
Appendix E

Sensitivity analysis

This appendix introduces the basic notions of first-order and second-order sensi-
tivity of a dependent variable with respect to a given independent variable. Our aim
is to provide measures that are independent of the scales of both the independent
and dependent variables.

E.1 Basic concepts

Let φ : R −→ R be a scalar-valued function of a scalar-valued variable x . Let
�φ(x) = φ(x + �x) − φ(x) denote the change in φ(x) resulting from a change
�x in x . Then, �φ(x)

φ(x) is known as the relative change in φ(x), resulting from the

relative change �x
x in x . The ratio

Sφ(x) =
�φ(x)
φ(x)
�x
x

(E.1.1)

is a measure of the sensitivity of the dependent variable φ with respect to the
independent variable x . Rewriting the right-hand side of (E.1.1) and using the
standard finite difference approximation to the derivative of φ with respect to x , it
follows that

Sφ(x) =
(

�φ(x)

�x

) (
x

φ(x)

)
≈ dφ

dx

(
x

φ(x)

)
. (E.1.2)

That is, Sφ(x) is directly proportional to the first derivative of φ with respect to x .
This is the reason why the gradient of the dependent variable φ is usually taken as
a measure of its (first-order) sensitivity.

Example E.1.1 The power P consumed by a resistor R driven at a voltage V is
given by P = V 2/R. Clearly,

dP

dV
= 2V

R
, and

dP

dR
= − V 2

R2
.
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Hence, it can be verified that

SP (V ) =
(

dP

dV

) (
V

P

)
= 2,

and

SP (R) =
(

dP

dR

) (
R

P

)
= −1.

Thus, the power is twice as sensitive (in magnitude) to changes in voltage com-
pared to changes in the resistor. Also, notice that increase/decrease in voltage
results in increase/decrease in power, but an increase/decrease in resistor results in
decrease/increase in power.

Let φ : R
n −→ R be twice continuously differentiable, let x∗ = (x∗

1 , x∗
2 , . . . ,

x∗
n )T be a vector such that x∗

i �= 0, for 1 ≤ i ≤ n. Let x be a vector close to x∗ and
define a vector

h =
(

x1 − x∗
1

x1
,

x2 − x∗
2

x2
, . . . ,

xn − x∗
n

xn

)T

and a diagonal matrix D as

D = Diag(x∗
1 , x∗

2 , . . . , x∗
n ) =

⎛
⎜⎜⎜⎝

x∗
1

x∗
2

. . .

x∗
n

⎞
⎟⎟⎟⎠ .

Then, using the standard second-order Taylor expansion (Appendix C), we get

φ(x) = φ(x∗) + (x − x∗)T∇φ(x∗) + 1

2!
(x − x∗)T∇2φ(x∗)(x − x∗) (E.1.3)

Assuming that φ(x∗) �= 0, we can rewrite (E.1.3) as

φ(x) − φ(x∗)

φ(x∗)
= hT

[
D∇φ(x∗)

φ(x∗)

]
+ hT

[
D∇2φ(x∗)D

2φ(x∗)

]
h (E.1.4)

where the vector h and the diagonal matrix D are defined above. Define a vector

S1
φ(x∗) = 1

φ(x∗)

(
D∇φ(x∗)

)
(E.1.5)

and a matrix

S2
φ(x∗) = 1

2φ(x∗)

(
D∇2φ(x∗)D

)
. (E.1.6)

Using these, (E.1.4) can be rewritten as

φ(x) − φ(x∗)

φ(x∗)
= hTS1

φ(x∗) + hTS2
φ(x∗)h. (E.1.7)
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The vector S1
φ(x∗) is called the first-order sensitivity vector and S2

φ(x∗) is called
the second-order sensitivity matrix.

Remark E.1.1 Let x∗ be the minimum of φ(x). Then since ∇φ(x∗) = O, so is
S1

φ(x∗). Hence, in such cases, S2
φ(x∗), which is directly related to the Hessian, holds

the key. In particular, the diagonal elements of ∇2φ(x∗) and hence of S2
φ(x∗) relate

to the sensitivity with respect to the individual variables.

Example E.1.2 Consider a closed cylindrical tank with x1 as the radius of its
circular base and x2 as its height. This structure is commonly used for storing
products like grain, gasoline, etc. The problem is to maximize the volume when
the total surface area is fixed. Let V be the volume and A be the total surface area.
Then V = πx2

1 x2 and A = 2πx2
1 + 2πx1x2. Let x = (x1, x2)T. The problem may

be restated equivalently as

minimize
V

π
= φ(x) = −x2

1 x2,

subject to the constraint A/2π = f (x) = x2
1 + x1x2 − a = 0 for some given fixed

area a. Consider the Lagrangian

L(x, λ) = −x2
1 x2 + λ(x2

1 + x1x2 − a)

where λ is the undetermined Lagrangian multiplier. Then

∂L

∂x1
= −2x1x2 + 2λx1 + λx2

∂L

∂x2
= −x2

1 + λx1

and

∂L

∂λ
= x2

1 + x1x2 − a.

Setting these derivatives to zero and solving we obtain

x∗
1 =

√
a

3
x∗

2 = 2

√
a

3
λ =

√
a

3
.

It can be verified that

∇φ(x) =
[−2x1x2

−x2
1

]
and ∇2φ(x) =

[−2x2 −2x1

−2x1 0

]
.

Thus,

φ(x∗) = −2a
√

a

3
√

3
, ∇φ(x∗) = −a

3

(
4

1

)

D =
√

a

3

[
1 0
0 2

]
and ∇2φ(x∗) = −2

√
a

3

[
2 1
1 0

]
.
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From these and the definition, we obtain

S1
φ(x∗) = 1

φ(x∗)
D∇φ(x∗) =

[
2
1

]
.

Since this is a constrained problem, not every arbitrary perturbation is admissible.
From (E.1.4), we readily obtain the conditions for the admissibility of perturbations
as

(�x1, �x2)∇ f (x∗) = (�x1, �x2)

(
2x∗

1

x∗
1

)
= √

a
3 (4�x1 + �x2) = 0

⎫⎬
⎭ (E.1.8)

which in turn implies that �x2 = −4�x1. We now verify that in the space of
admissible perturbations, the Hessian ∇2φ(x∗) is positive definite. Thus,

(�x1, �x2)∇2φ(x∗)

(
�x1

�x2

)

= −2
√

a
3 (�x1)2(1, −4)

[
2 1
1 0

] (
1
4

)
= 12

√
a
3 (�x1)2 > 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(E.1.9)

Hence, x∗ is a constrained minimum. It can be verified that

S2
φ(x∗) = 1

2φ(x∗)
D∇2φ(x∗)D =

(
1 1
1 0

)
. (E.1.10)

Letting xi − x∗
i = �xi for i = 1, 2, and combining all the above computations, we

obtain

φ(x)−φ(x∗)
φ(x∗) =

(
�x1
x∗

1
, �x2

x∗
2

) (
2
1

)
+

(
�x1
x∗

1
, �x2

x∗
2

) (
1 1
1 0

) (
�x1
x∗

1
�x2
x∗

2

)

=
(

2�x1
x∗

1
, �x2

x∗
2

)
+ (�x1)2

(x∗
1 )2 + 2�x1�x2

x∗
1 x∗

2
.

Thus, after finding the optimum value, if we make an error of, say, 10% in x1 (namely
�x1/x∗

1 = 0.1), neglecting the second-order terms, the percentage changes in φ is
twice as large compared to a similar 10% error (�x2/x2 = 0.1) in x2. That is, the
volume is twice as sensitive to changes in x1, the radius, compared to those in x2,
the height.

E.2 Sensitivity with respect to perturbations
in the constraints

Let φ : R
n −→ R; fi : R

n −→ R for 1 ≤ i ≤ k, where k is an integer less than or
equal to n. Consider the problem of minimizing φ(x) subject to a set of equality
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constraints fi (x) = ai for 1 ≤ i ≤ k. Consider the Lagrangian

L(x, λ) = φ(x) +
k∑

i=1

λi [ fi (x) − ai ] (E.2.1)

where λ = (λ1, λ2, . . . , λk)T is a set of undetermined Lagrangian multipliers. Let
x∗, λ∗ be the value of x and λ that minimizes L(x, λ) in (E.2.1). From Appendix D,
it follows that such an x∗ and λ∗ are the solutions of

∇xL(x, λ) = ∇xφ(x) + ∑k
i=1 λi∇x fi (x) = 0

and
∇λL(x, λ) = fi (x) = ai for 1 ≤ i ≤ k.

⎫⎬
⎭ (E.2.2)

We are interested in analyzing the changes in φ(x∗) resulting from the changes in
ai ’s. Let �x be the changed in x induced by the changes �ai in ai . Then

fi (x∗ + �x) = ai + �ai , 1 ≤ i ≤ k.

Neglecting the second- and higher-order terms we obtain

�φ = φ(x∗ + �x) − φ(x∗) = (�x)T∇φ(x∗) (E.2.3)

�ai = fi (x∗ + �x) − fi (x∗) = (�x)T∇ fi (x∗) (E.2.4)

Then, from (E.2.4), we have

k∑
i=1

λ∗
i �ai = (�x)T

k∑
i=1

λ∗
i ∇ fi (x∗). (E.2.5)

Adding (E.2.4) and (E.2.5), we have

�φ = (�x)T
[
∇φ(x∗) + ∑k

i=1 λ∗
i ∇ fi (x∗)

]
− ∑

i = 1kλ∗
i �ai

= − ∑k
i=1 λ∗

i �ai

(E.2.6)

since from (E.2.2) the first term within the square bracket on the right-hand side is
zero.

In other words, the change in φ resulting from those in ai are decided by the
values of the Lagrangian multiplier arising from the solution of (E.2.2). In this
sense, Lagrangian multipliers are sometimes called the sensitivity parameters.

Example E.2.1 Continuing the Example E.1.2, recall that V/π = φ(x) = −x2
1 x2

and A/2π = f (x) = x2
1 + x1x2 = a. Recall that at the optimum, we have

x∗
1 =

√
a

3
, x∗

2 = 2

√
a

3
, and λ∗ =

√
a

3
.

a = x2
1 + x1x2 = (λ∗)2 + 2(λ∗)2 = 3(λ∗)2.

Hence a 10% change in a induces a change

�φ = −λ∗�a = −λ∗(0.1a) = −λ∗(0.3(λ∗)2) = −0.3(λ∗)3
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in φ(x∗) = −(x∗
1 )2x∗

2 = −2(λ∗)3, which translates into �φ/φ(x∗) = 0.15, that is,
a 15% change.

Notes and references

The discussion related to the basic sensitivity analysis is adapted from Pierre and
Lowe (1975). Sensitivity with respect to the constraints is discussed extensively in
Luenberger (1973).


