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Problem 6.1
(a) Write down the Hamiltonian for a particle of mass m in a one-dimensional harmonic 
oscillator potential in terms of momentum p̂x  and position x̂ .

(b) If one defines new operators

b̂
m
2
-------- 
 

1 2

x̂
ip̂x

m
--------+ 

 =

b̂
† m

2
-------- 
 

1 2

x̂
ip̂x

m
--------– 

 =

show that the Hamiltonian can be expressed as

Ĥ

2

------- b̂b̂
†

b̂
†
b̂+ =

(c) Derive the commutation relation b̂ b̂
†

   by writing out the differential form of 
b̂  and b̂

†
 and operating on a dummy wave function.

(d) Using your result from (c) show that the Hamiltonian is

Ĥ  b̂
†
b̂

1
2
---+ 

 =

Problem 6.2
(a) Find the expectation value of position and momentum for the first excited state for a 
particle of mass m in a one-dimensional harmonic oscillator potential.

(b) Find the value of the product in uncertainty in position x and momentum px
for the first excited state of a particle of mass m in a one-dimensional harmonic oscilla-
tor potential.

Problem 6.3

Often an operator Â  is time-independent but the corresponding numerical value of the 

observable A has a spread in values A about an average value A t    and varies with 

time because the system is described by a wave function  x t   which is not an eigen-

state. The change in A t    in time interval t is the slope 
td

d
A t    multiplied by t. 

Hence, the exact time t at which the numerical value of the observable A passes through 
a specific value will actually have a spread in values t such that

t A
td

d A =

(a) Use the generalized uncertainty relation A B 1
2
---  Â B̂    for time indepen-

dent operators Â  and B̂  to show that Et

2
--- .

(b) Show that the spread in photon number n  and phase   for light of frequency 
 is

n 1
2
---

and that for a Poisson distribution of such photons
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 1

2 n 
----------------

(c) Apply the results in (b) and determine n  and   for a 100 ps pulse of  = 
1500 nm wavelength light from a 10 W source.

Problem 6.4
A particle of charge e, mass m, and momentum p oscillates in a one-dimensional har-

monic potential V x  m0
2x2 2=  and is subject to an oscillating electric field 

E t cos . 
(a) Write down the Hamiltonian of the system.

(b) Find 
td

d x  .

(c) Find 
td

d p   and show that 
td

d p 
xd

d V x  –= . Under what conditions is the 

quantum mechanical result m
t2

2

d

d x 
xd

d V x  –=  the same Newton’s second law in 

which force on a particle is F m
t2

2

d

d x
 

xd
d V x –= = ?

(d) Find 
td

d H  .

(e) Use your results in (b) and (c) to find the time dependence of the expectation 

value of position x  t  . What happens to the maximum value of x   as a function of 

time when 0 =  and when  is close in value to 0 ?

Problem 6.5
Express the total ground state energy of a one dimensional harmonic oscillator as the 
sum of potential and kinetic energy terms involving displacement x  and momentum 
px . Assume the minimum uncertainty relation xpx  2=  and find the ground 
state energy of the system.

Problem 6.6
(a) What is the minimum energy E0 stored in a resonant LC circuit?

(b) Find an expression for the value of capacitance C if the charging energy associ-
ated with the coulomb blockade for the capacitor is the same as E0.

(c) If the inductor has value L 10 8–  H= , what is the resonant oscillation frequency 
of the circuit and what is the value of the capacitance C?

(d) If the current in the circuit can be measured to an accuracy of one electron per 
oscillation, how accurately can the voltage of the circuit be determined?

Problem 6.7
An electron is confined by a one-dimensional harmonic potential created by a uniform 
static positive charge distribution.

(a) What is the value of the mean electric-field dipole moment of the elastically 

bound electron when it is in eigenstate n  ?
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(b) What is the value of the mean electric-field dipole moment in the presence of a 
uniform static electric field E in the x direction?

(c) What is the static electric susceptibility and permittivity of the system?
(d) Estimate the frequency dependent electric susceptibility of the system.

Problem 6.8
For the one dimensional harmonic oscillator we have

b̂
m
2
-------- 
 

1 2

x̂
ip̂x

m
--------+ 

 =

(a) Show that n b̂
†

m  m b̂ n *=  and b̂
†
n b̂

†
n   n b̂b̂

†
n  = .

(b) Is b̂
†

 a Hermitian operator?

(c) Is n̂ b̂
†
b̂=  a Hermitian operator?

Problem 6.9
(a) Numerically evaluate and plot the time evolution of expectation value of position 

x t   , probability  x t  2 , and current density J x t  , for a superposition of the 

ground-state, 0 , and first excited state, 1 , of an electron confined to motion in a 

one-dimensional rectangular potential well of width L and infinite potential elsewhere. 
The superposition state is

 1

N 1+
----------------- n

n 0=

N

=

where N 1= . Repeat the calculation but now for a superposition state in which 

N 9=  and explain the differences in the results of the two calculations.
You may find it convenient to use the movie function in MATLAB.

(b) Numerically evaluate the time evolution of x t    and  x t  2  for a superpo-
sition of the ground-state and first excited state of the harmonic oscillator as illustrated 
in Fig. 6.6.

(c) Numerically evaluate the time evolution of x t    and  x t  2  for N 18=  

and N 2=  in Example 6.4 in which the superposition state is

 1

2N
--------------- n

n N – N=

n N N+=

=

(d) The coherent quantum superposition that best describes the classical harmonic 
oscillator is 

 a n n e
int–

n 0=



=

where a n
ne

 2
–

2
------------

n!
----------------= , n  n

1
2
---+ 

 = , and   is a positive integer. Numerically eval-

uate the time evolution of x t    and  x t  2  for  1= ,  2=  and  9= . 

Comment on anything you learn.
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Problem 6.10

Pure exponential decay e t –  starting from a constant value at time t 0=  is forbidden 
in a closed unitary system evolving due to a Hermitian time-independent Hamiltonian 

Ĥ . 

(a) The probability amplitude that an initial sate    is observed in state    at time 

t is a t   Û t   = , where Û t   is the unitary time evolution operator. Analyti-

cally show that the probability of measuring and observing state    is symmetric in 
time.

(b) Show analytically that any measurable state of the system cannot evolve as a 

simple exponential, e t–  , for either short times ( t « ) or long times ( t » ), thereby 
proving that exponential decay is incompatible with unitary evolution.

(c) Show numerically that the initial change in expectation value of position for the 

closed unitary system described in Problem 6.9(a) with N 2»  does not evolve as a sim-
ple exponential.

Problem 6.11

(a) Consider the wave function in problem 6.9(a) with N 4= . Calculate numerically 

the real part of   as a function of time at position x0 L= 5  and find the value of the 

revival time (the minimum time it takes for the wave function to return to its original 
state). Show that peaks in the FFT spectrum are energy eigenvalues of the system. 

Show that this result generalizes to states of an arbitrary potential, V x  , so long as x0  

is not an eigenfunction node.

(b) Demonstrate how to use the information in (a) to find the eigenfunctions n . 

Show that the numerical approach generalizes and so may be used to find the eigen-

states of an arbitrary potential, V x  .

(c) Consider the wave function in problem 6.9(d) with  2= . Calculate numeri-

cally the real part of   as a function of time at position x0 0= . Show that peaks in the 

FFT spectrum are energy eigenvalues of the system.
Comment on anything you learn.

Problem 6.12
Find the eigenenergies, eigenfunctions, and degeneracy of an isotropic two-dimen-
sional harmonic oscillator by separation into Cartesian coordinates.

Problem 6.13

The canonical coherent state of Problem 6.9(d) is found by considering eigenstates    

of the harmonic oscillator operator b̂  such that

b̂     = (1)
where

  an n 
n 0=



= (2)
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andan  are coefficients of the known harmonic oscillator states n  .

(a) Substitute (2) into (1), keep the sum from n 0= , multiply from the left by 

state m   and show that 

  a0
n

n!
--------- n 

n 0=



=

(b) Use the normalization condition     1=  to find a0  and show that

  e  2
2– n

n!
--------- n 

n 0=



=

(c) Show that the probability Pn n    2=  that state n   occurs in    is a Poisson 

distribution 

Pn
e n– nn

n!
------------=

where average n  b̂
†
b̂    2= = .

(d) What is the average energy in coherent state    and what is its classical turning 
point?

Problem 6.14
Numerical methods exist to solve dynamics of a classical particle of mass m with posi-

tion x and momentum p described by Hamiltonian of the form H T p  V x += . For 

the simple harmonic oscillator with spring constant   the kinetic energy T p2 2m=  

and potential energy V m2x2 2= , where angular frequency   m= .

(a) Defining canonical relations  
xd

dH
–

td
dp

=  and 
pd

dH
td

dx
= , show that

x· 
td

dx=

· 2x–=

and that the analytic solution for position is x t  x 0  t   0    t sin+cos= .
(b) A phase-space plot of p as a function of x is an ellipse whose area is constant 

because energy is conserved. Rewrite equations for x·  and ·  in (a) using discretization 

of space and time where dx x=  and dt t= , such that xn nx=  and tn nt= , 

to obtain a set of equations for xn 1+  and n 1+  in terms of xn , n , t , and  . Write the 

set of linear equations in matrix form zn 1+ Azn= , such that zn Azn 1– Anz0= = .

(c) Numerical stability implies that the phase-space vector norm zn  remains 

bounded for all n. For any consistent matrix norm

 A  maxi i  An 1 n

n 
lim= =

wherei  are the eigenvalues of A. The spectral radius theorem states that given a 

matrix A over the complex numbers, the iterations zn Anz0=  are bounded if 

 A  1 . Show under Euler discretization in part (b), energy is not conserved by 
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explicitly demonstrating that  A  1 . Thus the phase-space area is not conserved 
over time.

(d) In addition to the utility of the Baker-Campbell-Hausdorff formula in quantum 
mechanics (see Problem 5.14(b)), the identity can be exploited to integrate Hamiltoni-

ans of the form H T p  V x += . By constructing explicit and time-reversible sym-
plectic integrators of higher order, it is possible to suppress numerical error stemming 
from the energy non-conserving discretization of sets of coupled equations. If 

eÂ B̂+ e
1
2
--- Â B̂ –

eÂeB̂=  is true, show that e2Â B̂+ eÂeB̂eÂ= . 

(e) For Hamiltonians of the form H T p  V x + p= 2 2m V x += , show that 

e
t

td
d

et P X+ = , where P  
xd

dV
–

pd
d

=  and X
pd

dT
xd

d
= .

(f) Since Â Â B̂   0  in general, show that to order O t2  , the symmetric 

symplectic integrator can be written as U t t t et P X+  O t2 += , where 

U t t t etP 2 etXetP 2 
t t

= . What does this result indicate about the energy con-
serving properties of a symplectic integrator?
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