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Problem 2.1
(a) The Sun has a surface temperature of 5800 K and an average radius 6.96  108 m. Assuming the 

mean Sun-Mars distance is 2.28  1011 m, what is the total radiative power per unit area incident on 

the upper Mars atmosphere facing the Sun?

(b) If the surface temperature of the Sun was 6800 K, by how much would the total radiative 

power per unit area incident on Mars increase?

Problem 2.2

(a) A positron has charge +e and the same mass m0 as a bare electron. The energy of a particle with 

rest mass m0 moving at velocity  with momentum p m0=  is E = m0c2 where c is the speed of 

light and 2 c2 c2 2– = . Why can a single high-energy photon not decay into an electron and a 

positron?

(b) Experiments show that two colliding real photons 1  and 2  can create particles that have 

mass (D. L. Burke et al. Phys. Rev. Lett. 79, 1626 (1997)). Describe the conditions in which these 

photons decay into a positron and an electron.

Problem 2.3

Consider a lithium atom (Li) with two electrons missing.

(a) Draw an energy level diagram for the Li++ ion.

(b) Derive the expression for the energy (in eV) and wavelength (in nm) of emitted light from 

transitions between energy levels.

(c) Calculate the three longest wavelengths (in nm) for transitions terminating at n 2= .

(d) If the lithium ion were embedded in a dielectric with relative permittivity r = 10, what 

would be the expression for the energy (in eV) and wavelength (in nm) of emitted light from transi-

tions between energy levels.

Problem 2.4

A particle mass m moving in a real potential is described by wave function  x t  .

(a) Write down the expression for the average value of the particle position x   and then make 

use of the Schrödinger equation to show that the average value of momentum is

p  m
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(b) Evaluate the integral in part (a) and show that 
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so that one may identify the momentum operator as

p̂ i
x


–=

Problem 2.5

Create a simple model of a heterostructure diode that predicts current increases exponentially with 

increasing forward voltage bias. Explain the assumptions you make to develop the model. Under 
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what conditions will this predicted behavior fail?  By how much is voltage bias across an ideal 

diode increased to change current by a factor of 10 at room temperature (T = 300 K)? Does this rep-

resent a fundamental limit to power dissipation in electronic switching devices operating at room 

temperature?

Problem 2.6

Write down the Hamiltonian operator for (a) a one-dimensional simple harmonic oscillator, (b) a 

helium atom, (c) a hydrogen molecule, (d) a molecule with nn nuclei and ne electrons.

Problem 2.7

Calculate the classical velocity of the electron in the n-th orbit of a Li++ ion. If this electron is 

described as a wave packet and its position is known to an accuracy of x = 1 pm, calculate the 

characteristic time x for the width of the wave packet to double. Compare x with the time to 

complete one classical orbit. Should the electron be described as a particle or a wave?

Problem 2.8

What is the Bohr radius for an electron with effective electron mass m* 0.021 m0=  in a medium 

with low-frequency relative permittivity r0 14.55=  corresponding to the conduction band prop-

erties of single crystal InAs? What is the effective Rydberg energy for an electron describing a 

hydrogenic orbit in the medium?

Problem 2.9

Because electromagnetic radiation possesses momentum it can exert a force. If completely 

absorbed by matter, the absorbed electromagnetic radiation energy per unit time per unit area is a 

pressure called radiation pressure. 

(a) If the maximum radiative power per unit area incident on the upper Earth atmosphere facing 

the Sun is 5.5 kW m-2, what is the corresponding radiation pressure?

(b) Estimate the photon flux needed to create the pressure in (a).

(c) Compare the result in (a) with the pressure due to one atmosphere.

(d) Assuming Poisson statistics applies to part (b), what is the fluctuation in pressure per unit 

time?

Problem 2.10

(a) As described in Chapter 2, Alice can transmit information to Bob via a quantum communication 
channel that uses single photons and nonorthogonal polarization states. Explain Bob’s choice of test 
basis in Fig. 2.8.

(b) In the absence of a single photon source, optical quantum key distribution (QKD) uses light 
from an attenuated laser.  In a particular system the mean photon number per pulse is 0.1 and the 
probability of single photon emission is 0.09. The link operates with a clock rate of 1.25 GHz (bit 
time  = 800 ps), average optical loss in the link is -10 dB, and time jitter in the photodetector 
requires two bit-time intervals be used for photon detection. What is the maximum sustained data 
rate for guaranteed secure QKD in the system?

(c) No light can pass between two linear polarizers if their respective polarizations are oriented 

at 90o to each other.  If a third linear polarizer oriented at a 45o angle is placed between the two lin-
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ear polarizers, what is the maximum fraction of incident light intensity that can pass through the 

system?

Problem 2.11

A particle mass m moving in a real potential is described by wave function  x t   and 

Schrödinger’s equation.  Show that

td
d  x t  2 xd

–



 0=

so that if the wave function  x t   is normalized it remains so for all time.

Problem 2.12

Fixed positive charge is uniformly distributed in the volume of a sphere radius R with charge den-

sity  e 1.5 1028  m 3–= .

(a) Calculate the force on an electron initially placed at the surface of the sphere.
(b) Assuming the electron in (a) is free to move in the volume of the sphere, what is the poten-

tial seen by the electron and what is its subsequent motion?
(c) What energy and wavelength of photons do you anticipate being absorbed by the system?

Problem 2.13

Identical spherical atoms of unit density are arranged in space so that the nearest neighbor atoms 

just touch.  Show that such a close-packed arrangement results in density (or “packing fraction”) for 

the indicated cubic lattices:

Structure Density

Diamond 3

16
------ 0.34=

Simple cubic (SC)

6
--- 0.52=

Body-center cubic (BCC) 3

8
--- 0.68=

Face-center cubic (FCC) 2

6
--- 0.74=

Problem 2.14

The intensity of two co-propagating electromagnetic waves with identical frequency f0, polariza-

tion, and wavelength 0 depends on their phase difference.

(a) Write a MATLAB program that reproduces Fig. 2.2 using two waves of frequency 

f0 200 THz= . Plot the normalized electric field intensity versus phase delay. Consider phase 

delays up to 40 .

(b) Modify your code from part (a) so that each wave consists of two equal amplitude compo-

nent waves, one with frequency f1 220 THz=  and the other with frequency f2 180 THz= .   Plot 

the normalized field intensity versus phase delay. Consider phase delays up to 80 .

(c) Modify your code from part (b) so that the component wave amplitude has a Gaussian distri-

bution as a function of frequency. The Gaussian distribution has a standard deviation of 20 THz  
4



about the center frequency, f0 200 THz= . Plot the normalized field intensity versus phase delay 

for up to 80  when each wave consists of 3, 4, 5, and 10 component frequencies evenly spaced 

between 3  standard deviations. What is the field intensity at a delay length of 80  when 10 com-

ponent frequencies are included in the calculation?  Explain the reason for this value.

Include a printout of your final code from part (c) as well as the generated plots with your 
assignment.

Problem 2.15

The wave function at time t 0=  for an electron localized as a Gaussian wave packet in one-

dimension centered at x x0=  and having spatial width x  and momentum k0  is

 x t 0=  Ae
ik0x

e
x x0– 2 4x

2 –
= .

(a) Find the wave function normalization constant A and show that x  x0=  and 

x2  x  2– x= .

(b) Take the Fourier transform of  x t 0=   to determine  k t 0=  . Making the substitu-

tion k 2x  1–= , compare your result to that of part (a). Explain the significance of 

kx 1 2= .

Hint: You may use Cauchy's integral theorem, which states that f z dz 0=  where z is a com-

plex variable and f z   has no poles within the closed integration loop.

(c) Find  x t 0=   and  k t 0=   in the limit x 0  and describe how the electron wave 
packet evolves with time. If we were to measure the electron's location with absolute certainty at 
time t = 0, where can we expect to locate the electron at any subsequent time? Explain your result.

Problem 2.16

Optical quantum key distribution (QKD) protocol may be viewed as a sensor capable of detecting 
eavesdropping on an optic link. Alice and Bob use the B92 protocol and measure error rate to detect 
the presence of Eve, an eavesdropper, in an otherwise lossless optical QKD link. 

(a) What is the average error rate generated by eavesdropping? 
(b) What can Alice and Bob infer about the methods used by Eve?

Problem 2.17

The normalized first-order time-independent correlation function of a classical electric field E t   is

g 1    E* t E t +  
E* t E t  

--------------------------------------= , where the brackets    indicate an integral over all time, t.

(a) Show that g 1    g 1  – *= , g 1    1 , and that light of single frequency 0  has 

g 1    e
i0–

= .
(b) The probability there are n photons in a single radiation mode of a cavity with frequency  is 

given by Boltzmann’s law

P n  e
En kBT–

e
En kBT–

n 0=

-------------------------=
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where the quantized energy of a photon is En n 1 2+ = . Show that P n   may be written as 

P n  1 e–
 kBT–

 e
n–  kBT

=  and that the mean photon number is n 1 e
 kBT

1– = . Show 

that P n  1
n 1+
------------ n

n 1+
------------ 
 

n

= .

(c) The second-order time-independent correlation function of classical electric field intensity 

I t  E* t E t =  with a stationary statistical distribution is

g 2    I t I t +  
I t   I t  

--------------------------------=

Show that g 2    g 2  – = , g 2    0 , g 2  0  1 , and g 2  0  g 2    .

(d) Calculate g 2   0=   for a monochromatic wave with sinsusoidal intensity modulation of 

the form I t  I0 1 A 0t sin+ = , where A 1  and I0  and 0  are constant.

(e) Simulate the electric field E(t) of thermal light by using MATLAB to generate and plot an 
array of at least 100,000 random Gaussian numbers with unit standard deviation and mean of zero. 
Write a program to spectrally filter E(t) by convolving with a Gaussian function of standard devia-

tion C 50=  data points to obtain EFilter(t). Calculate and plot the intensity for 2000 data points 

along with a probability histogram of intensity for both E(t) and EFilter(t). Verify for both cases that 

the histogram follows the thermal distribution given by P I  1
I0

----e
I I0–

= . Plot g 1     and g 2     

using EFilter(t) for time-delay interval range 500  data points. Verify g 2    1 g 1   
2

+=  and 

that g 1     is of the form e
 C 2–

. Explain your results.
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