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Problem 7.1
(a) Write a computer program to calculate the chemical potential for n non-interacting 
electrons per unit volume at temperature, T.

(b) Calculate the value of the chemical potential for the case when electrons of 

effective mass m* 0.07 m0=  and carrier density n 1.5 1018  cm 3–=  are at tem-

perature T 300 K=
(c) Repeat (b), only now for the case when electrons have effective electron mass 

m* 0.50 m0= .

(d) Plot the Fermi-Dirac distribution function for the situations described by (b) and 
(c).

(e) Repeat (b), (c), and (d), only now for the case when temperature T 77 K= .
Your answer should include a print out of your computer program and plots.

Problem 7.2
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(b) A semiconductor consists of a valance band with electron energy dispersion 

relation EVB E k =  and a conduction band with electron energy dispersion relation 

such that ECB E0 E k –= , where E0  is a constant such that the conduction band and 

valence band are separated by an energy band gap, Eg . Show that when particle num-

ber is conserved, the chemical potential is in the middle of the band gap with value 

 E0 2=  and is independent of temperature.

Problem 7.3
(a) Calculate the average energy of electrons in a three-dimensional gas of electrons. 

Show that in the low temperature limit E3D T 0 K   3
5
---EF=  and in the high tem-

perature limit E3D T  K   3
2
---kBT= .

(b) Calculate the average energy of electrons in a two-dimensional gas of electrons. 

Show that in the low temperature limit E2D T 0 K   1
2
---EF=  and in the high tem-

perature limit E2D T  K   kBT= .

Problem 7.4
The anti-symmetric wave function that describes two identical indistinguishable non-
interacting particles is given by the Slater determinant

a x1 x2  1

2
------- 1 x1  1 x2 

2 x1  2 x2 
=

where rows label the single-particle state and columns label the particle.  Position coor-

dinate for particle 1 is x1  and for particle 2 it is x2 .  
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(a) Plot a x1 x2   for the case when 1  is the single-particle ground state of a one-

dimensional rectangular potential well with infinite barrier energy and 2  is the first 

excited state. Comment on the value of a x1 x2  2  when x1 x2= .

(b) Repeat the calculation in (a) but now for the case when 1  is the single-particle 

first excited state and 2  is the second excited state. Comment on your results.

(c) Repeat the calculations in (a) and (b) for symmetric wave functions s x1 x2  . 

Comment on your results.

Problem 7.5
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(a) Consider the conduction band minimum potential profile shown in the Fig. It con-
sists of two GaAs contact layers and an AlGaAs potential energy barrier region. The 
contacts have the same n-type impurity concentration and the AlGaAs is intrinsic. The 

current due to a single electron in state k   with energy Ek  is

Je e
k

m
--------T E = ,

where k 2m E V x –   =  is the component of k  perpendicular to the layer 

interface and T E   is the transmission coefficient. The total current flowing left-to-

right involves all electron states in the left contact and so requires integrations over 

both k  and k || , where k || 2mE || =  is the component of k  parallel to the contact-

barrier interface, and Ek E E ||+= . If the probability of an electron mass m and 

charge e occupying state k   is given by the Fermi function f Ek   , the current due to 

the left contact is
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where   is the chemical potential in the contact. Total current is the difference between 

the left contact and the right contact current. A positive bias voltage, Vbias , lowers the 

chemical potential energy of the right hand contact by eVbias , and the total current is

J e T E 
k

m
--------
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2
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2d

2 2
-------------=

Starting from this expression, use the one and two-dimensional densities of states to 

convert the integrals to energy and evaluate the integration over k ||  to show that
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(b) Use MATLAB to calculate current density through the potential barrier.  Use an 

effective electron mass m 0.07 m0=  and an initial voltage bias range of 

0 Vbias 0.3 V  . The code developed for Problem 4.3 may be used to calculate the 

transmission probability, T E  . As in the Fig., assume that the potential change due to 

Vbias  appears linearly with position across the barrier. Plot the calculated current den-

sity using both linear and log scales. Explain the dependence of current density on volt-

age bias that you observe when impurity concentration has value n 1018 cm 3–=  and 

n 1016 cm 3–=  and when temperature has value T 300 K=  and T 4.2 K= . Explain 

what you observe when you extend the voltage bias range to 0 Vbias 2.3 V  .

Problem 7.6

The minimum value of chemical potential min  at finite absolute temperature T may be 

found by assuming a particle distribution function that is obtained in the T   limit.

(a) Show that in this case a three-dimensional electron gas of fixed density n3D  has 

minimum chemical potential

min T  kBT
n3D
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where m0  is the electron mass.

(b) Find the expression for min T   of a two-dimensional electron gas.

(c) Find the expression for min T   of a one-dimensional electron gas.

(d) Plot the exact   and minimum min  from part (a), (b), and (c), for normalized 

chemical potential  EF  as a function of normalized thermal energy kBT EF , where 

EF  is the Fermi energy. Explain the differences you observe.

Problem 7.7
Three particles in a one-dimensional harmonic oscillator potential obey the Pauli exclu-
sion principle. Assuming that any two microscopically distinguishable arrangements of 
the system with the same total energy are equally likely (the ergodic theorem), plot the 
probability of occupation as a function of energy for (a) the lowest energy state of the 

system, (b) when the total energy is Etotal 13.5 = , and (c) when total energy is 

Etotal 48.5 = . (d) Repeat (a) - (c) for the case when there are five particles. Com-

ment on anything you learn.

Problem 7.8
The Hubbard model is used to describe systems in terms of interacting particles on a 
lattice. For a one-dimensional (1D) lattice with only two sites, the Hamiltonian for elec-

trons of spin   or =  is
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Ĥ t ĉ†
2  ĉ1  ĉ†

1  ĉ2 +  U n̂i  n̂i 

i

+
i j  

–=

where t is the nearest neighbor hopping matrix element, U is the additional energy asso-
ciated with two electrons of opposite spin occupying the same lattice site, i, the electron 

creation and annihilation operators are ĉ†  and ĉ  respectively, and n̂  is the electron 
number operator.

(a) If there are a total of two electrons in the system (N 2= ), write down all possi-
ble states in the Fock particle number basis. 

(b) Using the Fock basis and Ĥ , calculate all matrix elements and derive expression 
for the eigenenergies in terms of the coupling strengths U and t by finding the eigenval-
ues for the matrix. Plot the eigenenergies as a function of the ratio U/t.

(c) Repeat (a) and (b) for the same one-dimensional lattice with two sites, but now 

for the cases when N 1 3 4 =  and comment on what you learn.
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