
Solutions to exercises in chapter 3

1. Kinematics

(a) Given x(t) = x0 · cos(ωt), the is given by v = dx/dt = −x0 · ω · sin(ωt). The maximum velocity
is obtained when the sine is equal to -1, i.e. vmax = x0 · ω.

(b) Given the velocity from a) v = −x0 · ω · sin(ωt), the acceleration is given by a = dv/dt =
−x0 · ω2 · cos(ωt). The maximum acceleration is obtained when the cosine is equal to -1, i.e.
amax = x0 · ω2. Because x(t) = x0 · cos(ωt), one can also write a(t) = d2/dt2x(t) = −ω2 · x(t).

(c) From cos2(α) + sin2(α) = 1, we obtain that sin(α) =
√

1− cos2(α). If we insert this in

the solution for (a), i.e. v = −x0 · ω · sin(ωt), we obtain v = −x0 · ω ·
√

1− cos2(ωt) = −ω ·√
x20 − (x0 · cos(ωt))2 = −ω ·

√
x20 − x(t)2.

2. Circular motion

(a) For circular motion, the radius |~r| is constant, i.e. does not depend on time, thus we know that
d
dt |~r| = 0. Therefore also |~r|2 does not depend on time, which means that we can write d

dt |~r|
2 = 0.

Using the product rule to determine d
dt |~r|

2 = d
dt (~r · ~r), we obtain d

dt |~r|
2 = ~r · ddt (~r) + d

dt (~r) · ~r =

2~r · ddt (~r) = 2~v ·~r. Since we know that this must be zero, i.e. d
dt |~r|

2 = 0, we also know that ~v ·~r = 0.
This means that the velocity is always perpendicular to the position vector.

(b) We know that the speed |~v| is constant, i.e. d
dt |~v| = 0. As above, we thus know that similarly

|~v|2 is constant, i.e. d
dt |~v|

2 = 0. Again taking the derivative d
dt |~v|

2 = d
dt (~v · ~v) by using the product

rule, we obtain d
dt |~v|

2 = ~v · ddt (~v) + d
dt (~v) · ~v = 2~v · ddt (~v) = 2~a · ~v. Since d

dt |~v|
2 = 0, we know that

~a · ~v = 0, which means that the acceleration is perpendicular to the velocity.

3. Damped oscillation

The acceleration of a pendulum is given by maT = −mg sin(φ)− 6πηrv, where the second term is
Stokes friction as determined in Exercise 2.6

For a pendulum we have: s = `φ, thus v = ṡ = `φ̇ and aT = v̇ = `φ̈

Inserting this above, we obtain m`φ̈ = −mgsin(φ)−6πηr`φ̇. For small angles, we can approximate
the sine by the angle and have a simpler equation given by: m`φ̈ = −mgφ−6πηr`φ̇. Dividing by m`
gives a generic equation for an oscillation: φ̈ = −ω2

0φ−1/τ0φ̇ where ω0 =
√
g/` and 1/τ0 = 6πηr/m

a) The pendulum will oscillate with a frequency ω =
√
ω2
0 − 1/(4τ20 ). With the above values we

obtain numerically ω0 =
√

10s−1 = πs−1 and 1/τ0 = 6π · 0.2 · 10−2/0.1 kg·m
m·s·kg = 0.12πs−1. This

gives an angular frequency of ω =
√
ω2
0 − 1/(2τ0)2 =

√
12 − 0.062πs−1 ' πs−1 or in other words a

period of 2 s.

b) From a), we see that the damping hardly influences the frequency of the pendulum in this case.
Therefore, we can use the simpler form of ω '

√
g/` for estimating the error of ω. Using relative

errors, this means that rω = r`/2 = 0.025. Therefore the uncertainty of the period will be σT =
0.05 s.

c) The decay-time of the amplitude is given by τ = 2τ0, which means that the envelope of the ampli-
tude is given by φ0 exp(−t/τ). The pendulums energy is proportional to the amplitude squared, such
that the energy will depend on time as E0(exp(−t/τ))2 = E0 exp(−2t/τ) = E0 exp(−t/τ0). If after
a time T1/2, half the energy has been dissipated, we can write E(T1/2 = E0/2 = E0 exp(−T1/2/τ0).

Solving this yields ln(2) = T1/2/τ0 or T1/2 = ln(2)τ0. With τ0 = m
6πηr , we obtain T1/2 = ln(2)m

6πηr or

numerically: T1/2 = 0.7·0.1kgms
6π0.2kg0.01m = 7/(1.2π)s ' 1.9s

d) Since T1/2 = ln(2)m
6πηr , we see that r2T = r2m+ r2η + r2r = 3 ·0.12. Therefore the error in the half-time

is about 17% or 0.3 s.
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