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Problem 3.1

(a) Using the method outlined in Exercise 3.7 as a starting point, calculate numerically the first five
energy eigenvalues and eigenfunctions for an electron with effective mass m, = 0.07 x m, con-
fined to the asymmetric potential well sketched in the following figure and bounded by barriers of
infinite energy at x < 0 nm and x > 50 nm. The value of the step change in potential energy in the
figure is V, = 0.2 eV.
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Your solution should include plots of the eigenfunctions y,(x) and |\y,,(x)|2 along with a listing of
the computer program you used to calculate the eigenfunctions and eigenvalues.

(b) Explain the change in shape of each wave function with increasing eigenenergy.
(c) If an eigenenergy coincides with the value of V., what is the shape of the eigenfunction?

Problem 3.2

(a) Use a Taylor expansion to show that the second derivative of a wave function y(x) sampled at
positions x; = jh,, where j is an integer and 4, is a small fixed increment in position x, may be
approximated as
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(b) By keeping additional terms to order hy in the expansion, show that a more accurate approx-

imation of the second derivative is
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Problem 3.3
(a) Using the method outlined in Exercise 3.7 as a starting point, calculate numerically the first four

energy eigenvalues and eigenfunctions for an electron with effective mass m, = 0.07 x m, con-
fined to a potential V(x) = 0 of width L = 10 nm with periodic boundary conditions. Periodic bound-
ary conditions require that the wave function at position x = 0 is connected (wrapped around) to
position x = L. The eigenfunction and its first derivative are continuous and smooth at this connec-
tion.

Your solution should include plots of the eigenfunctions and a listing of the computer program
you used to calculate the eigenfunctions and eigenvalues.

(b) Explain the change in shape of each eigenfunction with increasing eigenenergy.




Problem 3.4

(a) Using the method outlined in Exercise 3.7 as a starting point, calculate numerically the first six
energy eigenvalues and eigenfunctions for an electron with effective mass m, = 0.07 x m, con-
fined to a triangular potential well of width L =20 nm bounded by barriers of infinite energy at x <
0 and x > L. The triangular potential well as a function of position x is given by V(x) = Vy xx /L
where V,= 1 eV.

Your solution should include plots of the eigenfunctions and a listing of the computer program
you used to calculate the eigenfunctions and eigenvalues.
(b) Explain the change in shape of each eigenfunction with increasing eigenenergy.

Problem 3.5

Calculate the transmission and reflection flux coefficient for an electron of energy E, moving from
left to right, impinging normal to the plane of a semiconductor heterojunction potential barrier of
energy V,, where the effective electron mass on the left-hand side is m, and the effective electron
mass on the right-hand side is m, .

If the potential barrier energy is ¥, = 1.5 eV and the ratio of effective electron mass on either
side of the heterointerface is m,/m, = 3, at what particle energy is the transmission flux coefficient
unity? What is the transmission flux coefficient in the limit that particle energy £ — o ?

Problem 3.6

A particle mass m is confined to motion in one-dimension. The potential energy is V(x) = 0 for
0<x <L and V(x) = o elsewhere. Find the eigenenergies and normalized eigenfunctions y(x, )
for the system.

You may find it helpful to make use of the relationship
2sin(x)sin(y) = cos(x—y)—cos(x+y).

Problem 3.7

Using the method outlined in Exercise 3.7 as a starting point, calculate numerically the first six
energy eigenvalues and eigenfunctions for an electron with effective mass m, = 0.07 x m, con-
fined to the double potential well sketched in the following figure and bounded by barriers of

infinite energy for x < 0 nm and x > 100 nm.
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Your solution should include plots of the wave functions, wave functions squared, and a listing
of the computer program you used for your calculations. Explain the shape of the ground state and
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first excited state wave functions. Explain the change in shape of each higher excited state wave
functions with increasing eigenenergy.

Problem 3.8

(a) A particle mass m; moves in the one-dimensional double barrier potential of energy
Vo = 0.2 eV sketched in the following figure and is bounded by barriers of infinite energy for
x<0 nm and x> 100 nm . The ground state, first, and second excited state eigenenergies of the
particle are E, = 0.063 eV, E, = 0.098 eV, and E; = V;, = 0.200 eV respectively. Sketch
and explain the shapes of the corresponding eigenfunctions.

V— o V— o
_ A
>
2
=
<
>
20
g
S Vp=02 [
.8
=
=]
3
&
0.0 I N N N B >

0 10 20 30 40 50 60 70 80 90 100
Position, x (nm)

(b) A particle mass m, moves in the symmetric one-dimensional double barrier potential of
energy ¥V, = 0.2 eV sketched in the following figure and is bounded by barriers of infinite energy
for x <0 nm and x> 100 nm . The ground state, first, and second excited state eigenenergies of
the particle are £, = 0.06955 eV, E, = 0.06956 eV, and E; = V, = 0.200 eV respectively.
Sketch and explain the shapes of the corresponding eigenfunctions.
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(c) Explain the differences between your results in part (a) and (b).
Problem 3.9

(a) Find the eigenfunctions y,,(x, f) and energy eigenvalues £, for a particle mass m moving in

one-dimension and confined by the potential V(x) =0 for 0 <x <L and V(x) = o elsewhere.




(b) Repeat part (a) but now with constant complex potential V(x)=V,+iV,, where
V, =0eV and V,#0 eV for 0 <x <L and V(x) = o elsewhere. Explain your result.

(c) Attime ¢t = 0 ps the particle in (b) is in the ground state. What is the probability of finding
the particle in the same state at time ¢+ = 1 ps if V, = —0.001 eV .

Problem 3.10
Six atoms are arranged symmetrically on the circumference of a ring of radius 0.15 nm.

(a) Using periodic boundary conditions, determine the wave vectors and eigenenergies for free
electrons confined to the ring. If each atom contributes a single free electron to the ring, calculate
the sum of the ground-state energies of these electrons.

(b) Repeat part (a) but with the atoms arranged in a linear chain, assuming an infinite potential
outside of the chain.

(c) Obtain an estimate for the free-electron contribution to the energy required to break the ring
of atoms into a linear chain.

Problem 3.11

An electron has wave function at time ¢ = 0 that is
1
Y(x,t=0) = j—i(wl(X)Jr\Vz(x))

where v, is ground-state and , is the first excited state of the particle in a one-dimensional
potential well of width L = 10 nm and infinite barrier energy.
(a) What is the average energy of the particle at time ¢t = 0?

(b) Find the state W (x, ¢) and average particle energy for time ¢ > 0. Compare the result with
the value obtained in (a).

Problem 3.12

Adiabatic quantum computing assumes it is possible to evolve a system from an initial to final con-
figuration (potential) while remaining in the ground state. The adiabatic theorem guarantees this is
possible if the system evolves slowly enough. The shortest evolution time between initial configu-
ration, 4, and final configuration, B, is normally achieved when the difference in energy, A,

between the ground and first excited state is maximized over the complete path. Efficient adiabatic
quantum computing is enabled by finding the optimal path. In this problem we wish to show that

paths exist with different minimum energy gap, A, -

Consider a system that consists of a particle mass m = 0.07 x m, confined to motion in one
dimension in a potential whose initial configuration is Vy(x) = 0 for 0 <x <L = 25 nm and is
infinite elsewhere and the final configuration is a potential consisting of two Gaussian peaks such

(x-x)/oy) (x-xp)/ 3y

that V(x) = Vy+ Ve + Vs5e where 0<V,<035¢eV and 0<V,<0.35¢eV.
(a) Plot the energy gap A as a function of V; and V, for the case when 6, = 6, = 2.5 nm,
x; = 0.3xL,and x, = 0.7 x L. Explain the features of the A landscape. Show that an optimal
path exists from initial configuration A(V,=V,=0) to any final configuration
B(V,=20,V,20).
(b) Repeat (a) only now for the case when o, = 4.5 nm and o, = 1.5 nm. Explain the change

in the features of the A landscape.
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Problem 3.13
One may numerically integrate the Schrodinger equation in real-space and real-time using the
finite-difference time-domain (FDTD) method. To illustrate this, consider the motion of an elec-
tron, mass m, , moving in the x-direction such that
. 2
Q) = (grSm ) uie )
(a) Rewrite the wave function in terms of real and imaginary components so that

\'j(xs ZL) = \VRc(xa t) + i\lllm(xa t)
and show that one obtains two coupled equations
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(b) Assuming time steps increment by ¢, and space steps increment by /%, find the simplest
finite-difference expression for the time and spatial derivatives appearing in (a).
(c) The j-th position in space is x; = j x h, where j is an integer. The real part of the wave func-

tion increments in time as ¢, = n x t, where n is an integer and the imaginary part of the wave
function increments in time in half-integer steps. Show that this gives two equations

hit,
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(d) An electron is confined to a region of space 0 <x <100 nm in which V(x) = 0. Consider
an initial wave function that is a sinusoid modulated by a Gaussian such that it has the form

“((x-x0)/0,)
Wre(X) = e cos(2m((x —x9)/Ao))
and

~((x=xp)/0)
Yin(x) = e sin(2n((x —x9)/ X))

with x, = 10 nm, A, = 5nm, and o, = 5 nm. Integrate the Schrodinger equation to find the

subsequent electron motion using the FDTD method with 7, = 0.01 fs and %4, = 0.1 nm. Plot

Wre(X), Win(x), and |\V(x)|2 at time ¢ = 400 fs and explain your results. What happens if you

change electron wavelength to A, = 10 nm ? Explain what happens if you swap the sine and cosine
in the definition of the initial wave function.

Problem 3.14

Symplectic finite-difference time-domain (SFDTD) integration can be more accurate than the
FDTD(2,2) method described in Problem 3.13. For SFDTD(3,4) the explicit equation for the real
part of the wave function in one dimension is




fo
\Vke(xj» byvom) = \URe(xja Lovoo 1),m) + % V(xj)\l’lm(xj» Lysoom)

hit, 4
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2mohg |3
hit 1
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where j, n, £, and m are integers, (n + ¢, m) denotes the ¢-th time stage after n time steps, and m is
the total number of ‘time stages’. j and »n have the same meaning as in Problem 3.13. We choose
m = 3 so there are three time stages and 1 < ¢ < 3. The coupled set of equations is integrated in
three (m = 3) stages per time step. The set of numbers ¢, weight the symplectic numerical inte-
gration of the real part of the wave function. The corresponding set of weights for the imaginary
component of the wave function is d, and d, = ¢,,_,+, . SFDTD(3,4) yields ¢; = 0.26833010, ¢, =
-0.18799162, and c; = 0.91966152.

(a) Write down the corresponding equation for the imaginary component of the wave function.

(b) Modify the FDTD code in Problem 3.13 to incorporate the higher-order integrator. Introduce
the higher-order accuracy in time by embedding a time stage loop within the time integration loop.
Your code structure should resemble the following:

for t=1:tsteps

for time_stage=1:3

for x=1:xsteps

[code for real component]

end

for x=1:xsteps

[code for imaginary component]

end

end

end
Run the code and verify that for short times the same results are achieved as with the conventional
FDTD(2,2) scheme. Take care to properly modify the various spatial loop limits for the higher-
order method, and run your code to propagate the Gaussian wave packet up to time ¢ = 400 fs.

(c) Integrate the probability distribution in space to calculate the total probability for time ¢,,

xsteps
P(t,) = W@l = % (Wiel¥n £,) + Win(x5,1,)
j=1

Using P(¢1) as the normalization for the probability distribution over the lattice, calculate the rela-
tive probability error, Ep and error accumulation, S(Ep), as functions of time,

(1) = 10log|P(h) —P(t,)
E (tn) og P(tl)

i=1

Do this for FDTD(2,2) and SFDTD(3,4) up to time ¢ = 2000 fs and demonstrate the dramatic

difference in conservation of total probability. Repeat for larger space and time increments and

demonstrate that the SFDTD(3,4) method remains more accurate than the FDTD(2,2) method for
coarser space-time grids.
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Problem 3.15

The finite difference approximation used to obtain the second spatial derivative in the Schrodinger
equation in Problem 3.13 does not use all the information available in the uniformly-sampled real-
space wave function. An alternative approach, called the split-operator method, does this by

exploiting the properties of Fourier transforms. To see how this works, consider a particle mass m,
constrained to motion in the x-direction and moving in real potential /(x) such that

0 _(dh d i
Zween = (g 1w

The wave function and potential are discretized uniformly so that the j-th position in space is
x; = jx h, where j is an integer and 4, is a constant spatial increment. The wave function incre-
ments in time as ¢, = n x t, where n is an integer and ¢, is a constant time step.

(a) Show that the time derivative in the Schrodinger equation may be approximated to second
order as
W(xja Lo+ 1) _ W(xja i 1)

(b) Show that the second spatial derivative of the real-space wave function in the Schrédinger
equation can be obtained by taking the inverse Fourier transform of the wave function in k-space

0
EW(XP tn) =

multiplied by k.
(c) Describe the functional elements of a numerical algorithm that increments the solution of the
Schrodinger equation from wave function y(z,) to y(¢,.,) . Comment on what you learn.
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