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Consider a closed and bounded interval [a, b] in R. A partition of
[a, b] is a set P = {xp,x1,...,Xn—1,Xn} such that

a=xp<x1 < < Xp1<Xn,=>b.

} } } } f R
a=Xxp X1 X2 7 Xp-1 X, = b
The partition cuts [a, b] into n subintervals
[au X1]7 [X17 X2]7 R [Xn—27 Xn—1]7 [Xn—17 b]

The subintervals created by a partition need not have equal
lengths.

Example: The set {0,0.1,0.3,0.9,1} is a partition of [0, 1], with
x=0,x1=0.1 x =03, x3=09and x, = 1.
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A function s: [a, b] — R is a step function if there is a partition
P ={xp,...,xn} of [a, b] such that s is constant on each open
subinterval (xj_1,x;):

S(X) =5 if xi_1 < x < xj.

We say that the partition P is adapted to the step function s.

SiF----=-=-=-=-=----- o—e

S]---——o0 o——

I b I I I I R
a=Xxp X1 X2 Xi—1 X; Xn—1Xp = b
SOF------ *—o
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Consider the Heaviside step function, with the domain restricted to
[—1,1]. It is constant on the intervals (—1,0) and (0, 1), hence the
partition P = {—1,0,1} is adapted to it.

OC
R R

P -1

On the other hand, the partition P’ = {—1,0.5,1} is not adapted
to it, since the function takes two values on the interval (—1,0.5).
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Let s: [a, b] — R be a step function with adapted partition

P ={xo,...,Xn}, such that s(x) = s; if x;_1 < x < x;. Then the
integral of s from a to b is defined by

/abs _ /abS(X) dx = i:s,-(x,- — Xi_1).

Example: Consider the Heaviside step function H, with the domain
as [—2, 3], and the adapted partition P = {—2,0,3}. It takes
values s; = 0 on (—2,0) and s, = 1 on (0, 3). Therefore,

3
/2 H(x) dx = s1(x1 — x0) + s2(x2 — x1)

=0-(0—(-2)+1-(3-0)=3.
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The integral represents the total signed area of the rectangles
enclosed by the graph of s(x), the x-axis, and the vertical lines
x =aand x = b.

S
Sy b T

51 ---

% R
a = Xp X1 Xn—1 x, = b

SO rF------ —

The term ‘signed area’ refers to the area of a rectangle marked by
the step function being taken as positive if the rectangle lies above
the x-axis and as negative if it lies below the x-axis.
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Let P, P’ be partitions of [a, b]. We say P’ is a refinement of P if
PCP.

Task 1

Suppose a partition P is adapted to a step function s. Show that
every refinement of P is also adapted to s.

Note that if P, P’ are partitions of [a, b] then P U P’ is a common
refinement for both of them.

P: : — : : R
a=xp X1 Xo X3 b= x4

=8 . : : R
a=y n ) b=y

PUP- R : : : R
a=Xo Y1 X1 X2 Y2 X3 b= x4
=Y =3
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Theorem 1

Suppose s: [a, b] — R is a step function and P, Q are partitions of
[a, b] which are adapted tos. Then both P and Q lead to the

same value off x) dx.

Proof. Let I(P) be the value of the integral of s corresponding to
the partition P. We need to prove that /(P) = I(Q). It suffices to
prove this when one partition is a refinement of the other.

For, if we have proved this, we'll have /(P) = I(PU Q) = I(Q).

Next, it suffices to prove /(P) = I(Q) when Q has just one point
more than P. Let P = {xop,...,xn} and for each i, let s take the
value s; on (xj_1, ;).

Let @ = {x0, .-, Xk—1, b, Xky -+, Xn}-
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Then
k—1
I(Q) = ZS;(X,’ - X,'_1) + Sk(t — Xk—l) + Sk(Xk — t)
i=1
n
+ Z si(xi — xi—1)
i=k+1

k—1 n

= > si(xi — xi—1) + sk(xk — xk—1) + Z si(xi — xi-1)
i=1 i=k+1

n

= ZS,‘(X,’ — X,',l) = /( )

i=1
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Task 2

Suppose s, t: [a, b] — R are step functions. Show there is a
partition which is adapted to both s and t.

Theorem 2 (Comparison Theorem)

Let s, t: [a, b] — R be step functions such that s(x) < t(x) for
every x € [a, b]. Then

/a () o < / ) .

Proof. Let P = {xp,...,%n} be a partition adapted to both s and
t. Let s(x) =s;, t(x) = t; for x € (x;_1,X;). Then s; < t; and

/abs(X)dx—ZSl(x,—x, 1 <Zt, i) /abt(x)dx_
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A function f: [a, b] — R is bounded by a real number M if
—M < f(x) < M for every x € [a, b].

Let f: [a, b] — R be bounded by M. Consider a step function
s: [a, b] — R such that s(x) < f(x) for every x € [a, b].

S

N/

We view fabs as an underestimate of the ‘signed area’ under the
graph of f and call it a lower sum for f.

Similarly, if t: [a, b] — R is a step function such that t(x) > f(x)
for every x € [a, b], then fab t is viewed as an overestimate of the
‘signed area’ under the graph of f and called an upper sum for f.
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Consider the collection of all lowers sums,

b
Lf= {/ s(x) dx ) s: [a,b] — R is a step function and
s(x) < f(x) for every x € [a, b]}

L¢ is non-empty because the constant function —M is a step
function whose values never exceed those of f.

Similarly, we have the non-empty collection of all upper sums:

b
Ur = {/ t(x) dx ‘ t: [a,b] — R is a step function and
a

t(x) > f(x) for every x € [a, b]}
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Theorem 3

Let f: [a,b] — R be a bounded function. Then ¢ € Lf and u € Us
implies £ < u.

Proof. Let s, t: [a, b] — R be step functions such that
® 5(x) < f(x) for every x € [a, b] andf x)dx = ¢.
e t(x) > f(x) for every x € [a, b] andf x)dx = u.

Then s(x) < f(x) < t(x) for every x € [a, b]. Hence, by the
Comparison Theorem,

b b
Ez/ s(x)dxg/ t(x) dx = u. O
a a
By the Completeness Axiom there is a number / such that

£ <1< uforevery £ € L and u € Ur. This I is our natural
candidate for the value of the signed area under the graph of f.
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The Dirichlet function D: [0,1] — R is defined by

(1 ifxeQn][o,1],
D(X)_{o if x € Q<N o, 1].

Let s: [0,1] — R be a step function such that s(x) < D(x) for
every x € [0,1]. Each open subinterval of [0, 1] contains an
irrational number, hence s(x) < 0 on each open subinterval, and

sof0 x) dx < 0.

Similarly, we see that fol t(x)dx >1if t: [0,1] — R is a step
function such that t(x) > D(x) for every x € [0, 1].

Therefore every o between 0 and 1 satisfies £ < « < u for every
{e€ Lpand u e Up.
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For the Dirichlet function, our approach fails to successfully assign
a unique ‘signed area’.
For the functions where our approach does work we have a special

term:

A bounded function f: [a, b] — R is called integrable if there is a
unique number [ such that ¢ < | < u for every £ € L¢ and u € Us.
This unique [ is called the (definite) integral of f on [a, b] and is

denoted by fab f(x) dx or fab f.
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Consider f(x) = x on [0, 1]. Take the partition P : xg < -+ < X,
which cuts [0, 1] into n equal subintervals. That is, x; = i/n.
Define step functions s and t:

s(x) =xj—1 and t(x)=x; if xi_1 < x < X,

and s(1) = t(1) = 1. Then
1 n .
1 1 i—1 n—1 1 1
d = — 1 = — = = - — —
/0 s(x) dx n < Xi-1 nz n 2n 2 2n’

1 n
1 1 1
t(x)dx = — == —.
/0 () dx nl__lx 2+2n

1/2 is the only number that fits between all these lower and upper
sums, and hence it is the integral of f over [0, 1].
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Theorem 4 (Riemann Condition)

Let f: [a,b] — R be a bounded function. Then f is integrable on
[a, b] if and only if for each € > O there are { € L¢ and u € Us such
that u — ¢ <.

Proof. First, suppose f is not integrable. Since f is not integrable,
there are two numbers /1, I, such that

(< h<lh<u, forevery { € L, u € Us.

Consider € = %(12 — h). Then ¢ € L, u € Us implies u — £ > e.

Now, suppose f has integral /. Given any ¢ > 0, consider

(I —€/2,1 + €/2). If this does not contain any lower sum of f,

then | — ¢/2 will also meet the conditions for the integral of f. So

this interval must contain some ¢ € L¢. Similarly, it must contain

some u € Us. Then u— ¥ < e. O
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Theorem 5

Let f: [a, b] — R be a bounded function. Then | € R is the
integral of f over [a, b] if and only if for each € > O there are
{ € Lsand u €U suchthat | — 0 <eandu—1<e.

Proof. Suppose [ is the integral of f over [a, b], and € > 0. If

(I — €, 1] N Ls =0 then | — € also satisfies the definition of integral
of f. Hence there is an £ € L¢ such that | — e < £ < [. Similarly,
there is u € Ur such that | < u < |+ e

Suppose such £, u exist for every ¢ > 0. By the earlier Riemann
Condition, f is integrable. So we only need to show [ is between
Ls and Ur. Suppose £ € L and £ > . Then there is u € Ur such
that | < u < ¥, a contradiction. Therefore £ < | for every £ € Lr.
Similarly, Therefore | < u for every u € Us. O
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. /aaf(x)dx:O.

a

b
o Ifa<bthen/ f(x)dx——/ f(x)dx.
b a

The first is consistent with line segments having zero area. The
second takes into account the direction of travel.
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We now take up various general properties of integration. We first
present the corresponding diagrams. The idea is that the general
patterns can be intuited from what happens to rectangles. We
begin with the general statement of the Comparison Theorem.

b b
e f <gon [ab] implies/ f(x) dx S/ g(x) dx.
a a

g g
f f

The rectangles for g are higher than those for f.
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. /abcf(x)dx:c/abf(x)dx.

cf
;

Properties of Integration
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cf

Each rectangle gets scaled vertically by c, hence so does its area.
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° /ab (f(x)+g(x)) dx:/abf(x)dx+/abg(x)dx.
f+g
A

The rectangles for g are placed on top of those for f to get the
ones for f + g.
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J /abf(x)dx:/:f(x)dx—i-/cbf(X)dX.

\ a c b

The rectangles for [a, c| and [c, b] are pooled to get all the ones
for [a, b].
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f(x) f(x — k)

. a b \ atk b+k

Each rectangle shifts without changing its dimensions.
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kb b
* k>0 = f(x/k)dx—k/ f(x) dx.
ka a

f(x) f(x/k)

| a b ka kb

The width of each rectangle is scaled by k, hence so is its area.
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Theorem 6

Suppose f,g: [a, b] — R are integrable functions such that
f(x) < g(x) for every x € [a, b]. Then

/ab F(x) dx < /abg(x) dx.

b b
Proof. Suppose that f> g. Let s, t: [a, b] — R be step

a

functions such that s(x) < f(xj < t(x) for every x € [a, b].

We have s(x) < f(x) < g(x) for every x € [a, b], and hence
fabs < fabg. We also have fabg < fab f< fab t. Thus the integral

of g satisfies the defining properties of the integral of f and so
must be equal to it. But this contradicts the assumed inequality. [
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Theorem 7

Let f: [a, b] — R be an integrable function and c € R. Then cf is

integrable and
b b
/ cf(x) dx = c/ f(x) dx
a a

Proof. First, we prove the result for a step function s. Let
P ={xp,...,xn} be a partition of [a, b], such that s(x) = s; if
Xji—1 < x < xj. Then c-s(x) =c-s;jif xj_1 < x < x;. Hence

/abcszizzn;(cs;)'(X—x, —ch, —x,-l):c/abs‘
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Second, consider an arbitrary integrable function f and ¢ > 0. Let
€ > 0. By the Riemann Condition there are step functions s, t such
that s(x) < f(x) < t(x) for every x € [a, b] and

b b b b
/f—/s<6, /t—/ f<£.
a a c a a c

It follows that cs, ct are step functions such that
cs(x) < cf(x) < ct(x) for every x € [a, b] and

b b b b
c/ f—/ cs < e, /ct—c/ f <e
a a a a

b b
By Riemann Condition again, cf is integrable and / cf = c/ f.

a a
The ¢ < 0 case can be done in a similar fashion. The ¢ = 0 case is

trivial. £l
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Theorem 8

Let f,g: [a,b] — R be integrable functions. Then f + g is an
integrable function and

/ab (f(x) + g(x)) dx = /ab F(x) dx + /abg(x) dx.

Proof. We first prove this for step functions. Suppose s, t are step
functions on [a, b]. If partitions Ps and P; are adapted to s and t
respectively, then P = P; U P; is adapted to all of s, t and s + t.

Let P={x0...,xn}, and

s(x)=s if xi—1 <x<x, t(x)=t if x_-1<x<x.
Then s(x) + t(x) = s + t; if xi_1 < x < x;.
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b n
/ (s + t) = (si+ t)(xi — xi-1)
a i=1
n n b b
= Z S,'(X,' — X,',l) + Z t,'(X,' — X,',l) = s+ t.
i=1 i=1 a a

Now consider any integrable functions f, g: [a, b] — R. Let ¢ > 0.
We have step functions s¢, sg, tf, tg such that the following hold:

se(x) < f(x) < tr(x) and sg(x) < g(x) < tg(x),

b c b b c
f—/sf<and/g— Sg < =,
/ a 2 a a g 2
b b b b ¢
/tf—/ f < = and tg — g < =
R 2
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Then s¢ + sz and tf + t; are step functions such that

se(x) + sg(x) < F(x) + g(x )<tf(x)+tg( ):

[re[a- [ (ses)<e
[ ers)-[r-[a<e

Now apply the Riemann Condition. U
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Theorem 9

Let a < ¢ < b and suppose f: [a, b] — R is a bounded function.
Then

@ f is integrable on [a, b] if and only if f is integrable on both
[a, c] and [c, b].
@® If f is integrable on [a, b] then

/ab F(x) dx = / £(x) dx+/cb £(x) dx.

Proof. Exercise. O

The equality [ f(x) dx = [ f(x) dx + [ f(x) dx holds for any
ordering of a, b, c. For example, suppose a < b < c¢. Then,

c b b c c b
/f—l—/f:/f+/f—/f:/f.
a c a b b a
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Theorem 10

Let f: [a, b] — R be integrable and let k € R. Then f(x — k) is
integrable on [a + k, b+ k] and

/ab+k f(x —k)dx = /ab f(x) dx.

+k

Proof. Hint: If s(x) is a step function with domain [a, b] then
s(x — k) is a step function with domain [a + k, b + K]. O

Amber Habib Calculus



Integration of Step Functions Integration of Bounded Functions Properties of Integration

0000000000 0000000000 0000000000000 00e
Scaling of Interval of Integration o SAAERREE

Theorem 11

Let f(x) be integrable on [a, b] and let k > 0. Then f(x/k) is
integrable on [ka, kb] and

/kkb f(x/k)dx = k/ab f(x) dx.

a

Proof. Hint: If s(x) is a step function with domain [a, b] then
s(x/k) is a step function with domain [ka, kb]. O
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