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Problem 10.1

Consider a three-dimensional potential V x y z    that is infinite except in a region 

0 x L  , 0 y L  , and 0 z L   where V x y z   0= .

(a) Write down the time-independent Schrödinger equation for a particle mass m  
confined to motion in the potential and solve for the eigenfunctions.

(b) Show that the eigenenergies are Enx ny nz 
0  22

2mL2
------------- nx

2 ny
2 nz

2+ + = , where nx , ny , 

and nz  are non-zero positive integers. What is the degeneracy of the ground state and 

what is the degeneracy of the first excited state?

(c) The system is perturbed by introducing a potential Ŵ V0=  in a region for 

which 0 x
L
2
---  , 0 y

L
2
---  , and 0 z L  . The perturbation Ŵ 0=  elsewhere and 

V0  is a constant. Use first-order perturbation theory to find the new ground state 

energy.
(d) What are the new eigenenergies and eigenfunctions of the first excited state?

Problem 10.2
A particular unperturbed Hamiltonian expressed in matrix form is

H 0 
1 0 0

0 3 0

0 0 2

=

The system is subject to the perturbation

W
0  0

 0 0

0 0 

=

where  1« .

(a) Find the exact eigenvalues of H H 0  W+= .
(b) Find the eigenvalues to second-order using time-independent non-degenerate 

perturbation theory.
(c) Compare the results obtained in (a) and (b).

Problem 10.3
(a) An electron moves in a one-dimensional box of length X. Apply the periodic bound-
ary condition  x   x X+ =  to find the electron eigenfunction and eigenvalues.

(b) Now apply a weak periodic potential V x  V x L+ =  to the system, where 
X NL=  and N  is a large positive integer. Using nondegenerate perturbation theory, 
find the first order correction to the wave functions and the second order correction to 
the eigenenergies.

(c) When wave vector k is close to n L , where n  is an integer, the result in (b) is no 
longer valid. Use two-state degenerate perturbation theory to find the corrected energy 

values for k n 1 +  L = , and k' n 1 –  L =  where   is small com-

pared with  L .
(d) Use the results of (b) an (c) to draw the electron dispersion relation, E k  .
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(e) If we choose the lowest-frequency Fourier component of the perturbative peri-
odic potential in part (b), then V x  V1 x L cos= . Repeat (b), (c), and (d) using 
this potential.

Hint: V x  V0 Vnei2nx L

n 0
+= , and choose V0 0= .

Problem 10.4
A semiconductor quantum dot is modeled as a three-dimensional box of side L and 

infinite barrier energy. An electron in the quantum dot has energy E
322

m*L2
--------------= , where 

m*  is the effective electron mass. 
(a) Calculate the first-order correction to the electron energy when a uniform elec-

tric field E is applied in the z-direction.

(b) If L 20 nm= , the effective electron mass is m* 0.07 m0= , and the strength 

of the applied electric field is E 2 10 4 V cm 1–= , what is the value of the new elec-
tron energy level?

(c) Explain the degeneracy of the system after the perturbation is applied.

Problem 10.5
The first four lowest energy states of a one-dimensional harmonic oscillator with char-
acteristic frequency 0  are subject to the perturbation

W

W00 W01 W02 W03

W10 W11 W12 W13

W20 W21 W22 W23

W30 W31 W32 W33

0

1 0
1–

2
------- 0

0 0 0 0

1–

2
------- 0

1
2
--- 0

0 0 0 0

= =

where  1« .
(a) Find the new eigenenergies to first-order in time-independent perturbation the-

ory.
(b) Find the new eigenenergies to second-order in time-independent perturbation 

theory.

Problem 10.6
An electron is confined in a one-dimensional rectangular potential well of width 2L

such that V x  0=  for 0 x 2L   and V x  =  elsewhere. The system is subject to 

a constant uniform electric field E  in the x direction. 
(a) Write down an analytic expression for the new eigenfunctions and energy eigen-

values evaluated to first-order in time-independent perturbation theory.

(b) For an electron with effective electron mass me
* 0.07 m0= , where m0  is the 

bare electron mass, well width 2L 10 nm= , and electric field of 2 105 V cm 1– , use 
your result in (a) to find the new eigenfunctions and energy eigenvalues.
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(c) Sketch and explain how, according to first-order time-independent perturbation 
theory, the unperturbed ground-state wave function is modified under the influence of 
the perturbation. Under what circumstances do you expect the results of first-order 
time-independent perturbation theory to be invalid?

Problem 10.7
An electron mass m confined to motion in a one-dimensional harmonic potential with 

characteristic frequency   is subject to a perturbing potential

Ŵ x3 m0  3 2= .

(a) Write down the Hamiltonian for the system.
(b) Calculate to second-order the eigenenergies of the perturbed system.
(c) Calculate to first-order the eigenstates for the perturbed system.

Problem 10.8

The unperturbed Hamiltonian for a particle of mass m  with kinetic energy 

T
p̂x

2 p̂y
2+

2m
----------------=  in a two-dimensional harmonic potential V x y  

2
--- x̂2 ŷ2+ =  is 

Ĥ
0 

T̂ V̂+=  where   is the spring constant. The eigenstates associated with 

Ĥ
0 
nm Enmnm=  are of the form nm n x m y  nm = =  with 

n m 0 1 2   = . The eigenstates are n m 1+ +  -fold degenerate with eigenener-

gies Enm  n m 1+ + = . 

(a) Find the position of minimum potential and the amount by which any perturbing 

potential Ŵ

2
----- x̂=  or Ŵ


2
----- x̂ ŷ+ =  shifts eigenenergy values and show that the per-

turbation does not break the degeneracy of the states.

(b) Create a contour plot of the potential V x y   in the range 2 nm x 2 nm –  

and 2 nm y 2 nm –  for  2 eV nm 2–=  and overlay a contour plot of 

V̂ x y  Ŵ x +

2
--- x̂2 ŷ2+  

2
----- x̂+=  for  1 eV nm 1–= . Use the contour plots to 

explain why the perturbing potential fails to break the degeneracy of the states.

(c) Create a contour plot of the potential V x y   in the range 2 nm x 2 nm –  

and 2 nm y 2 nm –  for  2 eV nm 2–=  and overlay a contour plot of 

V̂ x y  Ŵ x y +

2
--- x̂2 ŷ2+  

2
----- x̂ŷ+=  for  1 eV nm 2–= . Use the contour plots to 

explain why in this case the perturbing potential breaks the degeneracy of the states.
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