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Problem 5.1
An electron is constrained to motion in the x-direction by a potential V(x) = 0 for

—% <x <]5 and V(x) = o elsewhere. The electron is in the simple superposition state

consisting of the ground and third excited state so that

() = —1£<w1<x, 1)+ y(x 1)

%

Find expressions for:

(a) The probability density, [y (x, 1)|*.

(b) The average particle position, {(x(#)) .

(c) The momentum probability density, |y (p,, 1)|*
(d) The average momentum, {p,(?)) .

(e) The current flux, J,(x, ¢) .

Problem 5.2

(a) Show that the density of states for a free-particle of mass m in two-dimensions is
m

2nh’

(b) At low temperature, electrons in two electrodes occupy states up to the Fermi
energy, Er. The two closely spaced electrodes are connected by a two dimensional con-
ductance region. Derive an expression for the conductance of electrons flowing
between the two electrodes as a function of applied voltage V};,,, assuming the trans-
mission coefficient through the two-dimensional region is unity. Consider the two lim-
iting cases eV, >> Ep and eV}, << Ep.

D,(E) =

Problem 5.3

. . . . t . . t
Derive expressions for the two-dimensional D5’ () and one-dimensional D™ (o)

density of photon states in a homogeneous dielectric medium characterized by refrac-
tive index, n,.

Problem 5.4
(a) In a particular system the dispersion relation for electrons in one-dimension is

E, = ho, = 2tcos(k.L), where ¢ and L are constants and the wave vector in the x-
direction is 0 < k, < /L . This dispersion relation can be derived using a nearest neigh-

bor tight binding model where ¢ is the overlap integral between atomic orbitals. Choos-
ing one hundred equally spaced discrete values of k,, write a computer program and

plot the electron density of states N(E) = > I/

> > using I' = /10 and
« (E—-E)" +('/2)

t=-1.

(b) If one includes next nearest neighbor interactions, the dispersion relation in (a)
can, to within a scaling factor, be written £, = 2¢cos(k,L) +2¢ cos(2k.L). Write a
computer program to plot the dispersion relation. Then calculate and plot the electron
density of states using I' = /10, ¢t = —1, ' = —0.2 and compare with the result you




obtained in (a) including a comparison with the effective electron mass at the band
edges.

(c) Write a computer program to plot the electron density of states for a square lat-
tice and cubic lattice both with lattice constant L and for which the dispersion relation is

E, = 2t(cos(k, L)+ cos(k,L)) and E, = 2¢(cos(k.L)+ cos(k,L)+ cos(k.L))
respectively. Use I' = ¢/10 and ¢t = —1.

Submit the code used for your solutions.

Problem 5.5
A hydrogen atom is in its ground state with electron wave function

2 gl 112
¢ =—5e B(E)

ap

In this expression ay is the Bohr radius and 7 is a radial coordinate.
Use spherical coordinates to find the expectation value of position » and momentum
p, for the electron in this state. You should use the fact that in radial coordinates the

. .o 1
Hermitian momentum operator is p, = —lh—air.
ror

Problem 5.6
Using the fact that the Hamiltonian appearing in the Schrédinger equation

—i; _ 0
P Hy(r, 1)) Iaw(r, 1))

is Hermitian, (i.e., <\V|]21 y) = (I:I y|y) ), show that the time dependence of the average

value of the observable 4 associated with the operator 4 is

d, i, 0"
A = S (LAY + (24)

Problem 5.7
Show that:

(a) The position operator x acting on wave function y(x) is Hermitian (i.e.,

X =x).

(b) The operator d acting on the wave function y(x) is anti-Hermitian (i.e.,

dx
:
EI

(c) The momentum operator —i hi acting on the wave function y(x) is Hermitian.

dx

Problem 5.8
A particle mass m is confined to motion in a one-dimensional potential V(x). The Ham-
iltonian is
A 2 2
=19 4y
2mdy

Applied quantum mechanics 3



and the momentum operator is

~ .d
p—lha

(a) Find the commutator [IZI, rl.
(b) For what potentials, ¥(x), are solutions of the time-independent Schrédinger
equation also eigenstates of momentum?

Problem 5.9

Classical electromagnetic theory uses real magnetic and electric fields coupled via
Maxwell’s equations. The magnetic and electric fields each have physical meaning.
Both fields are needed to describe the instantaneous state and time evolution of the sys-
tem. Quantum mechanics uses one complex wave function to describe both the instan-
taneous state and time evolution of the system. It is also possible to describe quantum
mechanics using two coupled real wave functions corresponding to the real and imagi-
nary parts of the complex wave function. Why isn’t this done?

Problem 5.10
A classical bit of information has state 0 or 1 which in quantum mechanics corresponds

to the orthonormal basis states |0) and [1). The difference between classical bits and
quantum bits (q-bits) is that a g-bit can exist in a continuum of states between |0) and
1) as a superposition state [y) = ao|0) + a,|1) where |ay|* +|a,|> = 1.

(a) Two g-bits have a normalized linear superposition state
W) = |00y + ay|01) + a,y|10) + a,,|11) where |00), [01), |10), and |11) are the
basis states. Measuring just the first g-bit gives eigenvalue 0 with probability

|ag|” + |a1|* . What is the renormalized post-measurement state [y') ?

(b) The first g-bit in a two g-bit Bell state |y) = A—/I_E(|OO> +|11)) is measured. It

has probability % that the post-state is [y') = |00) and probability % that the post-state
is [y') = |11). What is the result of measuring the second g-bit when initially in state
|w) and when initially in the state [y') ?

Problem 5.11
An operator 4 can be written as a matrix. The sum of diagonal elements of an operator

is called a trace operator, Tr(le). Show that the trace operator is independent of the
basis used.

Problem 5.12
The non-zero state |n,f) evolves in time according to the Schrodinger equation

ih%\n, ty = Hin, ty, where H is the Hamiltonian. A unitary time-evolution operator

U(t, t,) evolves the state from time ¢, such that |n, £) = U(t, t)|n, t,) . For H = H(?)
show that




~iH(t—1ty)/h
‘7’!, [> =€ ’ |n’ t0>

and for H = I:I(t) , such that [I:I(t), I:I(t’)] = 0 and ¢ #t', show that

=t
—i SN
- I H(t")dt

l:I0

n, ) = e |n, o) .

Problem 5.13
Suppose the Hamiltonian H, describing a particle mass m constrained to motion in the
x-direction contains an adjustable parameter A that may appear in the kinetic energy 7',
potential energy V', or both. The energy eigenvalue E, and eigenstate y, also depend
on A . For any A one may write E, = (v,|H,|v,).

(a) Show that = (v, Sy
(b) Starting from the time-independent Schrodinger equation

nod
a4y =E
(s V0w = )
scale x such that x - Ax and apply the result in (a) to show that for any bound state
one obtains the generalized Virial theorem

2
2y = (el
25 W) = WiV (X))
when A — 1, so that if V(x) oc x” then 2(T) = y(V).

Problem 5.14
(a) Show that one may expand
2 3 A A A

e Be ™ = B+ a[A,B] + %[21,[,&,&]] + %[ﬁ,[A,[A,B]]] .

where A and B are operators and o is a scalar.

(b) If [4, [4, B]] = [B, [4, B]] = 0, show that
aeb _ AB G gl
e = e ee — ¢ e e

A A A A

(o) If [;1, [1:1, B]] = [B,[4,B]] = 0, rewrite ¢’e’¢” as a single exponential.

Problem 5.15

If Hamiltonian H does not depend on time the system is stationary and the Schrodinger
equation ih%\n, t) = Hin, t) can be integrated to give |n, ) = e’iH’/h|n, t=0).
(a) Expand e™"  take the time derivative, and show that

—iHt/h

ih%ln, H = He In,t=0) = ffl", 0.
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(b) The unitary operator f](t) =¢ ™" is the generator of time development and
belongs to the unitary Lie group U(1). If the system evolves for a short time interval,

At show that |n, 1) = U(Af)n, £ = 0y, where U(A7) = I %f +O(AD)?.

(c) From the group property of the operator in (b) one can build up finite time evo-

lution from a product of N small time steps such that 1 = NAt where At = t/N—0.

Making use of the fact that in the limit N — c one may use the binomial theorem to

~iHt/h

N .
write e" = (1 + ]%) , show that U(¢) = e




