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Problem 8.1
(a) Starting from the exact result (Eq. (8.18))

. d ~ io, t
ihgan(t) = ;an(fxmlW(x, Dime ™,

for which eigenstates |#) and eigenvalues #m, = E, are known prior to application of

perturbation W(x, t) at time ¢ > 0, we seek the time-dependent coefficients a,(¢) that
describe the time-dependent state

() = Ya, (e .

If a,(t) can be expressed as a power series in the perturbing potential then

W(x, 1) = AW(x, £)
and

a,(t) = a0+ 1a V() + 22 )+ 0 () +

where A is a dummy variable used to keep track of the order of terms in the power

series and is set to unity at the end of the calculation. Substitute into Eq. (8.18) and
evaluate zeroth-order, first-order, and k-th order terms.

(b) A particle initially in eigenstate |n) of the unperturbed Hamiltonian for all time
t <0 scatters into state |m) with probability |a,,,(t)|2 after the perturbation Wi

applied at time 7> 0. Show using first-order time-dependent perturbation theory that
the scattering amplitude is

() = 4 e g
a = — e
m ih J. mn
=0
where the matrix element W,,, = (m|W(x, t)|n) and #io®,, = E, —E, is the difference
in eigenenergies of the states |m) and |n) .

(c) A particle of mass m, is initially in the ground state of a one dimensional har-

monic oscillator. At time ¢ = 0 a perturbation W(x, t) = Vox3e7t/T is applied where ¥},
and t are constants. Using the result in part (b), calculate the probability of transition to
each excited state of the system in the long time limit, # — 0.

Problem 8.2
An electron is in the ground state of a one-dimensional rectangular potential well for

which V(x) = 0 in the range 0 <x <L and V(x) = o elsewhere. It is decided to

control the state of the electron by applying a pulse of electric field E(¢) = Eoe”z/TZ in
the x-direction starting at time ¢ = 0, where t is a constant and |E,| is the maximum
strength of the applied electric-field.

(a) Calculate the probability P,, that the particle will be found in the first excited

state in the long time limit, - o .




(b) If the electron is in a semiconductor and has an effective mass m = 0.07 x mg,
where m, is the bare electron mass, and the potential well is of width L = 10 nm, cal-

culate the value of |E | for which P, = 1.Comment on your result.

t'=ow

2
You may wish to make use of the standard integral _[ e“dx = % f—t .
a

t'=0

Problem 8.3
An electron is initially in the ground state of a one-dimensional rectangular potential

well for which V(x) = 0 in the range 0 <x<L and V(x) = oo elsewhere. The
ground state energy is £, and the first excited state energy is E, . At time ¢ = 0 the sys-

’* . Calculate analytically and then

tem is subject to a perturbation I;V(x, t) = V0x2e7’
use a computer program to plot the probability of finding the particle in the first excited
state as a function of time for # > 0. In your plot, normalize time to units of T and con-
sider the three values of ®,; = 1/2n, ®, =1, and ®, = 2w, where

hw, = E,—E,.Explain your result

Problem 8.4
4e’e’
hc34TCSO

the numerical value of the spontaneous emission lifetime of the 2p excited state of
atomic hydrogen. Use your results to estimate the spontaneous emission lifetime of the

Use the Einstein spontaneous emission coefficient 4 = |(j|r|k)|2 to estimate

2p transition of atomic He ™ ions. Describe the spontaneous emission spectral line-shape

you expect to observe. Do you expect the He™ ion 2p spontaneous emission line spec-
trum to have a larger or smaller full-width at half maximum compared to atomic hydro-
gen?

Problem 8.5

(a) A particle in a continuum system described by Hamiltonian 1:10 is prepared in

eigenstate |n) with eigenvalue £, = fiw, . Consider the effect of a perturbation turned

on at time ¢+ = 0 that is harmonic in time such that I;V(x, t) = V(x)cos(mwt), where

V(x) is the spatial part of the potential and ® is the frequency of oscillation. Start by

writing down the Schrodinger equation for the complete system including the perturba-

tion and then go on to show that the scattering rate in the static limit (@ — 0) is given

by Fermi’s golden rule 1_ 2775|W,,,,,|2D(E)8(E,,,—E,,), where the matrix element
Tﬂ

W.,. = (m|W(x,t)|n) couples state |n) to state |m) via the static potential V(x), the

density of final continuum states is D(E), and &(E,,— E,) ensures energy conserva-

tion.
(b) An electron of energy £ moving in the x-direction in the conduction band of a

. . * . . .
semiconductor has effective electron mass m = 0.07 x m, and is incident on two
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identical ionized impurities, one at position x = 0 nm and the other at x = 20 nm.
The semiconductor has low frequency relative permitivity €, = 13.2. Calculate the

elastic scattering rate 1/7,(E) and explain you results.

Problem 8.6
(a) In a uniform dielectric the dielectric function is a constant over space but depends

on wave vector so that ¢ = g(q). Given an impurity potential at position r due to a

2
—e

4ne,Jr—R}|’

(b) Use the expression for v(q) and Fermi's Golden rule to evaluate the total elastic
scattering rate for an electron of initial energy E(k) due to a single impurity in a dielec-
tric with dielectric function ¢ = g(q) . Describe any assumptions you have made. Out-
line how you might extend your calculations to include elastic scattering from 7 ionized
impurities in a substitutionally doped crystalline semiconductor.

(c) What differences in scattering rate do you expect in (b) for the case of randomly
positioned impurities and for the case of strongly correlated impurity positions?

charge e at position R, is v, (r—R;) = derive an expression for v(q) .

Problem 8.7

(a) Using the method outlined in Exercise 3.7 as a starting point, calculate numerically
the dipole matrix elements between the ground state and the first three excited states for
an electron with effective mass m, = 0.07 x m, confined to the asymmetric potential
well sketched in the following figure and bounded by barriers of infinite energy at x <0

nm and x > 50 nm. The value of the step change in potential energy in the figure is Vg,
=0.2eV.
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(b) Explain the difference in matrix elements you obtain.
(c) Calculate the spontaneous emission rate associated with each transition in a
medium with refractive index n, = 3.3.

Problem 8.8

An electron is initially in the ground state of a one dimensional harmonic oscillator
characterized by frequency ®,. At time ¢ = 0 a uniform electric field E is applied in the
x direction for time t. Calculate the probability of transition to the first excited state of
the oscillator and plot the result as a function of the electric field pulse duration t.




Problem 8.9
A lattice vibration at frequency ® that lasts for a time ¢ can result in an electron making

a transition from an initial state |y;) with eigenenergy E; to a final state |y, with
eigenenergy £, = E;+ 1o or E, = E,—hwo . The lattice vibration can be viewed as a
harmonic perturbation of the form

W(t') = Wy(be™ +b'e ™)

where W, is a constant. According to first-order time-dependent perturbation theory

and assuming that each scattering process is an independent parallel channel, the transi-
tion probability is

=t 2
1 ~ , iogt ,
P(1) = %52 [ WA (@)liye ™ dt
/ r=0 =t 2 =
_ z(w/l+w)td, J. z(w/‘ O))t
t'=0 =
where ho)ﬁ = (E—~E).
(a) Show that
4w, ~ in2((w; + ®)t/2 4W 2sin?((w,; — )t/2
PUy = S8yl SR 250y | )2,
h (0 + )t (00— ®)’t
(b) In the limit £ — o show that the transition rate is
1
- = —WO _E, +hm)+—Wol<wb | *8(E,— E,— ho)

and explain the physical meaning of the result.

You may wish to make wuse of the relations |e"x—1|2 = 4sin2(§) ,

. 2
5(x)= *1im S0 ang §(ax) = %S(x) so that 2h8(he) = 8@)

TTn > o nx | |

Problem 8.10
(a) A hydrogen atom excited in a 2p state is placed inside a cavity. At what temperature
of the cavity are the spontaneous and induced photon emission rates equal?

(b) An electron in a GaAs quantum dot is modeled as a particle of mass

m = 0.07 x m, embedded in a medium with refractive index n, = 3.3 and confined
by a potential that is infinite everywhere except for the region 0 <x <L, 0<y <L, and

0 <z < L, where the potential is zero. The value of L = 20 nm. The electron is in the
first excited state of the quantum dot. At what temperature are the spontaneous and
induced photon emission rates equal? Comment on any assumptions you have made.

Problem 8.11
A two-level atom described by Hamiltonian H, has eigenstates |1) and |2) with

energy separation fiw,, = E,—E,. The atom is initially in its ground state |1) and at
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time ¢>0 it is illuminated with an electric field E = Eyj(e” +e ) in the x-direc-

tion. The electric field oscillates at frequency o and has amplitude |E,| .

_ (a) Write down the Hamiltonian for time >0 in terms of H, and a perturbation
w.

(b) The solution at time ¢>0 is of the form [x, 7 = a,(f)e |1} + ax(t)e > |2)

where £, = hio, and E, = hm,. Substitute this into the time-dependent Schrodinger
equation and show that

L (d —io L (d —i,t _ —iot N —iwyt N
ih &al(t) e |I)+in aaz(t) e “2) = a(t)e W)+a(t)e ~W]2)

(©) If |E(| is small and ® = ®,,, show that the probability that the atom will be in

. . . (Wt A
state [2) at time ¢> 0 is |a,(¢)|* = smz( ;1 ) , where W, = |E¢|(2]x|1).

(d) How is your result in (c) modified if o is slightly detuned from ,, ?

Problem 8.12
A conduction band electron is initially in the lowest energy state of a GaAs quantum

well that has width L = 10 nm. The effective electron mass is m = 0.07 x mg,

where m, is the bare electron mass, and the ground-state energy eigenvalue is £, . An

2,2
electric field pulse E(f) = Eqe " " is applied in the x-direction across the quantum

well starting at time ¢ = 0, where T is a constant and |E,| = 1.17 x 10° Vm™' is the
maximum strength of the applied electric-field.

(a) Modeling the quantum well as a rectangular potential well for which V(x) = 0
in the range 0 <x <L and V(x) = o elsewhere, find the value of t that maximizes
the probability that the electron will be found in the first excited state in the long time
limit, t —> 0.

(b) The quantum well has an area 10 x 10 pmz and electron density 10” em ™.

Using the value of t calculated in (a) and assuming any electron in the first excited
state flows as current in an external circuit, how many electrons contribute to the cur-
rent?

(c) Is it possible to operate this particular device at room temperature?

t'=w
2
You may wish to make use of the standard integral j e dx = % T
t'=0 a
Problem 8.13
Consider a time-dependent Hamiltonian H(#) with state |y(¢)) evolving from time ¢,

that satisfies the Schrodinger equation

ih%\w(t» = H()y(1). ()




If at any given instant in time the eigenstates |¢,(¢)) and energy eigenvalues

E,(t) = ho,(t) are known then they can be used as a basis to expand the time-evolv-

ing wave function
(1)

-0,
(1) = Y a.(0)]9.(2))e 2
where 0,(1) = [ o,(')dt', so that %On(t) =0,(t) = o,(¢), and a,(¢) is the occu-
=1,

pation amplitude of the n-th state at time 7.

(a) Substitute (2) into (1) and show that
. —i0,(1) . . —i0,(1)
inye " (a,(0lg,(1)—i0.()a, (D)9, (1)) + a,(D)|0.(2))) = Y E,()a,(1),(1))e

(b) Multiply both sides of (a) by {¢,,(¢)| and show that

" S a (DDl

. -0
a,(t)e

(c) To find ((I)m(t)l(i)n(t)) differentiate H(#)|¢,(¢)) = E,(¢)|d,(¢)) with respect to
time and then show that

. 1 <¢m|H(t)|¢n> 10,
= _ + AN £ i SPA N £ 04

am(t) am<¢m|¢m> ngman Em _ E" e

where ®,,, = ®,,—®,.

Problem 8.14

An electron mass m free to move in one-dimension is incident from the left in state
v,(x) with momentum p . At low temperatures the electron can excite a localized Ein-
stein phonon at position x = 0 of energy #%w® and dispersion relation
®(q) = constant. The matrix element coupling initial electron state y;(x) to final
scattered electron state y/(x) is W, measured in Jm.

(a) Use first-order time-dependent perturbation theory to calculate the total electron
transmission probability for 0 < £ < 2.5 with no phonons initially in the system.

Comment on your result.
(b) The Hamiltonian of the system can be written

~ 2 ~ ~ ~ A
H = ;Lm + Wb +b)3(x) + hob b

where b' creates a phonon of energy 7im . The constant zero-point energy of the pho-
non is not included because it only contributes a 7@ /2 shift in energy.

The total wave function ¥ of the coupled electron-phonon system can be expanded
in the oscillator basis as

n=omw

oY) = 3 v

n=0
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For x #0 the wave function coefficients are superpositions of plane waves if E is

above threshold for the n-th phonon energy, then E > nhiw, k, = J2m(E —nho)/h,

and
—i knx

ik x
\Vn(x<0) = a,e ’ +bne

ik x

n

V,(x>0) = ¢c,e
If E<nho,then x, = /2m(nho—-E)/h,and
Ya(x<0) = be "

*K”X

v, (x>0) = ce

At low temperatures the phonon is initially in its ground state so that a, = 9, ,
(meaning a, = 1 and a,., = 0). Integrate the time-independent Schrodinger equa-
tion around x = 0 and show that continuity in y,(x) requires

an+bn = cn
and
h Wf’\/zcn 1 ZIYnC + Wf/\;l’l“" lcn+1 = _ZiYn6)1,0 (1)

where v, = k,0(E — nh(o) +ix,0(nho — E) and O is the heavyside step function.
(c) The total transmission coefficient as a function of incident electron energy E is

the sum over all propagating states in which k, remains real, so that

n=E/

"k, (E k(E)

) = Z ko (E

J(B)

The transmlssmn amplitudes can be determined from the matrix equation
Mc = a

where ¢' = |:Co . CN—1:| ,a = [*21% 0 .. 0] ,and M is a N x N tri-diagonal

matrix given by Eqn. (1) in part (b). Let N = 10 and write MATLAB code to invert
the matrix. Evaluate and plot T(E) for 0<E<25h0 when W, = 0.04 and
W, = 0.4 in units where 7 = = 1. Comment on your results and explain why
they differ from (a).

(d) If there is a delta function barrier of strength W, at position x = 0, the Hamil-

~ A2 ~ A AL A

tonian in (b) becomes H = % + (W, + W,:/(bT +b))d(x) + hob'b. Write down the
new matrix M. Evaluate and plot 7(£) for 0<E<25kw when W, =1 and
W, = 0.4 in units where 7 = 2m = 1. What happens if W, = —1? Explain your
results.




