Solutions to exercises in chapter 6

1. Muscles

a) The cross-sectional area of a sarcomere is given by the area of the hexagon formed by the six actin strands. With an edge length of 30 nm, we have six equilateral triangles with a sidelength of 30 nm and hence the area is $A_S = 3\sqrt{3} \cdot 30$ nm $\cdot 15$ nm = 2335 nm² $= 2.3 \cdot 10^{-15}$ m². With 225 myosin molecules per sarcomere, we obtain a force per sarcomere of $F_S = N \cdot f = 225 \cdot 4$ pN $= 900 \cdot 10^{-12}$ N $= 9 \cdot 10^{-10}$ N. This gives a force per area of $F_S/A_S = \frac{9 \cdot 10^{-10}N}{2.3 \cdot 10^{-15}m^2} = 3.85 \cdot 10^5 N/m^2$. Multiplying this with the cross-sectional area of the muscle of $A_M = 5$ cm² $= 5 \cdot 10^{-4}$ m² gives the force exerted by the muscle as $F_M = F_S \cdot A_M/A_S = 3.85 \cdot 10^5$ N/m² $\cdot 5 \cdot 10^{-4}$ m² = 193 N.

b) The number of myosin molecules has an uncertainty of $r_N = 10\%$, that of the area of the sarcomere one of $r_A = 13\%$ and the force of a single molecule one of $r_f = 10\%$. Together they give an uncertainty in force of $r_F = \sqrt{r_N^2 + r_A^2 + r_f^2} = \sqrt{369\%} \simeq 19\%$ or $\sigma_F = 38N$. A reasonable estimate therefore would be $F = 2.0(4) \cdot 10^2 N$.

2. Pendulum on a scale

a) Since the frame is not moving, the sum of all forces acting on it must be zero. These forces are the force of gravity on the frame (\vec{G}_R) , the normal force from the scale (\vec{N}_{WR}) as well as the force of the spring (\vec{F}_{FR}) . Hence $\vec{G}_R + \vec{N}_{WR} + \vec{F}_{FR} = 0$. The force that the scale will show is $\vec{N}_{RW} = -\vec{N}_{WR} = \vec{F}_{FR} + \vec{G}_R$.

b) Equation of motion of the bob: $m_K \frac{d^2 \vec{x}_K(t)}{dt^2} = \vec{G}_K + \vec{F}_{FK}$, where $\vec{F}_{FK} = -k(\vec{x}_K - \vec{x}_{K,0})$. Moreover, we can connect part a) to this equation of motion to see what the scale will show by considering the equation of motion of the spring itself, where we find: $\vec{F}_{RF} + \vec{F}_{KF} + \vec{G}_F = 0$, such that $\vec{F}_{FR} = -\vec{F}_{RF} = \vec{F}_{KF} + \vec{G}_F = -\vec{F}_{FK} + \vec{G}_F$.

Taking all of this together we find for the force on the scale: $\vec{N}_{RW} = -\vec{F}_{FK} + \vec{G}_F + \vec{G}_R = \vec{G}_K + \vec{G}_F + \vec{G}_R - m_K \frac{d^2 \vec{x}_K(t)}{dt^2}$. Since the term with acceleration corresponds to a harmonic oscillation, the indicated weight will show a similar oscillation around the sum of the forces of gravity on the frame, the spring and the bob.

c) Choosing z(t) such that the zero of z is at the rest position of the bob, the equation of motion in b) becomes: $m_K \frac{d^2 z(t)}{dt^2} = -kz(t)$. As this gives a harmonic oscillation, we obtain for the acceleration: $\frac{d^2 z(t)}{dt^2} = -\omega^2 z_0 \cos(\omega t)$, which we can insert in the equation of motion: $-m_K \omega^2 z_0 \cos(\omega t) = -kz_0 \cos(\omega t)$. As this has to be valid for all times, we find that $\omega = \sqrt{k/m}$ must be the angular frequency of the oscillation. Similarly, this is the angular frequency with which the indicated weight oscillates. Numerically: $\omega = 10s^{-1}$.

d) The mass and the spring constant both enter the angular frequency as a square root, i.e. the relative error of ω is given by: $r_{\omega}^2 = \frac{1}{4}r_k^2 + \frac{1}{4}r_m^2$. Given the relative errors of m, $r_m = 0.05 = r$ and k, $r_k = 0.05 = r$ we obtain: $r_{\omega}^2 = \frac{1}{2}r^2$ oder $r_{\omega} = 0.05/\sqrt{2} \simeq 0.03$

e) The oscillating amplitude of the indicated weight is given by the amplitude of the oscillation and the spring constant, hence $F_0 = kz_0 = 10$ N.

3. Viscous friction

(a) The forces acting on the raindrop are friction and gravity. The equation of motion hence is: $mdv/dt = -mg + 6\pi\eta_{air}rv$. If the drop falls with vonstant speed, dv/dt = 0, and we obtain $mg = 6\pi\eta_{Luft}rv$. The mass of the drop depends on its size via the volume, i.e. $m = 4\pi/3r^3\rho_{water}$, which gives: $4\pi/3r^3\rho_{water}g = 6\pi\eta_{air}rv$. Solving for v gives the speed we are looking for: $v = \frac{2\rho_{water}gr^2}{9\eta_{air}}$.

(b) Inserting the values in the equation for v above - for r_1 we obtain: $v = \frac{210^3 kg/m^3 10m/s^2 0.45^2 10^{-6}m^2}{91.810^{-5} Pas} = \frac{0.90.4510^{-2} kg/s^2}{4.910^{-5}} = \frac{910^{-3}m/s}{4.10^{-5}} = 25m/s$. This is very fast and not really realistic, see also

part d). For r_2 we can use that $v \propto r^2$, such that $v(r_2) = v(r_1)r_2^2/r_1^2$. $r_2^2/r_1^2 = 1/100$, such that we obtain $v(r_2) = 25m/s * 1/100 = 0.25m/s$, which is more realistic.

Errors: $\partial v/\partial r = 2v/r$, $\partial v/\partial \eta = -v/\eta$. Or for relative errors: $\sigma_v^2/v^2 = \sigma_\eta^2/\eta^2 + 4\sigma_r^2/r^2$. Both for r_1 and r_2 we have: $\sigma_r/r = 0.5/4.5 = 1/9$, $\sigma_\eta/\eta = 1/18$. Numerically: $\sigma_v^2/v^2 = 1/18^2 + 4(1/9)^2 = 17/18^2$ and hence: $\sigma_v/v = \sqrt{17}/18 = 0.22$.

(c) $Re = \rho_{air} \cdot r \cdot v/\eta$, $\rho_{air} = 1 \text{ kg/m}^3$, v = 25 m/s, r = 0.45 mm, $\eta_{air} = 1.8 \cdot 10^{-5}$ Pa s. Therefore $Re = \frac{1kg/m^3 \cdot 0.45 \cdot 10^{-3} m \cdot 25m/s}{1.810^{-5} Pas} = \frac{0.01 \cdot 2.5 \cdot 0.45kg/(ms)}{1.810^{-5} kg/(ms)} = 0.62510^3 = 625$. This is higher than the critical Reynolds number of $Re_c = 10^2$, which is why we should have used turbulent friction instead.

(d) With the friction force of $F = 2 \cdot \pi \cdot \rho_{air} \cdot r^2 \cdot v^2$ the equation of motion changes to $mdv/dt = -mg + 2 \cdot \pi \cdot \rho_{air} \cdot r^2 \cdot v^2$. Again we are looking for the case where dv/dt = 0 and hence $mg = 2 \cdot \pi \cdot \rho_{air} \cdot r^2 \cdot v^2$. With the volume of the drop we get: $4\pi/3r^3\rho_{water}g = 2 \cdot \pi \cdot \rho_{air} \cdot r^2 \cdot v^2$. Solving this for v gives: $v = \sqrt{\frac{2r\rho_{water}g}{3\rho_{air}}}$. Numerically: $v = \sqrt{\frac{20.4510^{-3}m10m/s^210^3kg/m^3}{3kg/m^3}} = \sqrt{9/3}m/s = \sqrt{3}m/s = 1.7m/s$. This makes sense with everyday experience.

4. Conservation of energy

Conservation of energy dictates that the potential energy $E_{pot} = mgh$ in the beginning is equal to the kinetic energy $E_{kin} = mv^2/2$ at the end. Hence $mgh = mv^2/2$. Solving this for v gives $v = \sqrt{2gh}$. This speed is reached after $T = v/g = \sqrt{2h/g}$ given a constant acceleration g.

5. Conservation of energy 2

a) Die total energy is $E = E_{pot} + E_{kin} = (kx^2 + mv^2)/2$. For a harmonic oscillation, $x = x_0 \cos(\omega t)$ and therefore $v = -\omega x_0 \sin(\omega t)$, which we can insert into the energy to obtain

 $E = (m \cdot \omega^2 \cdot x_0^2 \sin^2(\omega t) + k \cdot x_0^2 \cdot \cos^2(\omega t))/2.$

b) Using $\sin^2 \alpha + \cos^2 \alpha = 1$ we obtain: $E = (m \cdot \omega^2 \cdot x_0^2 + (k - m\omega^2) \cdot x_0^2 \cdot \cos^2(\omega t))/2 = m \cdot \omega^2 \cdot x_0^2 + (k - m\omega^2) \cdot x(t)^2)/2$. The term proportional to $x(t)^2$ depends on time. In order for conservation of energy to hold, the prefactor of this term needs to be zero, i.e. $(k - m\omega^2) = 0$ or $\omega = \sqrt{k/m}$.

6. Hydro power plant

a) The maximum energy is the total potential energy of all of the water, i.e. $E_{pot} = mgh = \rho Vgh$. Numerically: $E = 1000kg/m^3 10 \cdot 10^6 m^3 10m/s^2 200m = 20 \cdot 10^{12} J = 20TJ$. The speed of the water in the eturbine we obtain from the kinetic energy: $mv^2/2 = mgh$ hence $v = \sqrt{2gh} = \sqrt{2 \cdot 10m/s^2 200m} = \sqrt{4000}m/s = 20\pi m/s \simeq 60m/s$

b) Height and volume both have a relative error of r = 1%. The energy thus has an error of $r_E^2 = r_V^2 + r_h^2 = 2r^2$ or 1.4%.

For the speed, we only have the height with an error, which enters as a square root. Therefore the relative error of v is: $r_v = r_h/2 = 0.5\%$.

c) The total energy is given by $mv^2/2$. If v diminishes by 1%, the energy correspondingly diminishes by 2%. For a total energy of 20 TJ these are losses of 0.4 TJ. With a flow of $\Phi = 400m^3/s$ it takes $V/\Phi = \frac{10^7m^3}{400m^3/s} = 2.5 \cdot 10^4 s$ until the storage lake is empty, i.e. until the losses of 0.4 TJ have been incurred. The power dissipated therefore is $Q = \frac{4 \cdot 10^{11} J}{2.5 \cdot 10^4 s} = 1.6 \cdot 10^7 W$

d) If the dissipated power corresponds to losses of 2%, the generated power is the 50fold of this power, i.e. $P = 50 \cdot 1.6 \cdot 10^7 W = 800 MW$. This power is turned into electrical power with an efficiency of 90 %, which is a power generated of 720 MW the total generated energy is 18 TJ (see a), which is 5 million kWh (1kWh = 3.6 MJ).

7. Energy and friction

In the beginning, the block has the potential energy of E = mgh = mgL/2. Due to friction, at every pass $E = F \cdot L = \mu_G \cdot N \cdot L = \mu_G mgL = mgL/5$ is dissipated. This means that after 2.5 passes, the initial energy has been converted into heat and the block remains at rest in the middle of the plane.

8. Elevator

a) Equation of motion: ma = -mg + F. When the elevator is decelerated from its maximum speed to 0 (with an acceleration a), this takes a time of $T = v_0/a$. During this time, the elevator has travelled a distance of $L = -aT^2/2 + v_0T$. Inserting T gives: $L = v_0^2/(2a)$. Hence the deceleration needs to be: $a = v_0^2/(2L)$, which we can insert into the equation of motion to obtain: $mv_0^2/(2L) = -mg + F$. Hence the force is: $F = mg + mv_0^2/(2L)$.

b) The kinetic energy before deceleration $mv^2/2$ plus the potential energy gained during deceleration needs to correspond to the Force on the rope times the deceleration distance. Therefore $mv^2/2 + mgL = FL$. This again gives the force of: $F = \frac{mv^2}{2L} + mg = \frac{1500kg2^2m^2/s^2}{22m} + 1500kg10m/^2 = 16500N$.

9. Bungee Jump

- a) (1) $E_{pot} = mgh; E_{kin} = 0; E_{Seil} = 0$
- (2) $E_{pot} = mg(h-L); E_{kin} = mv^2/2; E_{Seil} = 0$
- (3) $E_{pot} = mg(h (L + x)); E_{kin} = 0; E_{Seil} = kx^2/2$

b) Conservation of energy says that the energies in (1) and (2) must be equal, i.e. $mgh = mg(h - L) + mv^2/2$. In other words: $mgL = mv^2/2$, such that we obtain for the speed: $v = \sqrt{2gL} = \sqrt{500m/s} = \sqrt{5} \cdot 10m/s \simeq 22m/s$

c) The only value with an error is the length of the rope L with a relative error of 4%. Thus the speed, which goes like the square root of the rope length has half this relative error or $r_v = 2\%$.

d) Here, we have to consider the energies in case (3) and (1) above, where we find: $mgh = mg(h - (L + x)) + kx^2/2$ or $mg(L + x) = kx^2/2$. This quadratic equation in x can be solved to give: $x = \frac{mg + \sqrt{(mg)^2 + 2mgLk}}{k} = \frac{1000N + \sqrt{10^6N^2 + 2.5 \cdot 10^6N^2}}{50N/m} = \frac{1000(1 + \sqrt{3.5})}{50}m = 20(1 + \sqrt{3.5})m \simeq 57m$. The height of the fall therefore is H = x + L = 82m or you end up at the closest s = h - H = 18m above the water surface.

e) $s = h - (L + x) = h - (L + \frac{mg + \sqrt{(mg)^2 + 2mgLk}}{k})$, where m, k, and L carry uncertainties. We thus need to know: $\frac{\partial s}{\partial m} = \frac{g}{k} + \frac{mg^2 + kgL}{k\sqrt{(mg)^2 + 2mgLk}}$ Numerically: $\sigma_m \frac{\partial s}{\partial m} = 2.2m$ $\frac{\partial s}{\partial k} = -\frac{mg(mg + kL + \sqrt{(mg)^2 + 2mgLk})}{k^2\sqrt{(mg)^2 + 2mgLk}}$ Numerically: $\sigma_k \frac{\partial s}{\partial k} = 0.9m$ $\frac{\partial s}{\partial L} = 1 + \frac{mg}{\sqrt{(mg)^2 + 2mgLk}}$ Numerically: $\sigma_L \frac{\partial s}{\partial L} = 1.5m$ $\frac{\partial s}{\partial k} = -1$

$$\frac{\partial s}{\partial h} =$$

Numerically: $\sigma_h \frac{\partial s}{\partial h} = 2m$

And finally: $\sigma_s = \sqrt{2.2^2 + 0.9^2 + 1.5^2 + 2^2}m = 3.5m$