Errata for "An Introduction to Granular Flow"

Last updated: 29 October 2008

- 1. p. xiv, line 4: desribed \longrightarrow described
- 2. p. xiv, insert after entry for k_x , k_y , k_z , the following: $k_{\rm B}$: Boltzmann constant
- 3. p. xix, after entry for γ' , insert the following: $\dot{\gamma}$: shear rate
- 4. p. xv, after last line, insert the following additional definition for g: magnitude of the relative velocity \mathbf{g}
- 5. p. xvii, after entry for $\hat{\mathbf{D}}$, insert the following: $\hat{\mathbf{D}}'$: $\hat{\mathbf{D}} \frac{1}{2}(\hat{\mathbf{\nabla}}\hat{\mathbf{u}})\mathbf{I}$
- 6. p. 38, line above (1.60): article \longrightarrow particle
- 7. p. 118, line 2 below Table 3.1: bulk density \longrightarrow density
- 8. p. 141, paragraph 4, line 3: $\xi^{\lambda-1} \longrightarrow \xi^{\lambda_s-1}$
- 9. p. 162, problem 3.2, last line: Add the following sentence: In the r- θ plane, the slope of a curve is given by $\frac{1}{r}\frac{\mathrm{d}r}{\mathrm{d}\theta}$.
- 10. p. 164, problem 3.9, line 3: $(3.109) \ll 1 \longrightarrow (3.109)$ is $\ll 1$
- 11. p. 212: Equation (4.53) should be replaced by

$$(\mathbf{n}_* \cdot \boldsymbol{\sigma})_w = \frac{1}{P'} \oint_{P'} \mathbf{n}_* \cdot \boldsymbol{\sigma} \, \mathrm{d}s$$

- 12. p. 239, paragraph 2 above §5.3, last line: were reported \longrightarrow were not reported
- 13. p. 277, line above equation (6.57): radial \longrightarrow incompressible
- 14. p. 301, line 3 from the bottom: $1.365 \times 10^{-10} \,\mathrm{m} \longrightarrow 2.73 \times 10^{-10} \,\mathrm{m}$
- 15. p. 306, paragraph 2, line 2: $\langle \psi \rangle / \tau_c \longrightarrow \psi_s / \tau_c$, where ψ_s sets the scale of ψ .
- 16. p. 306, paragraph 2: Replace third sentence, "The other terms ...", by the following:

The other terms, being gradients in the fluxes, are smaller by a factor of s/H. The scaling of the three terms may be derived in the following

manner. Using v_s as a characteristic grain velocity, we see from (7.65), (7.41) and (7.32) that

$$\chi \sim d_{\rm p}^2 n^2 v_s \psi_s = \frac{6}{\pi} s n \, \frac{\nu}{d_{\rm p}} \, \frac{v_s}{s} \psi_s$$

Here, we have used the identity $\nu = n\pi d_{\rm p}^3/6$. Recognizing that $s \sim d_{\rm p}/\nu$ (see the text below (7.49)) and $s/v_s = \tau_c$, we get

$$\chi \sim n \frac{\psi_s}{\tau_c}$$

Similarly, it is easily seen from (7.64) that θ scales as

$$\boldsymbol{\theta} \sim d_{\rm p}^3 n^2 v_s \psi_s = \frac{6}{\pi} sn \nu \, \frac{v_s}{s} \psi_s$$

and hence

$$\nabla \cdot \boldsymbol{\theta} \sim \frac{s}{H} n \nu \frac{\psi_s}{\tau_c}$$

In the same manner,

$$\nabla \cdot (n \langle \mathbf{c} \psi \rangle) \sim \frac{1}{H} n v_s \psi_s = \frac{s}{H} n \frac{\psi_s}{\tau_c}$$

Thus, we see that $\nabla \cdot \boldsymbol{\theta}$ and $\nabla \cdot (n \langle \mathbf{c} \psi_s \rangle)$ are smaller than χ by the factor s/H. Hence, the balance in (7.66) is between the left-hand side and $\chi(\psi)$.

17. p. 315, (7.125):
$$\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$$

- 18. p. 316, line 1: with the dimensionless rate of deformation tensor $\hat{\mathbf{D}} \equiv \hat{\nabla} \hat{\mathbf{v}}$ \longrightarrow with the traceless part of the dimensionless rate of deformation tensor $\hat{\mathbf{D}}' \equiv \overline{\hat{\nabla}} \hat{\mathbf{v}}$
- 19. p. 317, line 3 below (7.133): that value \longrightarrow the value

20. p. 318, (7.135):
$$\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$$

21. p. 319, (7.138):
$$\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$$

22. p. 320, (7.142), (7.143), (7.145):
$$\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$$

23. p. 320, (7.143) and (7.145):
$$\nabla \longrightarrow \hat{\nabla}$$

24. p. 323, (7.158):
$$\mathbf{D} \longrightarrow \mathbf{D}'$$

25. p. 323, line after (7.158): where **D** is the rate of deformation tensor, \longrightarrow where $\mathbf{D}' \equiv \mathbf{D} - \frac{1}{3}(\nabla \cdot \mathbf{u}) \mathbf{I}$ is the traceless part of the rate of deformation tensor,

- 26. p. 330, problem 7.3: $\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$
- 27. p. 335, line 4 above (8.11): analogos \longrightarrow analogous
- 28. p. 345, $\S 8.2.2$, line 4: in the hyperbolic \longrightarrow the hyperbolic
- 29. p. 351, $\S 8.3.1$, paragraph 2, line 2: fixed-time \longrightarrow fixed time
- 30. p. 355, caption of Fig. 8.16, line 1: diameter flowing in a \longrightarrow diameter in a
- 31. p. 364, paragraph 1, line 2 from the bottom: no matter how large \longrightarrow for the entire range of
- 32. p. 368, last paragraph, line 6: layers in the x-z plane \longrightarrow layers parallel to the x-z plane
- 33. p. 368, last line 6: layers are in x-y plane \longrightarrow layers are parallel to the x-y
- 34. p. 376, 3rd line below (9.5): $r \longrightarrow \mathbf{r}$
- 35. p. 378, 4^{th} line above (9.13): nearly rough \longrightarrow nearly perfectly rough
- 36. p. 380, paragraph 2, after (9.27): The body couple, if present . . . from the hydrostatic part. \longrightarrow If a body couple of finite magnitude is present, $\overline{\omega}$ is in general not a hydrodynamic variable, but is "enslaved" to τ .
- 37. p. 386, paragraph 1: the relations for a_1 and b_0 coincide with the solution obtained for a granular gas of smooth particles, given in (7.133). \longrightarrow the relation for Φ_K differs from the one-term solution of Chapman & Cowling (1964) for a granular gas of smooth particles (given by (7.125), (7.132) and (7.133)) only by the the term proportional to a'_1 in A.
- 38. p. 387, (9.67): $\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$
- 39. p. 387, last line: $\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$
- 40. p. 388, (9.68): $\hat{\mathbf{D}} \longrightarrow \hat{\mathbf{D}}'$
- 41. p. 389, (9.79): $\mathbf{D} \longrightarrow \mathbf{D}'$
- 42. p. 389, line below (9.79): where $\mathbf{D} \equiv -\mathbf{C}$ (see (2.49)) is the rate of deformation tensor defined in the tensile sense. \longrightarrow where $\mathbf{D}' \equiv \mathbf{D} \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{I}$ is the traceless part of the rate of deformation tensor.
- 43. p. 394, paragraph 2, last line: grains.3 \longrightarrow grains.
- 44. p. 448, line below (G.54): $[Q]_* \to [Q_*]$

45. p. 450: Fig. H.1 should be modified as below:

- 46. p. 450, §H.2: is evaluated by writing ${\bf k}$ in terms of \longrightarrow is evaluated by writing ${\bf k}$, ${\bf i}$, and ${\bf j}$ in terms of
- 47. p. 452, (H.15): $\mathcal{J} \longrightarrow \det(\mathbf{J})$
- 48. p. 457, line 3 from the bottom: roman \longrightarrow Roman In the same line: greek \longrightarrow Greek