
Integration of Step Functions Integration of Bounded Functions Properties of Integration

Chapter 2: Integration
Part A: Integration and its Properties

Amber Habib Calculus



Integration of Step Functions Integration of Bounded Functions Properties of Integration

Table of Contents

1 Integration of Step Functions

2 Integration of Bounded Functions

3 Properties of Integration

Amber Habib Calculus



Integration of Step Functions Integration of Bounded Functions Properties of Integration

Partitions

Consider a closed and bounded interval [a, b] in R. A partition of
[a, b] is a set P = {x0, x1, . . . , xn−1, xn} such that

a = x0 < x1 < · · · < xn−1 < xn = b.

R
a = x0 x1 x2 . . . xn−1 xn = b

The partition cuts [a, b] into n subintervals

[a, x1], [x1, x2], . . . , [xn−2, xn−1], [xn−1, b].

The subintervals created by a partition need not have equal
lengths.

Example: The set {0, 0.1, 0.3, 0.9, 1} is a partition of [0, 1], with
x0 = 0, x1 = 0.1, x2 = 0.3, x3 = 0.9 and x4 = 1.
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Step Functions

A function s : [a, b] → R is a step function if there is a partition
P = {x0, . . . , xn} of [a, b] such that s is constant on each open
subinterval (xi−1, xi ):

s(x) = si if xi−1 < x < xi .

We say that the partition P is adapted to the step function s.

R
a = x0 x1 x2 xi−1 xi xn−1 xn = b

s1

s2

si
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An Example of a Step Function

Consider the Heaviside step function, with the domain restricted to
[−1, 1]. It is constant on the intervals (−1, 0) and (0, 1), hence the
partition P = {−1, 0, 1} is adapted to it.

1

−1 0 1P:

On the other hand, the partition P ′ = {−1, 0.5, 1} is not adapted
to it, since the function takes two values on the interval (−1, 0.5).

1

−1 0.5 1P ′:
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Integral of a Step Function

Let s : [a, b] → R be a step function with adapted partition
P = {x0, . . . , xn}, such that s(x) = si if xi−1 < x < xi . Then the
integral of s from a to b is defined by∫ b

a
s =

∫ b

a
s(x) dx =

n∑
i=1

si (xi − xi−1).

Example: Consider the Heaviside step function H, with the domain
as [−2, 3], and the adapted partition P = {−2, 0, 3}. It takes
values s1 = 0 on (−2, 0) and s2 = 1 on (0, 3). Therefore,∫ 3

−2
H(x) dx = s1(x1 − x0) + s2(x2 − x1)

= 0 · (0− (−2)) + 1 · (3− 0) = 3.
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Interpreting the Integral

The integral represents the total signed area of the rectangles
enclosed by the graph of s(x), the x-axis, and the vertical lines
x = a and x = b.

R
a = x0 x1 xn−1 xn = b

s1

s2

sn
sn−1

The term ‘signed area’ refers to the area of a rectangle marked by
the step function being taken as positive if the rectangle lies above
the x-axis and as negative if it lies below the x-axis.
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Refinements of Partitions

Let P,P ′ be partitions of [a, b]. We say P ′ is a refinement of P if
P ⊆ P ′.

Task 1

Suppose a partition P is adapted to a step function s. Show that
every refinement of P is also adapted to s.

Note that if P,P ′ are partitions of [a, b] then P ∪ P ′ is a common
refinement for both of them.

P: R
a = x0 x1 x2 x3 b = x4

P ′: R
a = y0 y1 y2 b = y3

P ∪ P ′: R
a = x0

= y0

x1 x2 x3 b = x4

= y3

y1 y2
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Integral is Independent of Choice of Partition

Theorem 1

Suppose s : [a, b] → R is a step function and P,Q are partitions of
[a, b] which are adapted to s. Then both P and Q lead to the

same value of
∫ b
a s(x) dx.

Proof. Let I (P) be the value of the integral of s corresponding to
the partition P. We need to prove that I (P) = I (Q). It suffices to
prove this when one partition is a refinement of the other.

For, if we have proved this, we’ll have I (P) = I (P ∪ Q) = I (Q).

Next, it suffices to prove I (P) = I (Q) when Q has just one point
more than P. Let P = {x0, . . . , xn} and for each i , let s take the
value si on (xi−1, xi ).

Let Q = {x0, . . . , xk−1, t, xk , . . . , xn}.
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Integral is Independent of Choice of Partition (contd.)

Then

I (Q) =
k−1∑
i=1

si (xi − xi−1) + sk(t − xk−1) + sk(xk − t)

+
n∑

i=k+1

si (xi − xi−1)

=
k−1∑
i=1

si (xi − xi−1) + sk(xk − xk−1) +
n∑

i=k+1

si (xi − xi−1)

=
n∑

i=1

si (xi − xi−1) = I (P).

□
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Comparison Theorem

Task 2

Suppose s, t : [a, b] → R are step functions. Show there is a
partition which is adapted to both s and t.

Theorem 2 (Comparison Theorem)

Let s, t : [a, b] → R be step functions such that s(x) ≤ t(x) for
every x ∈ [a, b]. Then∫ b

a
s(x) dx ≤

∫ b

a
t(x) dx .

Proof. Let P = {x0, . . . , xn} be a partition adapted to both s and
t. Let s(x) = si , t(x) = ti for x ∈ (xi−1, xi ). Then si ≤ ti and∫ b

a
s(x) dx =

n∑
i=1

si (xi − xi−1) ≤
n∑

i=1

ti (xi − xi−1) =

∫ b

a
t(x) dx .
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Lower and Upper Sums

A function f : [a, b] → R is bounded by a real number M if
−M ≤ f (x) ≤ M for every x ∈ [a, b].
Let f : [a, b] → R be bounded by M. Consider a step function
s : [a, b] → R such that s(x) ≤ f (x) for every x ∈ [a, b].

We view
∫ b
a s as an underestimate of the ‘signed area’ under the

graph of f and call it a lower sum for f .

Similarly, if t : [a, b] → R is a step function such that t(x) ≥ f (x)

for every x ∈ [a, b], then
∫ b
a t is viewed as an overestimate of the

‘signed area’ under the graph of f and called an upper sum for f .
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Consider the collection of all lowers sums,

Lf =
{∫ b

a
s(x) dx

∣∣∣ s : [a, b] → R is a step function and

s(x) ≤ f (x) for every x ∈ [a, b]
}
.

Lf is non-empty because the constant function −M is a step
function whose values never exceed those of f .

Similarly, we have the non-empty collection of all upper sums:

Uf =
{∫ b

a
t(x) dx

∣∣∣ t : [a, b] → R is a step function and

t(x) ≥ f (x) for every x ∈ [a, b]
}
.
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Theorem 3

Let f : [a, b] → R be a bounded function. Then ℓ ∈ Lf and u ∈ Uf

implies ℓ ≤ u.

Proof. Let s, t : [a, b] → R be step functions such that

• s(x) ≤ f (x) for every x ∈ [a, b] and
∫ b
a s(x) dx = ℓ.

• t(x) ≥ f (x) for every x ∈ [a, b] and
∫ b
a t(x) dx = u.

Then s(x) ≤ f (x) ≤ t(x) for every x ∈ [a, b]. Hence, by the
Comparison Theorem,

ℓ =

∫ b

a
s(x) dx ≤

∫ b

a
t(x) dx = u. □

By the Completeness Axiom there is a number I such that
ℓ ≤ I ≤ u for every ℓ ∈ Lf and u ∈ Uf . This I is our natural
candidate for the value of the signed area under the graph of f .
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Dirichlet Function

The Dirichlet function D : [0, 1] → R is defined by

D(x) =

{
1 if x ∈ Q ∩ [0, 1],
0 if x ∈ Qc ∩ [0, 1].

Let s : [0, 1] → R be a step function such that s(x) ≤ D(x) for
every x ∈ [0, 1]. Each open subinterval of [0, 1] contains an
irrational number, hence s(x) ≤ 0 on each open subinterval, and

so
∫ 1
0 s(x) dx ≤ 0.

Similarly, we see that
∫ 1
0 t(x) dx ≥ 1 if t : [0, 1] → R is a step

function such that t(x) ≥ D(x) for every x ∈ [0, 1].

Therefore every α between 0 and 1 satisfies ℓ ≤ α ≤ u for every
ℓ ∈ LD and u ∈ UD .
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Integrable Functions

For the Dirichlet function, our approach fails to successfully assign
a unique ‘signed area’.

For the functions where our approach does work we have a special
term:

A bounded function f : [a, b] → R is called integrable if there is a
unique number I such that ℓ ≤ I ≤ u for every ℓ ∈ Lf and u ∈ Uf .
This unique I is called the (definite) integral of f on [a, b] and is

denoted by
∫ b
a f (x) dx or

∫ b
a f .
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Integral of x over [0, 1]

Consider f (x) = x on [0, 1]. Take the partition P : x0 < · · · < xn
which cuts [0, 1] into n equal subintervals. That is, xi = i/n.
Define step functions s and t:

s(x) = xi−1 and t(x) = xi if xi−1 ≤ x < xi ,

and s(1) = t(1) = 1. Then∫ 1

0
s(x) dx =

1

n

n∑
i=1

xi−1 =
1

n

n∑
i=1

i − 1

n
=

n − 1

2n
=

1

2
− 1

2n
,

∫ 1

0
t(x) dx =

1

n

n∑
i=1

xi = · · · = 1

2
+

1

2n
.

1/2 is the only number that fits between all these lower and upper
sums, and hence it is the integral of f over [0, 1].
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Riemann Condition

Theorem 4 (Riemann Condition)

Let f : [a, b] → R be a bounded function. Then f is integrable on
[a, b] if and only if for each ϵ > 0 there are ℓ ∈ Lf and u ∈ Uf such
that u − ℓ ≤ ϵ.

Proof. First, suppose f is not integrable. Since f is not integrable,
there are two numbers I1, I2 such that

ℓ ≤ I1 < I2 ≤ u, for every ℓ ∈ Lf , u ∈ Uf .

Consider ϵ = 1
2(I2 − I1). Then ℓ ∈ Lf , u ∈ Uf implies u − ℓ > ϵ.

Now, suppose f has integral I . Given any ϵ > 0, consider
(I − ϵ/2, I + ϵ/2). If this does not contain any lower sum of f ,
then I − ϵ/2 will also meet the conditions for the integral of f . So
this interval must contain some ℓ ∈ Lf . Similarly, it must contain
some u ∈ Uf . Then u − ℓ < ϵ. □
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Riemann Condition (ver. 2)

Theorem 5

Let f : [a, b] → R be a bounded function. Then I ∈ R is the
integral of f over [a, b] if and only if for each ϵ > 0 there are
ℓ ∈ Lf and u ∈ Uf such that I − ℓ < ϵ and u − I < ϵ.

Proof. Suppose I is the integral of f over [a, b], and ϵ > 0. If
(I − ϵ, I ] ∩ Lf = ∅ then I − ϵ also satisfies the definition of integral
of f . Hence there is an ℓ ∈ Lf such that I − ϵ < ℓ ≤ I . Similarly,
there is u ∈ Uf such that I ≤ u < I + ϵ.

Suppose such ℓ, u exist for every ϵ > 0. By the earlier Riemann
Condition, f is integrable. So we only need to show I is between
Lf and Uf . Suppose ℓ ∈ Lf and ℓ > I . Then there is u ∈ Uf such
that I < u < ℓ, a contradiction. Therefore ℓ ≤ I for every ℓ ∈ Lf .
Similarly, Therefore I ≤ u for every u ∈ Uf . □
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Two conventions

•
∫ a

a
f (x) dx = 0.

• If a < b then

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx .

The first is consistent with line segments having zero area. The
second takes into account the direction of travel.
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Comparison

We now take up various general properties of integration. We first
present the corresponding diagrams. The idea is that the general
patterns can be intuited from what happens to rectangles. We
begin with the general statement of the Comparison Theorem.

• f ≤ g on [a, b] implies

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .

f

g

f

g

The rectangles for g are higher than those for f .
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Homogeneity

•
∫ b

a
c f (x) dx = c

∫ b

a
f (x) dx .

f

cf

f

cf

Each rectangle gets scaled vertically by c, hence so does its area.
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Additivity

•
∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .

f

g

f

f + g

The rectangles for g are placed on top of those for f to get the
ones for f + g.
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Additivity over Intervals

•
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

f

a c b

The rectangles for [a, c] and [c , b] are pooled to get all the ones
for [a, b].
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Shift of Interval of Integration

•
∫ b+k

a+k
f (x − k) dx =

∫ b

a
f (x) dx .

f (x)

a b

f (x − k)

a+ k b + k

Each rectangle shifts without changing its dimensions.
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Scaling of Interval of Integration

• k > 0 =⇒
∫ kb

ka
f (x/k) dx = k

∫ b

a
f (x) dx .

f (x)

a b

f (x/k)

ka kb

The width of each rectangle is scaled by k, hence so is its area.
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Comparison Theorem

Theorem 6

Suppose f , g : [a, b] → R are integrable functions such that
f (x) ≤ g(x) for every x ∈ [a, b]. Then∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .

Proof. Suppose that

∫ b

a
f >

∫ b

a
g . Let s, t : [a, b] → R be step

functions such that s(x) ≤ f (x) ≤ t(x) for every x ∈ [a, b].

We have s(x) ≤ f (x) ≤ g(x) for every x ∈ [a, b], and hence∫ b
a s ≤

∫ b
a g . We also have

∫ b
a g <

∫ b
a f ≤

∫ b
a t. Thus the integral

of g satisfies the defining properties of the integral of f and so
must be equal to it. But this contradicts the assumed inequality. □
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Homogeneity

Theorem 7

Let f : [a, b] → R be an integrable function and c ∈ R. Then cf is
integrable and ∫ b

a
cf (x) dx = c

∫ b

a
f (x) dx .

Proof. First, we prove the result for a step function s. Let
P = {x0, . . . , xn} be a partition of [a, b], such that s(x) = si if
xi−1 < x < xi . Then c · s(x) = c · si if xi−1 < x < xi . Hence∫ b

a
cs =

n∑
i=1

(csi ) · (xi − xi−1) = c
n∑

i=1

si · (xi − xi−1) = c

∫ b

a
s.
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Homogeneity (cont.)

Second, consider an arbitrary integrable function f and c > 0. Let
ϵ > 0. By the Riemann Condition there are step functions s, t such
that s(x) ≤ f (x) ≤ t(x) for every x ∈ [a, b] and∫ b

a
f −

∫ b

a
s <

ϵ

c
,

∫ b

a
t −

∫ b

a
f <

ϵ

c
.

It follows that cs, ct are step functions such that
cs(x) ≤ cf (x) ≤ ct(x) for every x ∈ [a, b] and

c

∫ b

a
f −

∫ b

a
cs < ϵ,

∫ b

a
ct − c

∫ b

a
f < ϵ.

By Riemann Condition again, cf is integrable and

∫ b

a
cf = c

∫ b

a
f .

The c < 0 case can be done in a similar fashion. The c = 0 case is
trivial. □
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Additivity

Theorem 8

Let f , g : [a, b] → R be integrable functions. Then f + g is an
integrable function and∫ b

a

(
f (x) + g(x)

)
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .

Proof. We first prove this for step functions. Suppose s, t are step
functions on [a, b]. If partitions Ps and Pt are adapted to s and t
respectively, then P = Ps ∪ Pt is adapted to all of s, t and s + t.
Let P = {x0 . . . , xn}, and

s(x) = si if xi−1 < x < xi , t(x) = ti if xi−1 < x < xi .

Then s(x) + t(x) = si + ti if xi−1 < x < xi .
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Additivity (cont.)

∫ b

a

(
s + t

)
=

n∑
i=1

(si + ti )(xi − xi−1)

=
n∑

i=1

si (xi − xi−1) +
n∑

i=1

ti (xi − xi−1) =

∫ b

a
s +

∫ b

a
t.

Now consider any integrable functions f , g : [a, b] → R. Let ϵ > 0.
We have step functions sf , sg , tf , tg such that the following hold:

sf (x) ≤ f (x) ≤ tf (x) and sg (x) ≤ g(x) ≤ tg (x),∫ b

a
f −

∫ b

a
sf <

ϵ

2
and

∫ b

a
g −

∫ b

a
sg <

ϵ

2
,∫ b

a
tf −

∫ b

a
f <

ϵ

2
and

∫ b

a
tg −

∫ b

a
g <

ϵ

2
.
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Additivity (cont.)

Then sf + sg and tf + tg are step functions such that

sf (x) + sg (x) ≤ f (x) + g(x) ≤ tf (x) + tg (x),∫ b

a
f +

∫ b

a
g −

∫ b

a

(
sf + sg

)
< ϵ,∫ b

a

(
tf + tg

)
−
∫ b

a
f −

∫ b

a
g < ϵ.

Now apply the Riemann Condition. □
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Additivity over Intervals

Theorem 9

Let a < c < b and suppose f : [a, b] → R is a bounded function.
Then

1 f is integrable on [a, b] if and only if f is integrable on both
[a, c] and [c , b].

2 If f is integrable on [a, b] then∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Proof. Exercise. □

The equality
∫ b
a f (x) dx =

∫ c
a f (x) dx +

∫ b
c f (x) dx holds for any

ordering of a, b, c . For example, suppose a < b < c . Then,∫ c

a
f +

∫ b

c
f =

∫ b

a
f +

∫ c

b
f −

∫ c

b
f =

∫ b

a
f .
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Shift of Interval of Integration

Theorem 10

Let f : [a, b] → R be integrable and let k ∈ R. Then f (x − k) is
integrable on [a+ k, b + k] and∫ b+k

a+k
f (x − k) dx =

∫ b

a
f (x) dx .

Proof. Hint: If s(x) is a step function with domain [a, b] then
s(x − k) is a step function with domain [a+ k , b + k]. □
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Scaling of Interval of Integration

Theorem 11

Let f (x) be integrable on [a, b] and let k > 0. Then f (x/k) is
integrable on [ka, kb] and∫ kb

ka
f (x/k) dx = k

∫ b

a
f (x) dx .

Proof. Hint: If s(x) is a step function with domain [a, b] then
s(x/k) is a step function with domain [ka, kb]. □

Amber Habib Calculus


	Integration of Step Functions
	

	Integration of Bounded Functions
	

	Properties of Integration
	


