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Problem 8.1
(a) Starting from the exact result (Eq. (8.18))

i
td

d
am t  an t  m Ŵ x t  n e

imnt

n
= ,

for which eigenstates n   and eigenvalues n En=  are known prior to application of 

perturbation Ŵ x t   at time t 0 , we seek the time-dependent coefficients an t   that 

describe the time-dependent state

 t   an t  n e
int–

n
= .

If an t   can be expressed as a power series in the perturbing potential then

Ŵ x t  Ŵ x t =
and

an t  an
0  t  an

1  t  2an
2 

t  3an
3 

t  + + + += ,

where   is a dummy variable used to keep track of the order of terms in the power 
series and is set to unity at the end of the calculation. Substitute into Eq. (8.18) and 
evaluate zeroth-order, first-order, and k-th order terms.

(b) A particle initially in eigenstate n   of the unperturbed Hamiltonian for all time 

t 0  scatters into state m   with probability am t  2  after the perturbation Ŵ  is 

applied at time t 0 . Show using first-order time-dependent perturbation theory that 
the scattering amplitude is

am t  1
i
----- Wmn

t  0=

t  t=

 e
imnt 

dt=

where the matrix element Wmn m Ŵ x t  n =  and mn Em En–=  is the difference 

in eigenenergies of the states m   and n  .

(c) A particle of mass m0  is initially in the ground state of a one dimensional har-

monic oscillator. At time t = 0 a perturbation Ŵ x t  V0x3e t –=  is applied where V0

and  are constants. Using the result in part (b), calculate the probability of transition to 

each excited state of the system in the long time limit, t  .

Problem 8.2
An electron is in the ground state of a one-dimensional rectangular potential well for 

which V x  0=  in the range 0 x L   and V x  =  elsewhere. It is decided to 

control the state of the electron by applying a pulse of electric field E t  E0e t
2 2–=  in 

the x-direction starting at time t = 0, where   is a constant and E0  is the maximum 

strength of the applied electric-field. 

(a) Calculate the probability P12  that the particle will be found in the first excited 

state in the long time limit, t  .
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(b) If the electron is in a semiconductor and has an effective mass m* 0.07 m 0= , 

where m0  is the bare electron mass, and the potential well is of width L 10 nm= , cal-

culate the value of E0  for which P12 1= . Comment on your result.

You may wish to make use of the standard integral e ax
2

– xd
t  0=

t =


1
2
--- 

a
---= .

Problem 8.3
An electron is initially in the ground state of a one-dimensional rectangular potential 

well for which V x  0=  in the range 0 x L   and V x  =  elsewhere. The 

ground state energy is E1  and the first excited state energy is E2 . At time t = 0 the sys-

tem is subject to a perturbation Ŵ x t  V0x2e t –= . Calculate analytically and then 

use a computer program to plot the probability of finding the particle in the first excited 

state as a function of time for t 0 . In your plot, normalize time to units of   and con-

sider the three values of 21 1 2= , 21 1= , and 21 2= , where 

21 E2 E1–= . Explain your result

Problem 8.4

Use the Einstein spontaneous emission coefficient A
43e2

3c340

----------------------- j r k  2=  to estimate 

the numerical value of the spontaneous emission lifetime of the 2p excited state of 
atomic hydrogen. Use your results to estimate the spontaneous emission lifetime of the 

2p transition of atomic He+ ions. Describe the spontaneous emission spectral line-shape 

you expect to observe. Do you expect the He+ ion 2p spontaneous emission line spec-
trum to have a larger or smaller full-width at half maximum compared to atomic hydro-
gen?

Problem 8.5

(a) A particle in a continuum system described by Hamiltonian Ĥ0  is prepared in 

eigenstate n   with eigenvalue En n= . Consider the effect of a perturbation turned 

on at time t 0=  that is harmonic in time such that Ŵ x t  V x  t cos= , where 

V x   is the spatial part of the potential and  is the frequency of oscillation. Start by 
writing down the Schrödinger equation for the complete system including the perturba-

tion and then go on to show that the scattering rate in the static limit ( 0 ) is given 

by Fermi’s golden rule 
1
n

---- 2


------ Wmn
2D E  Em En– = , where the matrix element 

Wmn m Ŵ x t  n =  couples state n   to state m   via the static potential V x  , the 

density of final continuum states is D E  , and  Em En–   ensures energy conserva-

tion.
(b) An electron of energy E moving in the x-direction in the conduction band of a 

semiconductor has effective electron mass m* 0.07 m0=  and is incident on two 
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identical ionized impurities, one at position x 0 nm=  and the other at x 20 nm= . 

The semiconductor has low frequency relative permitivity r0 13.2= . Calculate the 

elastic scattering rate 1 n E   and explain you results.

Problem 8.6
(a) In a uniform dielectric the dielectric function is a constant over space but depends 

on wave vector so that   q = . Given an impurity potential at position r due to a 

charge e at position Ri  is q r Ri–  e2–
4q r Ri–
-----------------------------= , derive an expression for  q  .

(b) Use the expression for  q   and Fermi's Golden rule to evaluate the total elastic 
scattering rate for an electron of initial energy E(k) due to a single impurity in a dielec-

tric with dielectric function   q = . Describe any assumptions you have made. Out-
line how you might extend your calculations to include elastic scattering from n ionized 
impurities in a substitutionally doped crystalline semiconductor.

(c) What differences in scattering rate do you expect in (b) for the case of randomly 
positioned impurities and for the case of strongly correlated impurity positions?

Problem 8.7
(a) Using the method outlined in Exercise 3.7 as a starting point, calculate numerically 
the dipole matrix elements between the ground state and the first three excited states for 
an electron with effective mass me

* 0.07 m0=  confined to the asymmetric potential 
well sketched in the following figure and bounded by barriers of infinite energy at x < 0 
nm and x > 50 nm. The value of the step change in potential energy in the figure is Vstep

= 0.2 eV.
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(b) Explain the difference in matrix elements you obtain.
(c) Calculate the spontaneous emission rate associated with each transition in a 

medium with refractive index nr 3.3= .

Problem 8.8
An electron is initially in the ground state of a one dimensional harmonic oscillator 
characterized by frequency 0. At time t = 0 a uniform electric field E is applied in the 
x direction for time . Calculate the probability of transition to the first excited state of 
the oscillator and plot the result as a function of the electric field pulse duration .
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Problem 8.9

A lattice vibration at frequency   that lasts for a time t can result in an electron making 

a transition from an initial state i   with eigenenergy Ei  to a final state f   with 

eigenenergy Ef Ei +=  or Ef Ei –= . The lattice vibration can be viewed as a 

harmonic perturbation of the form

Ŵ t  W0 b̂ei t b̂
†
e i– t+ =

where W0  is a constant. According to first-order time-dependent perturbation theory 

and assuming that each scattering process is an independent parallel channel, the transi-
tion probability is

P t  1

2
----- f Ŵ t  i e

if i t td
t  0=

t t=


f


2

W0
2

2
------- f b̂ i 

2
e

i fi + t 
td

t  0=

t t=


2

W0
2

2
------- f b̂

†
i 

2
e

i fi – t
td

t  0=

t  t=


2

+

=

=

where fi Ef Ei– = .

(a) Show that

P t 
4W0

2

2
---------- f b̂ i 

2sin2 fi + t 2 
fi + 2t

--------------------------------------------t
4W0

2

2
---------- f b̂

†
i 

2sin2 fi – t 2 
fi – 2t

--------------------------------------------t+=

(b) In the limit t   show that the transition rate is

1

--- 2


------W0

2 f b̂ i 
2
 Ef Ei +–  2


------W0

2 f b̂
†
i 

2
 Ef Ei– – +=

and explain the physical meaning of the result.

You may wish to make use of the relations eix 1–
2

4sin2
x
2
--- 
 = , 

x  1

---  
 
lim

 2 x sin

x2
------------------------= , and  ax  1

a
----- x =  so that 2    

2
---- 
 =

Problem 8.10
(a) A hydrogen atom excited in a 2p state is placed inside a cavity. At what temperature 
of the cavity are the spontaneous and induced photon emission rates equal?

(b) An electron in a GaAs quantum dot is modeled as a particle of mass 

m* 0.07 m0=  embedded in a medium with refractive index nr 3.3=  and confined 

by a potential that is infinite everywhere except for the region 0 x L  , 0 y L  , and 

0 z L  , where the potential is zero. The value of L 20 nm= . The electron is in the 
first excited state of the quantum dot. At what temperature are the spontaneous and 
induced photon emission rates equal? Comment on any assumptions you have made.

Problem 8.11

A two-level atom described by Hamiltonian Ĥ0  has eigenstates 1   and 2   with 

energy separation 21 E2 E1–= . The atom is initially in its ground state 1   and at 
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time t 0  it is illuminated with an electric field E E0 eit e i–  t+ =  in the x-direc-

tion. The electric field oscillates at frequency   and has amplitude E0 .

(a) Write down the Hamiltonian for time t 0  in terms of Ĥ0  and a perturbation 
Ŵ .

(b) The solution at time t 0  is of the form x t  a1 t e
i– 1 t

1  a2 t e
i– 2t

2 +=  

where E1 1=  and E2 2= . Substitute this into the time-dependent Schrödinger 

equation and show that

i
td

d a1 t  
  e

i– 1 t
1  i

td
d a2 t  

  e
i– 2t

2 + a1 t e
i– 1t

Ŵ 1  a2 t e
i– 2t

Ŵ 2 +=

(c) If E0  is small and  21= , show that the probability that the atom will be in 

state 2   at time t 0  is a2 t  2 sin2
W21t


---------- 
 = , where W21 E0 2 x̂ 1 = .

(d) How is your result in (c) modified if   is slightly detuned from 21 ?

Problem 8.12
A conduction band electron is initially in the lowest energy state of a GaAs quantum 

well that has width L 10 nm= . The effective electron mass is m* 0.07 m 0= , 

where m0  is the bare electron mass, and the ground-state energy eigenvalue is E1 . An 

electric field pulse E t  E0e t
2 2–=  is applied in the x-direction across the quantum 

well starting at time t = 0, where   is a constant and E0 1.17 106 V m 1–=  is the 

maximum strength of the applied electric-field. 

(a) Modeling the quantum well as a rectangular potential well for which V x  0=  

in the range 0 x L   and V x  =  elsewhere, find the value of   that maximizes 
the probability that the electron will be found in the first excited state in the long time 

limit, t  .

(b) The quantum well has an area 10 10 m2  and electron density 1012 cm 2– . 

Using the value of   calculated in (a) and assuming any electron in the first excited 
state flows as current in an external circuit, how many electrons contribute to the cur-
rent?

(c) Is it possible to operate this particular device at room temperature?

You may wish to make use of the standard integral e ax
2

– xd
t  0=

t =


1
2
--- 

a
---= .

Problem 8.13

Consider a time-dependent Hamiltonian H t   with state  t    evolving from time t0  

that satisfies the Schrödinger equation

i
t
  t   H t   t  = . (1)
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If at any given instant in time the eigenstates n t    and energy eigenvalues 

En t  n t =  are known then they can be used as a basis to expand the time-evolv-

ing wave function

 t   an t  n t  e
in t –

n
= (2)

where n t  n t  td
t t0=

t t=

= , so that 
td

d n t  · n t  n t = , and an t   is the occu-

pation amplitude of the n-th state at time t .
(a) Substitute (2) into (1) and show that 

i e
in t –

an t  n t   i· n t an t  n t   an t  · n t  +– 
n
 En t an t  n t  e

in t –

n
=

(b) Multiply both sides of (a) by m t    and show that

a·m t e
im t –

an t  m t  · n t   e
in t –

n
–=

(c) To find m t  · n t     differentiate H t  n t   En t  n t  =  with respect to 

time and then show that

a·m t  am– m 
·

m   an
m H· t  n 

Em En–
-----------------------------e

imn

n m
+=

where mn m n–= .

Problem 8.14

An electron mass m  free to move in one-dimension is incident from the left in state 

i x   with momentum p . At low temperatures the electron can excite a localized Ein-

stein phonon at position x 0=  of energy   and dispersion relation 

 q  constant= . The matrix element coupling initial electron state i x   to final 

scattered electron state f x   is Wif  measured in J m .

(a) Use first-order time-dependent perturbation theory to calculate the total electron 

transmission probability for 0 E 2.5  with no phonons initially in the system. 
Comment on your result.

(b) The Hamiltonian of the system can be written

Ĥ
p2

2m
------- Wif b̂

†
b̂+  x  b̂

†
b̂+ +=

where b̂
†

 creates a phonon of energy  . The constant zero-point energy of the pho-

non is not included because it only contributes a  2  shift in energy.

The total wave function   of the coupled electron-phonon system can be expanded 
in the oscillator basis as

x    n x  n 
n 0=

n =

=
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For x 0  the wave function coefficients are superpositions of plane waves if E is 

above threshold for the n-th phonon energy, then E n , kn 2m E n–  = , 

and

n x 0  ane
iknx

bne
iknx–

+=

n x 0  cne
iknx

=

If E n , then n 2m n E–  = , and

n x 0  bne
nx

=

n x 0  cne
n– x

=

At low temperatures the phonon is initially in its ground state so that an n 0=  
(meaning a0 1=  and an 0 0= ). Integrate the time-independent Schrödinger equa-
tion around x 0=  and show that continuity in n x   requires 

an bn+ cn=

and

2m

2
-------Wif ncn 1– 2incn–

2m

2
-------Wif n 1+ cn 1++ 2inn 0–= (1)

where n kn E n–  in n E– +=  and   is the heavyside step function.

(c) The total transmission coefficient as a function of incident electron energy E  is 

the sum over all propagating states in which kn  remains real, so that

T E 
kn E 
k0 E 
------------- cn E  2

n 0=

n E =

=

The transmission amplitudes can be determined from the matrix equation

Mc a=

where cT
c0 c1  cN 1–

= , aT
2i– 0 0  0= , and M  is a N N  tri-diagonal 

matrix given by Eqn. (1) in part (b). Let N 10=  and write MATLAB code to invert 

the matrix. Evaluate and plot T E   for 0 E 2.5  when Wif 0.04=  and 

Wif 0.4=  in units where  2m 1= = . Comment on your results and explain why 

they differ from (a).

(d) If there is a delta function barrier of strength W0  at position x 0= , the Hamil-

tonian in (b) becomes Ĥ
p̂2

2m
------- W0 W+ if b̂

†
b̂+   x  b̂

†
b̂+ += . Write down the 

new matrix M . Evaluate and plot T E   for 0 E 2.5  when W0 1=  and 

Wif 0.4=  in units where  2m 1= = . What happens if W0 1–= ? Explain your 

results.
8


