t depends on the values of the 
input from time (t − 1) to (t + 1). Therefore, the system is NOT memoryless and NOT causal. 

(iii)  4( ) 4( ) 4 4( ) ( )* ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) 2 ( )
t t

t t ty t x t h t x h t d e u t x d e x d e e x dτ τ ττ τ τ τ τ τ τ τ τ τ
∞ ∞

− − − − −

−∞ −∞ −∞ −∞

= = − = − = =∫ ∫ ∫ ∫ . 

 From the input-output relationship, we observe that the output at time t depends on the values of the 
input from time (−∞, t). Therefore, the system is NOT memoryless.  However, it is causal. 

(iv) 4( ) 4( )( ) ( )* ( ) ( ) ( ) 1 ( ) ( ) 1 ( )
t

t ty t x t h t x h t d e u t x d e x dτ ττ τ τ τ τ τ τ τ
∞ ∞

− − − −

−∞ −∞ −∞

   = = − = − − = −   ∫ ∫ ∫ .  

 From the input-output relationship, we observe that the output at time t depends on the values of the 
input from time (−∞, t). Therefore, the system is NOT memoryless.  However, it is causal.  ▌ 

Problem 3.14 

(i) System (i) is invertible with the impulse response h1i(t) of its inverse system given by 

  )2()(1 5
1 +δ= tth i . 

(ii) System (ii) will be invertible if there exists an impulse response 2 ( )ih t  such that 
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  )()(2)(2 tthth i δ=∗ . 

 Substituting the value of h2(t), we get 

  )()2(2)(2 tthth ii δ=++  

 which simplifies to )2(2)2()(2 −−−δ= thtth ii . 

 Substituting the value of )4(2)4()2(2 −−−δ=− thtth ii  in the earlier expression gives 

)4(2)4()2()(2 −+−δ−−δ= thttth ii . 

Iterating the above procedure yields, 

∑
∞

=

+ −δ−=
1

1 )2()1()(2
m

m
i mtth . 

Therefore, the system is invertible with the impulse response of the inverse system given above. 

(iii) System (iii) will be invertible if there exists an impulse response 3 ( )ih t  such that 

  )()(3)(3 tthth i δ=∗ . 

 Substituting the value of h3(t), we get 

  )()1(3)1(3 tthth ii δ=−++  

 which simplifies to )2(3)1()(3 −−−δ= thtth ii . 

 Substituting the value of )4(3)3()2(3 −−−δ=− thtth ii  in the earlier expression yields 

 )4(3)3()1()(3 −+−δ−−δ= thttth ii . 

Iterating the above procedure yields, 

 ∑
∞

=

+ −+δ−=
1

1 )21()1()(3
m

m
i mtth . 

(iv) System (iv) will be invertible if there exists an impulse response 4 ( )ih t  such that 

  )()(4)(4 tthth i δ=∗ . 

 Substituting the value of h4(t), we get 

  )()()(4 tdtuh i δ=ττ−τ∫
∞

∞−

 

 which simplifies to )()(4 tdh
t

i δ=ττ∫
∞−

. 

 Differentiating both sides of the above expression with respect to t, we obtain 

  ( ))()(4 tth dt
d

i δ= . 

 In other words, system (iv) is an integrator. As expected, its inverse system is a differentiator. 
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(v) System (v) will be invertible if there exists an impulse response 5 ( )ih t  such that 

  )()(5)(5 tthth i δ=∗ . 

 Substituting the value of h5(t), we obtain 

  )()(rect)(5 4 tdh t
i δ=ττ∫

∞

∞−

τ− , 

 which simplifies to )()(5
4

4

tdh
t

t
i δ=ττ∫

+

−

, 

 which is expressed as )()(5)(5

4 Substitute

4

4 Substitute

4

tdhdh
t

i

t

i δ=ττ−ττ

+τ=α

−

∞−

−τ=α

+

∞−
∫∫ , 

 or, )()4(5)4(5 tdhdh
t

i

t

i δ=α−α−α+α ∫∫
∞−∞−

 

 Taking the derivative of both sides of the equation with respect to t, we obtain 

  ( ))()4(5)4(5 tthth dt
d

ii δ=−−+ .  

 which can be expressed as 

  ( )∑
∞

=

−−δ=
0

)84()(5
m

dt
d

i mtth . 

(vi) System (vi) will be invertible if there exists an impulse response 6 ( )ih t  such that 

  )()(6)(6 tthth i δ=∗ . 

 Substituting the value of h6(t), we obtain 

  )()()(6 )(2 tdtueh t
i δ=ττ−τ∫

∞

∞−

τ−− , 

 which simplifies to )()(6 22 tdehe
t

i
t δ=ττ∫

∞−

τ−  

 or, t
t

i etdeh 22 )()(6 δ=ττ∫
∞−

τ . 

 Taking the derivative of both sides of the equation with respect to t, we obtain 

  ( ) ( ) t
dt
dtt

dt
dt

i etteeteth 2222 )(2)()()(6 δ+δ=δ=  

 or, ( ) )(2)()(6 ttth dt
d

i δ+δ= . ▌ 
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Problem 3.15 

By inspection, )()()()( 2 tythtxtv ∗+= , and )()()( 1 thtvty ∗= . 

Therefore,      [ ]2 1 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y t x t h t y t h t x t h t h t h t y t= + ∗ ∗ = ∗ + ∗ ∗ . 

By rearranging the terms on both sides of the equation, we obtain 

 [ ] )()()()()()( 112 txthtyththt ∗=∗∗−δ . ▌ 

Problem 3.16 

The output of the system is given by 

0 0 0 0( )( ) ( ) ( ) ( ) ( ) ( )j t j t j t jy t x t h t e h t h e d e h e dω ω τ ω ω ττ τ τ τ
∞ ∞

− −

−∞ −∞

= ∗ = ∗ = =∫ ∫ . 

Defining   ∫
∞

∞−

ω=ω dtethH tj)()( , the output is given by 

o
o |)()( ω=ω

ω ω= Hety tj . ▌ 

Problem 3.17 

In P3.16, it is shown that o o o

o 0( ) | ( )j t j t j te e H e Hω ω ω
ω ωω ω=→ = . 

Applying the linearity property, we obtain 

 ( ) ( ) ( ) ( )o oo o
o o( ) ( )j t j tj t j tj jAe Ae e Ae e H Ae Hω θ ω θω ωθ θ ω ω+ += → = . 

By expressing H(ω) in polar format, )()()( ω<ω=ω HjeHH  with |H(ω)| being the magnitude and <H(ω) 
being the phase of H(ω), we obtain 

 ( ) ( )o o 0( )
0( )j t j t HAe Ae Hω θ ω θ ω ω+ + +<→ . 

Decomposing the above expression into its real and imaginary components 

( ) ( ) ( ) ( ) )()(sin)()(cossincos o0oo0ooo ωω<+θ+ω+ωω<+θ+ω→θ+ω+θ+ω HHtjAHHtAtjAtA  

Since the impulse response of the system is real-valued, the real part of the output arises due to the real 
part of the input, and the imaginary part of the output arises due to the imaginary part of the input. 
Therefore, by separating the real and imaginary components, we obtain: 

( ) ( ))(cos)(cos 0ooo ω<+θ+ωω→θ+ω HtHAtA  

and ( ) ( ))(sin)(sin 0ooo ω<+θ+ωω→θ+ω HtHAtA . 

The above result implies that an LTIC system only changes the magnitude and phase of the sinusoidal 
input. The output is still sinusoidal with the same fundamental frequency as that of the input signal.  ▌ 

Problem 3.18 

Express ( ) ( )tt π→π+π− 2cos54/2sin3  
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as ( ) ( ) ( )3sin 2 5 / 4 5sin 2 / 2 3 (5 / 3)sin 2 5 / 4 3 / 4t t tπ π π π π π π+ → + = × + − . 

Comparing with ( ) ( ))(sin)(sin 0ooo ω<+θ+ωω→θ+ω HtHAtA , 

we note that o 0( ) 5 / 3 and ( ) 3 / 4H Hω ω π= < = − . 

The transfer function of the system at ω = 2π is therefore given by 

 4/3
3
5

2)( π−
π=ω =ω jeH . ▌ 

Problem 3.19 

(i) 4( ) 4 ( ) 8 ( ) ( ) ( ) with ( ) ( ), (0) 0,  and (0) 0.  ty t y t y t x t x t x t e u t y y−+ + = + = = =  

 The Matlab code is included below with both the analytical and computational plots included in 
Fig. S3.19.1. 

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1
Problem 3.19(i)

time (t)

A
na

ly
tic

al
 S

ol
ut

io
n

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

time (t)

C
om

pu
te

d 
S

ol
ut

io
n

 
Fig. S3.19.1: Analytical (top) and computational (bottom) plots for Problem 3.2 part (i) 

 
% MATLAB Code for Problem 3.19(i) 
tspan = [0:0.02:20]; 
%Analytical Solution from Problem 3.2 
t = tspan; 
yanalytical = 3/8*(exp(-2*t).*cos(2*t)-exp(-2*t).*sin(2*t)-exp(-4*t)); 
subplot(211); 
plot(t,yanalytical);  
title('Problem 3.19(i)'); 
xlabel('time (t)');  
ylabel('Analytical Solution'); 
grid on 
%Computational Solution 
y0 = [0; 0] 
[t2,y] = ode23('myfunc4problem3_19a',tspan,y0); 
subplot(212);  
plot(t2,y(:,2));  
xlabel('time (t)');  
ylabel('Computed Solution'); 
grid on 
% Include the following function in a separate file < myfunc4problem3_19a.m> 
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function [ydot] = myfunc4problem3_19a(t,y) 
ydot(1,1) = -4*y(1) - 8*y(2) - 3*exp(-4*t)*(t >= 0); 
ydot(2,1) = y(1); 
%---end of the function---------------------- 

 

(ii) ( ) 6 ( ) 4 ( ) ( ) ( ) with ( ) cos(6 ) ( ), (0) 2,  and (0) 0.  y t y t y t x t x t x t t u t y y+ + = + = = =  

 The Matlab code is included below with both the analytical and computational plots included in 
Fig. S3.19.2. 
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Fig. S3.19.2: Analytical (top) and computational (bottom) plots for Problem 3.2 part (ii) 

 
% MATLAB Code for Problem 3.19(ii) 
tspan = [0:0.02:20]; 
%Analytical Solution from Problem 3.2 
t = tspan; 
yanalytical = -0.1962*exp(-5.2361*t)+2.1169*exp(0.7639*t)+0.0793*cos(6*t); 
yanalytical = yanalytical+0.0983*sin(6*t); 
subplot(211); 
plot(t,yanalytical);  
title('Problem 3.19(ii)'); 
xlabel('time (t)');  
ylabel('Analytical Solution'); 
myaxis = axis; 
grid on 
%Computational Solution 
y0 = [0; 2] 
[t2,y] = ode23('myfunc4problem3_19b',tspan,y0); 
subplot(212);  
plot(t2,y(:,2));  
xlabel('time (t)');  
ylabel('Computed Solution'); 
axis(myaxis); 
grid on 
% Include the following function in a separate file < myfunc4problem3_19b.m> 
function [ydot] = myfunc4problem3_19b(t,y) 
ydot(1,1) = -6*y(1) - 4*y(2) - 6*sin(6*t) + cos(6*t); 
ydot(2,1) = y(1); 
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(iii) [ ]( ) 2 ( ) ( ) ( ) with ( ) cos( ) sin(2 ) ( ), (0) 3,  and (0) 1.  y t y t y t x t x t t t u t y y+ + = = + = =  

 The Matlab code is included below with both the analytical and computational plots included in 
Fig. S3.19.3. 
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Fig. S3.19.3: Analytical (top) and computational (bottom) plots for Problem 3.2 part (iii) 

 
% MATLAB Code for Problem 3.19(iii) 
tspan = [0:0.02:20]; 
%Analytical Solution from Problem 3.2 
t = tspan; 
yanalytical = 2.36*exp(-t)+2.9*t.*exp(-t); 
yanalytical = yanalytical - 0.5*sin(t)+0.64*cos(2*t)+0.48*sin(2*t); 
subplot(211); 
plot(t,yanalytical);  
title('Problem 3.19(iii)'); 
xlabel('time (t)');  
ylabel('Analytical Solution'); 
myaxis = axis; 
grid on 
%Computational Solution 
y0 = [1; 3] 
[t2,y] = ode23('myfunc4problem3_19c',tspan,y0); 
subplot(212);  
plot(t2,y(:,2));  
xlabel('time (t)');  
ylabel('Computed Solution'); 
axis(myaxis); 
grid on 
% Include the following function in a separate file < myfunc4problem3_19c.m> 
function [ydot] = myfunc4problem3_19c(t,y) 
ydot(1,1) = -2*y(1) - y(2) - cos(t) - 4*sin(2*t); 
ydot(2,1) = y(1); 

 

(iv) ( ) 4 ( ) 5 ( ) with ( ) 4 ( ), (0) 2,  and (0) 0.  ty t y t x t x t te u t y y−+ = = = − =  
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 The Matlab code is included below with both the analytical and computational plots included in 
Fig. S3.19.4. 
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Fig. S3.19.4: Analytical (top) and computational (bottom) plots for Problem 3.2 part (iv) 

 
% MATLAB Code for Problem 3.19(iv) 
tspan = [0:0.02:20]; 
%Analytical Solution from Problem 3.2 
t = tspan; 
yanalytical = -3.6*cos(2*t)-1.2*sin(2*t)+1.6*exp(-t)+4*t.*exp(-t); 
subplot(211); 
plot(t,yanalytical);  
title('Problem 3.19(iv)'); 
xlabel('time (t)');  
ylabel('Analytical Solution'); 
myaxis = axis; 
grid on 
%Computational Solution 
y0 = [0; -2] 
[t2,y] = ode23('myfunc4problem3_19d',tspan,y0); 
subplot(212);  
plot(t2,y(:,2));  
xlabel('time (t)');  
ylabel('Computed Solution'); 
axis(myaxis); 
grid on 
% Include the following function in a separate file < myfunc4problem3_19d.m> 
function [ydot] = myfunc4problem3_19d(t,y) 
ydot(1,1) = - 4*y(2) +5*4*t.*exp(-t); 
ydot(2,1) = y(1); 

 

(v) .1)0(,0)0()0()0(),(2)()()(2 2

2

4

4

======++ yandyyytutxwithtxty
dt

yd
dt

yd  

 The Matlab code is included below with both the analytical and computational plots included in 
Fig. S3.19.5. 
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Fig. S3.19.5: Analytical (top) and computational (bottom) plots for Problem 3.2 part (v) 

 
% MATLAB Code for Problem 3.19(iii) 
tspan = [0:0.02:20]; 
%Analytical Solution from Problem 3.2 
t = tspan; 
%yanalytical = -0.25*exp(t)-0.75*exp(-t)-cos(t)+0.5*sin(t)+2; 
yanalytical = 1.50*sin(t)-2*cos(t)-t.*sin(t)-0.5*t.*cos(t) +2; 
subplot(211); 
plot(t,yanalytical);  
title('Problem 3.19(v)'); 
xlabel('time (t)');  
ylabel('Analytical Solution'); 
myaxis = axis; 
grid on 
%Computational Solution 
y0 = [0; 0; 1; 0]; 
[t2,y] = ode23('myfunc4problem3_19e',tspan,y0); 
subplot(212);  
plot(t2,y(:,4));  
xlabel('time (t)');  
ylabel('Computed Solution'); 
axis(myaxis); 
grid on 
% Include the following function in a separate file < myfunc4problem3_19e.m> 
function [ydot] = myfunc4problem3_19e(t,y) 
ydot(1,1) = -2*y(2) - y(4) + 2; 
ydot(2,1) = y(1); 
ydot(3,1) = y(2); 
ydot(4,1) = y(3); 

 ▌ 


