

Chapter 1: Real Numbers and Functions Part B: Real Functions and Graphs

Table of Contents

Review of Basic Concepts

Real Functions and Graphs

A function f from a set X to a set Y is a rule that associates exactly one element of Y to each element of X. The element of Y associated to $x \in X$ is denoted by f(x).

A **function** f from a set X to a set Y is a rule that associates exactly one element of Y to each element of X. The element of Y associated to $x \in X$ is denoted by f(x).

In the above definition, X is called the **domain** of f and Y is called the **codomain** of f. The notation $f: X \to Y$ is used as shorthand for "f is a function with domain X and codomain Y", and is read as "f is a function from X to Y".

A **function** f from a set X to a set Y is a rule that associates exactly one element of Y to each element of X. The element of Y associated to $x \in X$ is denoted by f(x).

In the above definition, X is called the **domain** of f and Y is called the **codomain** of f. The notation $f: X \to Y$ is used as shorthand for "f is a function with domain X and codomain Y", and is read as "f is a function from X to Y".

The subset of Y consisting of the values actually taken by the function is called its **image** or **range**.

A **function** f from a set X to a set Y is a rule that associates exactly one element of Y to each element of X. The element of Y associated to $x \in X$ is denoted by f(x).

In the above definition, X is called the **domain** of f and Y is called the **codomain** of f. The notation $f: X \to Y$ is used as shorthand for "f is a function with domain X and codomain Y", and is read as "f is a function from X to Y".

The subset of Y consisting of the values actually taken by the function is called its **image** or **range**.

Consider $f: X \to Y$. Let $a \in X$ and $b \in Y$ such that f(a) = b. Then b is called the **image** of the point a under f, while a is called the **pre-image** of b under f.

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1. The domain and codomain are both \mathbb{R} .

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1.

The domain and codomain are both \mathbb{R} .

The image of f is also \mathbb{R} , since any $y \in \mathbb{R}$ has pre-image x =

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1.

The domain and codomain are both \mathbb{R} .

The image of f is also \mathbb{R} , since any $y \in \mathbb{R}$ has pre-image $x = \frac{y-1}{2}$.

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1.

The domain and codomain are both \mathbb{R} .

The image of f is also \mathbb{R} , since any $y \in \mathbb{R}$ has pre-image $x = \frac{y-1}{2}$.

Consider $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$.

The domain and codomain are both \mathbb{R} .

The image of g is

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1.

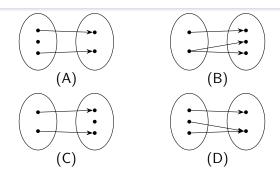
The domain and codomain are both \mathbb{R} .

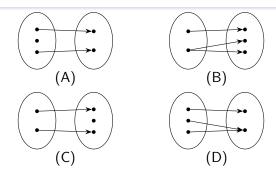
The image of f is also \mathbb{R} , since any $y \in \mathbb{R}$ has pre-image $x = \frac{y-1}{2}$.

Consider $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$.

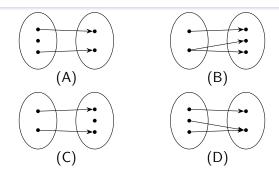
The domain and codomain are both \mathbb{R} .

The image of g is $[0, \infty)$.

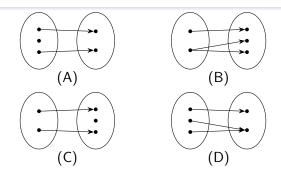




(A) does not represent a function because there is a point in the domain that has no image.



- (A) does not represent a function because there is a point in the domain that has no image.
- (B) does not represent a function, since there is a point in the domain that has two images.



- (A) does not represent a function because there is a point in the domain that has no image.
- (B) does not represent a function, since there is a point in the domain that has two images.
- (C) and (D) represent functions, since it is permitted for points in the *codomain* of a function to have no pre-image as well as to have multiple pre-images.

 $f: X \to Y$ is called **one-one** or **injective** if distinct points in X have distinct images in Y: If $a, b \in X$ and $a \neq b$ then $f(a) \neq f(b)$.

 $f: X \to Y$ is called **one-one** or **injective** if distinct points in X have distinct images in Y: If $a, b \in X$ and $a \neq b$ then $f(a) \neq f(b)$.

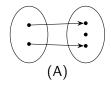
Task

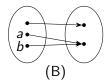
Show that $f: X \to Y$ is one-one if and only if f(a) = f(b) implies a = b.

 $f: X \to Y$ is called **one-one** or **injective** if distinct points in X have distinct images in Y: If $a, b \in X$ and $a \neq b$ then $f(a) \neq f(b)$.

Task

Show that $f: X \to Y$ is one-one if and only if f(a) = f(b) implies a = b.

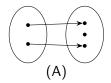


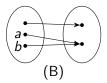


 $f: X \to Y$ is called **one-one** or **injective** if distinct points in X have distinct images in Y: If $a, b \in X$ and $a \neq b$ then $f(a) \neq f(b)$.

Task

Show that $f: X \to Y$ is one-one if and only if f(a) = f(b) implies a = b.



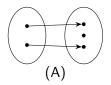


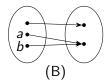
The function in (A) is one-one because distinct points in the domain are taken to distinct points in the codomain.

 $f: X \to Y$ is called **one-one** or **injective** if distinct points in X have distinct images in Y: If $a, b \in X$ and $a \neq b$ then $f(a) \neq f(b)$.

Task

Show that $f: X \to Y$ is one-one if and only if f(a) = f(b) implies a = b.



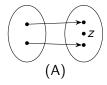


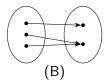
The function in (A) is one-one because distinct points in the domain are taken to distinct points in the codomain.

The function in (B) is not one-one because the points a and b are taken to the same value.

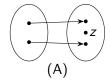
 $f: X \to Y$ is called **onto** or **surjective** if its image is all of Y, that is, for each $b \in Y$ there exists $a \in X$ such that f(a) = b.

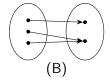
 $f: X \to Y$ is called **onto** or **surjective** if its image is all of Y, that is, for each $b \in Y$ there exists $a \in X$ such that f(a) = b.





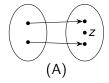
 $f: X \to Y$ is called **onto** or **surjective** if its image is all of Y, that is, for each $b \in Y$ there exists $a \in X$ such that f(a) = b.

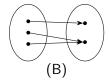




The function in (A) is not onto because the point z in the codomain has no pre-image.

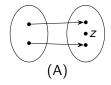
 $f: X \to Y$ is called **onto** or **surjective** if its image is all of Y, that is, for each $b \in Y$ there exists $a \in X$ such that f(a) = b.

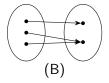




The function in (A) is not onto because the point z in the codomain has no pre-image. The function in (B) is onto.

 $f: X \to Y$ is called **onto** or **surjective** if its image is all of Y, that is, for each $b \in Y$ there exists $a \in X$ such that f(a) = b.





The function in (A) is not onto because the point z in the codomain has no pre-image. The function in (B) is onto.

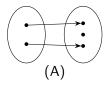
Task

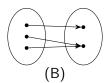
Find out whether the functions $f, h: \mathbb{R} \to \mathbb{R}$ are one-one or onto. If a function is not onto, give its image.

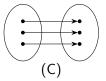
(a)
$$f(x) = \frac{1}{2}(x + |x|)$$
. (b) $h(x) = \begin{cases} x^2 + x + 1 & \text{if } x \ge 0, \\ x + 1 & \text{if } x < 0. \end{cases}$

 $f: X \to Y$ is called a **one-one correspondence** or **bijection** if it is both one-one and onto.

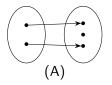
 $f: X \to Y$ is called a **one-one correspondence** or **bijection** if it is both one-one and onto.

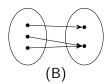


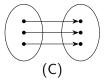




 $f: X \to Y$ is called a **one-one correspondence** or **bijection** if it is both one-one and onto.

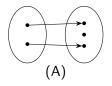


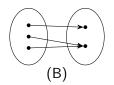


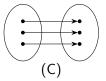


The function in (A) is one-one but not onto.

 $f: X \to Y$ is called a **one-one correspondence** or **bijection** if it is both one-one and onto.



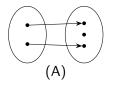


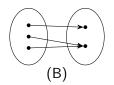


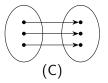
The function in (A) is one-one but not onto.

The function in (B) is onto but not one-one.

 $f: X \to Y$ is called a **one-one correspondence** or **bijection** if it is both one-one and onto.







The function in (A) is one-one but not onto.

The function in (B) is onto but not one-one.

The function in (C) is both one-one and onto, hence it is a bijection.

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Theorem

Let $f: X \to Y$. Then f has an inverse function $g: Y \to X$ if and only if f is a bijection.

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Theorem

Let $f: X \to Y$. Then f has an inverse function $g: Y \to X$ if and only if f is a bijection.

Suppose f has an inverse function $g: Y \to X$.

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Theorem

Let $f: X \to Y$. Then f has an inverse function $g: Y \to X$ if and only if f is a bijection.

Suppose f has an inverse function $g: Y \to X$. f is onto: For every $b \in Y$, taking a = g(b) gives f(a) = b.

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Theorem

Let $f: X \to Y$. Then f has an inverse function $g: Y \to X$ if and only if f is a bijection.

Suppose f has an inverse function $g: Y \to X$.

f is onto: For every $b \in Y$, taking a = g(b) gives f(a) = b.

f is 1-1: Let f(a) = f(a') = b. Then a = g(b) = a', hence a = a'.

Inverse Functions

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Theorem

Let $f: X \to Y$. Then f has an inverse function $g: Y \to X$ if and only if f is a bijection.

Suppose f has an inverse function $g: Y \to X$.

f is onto: For every $b \in Y$, taking a = g(b) gives f(a) = b.

f is 1-1: Let f(a) = f(a') = b. Then a = g(b) = a', hence a = a'.

Suppose f is a bijection.

Inverse Functions

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Theorem

Let $f: X \to Y$. Then f has an inverse function $g: Y \to X$ if and only if f is a bijection.

Suppose f has an inverse function $g: Y \to X$.

f is onto: For every $b \in Y$, taking a = g(b) gives f(a) = b.

f is 1-1: Let f(a) = f(a') = b. Then a = g(b) = a', hence a = a'.

Suppose f is a bijection.

For each $b \in Y$ there is exactly one $a \in X$ such that f(a) = b.

Inverse Functions

Suppose $f: X \to Y$ and $g: Y \to X$. (Their domain and codomain are switched)

We say g is the **inverse function** of f if $g(b) = a \iff f(a) = b$, and write $g = f^{-1}$. Note that $f = g^{-1}$.

Theorem

Let $f: X \to Y$. Then f has an inverse function $g: Y \to X$ if and only if f is a bijection.

Suppose f has an inverse function $g: Y \to X$.

f is onto: For every $b \in Y$, taking a = g(b) gives f(a) = b.

$$f$$
 is 1-1: Let $f(a) = f(a') = b$. Then $a = g(b) = a'$, hence $a = a'$.

Suppose f is a bijection.

For each $b \in Y$ there is exactly one $a \in X$ such that f(a) = b.

We set
$$g(b) = a$$
.

To find the inverse of a function, we solve for the pre-image of a point in the codomain.

To find the inverse of a function, we solve for the pre-image of a point in the codomain.

Example 1: $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1. Then

$$f(x) = y \iff 2x + 1 = y \iff x =$$

To find the inverse of a function, we solve for the pre-image of a point in the codomain.

Example 1: $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1. Then

$$f(x) = y \iff 2x + 1 = y \iff x = \frac{y-1}{2}.$$

To find the inverse of a function, we solve for the pre-image of a point in the codomain.

Example 1: $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1. Then

$$f(x) = y \iff 2x + 1 = y \iff x = \frac{y-1}{2}.$$

So the inverse function is given by $g(y) = \frac{y-1}{2}$.

To find the inverse of a function, we solve for the pre-image of a point in the codomain.

Example 1: $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1. Then

$$f(x) = y \iff 2x + 1 = y \iff x = \frac{y-1}{2}.$$

So the inverse function is given by $g(y) = \frac{y-1}{2}$.

Example 2: $f: \mathbb{R}^+ \to \mathbb{R}^+$ defined by $f(x) = x^2$. Then

$$f(x) = y \iff x^2 = y \iff$$

To find the inverse of a function, we solve for the pre-image of a point in the codomain.

Example 1: $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1. Then

$$f(x) = y \iff 2x + 1 = y \iff x = \frac{y-1}{2}.$$

So the inverse function is given by $g(y) = \frac{y-1}{2}$.

Example 2: $f: \mathbb{R}^+ \to \mathbb{R}^+$ defined by $f(x) = x^2$. Then

$$f(x) = y \iff x^2 = y \iff x = \sqrt{y}.$$

To find the inverse of a function, we solve for the pre-image of a point in the codomain.

Example 1: $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1. Then

$$f(x) = y \iff 2x + 1 = y \iff x = \frac{y-1}{2}.$$

So the inverse function is given by $g(y) = \frac{y-1}{2}$.

Example 2: $f: \mathbb{R}^+ \to \mathbb{R}^+$ defined by $f(x) = x^2$. Then

$$f(x) = y \iff x^2 = y \iff x = \sqrt{y}.$$

So the inverse function is given by $g(y) = \sqrt{y}$.

Let $f: X \to Y$ and $g: Y \to Z$.

Let $f: X \to Y$ and $g: Y \to Z$.

Their **composition** $g \circ f : X \to Z$ is defined by

$$g \circ f(x) = g(f(x)),$$
 for every $x \in X$.

Let $f: X \to Y$ and $g: Y \to Z$.

Their **composition** $g \circ f : X \to Z$ is defined by

$$g \circ f(x) = g(f(x)),$$
 for every $x \in X$.

Example: Consider $f: \mathbb{R} \to [0, \infty)$, $f(x) = x^2$ and $g: [0, \infty) \to \mathbb{R}$,

$$g(x) = \sqrt{x}$$
.

Then
$$g \circ f(x) =$$

Let $f: X \to Y$ and $g: Y \to Z$.

Their **composition** $g \circ f : X \to Z$ is defined by

$$g \circ f(x) = g(f(x)),$$
 for every $x \in X$.

Example: Consider $f: \mathbb{R} \to [0, \infty)$, $f(x) = x^2$ and $g: [0, \infty) \to \mathbb{R}$, $g(x) = \sqrt{x}$.

Then
$$g \circ f(x) = g(x^2) =$$

Let $f: X \to Y$ and $g: Y \to Z$.

Their **composition** $g \circ f : X \to Z$ is defined by

$$g \circ f(x) = g(f(x)),$$
 for every $x \in X$.

Example: Consider $f: \mathbb{R} \to [0, \infty)$, $f(x) = x^2$ and $g: [0, \infty) \to \mathbb{R}$, $g(x) = \sqrt{x}$.

Then
$$g \circ f(x) = g(x^2) = \sqrt{x^2} = |x|$$
.

Let $f: X \to Y$ and $g: Y \to Z$.

Their **composition** $g \circ f : X \to Z$ is defined by

$$g \circ f(x) = g(f(x)),$$
 for every $x \in X$.

Example: Consider $f: \mathbb{R} \to [0, \infty)$, $f(x) = x^2$ and $g: [0, \infty) \to \mathbb{R}$, $g(x) = \sqrt{x}$.

Then $g \circ f(x) = g(x^2) = \sqrt{x^2} = |x|$.

Task

Show that composition of functions is associative: If $f: W \to X$, $g: X \to Y$ and $h: Y \to Z$ then $h \circ (g \circ f) = (h \circ g) \circ f$.

Identity Functions

For every set A there is an **identity function** $1_A : A \to A$ which maps every element to itself: $1_A(a) = a$ for every $a \in A$.

Identity Functions

For every set A there is an **identity function** $1_A : A \to A$ which maps every element to itself: $1_A(a) = a$ for every $a \in A$.

Task

Show that if $f: A \to B$ then $f \circ 1_A = f = 1_B \circ f$.

Identity Functions

For every set A there is an **identity function** $1_A : A \to A$ which maps every element to itself: $1_A(a) = a$ for every $a \in A$.

Task

Show that if $f: A \to B$ then $f \circ 1_A = f = 1_B \circ f$.

Task

Let $f: X \to Y$ and $g: Y \to X$. Show that g is the inverse function of f if and only if $g \circ f = 1_X$ and $f \circ g = 1_Y$.

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Since f and g are bijections their inverses f^{-1} and g^{-1} exist.

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

$$(f^{-1}\circ g^{-1})\circ (g\circ f) =$$

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$

= $f^{-1} \circ 1_Y \circ f =$

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$

= $f^{-1} \circ 1_Y \circ f = f^{-1} \circ f = f^{-1} \circ f$

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$

= $f^{-1} \circ 1_Y \circ f = f^{-1} \circ f = 1_X$,

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$

$$= f^{-1} \circ 1_{Y} \circ f = f^{-1} \circ f = 1_{X},$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1}$$

$$= g \circ 1_{X} \circ g^{-1} = g \circ g^{-1} = 1_{Y}. \quad \Box$$

Table of Contents

Review of Basic Concepts

Real Functions and Graphs

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be \mathbb{R} and its domain to be all the real numbers for which the formula makes sense.

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be $\mathbb R$ and its domain to be all the real numbers for which the formula makes sense.

Example 1: Consider the real function described by

$$f(x) = \sqrt{1 - x^2}.$$

For f(x) to be defined, we need

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be $\mathbb R$ and its domain to be all the real numbers for which the formula makes sense.

Example 1: Consider the real function described by

$$f(x) = \sqrt{1 - x^2}.$$

For f(x) to be defined, we need $1 - x^2 \ge 0$, i.e.

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be $\mathbb R$ and its domain to be all the real numbers for which the formula makes sense.

Example 1: Consider the real function described by

$$f(x) = \sqrt{1 - x^2}.$$

For f(x) to be defined, we need $1 - x^2 \ge 0$, i.e. $|x| \le 1$.

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be $\mathbb R$ and its domain to be all the real numbers for which the formula makes sense.

Example 1: Consider the real function described by

$$f(x) = \sqrt{1 - x^2}.$$

For f(x) to be defined, we need $1 - x^2 \ge 0$, i.e. $|x| \le 1$.

So we take the domain to be [-1,1].

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be $\mathbb R$ and its domain to be all the real numbers for which the formula makes sense.

Example 1: Consider the real function described by

$$f(x) = \sqrt{1 - x^2}.$$

For f(x) to be defined, we need $1 - x^2 \ge 0$, i.e. $|x| \le 1$.

So we take the domain to be [-1,1].

Example 2: Consider $g(x) = \frac{1}{x}$.

For g(x) to be defined, we need

Real Functions and their Domains

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be $\mathbb R$ and its domain to be all the real numbers for which the formula makes sense.

Example 1: Consider the real function described by

$$f(x) = \sqrt{1 - x^2}.$$

For f(x) to be defined, we need $1 - x^2 \ge 0$, i.e. $|x| \le 1$.

So we take the domain to be [-1,1].

Example 2: Consider $g(x) = \frac{1}{x}$.

For g(x) to be defined, we need $x \neq 0$.

So we take the domain to be

Real Functions and their Domains

A **real function** is a function whose domain and codomain are subsets of \mathbb{R} .

A real function is often described only by its formula. In this case, we take its codomain to be $\mathbb R$ and its domain to be all the real numbers for which the formula makes sense.

Example 1: Consider the real function described by $f(x) = \sqrt{1 - x^2}$

$$f(x) = \sqrt{1 - x^2}.$$

For f(x) to be defined, we need $1 - x^2 \ge 0$, i.e. $|x| \le 1$.

So we take the domain to be [-1,1].

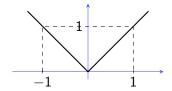
Example 2: Consider $g(x) = \frac{1}{x}$.

For g(x) to be defined, we need $x \neq 0$.

So we take the domain to be \mathbb{R}^* , the set of non-zero reals.

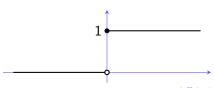
Absolute Value and Unit Step Functions

The absolute value |x| defines a real function called the **absolute** value or **modulus function**. Its domain is \mathbb{R} and its graph is:



The **Heaviside** or **unit step function** is defined by

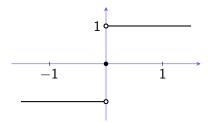
$$H(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 0. \end{cases}$$



Signum Function

The **sign** or **signum function** is defined by

$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } 0 < x. \end{cases}$$

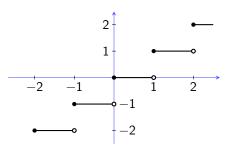


Greatest Integer Function

Recall that for every real number x there is a unique integer [x] such that $[x] \le x < [x] + 1$.

The function which associates [x] to x is called the **greatest** integer function.

Sometimes it is called the **floor function** and is denoted by $\lfloor x \rfloor$.



Vertical Shifts

Given a real function f and a real number c, we define a function called f+c by

$$(f+c)(x)=f(x)+c.$$

Vertical Shifts

Given a real function f and a real number c, we define a function called f+c by

$$(f+c)(x)=f(x)+c.$$

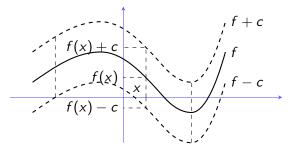
Adding a constant to a function *shifts* its graph vertically. For example, adding 2 will shift the graph up by 2 units and adding -2 will shift it down by 2 units.

Vertical Shifts

Given a real function f and a real number c, we define a function called f+c by

$$(f+c)(x)=f(x)+c.$$

Adding a constant to a function *shifts* its graph vertically. For example, adding 2 will shift the graph up by 2 units and adding -2 will shift it down by 2 units.



We can multiply a function f by a constant c to create a function cf:

$$cf(x) = c \cdot f(x).$$

We can multiply a function f by a constant c to create a function cf:

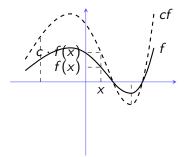
$$cf(x) = c \cdot f(x).$$

This scales the graph vertically. For example, multiplying by 2 will scale the graph vertically by a factor of 2, while multiplying by -2 will further reflect it in the x-axis. The figures below show the graphs of $\pm cf$ when c is positive.

We can multiply a function f by a constant c to create a function cf:

$$cf(x) = c \cdot f(x).$$

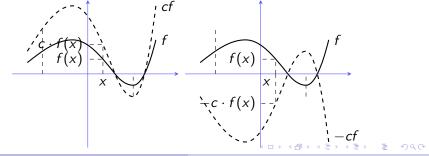
This scales the graph vertically. For example, multiplying by 2 will scale the graph vertically by a factor of 2, while multiplying by -2 will further reflect it in the x-axis. The figures below show the graphs of $\pm cf$ when c is positive.



We can multiply a function f by a constant c to create a function cf:

$$cf(x) = c \cdot f(x).$$

This scales the graph vertically. For example, multiplying by 2 will scale the graph vertically by a factor of 2, while multiplying by -2 will further reflect it in the x-axis. The figures below show the graphs of $\pm cf$ when c is positive.



Consider the function g(x) = f(x + c) with c > 0.

Consider the function g(x) = f(x + c) with c > 0. We have f(x) = f((x - c) + c) = g(x - c).

Consider the function g(x) = f(x + c) with c > 0.

We have
$$f(x) = f((x - c) + c) = g(x - c)$$
.

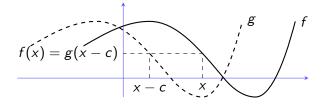
That is, the value taken by f at x is taken by g at x - c.

Consider the function g(x) = f(x + c) with c > 0.

We have
$$f(x) = f((x - c) + c) = g(x - c)$$
.

That is, the value taken by f at x is taken by g at x - c.

Thus, the graph of g is a horizontal shift to the left of the graph of f.

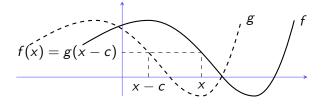


Consider the function g(x) = f(x + c) with c > 0.

We have
$$f(x) = f((x - c) + c) = g(x - c)$$
.

That is, the value taken by f at x is taken by g at x-c.

Thus, the graph of g is a horizontal shift to the left of the graph of f.



Task

Describe the graph of g(x) = f(x + c) when c < 0.

Consider h(x) = f(cx) with c > 0.

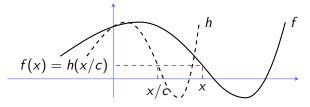
Consider h(x) = f(cx) with c > 0.

Reasoning as before (try!) we conclude that the value taken by f at x is taken by h at x/c.

Consider h(x) = f(cx) with c > 0.

Reasoning as before (try!) we conclude that the value taken by f at x is taken by h at x/c.

So the graph is scaled horizontally by a factor of 1/c.

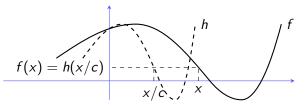


Note that the graph will contract if c > 1 and will stretch if c < 1.

Consider h(x) = f(cx) with c > 0.

Reasoning as before (try!) we conclude that the value taken by f at x is taken by h at x/c.

So the graph is scaled horizontally by a factor of 1/c.



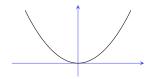
Note that the graph will contract if c > 1 and will stretch if c < 1.

Task

Describe the graph of h(x) = f(cx) when c < 0.

Exercise

Recall that the graph of $f(x) = x^2$ is an upward opening parabola.



Use your understanding of shifts and scalings to plot the graphs of the following on the same *xy*-plane.

$$(x) = (x-2)^2 + 1.$$

2
$$h(x) = 4x^2 + 12x + 5$$
.

Arithmetic of Functions

Let f, g be real functions. We use them to define new functions:

$$(f+g)(x) = f(x) + g(x),$$
 $(f-g)(x) = f(x) - g(x),$
 $(fg)(x) = f(x)g(x),$ $\frac{f}{g}(x) = \frac{f(x)}{g(x)}.$

Task

Let f, g be real functions with domains A, B respectively. Describe the domains of the following functions: f + g, f - g, fg, f/g.

Graph of Inverse Function

Suppose I, J are subsets of \mathbb{R} and $f: I \to J$ is a bijection. It has an inverse function $f^{-1}: J \to I$.

Graph of Inverse Function

Suppose I, J are subsets of \mathbb{R} and $f: I \to J$ is a bijection. It has an inverse function $f^{-1}: J \to I$.

$$(x,y)$$
 is in the graph of $f\iff y=f(x)$ $\iff x=f^{-1}(y)$ $\iff (y,x)$ is in the graph of f^{-1} .

Graph of Inverse Function

Suppose I, J are subsets of \mathbb{R} and $f: I \to J$ is a bijection. It has an inverse function $f^{-1}: J \to I$.

$$(x,y)$$
 is in the graph of $f\iff y=f(x)$ $\iff x=f^{-1}(y)$ $\iff (y,x)$ is in the graph of f^{-1} .

Now (y, x) is the reflection of (x, y) in the line y = x.

Therefore the graph of f^{-1} can be obtained by reflecting the graph of f in the line y = x.

