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Problem 7.1
(a) Write a computer program to calculate the chemical potential for » non-interacting
electrons per unit volume at temperature, 7.

(b) Calculate the value of the chemical potential for the case when electrons of

effective mass m = 0.07 x m, and carrier density n = 1.5 x 10" cm™ are at tem-
perature 7 = 300 K

(c) Repeat (b), only now for the case when electrons have effective electron mass
m’ = 0.50 x m,.

(d) Plot the Fermi-Dirac distribution function for the situations described by (b) and
().

(e) Repeat (b), (c), and (d), only now for the case when temperature 7 = 77 K.

Your answer should include a print out of your computer program and plots.

Problem 7.2
() Show that e(—b,ﬁ:—l - 1- e(“_EVITI
(b) A semiconductor consists of a valance band with electron energy dispersion
relation Eygy = E(K) and a conduction band with electron energy dispersion relation
such that £y = E,— E(k), where E, is a constant such that the conduction band and
valence band are separated by an energy band gap, E, . Show that when particle num-
ber is conserved, the chemical potential is in the middle of the band gap with value
w = E,/2 and is independent of temperature.

Problem 7.3
(a) Calculate the average energy of electrons in a three-dimensional gas of electrons.

Show that in the low temperature limit (F;,(7 — 0 K)) = gEF and in the high tem-

perature limit (E;p(7T — o0 K)) = %kBT.
(b) Calculate the average energy of electrons in a two-dimensional gas of electrons.

Show that in the low temperature limit (E,,(7 — 0 K)) = %EF and in the high tem-

perature limit (E,,(T — o K)) = kgT .

Problem 7.4
The anti-symmetric wave function that describes two identical indistinguishable non-
interacting particles is given by the Slater determinant

L () wi(xs)
ﬁ Wa(x1) Walx,)

where rows label the single-particle state and columns label the particle. Position coor-

Ya(xy, X)) =

dinate for particle 1 is x, and for particle 2 it is x, .




(a) Plot w,(x,, x,) for the case when v, is the single-particle ground state of a one-

dimensional rectangular potential well with infinite barrier energy and vy, is the first

excited state. Comment on the value of |y,(x,, x,)|> when x, = x,.
(b) Repeat the calculation in (a) but now for the case when vy, is the single-particle
first excited state and y, is the second excited state. Comment on your results.

(c) Repeat the calculations in (a) and (b) for symmetric wave functions y,(x,, x,) .
Comment on your results.

Problem 7.5
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(a) Consider the conduction band minimum potential profile shown in the Fig. It con-
sists of two GaAs contact layers and an AlGaAs potential energy barrier region. The
contacts have the same n-type impurity concentration and the AlGaAs is intrinsic. The

current due to a single electron in state |k) with energy E, is
hk
Jo = LT (E)),

where k, = (J2m(E, - V(x)))/h is the component of k perpendicular to the layer
interface and 7(E,) is the transmission coefficient. The total current flowing left-to-
right involves all electron states in the left contact and so requires integrations over

both k, and k|, where ky = /J2mE /% is the component of k parallel to the contact-
barrier interface, and E, = E, + E;. If the probability of an electron mass m and

charge e occupying state |k) is given by the Fermi function f{ E,, 1), the current due to
the left contact is
hkldkL k.
If( ko “)
(2n)’

where p is the chemical potential in the contact. Total current is the difference between

Jo = @J.T(EL)

the left contact and the right contact current. A positive bias voltage, V., , lowers the

chemical potential energy of the right hand contact by eV, , and the total current is

hk, azkL

= eJT(EL) I(f(Eka n) —fE, n— eVblaS))(dz )

Starting from this expression, use the one and two-dimensional densities of states to
convert the integrals to energy and evaluate the integration over & to show that
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P (W—E)/kgT
g = grkel fT(El)ln( Ite T]dEL
T 0 1+

253 e(p—EL—eme)/kB

(b) Use MATLAB to calculate current density through the potential barrier. Use an
effective electron mass m = 0.07 xm, and an initial voltage bias range of
0 < Viis < 0.3 V. The code developed for Problem 4.3 may be used to calculate the
transmission probability, 7(£,) . As in the Fig., assume that the potential change due to
Viias appears linearly with position across the barrier. Plot the calculated current den-
sity using both linear and log scales. Explain the dependence of current density on volt-
age bias that you observe when impurity concentration has value n = 10" cm™ and
n = 10" cm™ and when temperature has value 7 = 300 K and T = 4.2 K . Explain

what you observe when you extend the voltage bias range to 0 < Vs <2.3 V.

Problem 7.6
The minimum value of chemical potential ., at finite absolute temperature 7 may be

found by assuming a particle distribution function that is obtained in the 7 — oo limit.
(a) Show that in this case a three-dimensional electron gas of fixed density 75, has
minimum chemical potential

o @( 2nh2)5
Mmm(T) kBTln( 2 mokBT

where m, is the electron mass.

(b) Find the expression for p,,;,(7) of a two-dimensional electron gas.

(c) Find the expression for u,,;,(7) of a one-dimensional electron gas.

(d) Plot the exact p and minimum p;, from part (a), (b), and (c), for normalized
chemical potential pu/Er as a function of normalized thermal energy kz7/Er, where

Ey is the Fermi energy. Explain the differences you observe.

Problem 7.7

Three particles in a one-dimensional harmonic oscillator potential obey the Pauli exclu-
sion principle. Assuming that any two microscopically distinguishable arrangements of
the system with the same total energy are equally likely (the ergodic theorem), plot the
probability of occupation as a function of energy for (a) the lowest energy state of the

system, (b) when the total energy is E,, = 13.5 x hm, and (c) when total energy is
Eoa = 48.5 x ho . (d) Repeat (a) - (c) for the case when there are five particles. Com-
ment on anything you learn.

Problem 7.8
The Hubbard model is used to describe systems in terms of interacting particles on a
lattice. For a one-dimensional (1D) lattice with only two sites, the Hamiltonian for elec-

trons of spin 6 = T or { is




H= -t Z (2312,0231, ot Ejl, 022,6) + Uz;li, T;li,l«
(i), o i
where ¢ is the nearest neighbor hopping matrix element, U is the additional energy asso-

ciated with two electrons of opposite spin occupying the same lattice site, i, the electron
creation and annihilation operators are ¢’ and ¢ respectively, and 7 is the electron
number operator.

(a) If there are a total of two electrons in the system (N = 2 ), write down all possi-
ble states in the Fock particle number basis.

(b) Using the Fock basis and H , calculate all matrix elements and derive expression
for the eigenenergies in terms of the coupling strengths U and ¢ by finding the eigenval-
ues for the matrix. Plot the eigenenergies as a function of the ratio U/t.

(c) Repeat (a) and (b) for the same one-dimensional lattice with two sites, but now

for the cases when N = 1, 3,4 and comment on what you learn.
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