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Problem 6.1
(a) Write down the Hamiltonian for a particle of mass m in a one-dimensional harmonic
oscillator potential in terms of momentum p, and position x .

(b) If one defines new operators
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show that the Hamiltonian can be expressed as
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_ (c) Derive the commutation relation [Z), I;T] by writing out the differential form of
b and b and operating on a dummy wave function.
(d) Using your result from (c) show that the Hamiltonian is

I:I = hm(l;Ti;+3

Problem 6.2
(a) Find the expectation value of position and momentum for the first excited state for a
particle of mass m in a one-dimensional harmonic oscillator potential.

(b) Find the value of the product in uncertainty in position Ax and momentum Ap,
for the first excited state of a particle of mass m in a one-dimensional harmonic oscilla-
tor potential.

Problem 6.3

Often an operator A is time-independent but the corresponding numerical value of the
observable 4 has a spread in values A4 about an average value (A4(¢)) and varies with

time because the system is described by a wave function y(x, ) which is not an eigen-
state. The change in {A4(¢)) in time interval A¢ is the slope %(A(t)) multiplied by At.

Hence, the exact time ¢ at which the numerical value of the observable A passes through
a specific value will actually have a spread in values Az such that

d
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(a) Use the generalized uncertainty relation A4AB > % ([1:1, B 1| for time indepen-

dent operators A andB to show that AEA? > ; .

(b) Show that the spread in photon number An and phase A¢ for light of frequency
o is
AnAd > 1
2

and that for a Poisson distribution of such photons
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(c) Apply the results in (b) and determine An and A¢ for a 100 ps pulse of A =
1500 nm wavelength light from a 10 uW source.

Ap>

Problem 6.4
A particle of charge e, mass m, and momentum p oscillates in a one-dimensional har-

monic potential V(x) = mwyx’/2 and is subject to an oscillating electric field

|E|cos(m?) .
(a) Write down the Hamiltonian of the system.

(b) Find %(x) .

(c) Find %( p) and show that %( p) = —(di V(x)) . Under what conditions is the
x

2

quantum mechanical result miz(x) = —(di V(x)) the same Newton’s second law in
ds X
2
which force on a particle is F = md—f = - iV(x) ?
dr dx

(d) Find %<H> .

(e) Use your results in (b) and (c) to find the time dependence of the expectation
value of position (x)(¢). What happens to the maximum value of (x) as a function of

time when ®, = ® and wheno is close in value to ®, ?

Problem 6.5

Express the total ground state energy of a one dimensional harmonic oscillator as the
sum of potential and kinetic energy terms involving displacement Ax and momentum
Ap.. Assume the minimum uncertainty relation AxAp, = %/2 and find the ground
state energy of the system.

Problem 6.6
(a) What is the minimum energy E, stored in a resonant LC circuit?

(b) Find an expression for the value of capacitance C if the charging energy associ-
ated with the coulomb blockade for the capacitor is the same as E|,.

(¢) If the inductor has value L = 10"° H, what is the resonant oscillation frequency
of the circuit and what is the value of the capacitance C?

(d) If the current in the circuit can be measured to an accuracy of one electron per
oscillation, how accurately can the voltage of the circuit be determined?

Problem 6.7
An electron is confined by a one-dimensional harmonic potential created by a uniform
static positive charge distribution.

(a) What is the value of the mean electric-field dipole moment of the elastically

bound electron when it is in eigenstate |¢,) ?
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(b) What is the value of the mean electric-field dipole moment in the presence of a
uniform static electric field E in the x direction?

(c) What is the static electric susceptibility and permittivity of the system?

(d) Estimate the frequency dependent electric susceptibility of the system.

Problem 6.8
For the one dimensional harmonic oscillator we have

A  (mo 1/2(’\ lﬁx
b= (E) i)
(2) Show that (1[5 m) = (m|b|n)" and (b nlp'n) = (nbb ).

(b) Is lA)T a Hermitian operator?

()Isn = b'b a Hermitian operator?

Problem 6.9
(a) Numerically evaluate and plot the time evolution of expectation value of position

(x(t)), probability |y (x, t)|2 , and current density J(x, ¢), for a superposition of the

ground-state, v, , and first excited state, y,, of an electron confined to motion in a

one-dimensional rectangular potential well of width L and infinite potential elsewhere.
The superposition state is

N
1
y=—73v,
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where N = 1. Repeat the calculation but now for a superposition state in which

N = 9 and explain the differences in the results of the two calculations.
You may find it convenient to use the movie function in MATLAB.

(b) Numerically evaluate the time evolution of {x(#)) and |y(x, t)|2 for a superpo-

sition of the ground-state and first excited state of the harmonic oscillator as illustrated
in Fig. 6.6.

(¢) Numerically evaluate the time evolution of (x(¢)) and |y(x, 7)|* for N = 18
and AN = 2 in Example 6.4 in which the superposition state is

n=N+AN
Ve— 3 W
2AN:1:N—AN

(d) The coherent quantum superposition that best describes the classical harmonic
oscillator is

©
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uate the time evolution of (x(¢)) and |y(x,#)|> for o =1, a =2 and o = 9.

1 . o .
where a, , = , ©, = u)(n + 5) ,and o is a positive integer. Numerically eval-

Comment on anything you learn.




Problem 6.10

Pure exponential decay et starting from a constant value at time ¢ = 0 is forbidden
in a closed unitary system evolving due to a Hermitian time-independent Hamiltonian

H.

(a) The probability amplitude that an initial sate |a) is observed in state |3) at time

tis a.p(t) = (B l}(t)|a), where l}(t) is the unitary time evolution operator. Analyti-

cally show that the probability of measuring and observing state |o) is symmetric in
time.

(b) Show analytically that any measurable state of the system cannot evolve as a
simple exponential, e ’", for either short times (¢« T) or long times (¢ » t), thereby

proving that exponential decay is incompatible with unitary evolution.
(c) Show numerically that the initial change in expectation value of position for the

closed unitary system described in Problem 6.9(a) with N » 2 does not evolve as a sim-
ple exponential.

Problem 6.11
(a) Consider the wave function in problem 6.9(a) with N = 4. Calculate numerically
the real part of y as a function of time at position x, = L/5 and find the value of the

revival time (the minimum time it takes for the wave function to return to its original
state). Show that peaks in the FFT spectrum are energy eigenvalues of the system.

Show that this result generalizes to states of an arbitrary potential, V(x), so long as x,
is not an eigenfunction node.

(b) Demonstrate how to use the information in (a) to find the eigenfunctions v, .
Show that the numerical approach generalizes and so may be used to find the eigen-
states of an arbitrary potential, V(x).

(¢) Consider the wave function in problem 6.9(d) with oo = 2. Calculate numeri-
cally the real part of v as a function of time at position x, = 0. Show that peaks in the

FFT spectrum are energy eigenvalues of the system.
Comment on anything you learn.

Problem 6.12
Find the eigenenergies, eigenfunctions, and degeneracy of an isotropic two-dimen-
sional harmonic oscillator by separation into Cartesian coordinates.

Problem 6.13
The canonical coherent state of Problem 6.9(d) is found by considering eigenstates |a)

of the harmonic oscillator operator » such that

bloy = oo (1)
where
oy = 3 a,ln) (2)

n=0
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anda, are coefficients of the known harmonic oscillator states |n) .
(a) Substitute (2) into (1), keep the sum from n = 0, multiply from the left by
state (m| and show that

an
ay =a —|n)
Onz=:0 A/;
(b) Use the normalization condition {aja) = 1 to find a, and show that
| —\a\ /2
VIZO A/—

(c) Show that the probability P, = |(n|o)|” that state |n) occurs in |ct) is a Poisson

distribution
e—ﬁ }7[”
P, =
n!

where average i1 = (oc|bTb|oc) = |al’.
(d) What is the average energy in coherent state |o) and what is its classical turning
point?

Problem 6.14
Numerical methods exist to solve dynamics of a classical particle of mass m with posi-

tion x and momentum p described by Hamiltonian of the form H = T(p) + V(x). For
the simple harmonic oscillator with spring constant k the kinetic energy 7 = pz/ 2m
and potential energy ¥ = mo’x’/2, where angular frequency o = /i/m .

. . . dH _ dp dAd _ dx
(a) Defining canonical relations o 4 and i dr’ show that

PR
T dt
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and that the analytic solution for position is x(z) = x(0)cos(w?) + (v(0)/®)sin(w?).
(b) A phase-space plot of p as a function of x is an ellipse whose area is constant

because energy is conserved. Rewrite equations for X and v in (a) using discretization
of space and time where dx = Ax and dt = At, such that x, = nAx and ¢, = nAt,
to obtain a set of equations for x,., and v, interms of x,, v,, At, and ® . Write the
set of linear equations in matrix form z,,, = Az,,suchthatz, = Az, ; = ...A"z,.

(c) Numerical stability implies that the phase-space vector norm |z,| remains
bounded for all #. For any consistent matrix norm

. nl||1/n
p(A) = max([i]) = lim |A"]
where); are the eigenvalues of A. The spectral radius theorem states that given a

matrix A over the complex numbers, the iterations z, = A"z, are bounded if

p(A)< 1. Show under Euler discretization in part (b), energy is not conserved by




explicitly demonstrating that p(A) > 1. Thus the phase-space area is not conserved
over time.

(d) In addition to the utility of the Baker-Campbell-Hausdorff formula in quantum
mechanics (see Problem 5.14(b)), the identity can be exploited to integrate Hamiltoni-
ans of the form H = T(p) + V(x). By constructing explicit and time-reversible sym-
plectic integrators of higher order, it is possible to suppress numerical error stemming
from the energy non-conserving discretization of sets of coupled equations. If

e
A+B SMABl G h 24+B A B A
e =e e e 1is true, show that e =eee .

(¢) For Hamiltonians of the form H = T(p)+ V(x) = p’/2m + V(x), show that

d
T (P+X) drvd d7d
= here P = — — & =>2°
e e , Where xd and X dpdr

(f) Since [1:1, [1:1, é]] #0 in general, show that to order O(Atz) , the symmetric
symplectic integrator can be written as U(A?)"* = """+ O(AF), where

U(At)t/At _ (eAtP/ZeAtXeAtP/Z)

serving properties of a symplectic integrator?

/%" What does this result indicate about the energy con-
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