
Solutions to exercises in chapter 6

1. Muscles

a) The cross-sectional area of a sarcomere is given by the area of the hexagon formed by the six
actin strands. With an edge length of 30 nm, we have six equilateral triangles with a sidelength of
30 nm and hence the area is AS = 3

√
3 · 30 nm ·15 nm = 2335 nm2 = 2.3 · 10−15 m2. With 225

myosin molecules per sarcomere, we obtain a force per sarcomere of FS = N · f = 225 · 4 pN =

900 · 10−12 N =9 · 10−10 N. This gives a force per area of FS/AS = 9·10−10N
2.3·10−15m2 = 3.85 · 105N/m2.

Multiplying this with the cross-sectional area of the muscle of AM = 5 cm2 = 5 · 10−4 m2 gives the
force exerted by the muscle as FM = FS ·AM/AS = 3.85 · 105 N/m2 · 5 · 10−4m2 = 193 N.

b) The number of myosin molecules has an uncertainty of rN = 10%, that of the area of the
sarcomere one of rA = 13% and the force of a single molecule one of rf = 10%. Together they

give an uncertainty in force of rF =
√
r2N + r2A + r2f =

√
369% ' 19% or σF = 38N . A reasonable

estimate therefore would be F = 2.0(4) · 102N .

2. Pendulum on a scale

a) Since the frame is not moving, the sum of all forces acting on it must be zero. These forces

are the force of gravity on the frame (~GR), the normal force from the scale ( ~NWR) as well as the

force of the spring (~FFR). Hence ~GR + ~NWR + ~FFR = 0. The force that the scale will show is
~NRW = − ~NWR = ~FFR + ~GR.

b) Equation of motion of the bob: mK
d2~xK(t)
dt2 = ~GK + ~FFK , where ~FFK = −k(~xK − ~xK,0).

Moreover, we can connect part a) to this equation of motion to see what the scale will show by

considering the equation of motion of the spring itself, where we find: ~FRF + ~FKF + ~GF = 0, such
that ~FFR = −~FRF = ~FKF + ~GF = −~FFK + ~GF .

Taking all of this together we find for the force on the scale: ~NRW = −~FFK + ~GF + ~GR =
~GK+ ~GF + ~GR−mK

d2~xK(t)
dt2 . Since the term with acceleration corresponds to a harmonic oscillation,

the indicated weight will show a similar oscillation around the sum of the forces of gravity on the
frame, the spring and the bob.

c) Choosing z(t) such that the zero of z is at the rest position of the bob, the equation of

motion in b) becomes: mK
d2z(t)
dt2 = −kz(t). As this gives a harmonic oscillation, we obtain

for the acceleration: d2z(t)
dt2 = −ω2z0 cos(ωt), which we can insert in th eequation of motion:

−mKω
2z0 cos(ωt) = −kz0 cos(ωt). As this has to be valid for all times, we find that ω =

√
k/m

must be the angular frequency of the oscillation. Similarly, this is the angular frequency with which
the indicated weight oscillates. Numerically: ω = 10s−1.

d) The mass and the spring constant both enter the angular frequency as a square root, i.e. the
relative error of ω is given by: r2ω = 1

4r
2
k + 1

4r
2
m. Given the relative errors of m, rm = 0.05 = r and

k, rk = 0.05 = r we obtain: r2ω = 1
2r

2 oder rω = 0.05/
√

2 ' 0.03

e) The oscillating amplitude of the indicated weight is given by the amplitude of the oscillation and
the spring constant, hence F0 = kz0 = 10 N.

3. Viscous friction

(a) The forces acting on the raindrop are friction and gravity. The equation of motion hence is:
mdv/dt = −mg + 6πηairrv. If the drop falls with vonstant speed, dv/dt = 0, and we obtain mg =
6πηLuftrv. The mass of the drop depends on its size via the volume, i.e. m = 4π/3r3ρwater, which

gives: 4π/3r3ρwaterg = 6πηairrv. Solving for v gives the speed we are looking for: v = 2ρwatergr
2

9ηair
.

(b) Inserting the values in the equation for v above - for r1 we obtain: v = 2103kg/m310m/s20.45210−6m2

91.810−5Pas =
0.90.4510−2kg/s2

91.810−5kg/(ms) = 910−3ms/s2

4·910−5 = 10−3m/s
4·10−5 = 25m/s. This is very fast and not really realistic, see also
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part d). For r2 we can use that v ∝ r2, such that v(r2) = v(r1)r22/r
2
1. r22/r

2
1 = 1/100, such that we

obtain v(r2) = 25m/s ∗ 1/100 = 0.25m/s, which is more realistic.

Errors: ∂v/∂r = 2v/r, ∂v/∂η = −v/η. Or for relative errors: σ2
v/v

2 = σ2
η/η

2 + 4σ2
r/r

2. Both for
r1 and r2 we have: σr/r = 0.5/4.5 = 1/9, ση/η = 1/18. Numerically: σ2

v/v
2 = 1/182 + 4(1/9)2 =

17/182 and hence: σv/v =
√

17/18 = 0.22.

(c) Re = ρair · r · v/η, ρair = 1 kg/m3, v = 25 m/s, r = 0.45 mm, ηair = 1.8 · 10−5 Pa s. Therefore

Re = 1kg/m3·0.45·10−3m·25m/s
1.810−5Pas = 0.01·2.5·0.45kg/(ms)

1.810−5kg/(ms) = 0.625103 = 625. This is higher than the critical

Reynolds number of Rec = 102, which is why we should have used turbulent friction instead.

(d) With the friction force of F = 2·π·ρair ·r2·v2 the equation of motion changes to mdv/dt = −mg+
2 ·π ·ρair ·r2 ·v2. Again we are looking for the case where dv/dt = 0 and hence mg = 2 ·π ·ρair ·r2 ·v2.
With the volume of the drop we get: 4π/3r3ρwaterg = 2 · π · ρair · r2 · v2. Solving this for v gives:

v =
√

2rρwaterg
3ρair

. Numerically: v =
√

20.4510−3m10m/s2103kg/m3

3kg/m3 =
√

9/3m/s =
√

3m/s = 1.7m/s.

This makes sense with everyday experience.

4. Conservation of energy

Conservation of energy dictates that the potential energy Epot = mgh in the beginning is equal
to the kinetic energy Ekin = mv2/2 at the end. Hence mgh = mv2/2. Solving this for v gives
v =
√

2gh. This speed is reached after T = v/g =
√

2h/g given a constant acceleration g.

5. Conservation of energy 2

a) Die total energy is E = Epot +Ekin = (kx2 +mv2)/2. For a harmonic oscillation, x = x0 cos(ωt)
and therefore v = −ωx0sin(ωt), which we can insert into the energy to obtain

E = (m · ω2 · x20sin2(ωt) + k · x20 · cos2(ωt))/2.

b) Using sin2α+ cos2α = 1 we obtain: E = (m ·ω2 ·x20 + (k−mω2) ·x20 · cos2(ωt))/2 = m ·ω2 ·x20 +
(k−mω2) · x(t)2)/2. The term proportional to x(t)2 depends on time. In order for conservation of
energy to hold, the prefactor of this term needs to be zero, i.e. (k −mω2) = 0 or ω =

√
k/m.

6. Hydro power plant

a) The maximum energy is the total potential energy of all of the water, i.e. Epot = mgh =
ρV gh. Numerically: E = 1000kg/m310 · 106m310m/s2200m = 20 · 1012J = 20TJ . The speed of
the water in th eturbine we obtain from the kinetic energy: mv2/2 = mgh hence v =

√
2gh =√

2 · 10m/s2200m =
√

4000m/s = 20πm/s ' 60m/s

b) Height and volume both have a relative error of r = 1%. The energy thus has an error of
r2E = r2V + r2h = 2r2 or 1.4%.

For the speed, we only have the height with an error, which enters as a square root. Therefore the
relative error of v is: rv = rh/2 = 0.5%.

c) The total energy is given by mv2/2. If v diminishes by 1%, the energy correspondingly diminishes
by 2%. For a total energy of 20 TJ these are losses of 0.4 TJ. With a flow of Φ = 400m3/s it takes

V/Φ = 107m3

400m3/s = 2.5 · 104s until the storage lake is empty, i.e. until the losses of 0.4 TJ have been

incurred. The power dissipated therefore is Q = 4·1011J
2.5·104s = 1.6 · 107W

d) If the dissipated power corresponds to losses of 2%, the generated power is the 50fold of this
power, i.e. P = 50 · 1.6 · 107W = 800MW . This power is turned into electrical power with an
efficiency of 90 %, which is a power generated of 720 MW the total generated energy is 18 TJ (see
a), which is 5 million kWh (1kWh = 3.6 MJ).

7. Energy and friction

In the beginning, the block has the potential energy of E = mgh = mgL/2. Due to friction, at
every pass E = F · L = µG · N · L = µGmgL = mgL/5 is dissipated. This means that after 2.5
passes, the initial energy has been converted into heat and the block remains at rest in the middle
of the plane.
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8. Elevator

a) Equation of motion: ma = −mg + F . When the elevator is decelerated from its maximum
speed to 0 (with an acceleration a), this takes a time of T = v0/a. During this time, the elevator
has travelled a distance of L = −aT 2/2 + v0T . Inserting T gives: L = v20/(2a). Hence the
deceleration needs to be: a = v20/(2L), which we can insert into the equation of motion to obtain:
mv20/(2L) = −mg + F . Hence the force is: F = mg +mv20/(2L).

b) The kinetic energy before decelerationmv2/2 plus the potential energy gained during deceleration
needs to correspond to the Force on the rope times the deceleration distance. Therefore mv2/2 +

mgL = FL. This again gives the force of: F = mv2

2L +mg = 1500kg22m2/s2

22m +1500kg10m/2 = 16500N .

9. Bungee Jump

a) (1) Epot = mgh; Ekin = 0; ESeil = 0

(2) Epot = mg(h− L); Ekin = mv2/2; ESeil = 0

(3) Epot = mg(h− (L+ x)); Ekin = 0; ESeil = kx2/2

b) Conservation of energy says that the energies in (1) and (2) must be equal, i.e. mgh = mg(h−
L) + mv2/2. In other words: mgL = mv2/2, such that we obtain for the speed: v =

√
2gL =√

500m/s =
√

5 · 10m/s ' 22m/s

c) The only value with an error is the length of the rope L with a relative error of 4%. Thus the
speed, which goes like the square root of the rope length has half this relative error or rv = 2%.

d) Here, we have to consider the energies in case (3) and (1) above, where we find: mgh =
mg(h − (L + x)) + kx2/2 or mg(L + x) = kx2/2. This quadratic equation in x can be solved to

give: x =
mg+
√

(mg)2+2mgLk

k = 1000N+
√
106N2+2.5·106N2

50N/m = 1000(1+
√
3.5)

50 m = 20(1 +
√

3.5)m ' 57m.

The height of the fall therefore is H = x+L = 82m or you end up at the closest s = h−H = 18m
above the water surface.

e) s = h− (L+ x) = h− (L+
mg+
√

(mg)2+2mgLk

k ), where m, k, and L carry uncertainties. We thus
need to know:
∂s
∂m = g

k + mg2+kgL

k
√

(mg)2+2mgLk

Numerically: σm
∂s
∂m = 2.2m

∂s
∂k = −mg(mg+kL+

√
(mg)2+2mgLk)

k2
√

(mg)2+2mgLk

Numerically: σk
∂s
∂k = 0.9m

∂s
∂L = 1 + mg√

(mg)2+2mgLk

Numerically: σL
∂s
∂L = 1.5m

∂s
∂h = 1

Numerically: σh
∂s
∂h = 2m

And finally: σs =
√

2.22 + 0.92 + 1.52 + 22m = 3.5m
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