Solutions to the Tutorial Problems in the book "Magnetohydrodynamics of the Sun" by ER Priest (2014) CHAPTER 5

PROBLEM 5.1. Hydrodynamic Shock Wave.

Show that the shock relations for a hydrodynamic shock, namely,

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)M_1^2}{2+(\gamma-1)M_1^2},\tag{1}$$

$$\frac{v_2}{v_1} = \frac{2 + (\gamma - 1)M_1^2}{(\gamma + 1)M_1^2},\tag{2}$$

$$\frac{p_2}{p_1} = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1},\tag{3}$$

together with the entropy condition

$$s_2 \geqslant s_1;$$
 (4)

imply that the Mach number exceeds unity, i.e.,

$$M_1 \ge 1. \tag{5}$$

SOLUTION.

The equation

$$s_2 \geqslant s_1$$

is equivalent from the definition of s to

$$\frac{p_2}{\rho_2^{\gamma}} \geqslant \frac{p_1}{\rho_1^{\gamma}}$$

or

$$\frac{p_2}{p_1} \geqslant \frac{\rho_2^{\gamma}}{\rho_1^{\gamma}}.$$

The easiest way to prove that this implies $M_1 \ge 1$ is graphically, namely, to sketch the left and right hand sides of this inequality as functions of M_1 .

Thus, for the graph of p_2/p_1 as a function of M_1 , note that, when $M_1 = 0$, $p_2/p_1 = -(\gamma - 1)/(\gamma + 1)$, which is negative since $\gamma > 1$, and its gradient with

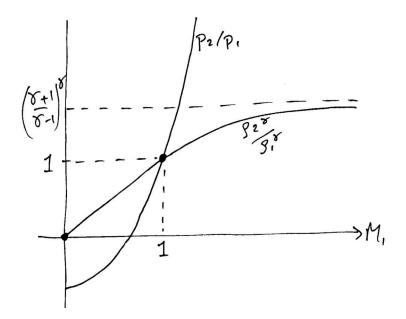


Figure 1: Sketches of p_2/p_1 and $\rho_2^{\gamma}/\rho_1^{\gamma}$ as functions of M_1 assuming $\gamma > 1$.

respect to M_1 vanishes there. Furthermore, $p_2/p_1 = 0$ when $M_1^2 = (\gamma - 1)/2\gamma$ and $p_2/p_1 = 1$ when $M_1 = 1$. At $M_1 = 1$ the gradient of p_2/p_1 is equal to $4\gamma/(\gamma + 1)$ and for larger values of M_1 it exceeds this value, increasing like M_1 .

On the other hand, the graph of $\rho_2^{\gamma}/\rho_1^{\gamma}$ shows that it vanishes when $M_1 = 0$ and increases to the value of unity when $M_1 = 1$, where its gradient is $[4/(\gamma + 1)]^{\gamma}$, which is less than that of p_2/p_1 when $M_1 = 1$ and decreases with M_1 for larger values of M_1 .

Thus, the graphs of these two functions are as shown in Figure ??, from which we deduce that

$$\frac{p_2}{p_1} \geqslant \frac{\rho_2^{\gamma}}{\rho_1^{\gamma}}$$

implies $M_1 \ge 1$, as required.