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1 Exercises for chapter 1

Solution to exercise 1

1. We write

Z(J) =
∑
n≥0

Jn

n!
Gn , W (J) = logZ(J) =

∑
n≥0

Jn

n!
Cn

with G0 = 1 and C0 = 0. Direct expansion leads to

C1 = G1 ,

C2 = G2 −G2
1 ,

C3 = G3 − 3G2G1 + 2G3
1 ,

C4 = G4 − 4G3G1 − 3G2
2 + 12G2G

2
1 − 6G4

1 ,

C5 = G5 − 5G4G1 − 10G3G2 + 20G3G
2
1 + 30G2

2G1 − 60G2G
3
1 + 24G5

1 .

A check is possible: in each line the coefficients must sum to zero.

2. The equation Z ′ = WZ can be written out:∑
m≥0

Jm

m!
Gm+1 =

∑
n,k≥0

Jn+k

n! k!
CnGk

and equation powers of J on both sides gives

Gm+1 =
∑
n,k≥0

m!

n! k!
CnGk θ(n+ k = m)

which is the desired result after we shift m→ m− 1.

3. Denoting connected diagrams by hatching, and unconnected ones by light shad-
ing, we have

Gn = , Cn =

Singling out one external leg, we then have

=
∑

where the sum runs over all ways to distribute the other m−1 legs over the two
blobs: this explains the binomial. The split is unambiguous since the left-hand
leg must be part of a connected (sub)diagram.

Solution to exercise 2
The action, including the source,

S(ϕ) = µϕ2/2 + λϕ4/4!− Jϕ

will, as |ϕ| → ∞, go to positive infinity for any λ > 0, irrespective of µ and J , and
the integral Z(J) always exists. For λ < 0 the action will always go to negative
infinity, and Z(J) never exists.

2



Solution to exercise 3
In this exercise, ~ is introduced as a ‘sneak preview’. The action must have the
dimensionality of ~ since S(ϕ)/~ occurs in the exponent.

1. The combinations µϕ2 and λϕ4 both have the dimensionality of ~. Therefore
g = ~λ/µ2 = ~(λϕ4)/(µϕ2)2 has dimension ~ · ~/(~)2

2. Under the substitution, ϕ takes on all real values if ψ runs from 0 to infinity.
The action and the integration element take the form

S(ϕ) =
3~
8g

(
ψ +

1

ψ
− 2

)
, dϕ =

√
3~

16µg

(
ψ−3/4 + ψ−5/4

)
dψ

By taking ψ → ψ−1 the term with ψ−5/4 is brought in the same form as that
with ψ−3/4, and the result follows.

3. The integral can be written as

H =

√
~x
µ
exK1/4(x) , x =

3

4g

4. g → 0 corresponds to x→∞, and g →∞ corresponds to x→ 0.

Solution to exercise 4
Denoting the order of the derivative by superscripts, the SDe can be written as

~5

5!
λ6Z

(5) +
~4

4!
λ5Z

(4) +
~3

3!
λ4Z

(3) +
~2

2!
λ3Z

(2) + ~µZ(1) − JZ = 0

Solution to exercise 5
From the definition of φ(J) we see that

∂

∂J
Z(J) = φ(J)Z(J) ⇒ ∂2

(∂J)2Z(J) =
(
φ(J)2 + φ′(J)

)
Z(J)

and so on. The unit function e(J) is introduced to give ∂/∂J something to work on.

Solution to exercise 6
Denoting ∂nφ(J)/∂Jn by φn, the SDe reads

φ0 =
J

µ
− λ3

2µ

(
φ2

0 + φ1

)
− λ4

6µ

(
φ3

0 + 3φ0φ1 + φ2

)
− λ5

24µ

(
φ3

0 + 6φ2
0φ1 + 4φ0φ2 + 3φ2

1 + φ3

)
− λ6

120µ

(
φ5

0 + 10φ3
0φ1 + 10φ2

0φ2 + 15φ0φ
2
1 + 5φ0φ3 + 10φ1φ2 + φ4

)
Solution to exercise 7
An example of MAPLE code that does the trick is
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phi:=0: for k from 0 to 6 do

phi:=convert(expand(series( z*J/mu

- u*mu/6*(phi^3 + 3*phi*diff(phi,J) + diff(phi,J$2)),

z=0,k+1)),polynom);

od: phi:=subs(z=1,phi):

for n from 2 by 2 to 6 do C[n]:=coeff(phi,J,n-1)*(n-1)! od;

Solution to exercise 8

1. Denoting the exponential by A, we have

µ
∂

∂J
A = µϕA , λ3

∂

∂µ
A = −λ3

2
ϕ2A , λ3

∂

∂λ3

A = −λ4

6
ϕ3A

and the proof is the same as that of the SDe. We find

S =

(
µ
∂

∂J
− λ3

∂

∂µ
− λ4

∂

∂λ3

− J
)
Z = 0

2. The object S is srtrictly zero. Taking the combination(
∂

∂J
− φ
)
S = 0

and recalling that ∂Z/∂J = φZ gives the desired result.

3. The operation ∂/∂J adds an eternal line to each diagram. This can be done
by attaching the new line to a propagator, or to a three-point vertex:

→ ∼ 1

µ
→ −λ3

µ3
,

→ ∼ λ3 →
λ4

µ
.

The derivative ensures that all propagators and vertices undergo this operation.
The only diagram that is not accessible is the bare propagator, which explains
the term 1/µ.

Solution to exercise 9
The easiest solution is to use two-point vertices on a single loop. From the symmetry
factors of the diagrams

∼ 1

2
, ∼ 1

4
, ∼ 1

6

we see that a symmetry factor of 1/42 belongs to such a diagram with 21 two-point
vertices, the icosikaihenagon.
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Solution to exercise 10

= + + + + + + +

The algebraic form is given in exercise 6.

Solution to exercise 11
Indicating the order of the iteration by a subscript we write

0

= 0 ,
1

= ,
1

=

2

= + + + +

2

= + + +

2

= +

3
= +

2

2

+
2

2

2

+ + + +

+
2

+
2

+

2

+
2

+ +

After the third iteration we end up with 81 distinct diagrams, with up to 9 sources.

Solution to exercise 12
Treating the 12 diagram in order:

we have the following multiplicity factor, (inverse) symmetry factor, and number of
loops:

1 2 3 4 5 6 7 8 9 10 11 12
mult. 3 6 6 3 6 1 3 60 90 1 1 6
symm. 1 2 1 1 1 4 2 1 1 48 24 4
loops 0 1 1 1 1 2 2 1 1 4 3 2

Solution to exercise 13
The diagram has 8 loops, its symmetry factor is (2!)−4(3!)−3/2 = 1/6912, and its
multiplicity is (14)!/2!/3!/(4!)3 = 525525.

Solution to exercise 14

1. The Dyson series can be written as

1

µ0

− 1

µ0

δµ
1

µ0

+
1

µ0

δµ
1

µ0

δµ
1

µ0

· · · = 1

µ0

1

1 + δµ/µ0

=
1

µ
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2.

R(µ)−R(µ0) = −1

2

δµ

µ0

+
1

4

(
δµ

µ0

)2

− 1

6

(
δµ

µ0

)3

+ · · ·

= −1

2
log

(
1 +

δµ

µ0

)
= −1

2
log

(
µ

µ0

)
Dividing by δµ and letting δµ go to zero we find that

R′(µ) = − 1

2µ

and this proves the result.

3. The stepping equation implies the correct tadpole:

λ3

µ

∂

∂µ

(
1

2
log

(
c

µ

))
= − λ3

2µ2

4. The sum of these diagrams is

1 +
∑
k≥1

1

k!
R(µ)k = exp(R(µ)) =

√
c

µ
=

√
2π

µ
=

∫
dϕ exp

(
−µ

2
ϕ2
)

2 Exercises for chapter 2

Solution to exercise 15
This is essentially a repetition of exercise 8, with the inclusion of ~.

1. It suffices to include a factor ~ with every derivative, and the remember that
~Z ′ = φZ.

2. In the stepping term (~λ3/µ) ∂
∂µ

the λ3 requires a 1/~, but we have two extra

propagators, giving a ~2. In the stepping term (~λ4/µ) ∂
∂λ3

the coupling is
simply changed from λ3 to λ4, and there is one new propagator.

Solution to exercise 16
This is a repetition of exercise 3, with two couplings instead of one. We use that
µϕ2, λ3ϕ

3 and λ4ϕ
4 all have the dimensionality of ~. Therefore ~(λ4ϕ

4)/(µϕ2)2 and
~(λ3ϕ

3)2/(µϕ2)3 are dimensionless, as is λ2
3/(µλ4).

Solution to exercise 17

1. The significant step is to realize that

dy

dJ
=

1

y
→ d

dJ
=

1

y

d

dy

Simple substitution then leads to the result.
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2. Under the Ansatz we can write

yw2 =
∑
n≥0

~n y3−3n
∑
m,`≥0

ama` θ(m+ ` = n) ,

~w′ =
∑
n≥1

~nan−1 y
3−3n

and the result follows from equating the terms with given powers of y. The
fact that they come out so nicely proves the consistency of the Ansatz.

3. By putting n = 0 we immediately see that a2
0 = 1. The standard tree-level

solution is w = y so that a0 = 1. Furthermore we can write

∑
m,`≥0

ama` θ(m+ ` = n) = 2an +
n−1∑
`=1

an−`a`

4. Putting n = 1 in the recursion immediately gives a1 = −1/2. For factorially
divergent series, we can approximate, for large n,

n−1∑
`=1

an−`a` ≈ 2a1an−1 = −an−1

so that an ≈ an−1 3(n− 1)/2.

5. A simple MAPLE code to compute the an is

a[0]:=1:a[1]:=-1/2: nmax:=1000;

for n from 2 to nmax do

a[n]:=1/2*(a[n-1]*(3*n-4)-sum(a[j]*a[n-j],j=1..n-1));

od:

The coefficient a1000 is approximately −1.579910647× 102740.

This plot shows the ra-
tio of an and −(3/2)nΓ(n).
The asymptotic ratio of
about 0.32 can be read off,
or by direct inspection of
a1000, which gives a ratio of
0.3182213017.

6. The series is Borel summable since the coefficients do not increase faster than
n!. The integral is ambiguous because, apart from a0, all coefficients have the
same sign.

Solution to exercise 18
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1. We can write

−~ ∂

∂ϕ

(
ϕm e−S/~

)
=

(
−~mϕm−1 + µϕm+1 +

λ

6
ϕm+3

)
e−S/~

and this integrates to zero since it is a total derivative. The assumption on
H−1 is to ensure that mHm−1 = 0 for m = 0.

2. This goes in exactly the same way. The assumption on the endpoint behaviour
is necessary to have the integral vanish.

Solution to exercise 19

1. The interaction term reads λϕm+1/(m + 1)!. The classical equatuion follows
from S ′(φ) = J .

2. Writing x for J/µ we have φ = x− (λ/µm!)φm. The Lagrange expansion then
tells us that

φ = x+
∑
n≥1

1

n!

∂n−1

(∂x)n−1

(
− λ

µm!
xm
)n

,
∂n−1

(∂x)n−1x
mn =

(mn)!

(mn− n+ 1)!
xmn−n+1

and the result follows immediately.

3. For ϕ3 theory:

C2 =
~
µ
, C3 = −~2λ

µ3
, C4 = 3

~3λ2

µ5
, C5 = −15

~4λ3

µ7

For ϕ4 theory:

C2 =
~
µ
, C4 = −~3λ

µ4
, C6 = 10

~5λ2

µ7
, C8 = −280

~7λ3

µ10

Solution to exercise 20

A 1P reducible vacuum graph has to look like and consists of two connected
pieces both with a single leg, which is impossible in ϕ4 theory.

Solution to exercise 21
From Γ′(φ) = J we find, after differentiation to J :

Γ′′(φ)φ′(J) = 1 , Γ′′′(φ)φ′(J)2 + Γ′′(φ)φ′′(J) = 0

and therefore φ′ = 1/Γ′′ and φ′′ = −Γ′′′/Γ′′3. Inserting and expanding up to O (~3)
then gives

0 = Γ′0 − µφ−
λ

6
φ3 + ~

(
Γ′1 −

λφ

2Γ′′0

)
+ ~2

(
Γ′2 +

λφΓ′′1
2Γ′′0

2 +
λΓ′′′0
6Γ′′0

3

)
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Sucessively asking the coefficients of ~0,1,2 to vanish, we find

Γ′0 = µφ+
λ

6
φ3 ,

Γ′1 =
λφ

2µ+ λφ2
=

λ

2µ
φ− λ2

4µ2
φ3 +

λ3

8µ3
φ5 + · · · ,

Γ′2 =
2λ2φ(λφ2 − 10µ)

3(2µ+ λϕ2)4
= − 5λ2

12µ3
φ+

7λ3

8µ4
φ3 − 9λ4

8µ5
φ5 + · · ·

hence

Γ0 =
µ

2
φ2 +

λ

24
φ4 ,

Γ1 =
λ

4µ
φ2 − λ2

16µ2
φ4 +

λ3

48µ3
φ6 ,

Γ2 = − 5λ2

24µ3
φ2 +

7λ3

32µ4
φ4 − 9λ4

48µ5
φ6

The 1PI diagrams with 2 and 4 legs are given in appendix 19.5.8-9. The 6-leg
diagrams, with their sm, are

one loop : sm = 15

two loops : sm =
45

2
, sm =

45

2
, sm =

90

2
, sm = 45

Solution to exercise 22

1. This step is completely analogous to that of exercise 21.

2. Here the significant issue is to realize that Γ′′(φ) = x+ A′(x) for x = 1 + φ.

3. We can write

xA(x) =
∑
n≥1

(
~
2

)n
κn x

3−3n

A(x)A′(x) =
∑
n≥2

(
~
2

)n
x3−3n

∑
m,`≥12

κmκ`(3− 2`)θ(m+ ` = n)

Inspection of the terms with equal powers of x gives the recursion relation.
The values of κ1,...,5 follow immediately.

4. This can be read off immediately: the only point to keep in mind is that a
term with φt in the effective action picks up a Feynman rule with a factor t!.
The number (3L− 4 + n)!/(3L− 3)! is equal to (3L− 2)(3L− 1) · · · (3L+ n−
5)(3L + n− 4), the product of n− 1 subsequent numbers. This is guaranteed
to contain more than L factors of 2 if n > L + 1,1 and hence the total sm is
integer if n is sufficiently large.

1Actually for smaller n since we do not count factors of 4,8,. . . in this argument.
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Solution to exercise 23

1. The domain of ϕ is (−∞, 1/a). As ϕ → −∞, exp(−S/~) decreases exponen-
tially; for ϕ→ 1/a we have exp(−S/~) ≈ (1− aϕ)µ/a

2~.

2. Expanding in powers of ϕ we have

S(ϕ) =
µ

2
ϕ2 +

∑
n≥3

µan−2

n
ϕn

and this gives the Feynman rule −(n− 1)!µan−2/~ for the n-point vertex.

3. From
S ′(ϕ) =

µϕ

1− aϕ
=
∑
n≥0

µan ϕn+1

we find the SDe

µ~ ∂
∂J

1− a~ ∂
∂J

Z(J) =
∑
n≥0

µan~n+1 ∂n+1

(∂J)n+1Z = JZ(J)

Multiplying this on both sides by 1− a~ ∂
∂J

gives the result.

4. Dividing the equation by Z(J) leads immediately to µφ = J − a~− aJφ.

5. This is easier than it looks! For this action the stepping equation reads

Cn+1 =
~
µ

(
λ3

∂

∂µ
+
∑
k≥3

λk+1
∂

∂λk

)
Cn

The three two-loop vacuum diagrams (see appendix 19.5.1) evaluate to

5~λ2
3

24µ3
− hλ4

8µ2

Applying the stepping rule once gives the two-loop tadpole:

−5~2λ3
3

8µ5
+

2~2λ3λ4

3µ4
− ~2λ5

8µ3

and this vanishes if we insert the values of the couplings. Therefore the two-
loop propagator also vanishes.Alternatively, you might also write out the 7
diagrams for the two-loop tadpole.

6. From φ(J) in point 4 we can rewrite to find J(φ):

J(φ) =
µφ+ a~
1− aφ

= Γ′(φ)

and then integration gives the effective action.
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7. Differentiating J(φ) gives

∂

∂φ
J(φ) =

µ+ a2~
(1− aφ)2

= Γ′′(φ)

and this is positive on (−∞, 1/a). Hence the effective action is concave.

8. The action including the source is

S(ϕ) = − µ
a2

log(1− aϕ)−
(µ
a

+ J
)
ϕ

Therefore the action does not go to positive infinity for ϕ → −∞ when J
becomes too negative, and the path integral becomes undefined.

Solution to exercise 24
This can be done by direct inspection of the vacuum diagrams, see appendix 19.5.1-2.
The three-loop result is intimately related to the fact that in the Stirling approxi-
mation of the factorial the asymptotic correction terms of log(n!) contain only odd
powers of 1/n (see equation 19.405).

Solution to exercise 25

1. The action has dimensionality µ/a2 which must be the dimensionality of ~.
The expansion

S(ϕ) =
µ

2
ϕ2 +

∑
k≥3

µak−2

k!
ϕk

proves the Feynman rules.

2. From
S ′(ϕ) =

µ

a
(eaϕ − 1)

the SDe for the path integral reads

µ

a

(
exp

(
a~

∂

∂J

)
− 1

)
Z(J) =

µ

a
(Z(J + a~)− Z(J)) = JZ(J)

3. You do not have to find the solution, only to prove it! Replacing J by J + a~
inside the Gamma function is the crucial step:

Γ

(
µ+ a(J + a~)

a2~

)
= Γ

(
µ+ aJ

a2~

)
µ+ aJ

a2~

It is trivially checked that Z(0) = 1. You can also compute Z(J) directly as an
integral, where the variable transformation ϕ = log(a2~z/µ)/a is useful (with
0 ≤ z <∞).

4. Up to an additive constant

log(Z(J)) =
J

a~
log

(
a2~
µ

)
+ log Γ

(
µ+ aJ

a2~

)
and differentiating to J gives the result.
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5. This step involves simply writing out the asymptotic expansion of the ψ func-
tion according to appendix 19.20.6

6. This follows directly from the properties of the ψ function.

7. For ϕ→ +∞ the action always goes to positive infinity, but for ϕ→ −∞ only
as long as J larger than −µ/a, just like in exercise 23.

Solution to exercise 26
The 5-point skeleton diagrams are

× 15 , × 10 , × 1

The last diagram has no tree-level contribution.

Solution to exercise 27
For simplicity we adopt λ3,4 = 1. The external fields φc are represented as source
vertices. Notice that the external field lines are not external lines and therefore
contribute to the symmetry factor!

1. The one-loop diagrams contributing to the effective action are

+ + = −1

2
log µ− φ2

c

4µ
+

φ4
c

16µ2

The two-loop diagrams are

+ + + + + = − ~
8µ2

+
5~φ2

c

24µ3
− 7~φ4

c

32µ4

To get the effective action we must multiply this by (−~). The result is con-
sisten with exercise 21, except that that approach cannot give the φ0

c terms.

2. The tree-level contributions to the propagator are

+ + =
~
µ
− ~φ2

c

2µ2
+

~φ4
c

4µ3

The one-loop contribution is

+ + + + + + +

+ + + + + +

= − ~2

2µ3
+

5~2φ2
c

4µ4
− 7~2φ4

c

4µ5

3. It is easy to verify that the propagator of item 2 equals −2~ ∂
∂µ

of the diagrams
of item 1.
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4. The one-loop diagrams contributing to the effective action are

+ + + = −1

2
log µ− φc

2µ
+

φ2
c

4µ2
− φ3

c

6µ3

The two-loop diagrams are

+ + + + + +

=
~

12µ3
− ~φc

4µ4
+

~φ2
c

2µ5
− 5~φ3

c

6µ6

The tree diagrams contributing to the propagator are

+ + + =
~
µ
− ~φc

µ2
− ~φ2

c

µ3
− ~φ3

c

µ4

The one-loop diagrams contributing to the ‘propagator’ are

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + +

=
~2

2µ4
− 2~2φc

µ5
+

5~2φ2
c

µ6
− 10~2φ3

c

µ7

3 Exercises for chapter 3

Solution to exercise 28
Consider an arbitrary connected diagram without dotted loops, and single out one
external line to be on the left-hand side in the SDe. Then walk into the diagram
up to the first vertex. This has a definite place in the SDe. Remove the line and
the vertex, and proceed the the (possibly several disconnected) pieces of what is left.
Any ambiguities are resolved by the symmetry factors, that are there precisely for
this reason. This way we can, for each diagram, write a ‘history’ of its construction.
If we include (a combination of) dotted loops, once a dotted loop is encountered we
can determine in which of the ‘black boxes’ it belongs, and threat these as extra
vertices, and proceed as above.

Solution to exercise 29
The only dotted 1PI diagrams possible in ϕ3 are

The SDe is a simplified version of Eq.(3.11):

= + + + +

If we include a dot on loops with 3 propagators, it is still not possible to form
divergent 1PI diagrams with more than 3 legs, and altough the number of divergent
1PI diagrams becomes infinite, the theory remains renormalizable.
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Solution to exercise 30
Any skeleton diagram is built up from (possibly pollywog) vertices and dressed prop-
agators. These can be unambiguously split up into 1PI pieces, but not unambigously
into non-1PI pieces. Therefore the only acceptable objects to pick up counterterms
are the 1PI (sub)diagrams. Note that tadpoles are simply removed by their coun-
terterms.

Solution to exercise 31
We put ~ = µ = λ = 1 for simplicity in this, and the following, exercise. The
diagrams without counterterms amount to sm = −5/6 (see Eq.(19.56)). The coun-
tertermed diagrams are

1

+
1

+
1

+
1

+
1

+ 1 +

1
1 +

11

+
2

+ 2 + 3

The requirement that the renormalized correction vanishes is therefore

−5

6
+

5

6
η1 −

5

4
δ1 −

1

2
δ2

1 +
1

2
δ1η1 +

1

2
δ2 −

1

2
η2 − δ3 = 0

and inserting δ1,2 and η1,2 from Eqs.(3.52-54) gives δ3 = −1/8.

Solution to exercise 32
The diagrams without counterterms amount to sm = 45/2 (see Eq.(19.60)). The
countertermed diagrams are

1 + 1 + 1 +
1

+
1

+ 1 +
1

+

1

+ 1 +
1

+
1

+ 1 + 2 +
2

+

1 1 + 1

1

+
1 1

+
1

1
+

3

The requirement that the renormalized correction vanishes is therefore

45

2
− 63

4
η1 + 21δ1 +

9

2
δ2

1 − 6δ1η1 +
3

2
η2

1 − 3δ2 + 3η2 − η3 = 0

and inserting δ1,2 and η1,2 from Eqs.(3.52-54) gives η3 = 11/8.

Solution to exercise 33
The diagrams are

+ + + + + +

The one-loop counterterms cancel the one-loop diagrams except the last one, which
has sm = 15, and this is consistent with Eq.(3.4).

Solution to exercise 34
Rather than giving all diagrams explicitly, it is better to use combinatorics here.
The unrenormalized 4-loop diagrams have sm = 115/48. The three-loop diagrams
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have sm = −5/6, and they all contain 3 vertices and 5 propagataors (not counting
the two legs, of course). Adding one-loop counterterms therefore gives for each
diagram a factor 3η1 − 5δ1. The two-loop diagrams, with total sm = 5/12, have 2
vertices and 3 propagators. We can add either two one-loop counterterms or one
two-loop counterterm, leading to a factor η2

1 − 6η1δ1 + 6δ2
1 + 2η2− 3δ3. The one-loop

diagram (sm = −1/2) allows for only one vertex counterterm but any number of
mass counterterms, so is multiplied by η1δ2

1 − δ3
1 − η2δ1 − η1δ2 + η3 − δ3. The total

condition on δ4 therefore becomes

δ4 =
115

48
− 5

6
(3η1 − 5δ1) +

5

12
(η2

1 − 6η1δ1 + 6δ2
1 + 2η2 − 3δ2)

−1

2
(η1δ

2
1 − δ3

1 − η2δ1 − η1δ2 + 2δ1δ2 + η3 − δ3) = − 9

16

Solution to exercise 35
Below, we give a simple MAPLE code to perform renormalization in ϕ4 theory. The
end result is the comparison of the coefficients in t2n(u) and τ2n(û), that gives the
improvement factors, for n up to 12.

N:=50: Order:=N+1: nmax:=12:

w:=expand(series(log(1+sum(G[2*j]*x^(2*j)/(2*j)!,j=1..Order/2)),x)):

for n from 2 by 2 to N do C[n]:=coeff(w,x,n)*n! od:

for n from 0 by 2 to nmax do

H[n]:=0:

for k from 0 to N do

m:=2*k+n/2;

H[n]:=H[n]+(-lambda/24/h)^k*(h/mu)^m*(2*m)!/2^m/m!/k!;

od;

G[n]:=series(H[n]/H[0],h=0);

od:

for n from 2 by 2 to nmax do

C[n]:=subs(lambda=u*mu^2/h,convert(series(C[n],h=0),polynom));

t[n]:=expand(C[n]/(-u)^(n/2-1)*(mu/h)^(n/2));

od:

U:=convert(solve(v=series(u*t[4]/t[2]^2,u=0,N-1),u),polynom):

s:=expand(U/v):

for n from 2 by 2 to nmax do

tau[n]:=series(s^(n/2-1)*subs(u=U,t[n]/t[2]^(n/2)),v=0,N-2);

od:

for n from 6 by 2 to nmax do w[n]:=[]:

for k from 0 to N-2 do

w[n]:=[op(w[n]),[k,coeff(t[n],u,k)/coeff(tau[n],v,k)]];

od; od:

plot([seq(w[2*j],j=3..nmax/2),[[0,exp(15./4)],[N-nmax,exp(15./4)]]],0..N-nmax);

Solution to exercise 36
This can be solved in analogy to exercise 34. All relevant diagrams are found in

15



appendix 19.5.5-7. The pertinent diagrammatic equations are

− γ1 = 0 , − δ1 = 0 , − η1 = 0 ,

+ (η1 − δ1) − γ2 = 0 ,

+ + (2η1 − 2δ1)− δ2 = 0 ,

+ + + (3η1 − 3δ1)− η2 = 0 ,

+ + + (3η1 − 4δ1) + (η2 − δ2 − η1δ1 + δ2
1)− γ3 = 0

Solution to exercise 37

1. The SDe for the ψ field reads

J = mψ +
g3

2
(ψ2 + ~ψ′) +

g4

6
(ψ3 + 3~ψψ′ + ~2ψ′′)

2. Replacing ψ by φ+ t we can rearrange terms:

J = m(φ+ t) +
g3

2
(φ2 + 2tφ+ t2 + ~φ′)

+
g4

6
(φ2 + 3tφ2 + 3t2φ+ t3 + 3~φφ′ + 3~tφ′ + ~2φ′′)

=
(
m+ tg3 +

g4

2
t2
)
φ+

g3 + g4t

2
(φ2 + ~φ′)

+
g4

6
(φ3 + 3~φφ′ + ~2φ′′) +

(
mt+

1

2
g3t

2 +
1

6
t3
)

= S ′′(t)φ+
1

2
S ′′′(t)(φ2 + ~φ′) +

1

6
S ′′′′(t)(φ3 + 3~φφ′ + ~2φ′′) + S ′(t)

and this proves the form of the action in terms of ϕ.

Solution to exercise 38
Let the renormalized parameters be µr and λr, and ur = ~λ2

r/µ
3
r. Exercise 36 then

tells us that the bare parameters, those occurring in the action, are given by

µ = µr(1 + ur/2− u2
r./2 + · · ·) , λ = λr(1− ur − u2

r/2 + · · ·)

Writing u = ~λ2/µ3 and inserting everything into Eq.(3.71), expansion in powers of
ur gives

T =
~λr
µr

(
−1

2
+

1

2
ur +

1

4
u2
r + · · ·

)
which corresponds precisely to γ1 = −1/2, γ2 = 1/2, γ3 = 1/4.

Solution to exercise 39
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1. This follows immediately from Gk = Hk/H0.

2. This is necessary since the tadpole in completely cancelled by the counterterms,
and an 1PI tadpole graph cannot contain a lower-loop tadpole since then it
would not be 1PI.

3. The SDe-like equation is a (linear) recurrence relation, so we can find all Gk

by successive calculation. With x = 2/λ:

G2 = −xT , G3 = x2µT + x~ , G4 = −x3µ2T + x2T 2 − x2µ~ ,

G5 = x4µ3T − 2x3µT 2 + x3µ2~− 4x2T~

4. Write T =
∑

k≥1 tk~k. Then we can successively put the coefficient of ~k in
G2k+1 to zero, and so we find

t1 = − 1

µx
, t2 = − 2

µ4x3
, t3 = − 20

µ7x5
, t4 = − 352

µ10x7
, . . .

Solution to exercise 40

1. This follows directly from the perturbation expansion, where the tadpole term
is also expanded. The only delicate points are the realization that the tadpole
term must be O (~), and that odd powers of ϕ must integrate to zero.

2. This is governed by the fact that in each term the power of ~ is p−k = (n+k)/2.
The rest of this exercise is embodied in the following MAPLE code:

N:=30; Order:=N+1: nmax:=6;

w:=expand(series(log(1+sum(G[j]*x^j/j!,j=1..nmax)),x=0,nmax+1)):

for k from 1 to nmax do C[k]:=coeff(w,x,k)*k! od:

#T:=0;

for n from 0 to nmax do

H[n]:=0;

for k from 0 to 2*N-n do

for r from 0 to 2*N-n-k do

if (n+3*k+r) mod 2 =0 then

p := (n+3*k+r)/2;

H[n]:=H[n]+(-lambda/6/h)^k*(-K)^r*(h/mu)^p*(2*p)!/2^p/p!/k!/r!;

fi;

od;

od;

G[n]:=expand(series(H[n]/H[0],h=0));

od:

for k from 1 to nmax do C[k]:=convert(expand(series(C[k],h=0)),polynom); od:

K:=sum(d[j+1]*h^j,j=0..N):

C[1]:=series(C[1],h=0):

for k from 1 to N do

d[k]:=solve(coeff(C[1],h,k)=0,d[k]);

17



C[1]:=expand(C[1]);

od:

expand(algsubs(lambda^2=u/h*mu^3,convert(expand(series(C[1],h=0)),polynom)));

for n from 2 to nmax do

C[n]:=convert(expand(series(C[n],h=0)),polynom);

t[n]:=algsubs(lambda^2=u*mu^3/h,expand((-1)^n*C[n]/lambda^(n-2)/h^(n-1)*mu^(2*n-3)));

od:

us:=solve(v=series(u*t[3]^2/t[2]^3,u=0),u):

for n from 2 to nmax do

tau[n]:=series(subs(u=us,convert(series(t[n]*t[2]^(n-3)/t[3]^(n-2),u=0),polynom)),v=0);

od:

for n from 4 to nmax do

w[n]:=[];

for k from 0 to N-nmax do

w[n]:=[op(w[n]),[k,coeff(t[n],u,k)/coeff(tau[n],v,k)]];

od;

od:

plot([seq(w[j],j=4..nmax),[[0,exp(7/3.)],[N-nmax,exp(7/3.)]]]);

This is not the fastest possible code, but at least it is transparent. For the
purely one-loop tadpole renormalization, it suffices to put

K= lambda/(2*mu^2)

and skip the computation of the coefficients d[k].

4 Exercises for chapter 4

Solution to exercise 41

1. The SDe for the path integral:

~µ
∂

∂J1

+ ~3λ

2

∂

∂J1

∂2

(∂J2)2 = J1Z (and 1 ↔ 2)

2. The SDe for the field functions:

φ1 =
J1

µ
− λ

2µ

(
φ1φ

2
2 + ~φ1

∂

∂J2

φ2 + 2~φ2
∂

∂J2

φ1 + ~2 ∂2

(∂J1)2φ2

)
(and 1 ↔ 2)

3. Diagrammatically:

1 = 1 +
1

1

2

2
+ 1

2

2

1

+ 1

2

1

2

+
2

2

1

1 (and 1 ↔ 2)

Solution to exercise 42
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1. Doing the ϕ2 integral:∫
dϕ2 exp

(
−µϕ

2
2

2~

(
1 +

λϕ2
1

2µ

))
∼
(

1 +
λϕ2

1

2µ

)−1/2

= exp

(
−1

~

[
~
2

log

(
1 +

λϕ2
1

2µ

)])
2. After the ϕ2 integral:

S(ϕ1) = −J1ϕ1 +
1

2

(
µ+

~λ
2µ

)
ϕ2

1 −
~λ2

16µ2
ϕ4

1 +
~λ3

48µ3
ϕ6

1 + · · ·

which leads to the Feynman rules

=
~

µ+ ~λ
2µ

, =
3λ2

2µ2
, = −15λ3

µ3

3. Before the ϕ2 integral:

C2 = 1 + 1 1

2

+
2

1 1 1

2

+ 1 1

2

1

+ 1 12

2

1

+ · · ·

=
~
µ
− ~2λ

2µ3
+

~3λ2

µ5

(
1

4
+

1

4
+

1

2

)
+ · · · ,

C4 = 2
1

1

1

1

2

+ · · · = 3~4λ2

2µ6
+ · · ·

After integrating out ϕ2:

C2 = + =
~

µ+ ~λ
2µ

+
3λ2

4µ2

(
~

µ+ ~λ
2µ

)3

+ · · · ,

C4 = + · · · = 3λ2

2µ2

(
~

µ+ ~λ
2µ

)4

+ · · ·

If we expand in ~ the two formulations are identical up to the indicated order.

Solution to exercise 43

1. Concentrate on φ1, and let n be 2, 3, . . . , N where we implicitly sum over n.
The interaction term is (λ/4!)(ϕ2

1 + ϕ2
n)2 = λϕ4

1/24 + λϕ2
1ϕ

2
n/12 + · · · so that

the Feynman rules are −λ/~ for a ϕ4
1 coupling and −λ/3~ for a ϕ2

1ϕ
2
n one. The

SDe for φ1 is therefore

φ1 =
J1

µ
− λ

µ
K ,

K =
1

6
φ3

1 +
1

2

1

3
φ2φ

2
n +

~
2
φ1∇1φ1 +

~
3
φn∇1φn +

~
2

1

3
φ1∇nφn +

~2

6
∇2

1φ1 +
~
2

1

3
∇2
nφ1

=
1

6
φ1(φ2

1 + φ2
n) +

~
6
φ1(∇1φ1 +∇nφn) +

~
6
∇1(φ2

1 + φ2
n) +

~2

6
(∇2

1 +∇2
n)φ1

=
1

6

(
φ1|~φ|2 + ~φ1

~∇ · ~φ+ ~∇1|~φ|2 + ~2~∇2φ1

)
19



2. We use

S1(~φ) = µϕ1 +
λ

6
ϕ1|~φ|2

and follow the (more-field analogue of) the SDe

3. We use

|~φ|2 = 2xF (x)2 , ∇jφk = δjkF (x) + JjJkF
′(x) ,

∇j∇kφ` = (Jjδk` + Jkδj` + J`δjk)F
′(x) + JjJkJ`F

′′(x)

and perform the appropriate sums.

Solution to exercise 44

1. This follows directly from, for instance,

∂

∂ϕ1

S(ϕ1, ϕ2, ϕ3) = µϕ1 + gϕ2ϕ3 − J1

2.

1 = 1 + 1
2

3

+ 1
2

3

3. This holds trivially for the tree propagators. There are two operations on
connected diagrams: splitting an external line into two (where for instance
1→ 2 + 3), and this reduces n1 by one, while increasing n2,3 by one; or closing
a loop, which reduces one of the nj by two (the reverse operations are also
possible of course). Starting with the tree diagram for 1→ 2 + 3 we thus prove
the statement.

4. A two-point diagram for, say, Π12 would have n1 = n2 = 1 and n3 = 0 and
is therefore impossible. A tadpole for field 1, say, is necessarily built from a
single 123 vertex and a Π23, and hence is impossible.

Solution to exercise 45

1. This is simply the more-field version of the classical SDe, which prescribes that
the action including the sources must be at a minimum. Here, we shall first
assume that the lines are not oriented.

2. Write the action as
S(~φ) =

∑
n

µn
2
φ2
n + V (φn)

then

Wab = µaδab +Rab , Rab =
∂

∂φa

∂

∂φb
V (~φ)

20



we can interpret this as a matrix expression . The inverse is (summing over
repeated indices)

W−1
bk =

1

µb

(
δbk −Rbk

1

µk
+Rbc

1

µc
Rck

1

µk
−Rbc

1

µc
Rcd

1

µd
Rdk

1

µk
+ · · ·

)
so that in ~W−1

ab we recognize the Dyson-summed propagator with an effec-
tive two-point interaction Rab. The external fields in R do not undergo any
additional interactions: they are classical, external fields.

3. For (Bald) QED, we have

W =

 0 m+ eA eψ̄
eA+m 0 eψ
eψ eψ̄ µ


This can be inverted by standard operations, and we find the following distinct
propagators up to O (e4):

~(W−1)ψψ =
~e2ψ2

m2µ
− 2

~e3ψ2A

m3µ
= + +

~(W−1)ψψ̄ =
~
m
− ~eA
m2µ

+
~2ψψ̄

m2µ
+

~e2A2

m3
− 2

~ψψ̄A
m3µ

− ~e3A3

m4

= + + +

+ + +

~(W−1)ψA = −~eψ
mµ

+
~e2ψA

m2µ
− 2

~e3ψ2ψ̄

m2µ2
− ~e3ψψ̄2

m3µ

= + + + +

~(W−1)AA =
~
µ

+ 2
~e2ψψ̄

mµ2
− 2

~e3ψψ̄A

m2µ2

= + + +

The other propagators are obtained by reversing all arrows.

Solution to exercise 46

1. This is easiest studied if we assume a single interaction λϕn1ϕ
k
2/(n!k!). Up to

one loop, the SDe for φ1 can then be written as

µ1φ1 = J1 −
λ

(n− 1)!k!
φn−1

1 φk2 − ~λ
(

1

2

1

(n− 2)!k!
φn−3

1 φk2
∂

∂J1

φ1

+
1

(n− 2)!(k − 1)!
φn−2

1 φk−1
2

∂

∂J2

φ1 +
1

2

1

(n− 1)!(k − 2)!
φn−1

1 φk−2
2

∂

∂J2

φ2

)
which has precisely the indicated form as long as we remember that ∂

∂J1
φ2 =

∂
∂J2
φ1.
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2. This follows immediately from Eq.(19.470), where we have to use that ∂φk/∂J`
is the inverse of ∂2Γ/∂φk∂φ`, and that both this term and the Wk` have to
be taken at the tree level, since the ~ is already explicitly there. The factor
1/det(W (~0)) is included to make sure that Γ(1)(~0) = 0.

Solution to exercise 47

= + + (and with arrows reversed)

= + +

Since in the vertex no legs are equivalent, all symmetry factors are unity.

Solution to exercise 48
The 2- and 3-loop connected vacuum diagrams are

The symmetry factors are, respectively, 1/2, 1/2, 1/2, 1, 1/4, 1/4, 1/2. Therefore
sm = 1 for the 2-loop vacuum diagrams, and sm = 5/2 for the 3-loop diagrams.

Solution to exercise 49
From exercise we have the form of W , and we can immediately compute

det
(
W (ψ, ψ̄, A)

)
det (W (0, 0, 0))

=
(

1 +
e

m
A
)(

1 +
e

m
A− 2

e2

mµ
ψψ̄

)
and this gives the quoted form for Γ(1). Expanding that to fifth order, we find

Γ(1) = e
A

m
+ e2

(
− A2

2m2
− ψψ̄

mµ

)
+ e3

(
A3

3m3
+
Aψψ̄

m2µ

)
+e4

(
− A4

4m4
− ψ2ψ̄2

m2µ2
− A2ψψ̄

m3µ

)
+ e5

(
A5

5m5
+
A3ψψ̄

m4µ
+

2Aψ2ψ̄2

m3µ2

)
The corresponding 1PI diagrams (with their sm indicated) are

(1) (1) (1) (2) (1) (6)

(2) (2) (2) (24) (6) (4) (4)

Solution to exercise 50
An ‘electron’ loop with n ‘photon’ vertices contains n powers of (−e/m) and has
sm = (n−1)!. The sum of the effective vertices is therefore precisely that of Eq.(4.27).
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Solution to exercise 51
Adding another loop retains the even/odd character of the number of vertices on a
fermion loop: for instance

→

Of course one could have the extra photon line connected to another part of the
diagram, but in that case Furry’s theorem no longer applies to the modified diagram.
Also note that a ϕϕ̄B2 vertex would destroy the validity of Furry’s theorem in higher
orders.

Solution to exercise 52
Here we do not give the complete result, but rather discuss how to obtain it. As
before, we can replace the derivative to the ‘regulator’ by simply a derivative to eiher
m or µ since that has the same effect. We shall drop the overall factor ~.The first
example is (the arrow denoting derivatives)

=
eA

m
→ −eA

m2

The corresponding diagrams are obtained by opening up every propagator (in this
case just one) and entering it on on side or the other: this gives

+ = −2
eA

m2

as required (remember the factor 1/2 that one has to add). The second example is

21

= −e
2A2

2m2
→ e2A2

m3

where we have arbitrarily numbered the vertices for clarity. There are now two ways
to open propagators:

21

+
21

The corresponding propagator diagrams (each carrying the symmetry factor 1/2) are

1

2

(
21

+
2 1

+
2 1

+
21

)
=

2e2A2

m3

The same works for different internal lines:

1 2
= −e

2ψψ̄

mµ
→ e2ψψ̄

m2µ
+
e2ψψ̄

mµ2

1 2

+
12

+
21

+
2 1

=
2e2ψψ̄

m2µ
+

2e2ψψ̄

mµ2

In order e4 we have, for example,
41

32

= −e
4ψ2ψ̄2

2m2µ2
→ e4ψ2ψ̄2

m3µ2
+

e4ψ2ψ̄2

m2µ3

1

2


3

1 2 3 4

2 1 4

+

4

4 3 2 1

3 1 2

+

1

1 4 3 2

32 4

+

4

4 1 2 3

3 2 1


=

2e4ψ2ψ̄2

m3µ2
+

2e4ψ2ψ̄2

m2µ3
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5 Exercises for chapter 5

Solution to exercise 53
First we take n ≥ 2. The recursion relation leads, under the Ansatz, to

ABn =
γ

µ

(
ABn+1 + ABn−1

)
→ B =

1

2γ

(
µ−

√
µ2 − 4γ2

)
Then, for n = 0,

A =
~
µ

+
2γ

µ
AB → A =

~√
µ2 − 4γ2

Solution to exercise 54

1. We have

ϕ(x) =
1

2π

∫
dk eikxϕ(k) → ϕ(x) =

1

2π

∫
dk e−ikxϕ(k) =

1

2π

∫
dk eikxϕ(−k)

and if ϕ is real we must therefore have ϕ(k) = ϕ(−k). The same holds for the
sources.

2. This is most easily done by first looking at the m2 term:∫
dxϕ(x)2 =

1

(2π)2

∫
dx dk1 dk2 e

ix(k1+k2) ϕ(k1)ϕ(k2)

=
1

2π

∫
dk1 dk2 δ(k1 + k2)ϕ(k1)ϕ(k2)

=
1

2π

∫
dk ϕ(k)ϕ(−k) =

1

2π

∫
dk ϕ(k)2

Note how important it is that m2 does not depend on x! In exactly the same
way:∫
dxϕ′(x)2 =

1

2π

∫
dk k2 ϕ(k)2 ,∫

dxϕ(x)4 =
1

(2π)4

∫
dk1 · · · dk4 (2π)δ(k1 + · · ·+ k4)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) ,∫

ϕ(x)J(x) =
1

2π

∫
dkϕ(k) J(k)

Here we have used
∫
dx exp(ixy) = 2π δ(y), proven in exercise 61.

3. The Feynman rules in the momentum representation are now precisely those of
Eq.(5.45) provided that we include the factor (2π)−1 in the sum over momenta.

Solution to exercise 55

1. (a) No momentum can flow through the external line because it has nowehere
to go.
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(b) Here we disregard the external line. The diagram, including the symmetry
factor, is then

1

2π

∫
dk
−λ3

~
1

2

~
k2 +m2

= −λ3

4π

∫
dk

1

k2 +m2

= −λ3

4π

[
1

m
arctan

(
k

m

)]k=+∞

k=−∞
= − λ3

4m

(c) With contour integration we can close the integration contour around
k = im: ∫

dk
1

k2 +m2
=

∫
dk

1

(k − im)(k + im)

=

∮
k∼im

dk
1

(k − im)(k + im)
= 2πi

[
1

k + im

]
k=im

=
π

m

which of course leads to the same result.

(d) We might also close the contour around k = −im, but then it runs clock-
wise rather than anticlockwise, which gives an additional minus sign.

2. The diagram is given by

λ2
3

2

1

2π

∫
dk

1

(k2 +m2)((k − p)2 +m2)

Respectively taking the residue at k = im and k = p+ im gives

λ2
3

4m

(
1

((p− im)2 +m2)
+

1

(p+ im)2 +m2

)
=

λ2
3

2m(p2 + 4m2)

The poles below the real axes give the same contribution by the same argument
as above. You might also take one pole above, and one below the real axis but
this simply makes life more difficult.

3. This two-loop graph is given by

λ2
4

6

1

(2π)2

∫
dk1 dk2

1

(k2
1 +m2)(k2

2 +m2)((k1 + k2 − p)2 +m2)

The k1 integral has residues at k1 = im and k1 = p− k2 + im, and this gives

λ2
4

12πm

∫
dk2

1

(k2
2 +m2)((k2 − p)2 + 4m2)

Note the loss of ‘symmetry’ in k2. The residues at k2 = im and k2 = p + 2im
then give

λ2
4

24m2

(
2

(p+ im)(p− 3im)
+

1

(p+ im)(p+ 3im)

)
=

λ2
4

8m2(p2 + 9m2)
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4. In this case the diagram reads

−λ
3
3

2π

∫
dk

1

(k2 +m2)((k + p1)2 +m2)((k − p3)2 +m2)

Using the three residues at k = im, k = −p1 + im and k = p3 + im, and
momentum conservation, yields

− λ2
3

2m

(
1

((p1 + im)2 +m2)((p3 − im)2 +m2)

+
1

((p1 − im)2 +m2)((p2 + im)2 +m2)
+

1

((p3 + im)2)((p2 − im)2 +m2)

)
= − λ3

3

2m

24m2 + p2
1 + p2

2 + p2
3

(p2
1 + 4m2)(p2

2 + 4m2)(p2
3 + 4m2)

Solution to exercise 56
The point-to-point jumps δϕ = ϕ(x + ∆) − ϕ(x) are, for any D, of the order of√
γ/~. As discussed in the text, for D = 1, γ ∼ ∆−1 and δϕ ∼ ∆1/2. For D = 2,

γ ∼ 1 and δϕ ∼ 1: the function is not necessarily continuous. For D ≥ 3, the typical
δϕ diverges as ∆→ 0 and the jumps are only kept in check by the mass term m2ϕ2.
For massless theories this term is absent.

Solution to exercise 57
After angular integration, the propagator becomes

Π(~x) ∼
∞∫

0

dk
kD−1

k2 +m2

eikr − e−ikr

kr
=

1

rD−2

∞∫
0

d`
`D−1

`2 + (rm)2

ei` − e−i`

`

As r → 0 the value of m becomes irrelevant. The object rm → 0 only serves as a
regulator to make the propagator defined. The same of course also follows from the
properties of the modified Bessel function of the second kind.

Solution to exercise 58

1. In the diagrammatic derivation of the Wetterich equation we have to cut
through propagators that are part of loops. In these propagators all momen-
tum modes contribute (weighed by their propagators, of course). We therefore
not only have to sum over all propagagors but also over all ther modes, i.e.
integrate of the momentum.

2. Using the Litim prescription fΛ(p) = θ(Λ > |~p|)(Λ2−|~p|2) the propagator reads

~
Λ2 +m2

(|~p| < Λ) ,
~

|~p|2 +m2
(|~p| > Λ)

The lower momenta are therefore suppressd, the propagator reaches its maxi-
mum for any |~p| < Λ. In the Wetterich equation we use

∂

∂Λ
fΛ(p) = δ(Λ− |~p|)(Λ2 − |~p|2) + 2Λθ(|~p|2 < Λ2) = 2Λθ(|~p|2 < Λ2)

The momentum integral is therefore cut off above |~p| = Λ.
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6 Exercises for chapter 6

Solution to exercise 59
Under the choice (6.11), all parameters of the action are purely imaginary except η:∣∣∣∣exp

(
−S
~

)∣∣∣∣ = exp

(
− η

2~

∫
dDxϕ(x)2

)
If eta were negative the path integral would not converge. Note that here we use the
action without the factor −i removed.

Solution to exercise 60

1. Using the iη prescription with infinitesimal η:∫
dϕ exp

(
−im

2 − iη
2~

ϕ2

)
→∫

dϕ exp

(
−η + im2

2~
ϕ2

)
=

√
2π~

η + im2
→
√

2π~
m2

√
−i

2. For the propagator, the ϕ4 vertex and the source vertex we have, respectively,

−i~
m2 − iη

, −iλ
~

, i
J

~

For the SDe: the path integral

Z(J) = N

∫
dϕ exp

(
i

~

(
−(m2 − iη)

2
ϕ2 − λ

4!
ϕ4 + Jϕ

))
obeys the SDe

λ

6

(
−i~ ∂

∂J

)3

Z(J) + (m2 − iη)

(
−i~ ∂

∂J

)
Z(J)−mJZ(J) = 0

and for the field function φ(J) = −i~ ∂
∂J

logZ(J) we then have

φ(J) =
J

m2 − iη
− λ

6(m2 − iη)

(
φ(J)3 − 3i~φ(J)

∂

∂J
φ(J)− ~2 ∂2

(∂J)2φ(J)

)
Solution to exercise 61

Iε =

∫
dx exp

(
− ε

2

(
x2 − 2

ixy

ε
− y2

ε2

)
− y2

2ε

)
=

√
2π

ε
exp

(
−y

2

2ε

)
As ε → 0, Iε approaches zero for any nonzero y, and infinity for y = 0. Its integral
over y is 2π, and therefore we may write Iε → 2π δ(y).

Solution to exercise 62
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1. For the timelike separation we need to evaluate the integral

Ht =

∞∫
1

dτ
√
τ 2 − 1 exp(−aτ) , a = ims

We define y = τ +
√
τ 2 − 1, so that

τ =
y2 + 1

2y
,
√
τ 2 − 1 =

y2 − 1

2y
, dτ =

y2 − 1

2y2
dy

Then we can write (using y → 1/y where appropriate, and partial integration):

Ht =

∞∫
1

dy
(y2 − 1)2

4y3
E(y) , E(y) = exp

(
−a

2
(y + 1/y)

)
= E(1/y)

Ht =

∞∫
1

dy

(
y

4
− 1

2y
+

1

4y3

)
E(y) =

∞∫
0

dy

(
y

4
− 1

4y

)
E(y)

=
1

4

∞∫
0

dyy

(
1− 1

y2

)
E(y) = − 1

2a

∞∫
0

dy y
d

dy
E(y)

=
1

2a

∞∫
0

E(y) =
1

a
K1(a)

where the definition (19.428) has been used.

2. For the spacelike separation we have to evaluate the integral

Hs = −i
∞∫

−∞

dk
k√

k2 +m2
exp(isk)

The deformation of the contour as indicated in figure 6.2 means that we have
to replace

∞∫
−∞

dk →
i∞+ε∫
im+ε

dk −
i∞−ε∫
im−ε

dk

with infinitesimal positive ε. We can write k = i`± ε, to find

1√
k2 +m2

=
1√

−`2 +m2 ± iε
= ∓ i√

`2 −m2

so that

Hs = −i
∞∫
m

d(i`) (i`)
−2i√
`2 +m2

exp(−s`)

= m

∞∫
1

dτ
τ√

τ 2 − 1
exp(−msτ)
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Now we take

y = τ +
√
τ 2 − 1 , τ =

y2 + 1

2y
,
√
τ 2 − 1 =

y2 − 1

2y
, dτ =

y2 − 1

2y2
dy

Hs = m

∞∫
1

dy

y

y2 + 1

2y
E(y) , E(y) = exp

(
−ms

2
(y + 1/y)

)

Hs =
m

2

∞∫
1

dy

(
1 +

1

y2

)
E(y) =

m

2

∞∫
0

dy E(y) = mK1(ms)

Solution to exercise 63
With k = |~k|, r = |~x| and c the cosine of the angle between ~k and ~r:

∫
d3~x V (~x) ei

~k·~x =
1

2

∞∫
0

dr r2

1∫
−1

dc
e−mr

r
eikrc

=
1

2ik

∞∫
0

dr
(
e−(m−ik)r − e−(m+ik)r

)
=

1

2ik

(
1

m− ik
− 1

m+ ik

)
=

1

k2 +m2

Solution to exercise 64
The range of the Yukawa potential exp(−mr)/r is 1/m. From Eq.(6.48) we know

1

m
=

~
Mc

=
~c
Mc2

For a particle of mass 90 GeV/c2, and using Eqs.(1) and (3) we thus find

1

m
=

6.58× 10−25 GeV sec × 3× 108 meter/sec

90 GeV
∼ 2.2 × 10−18 meter

Solution to exercise 65

δ(k2 −m2) θ(k0 > 0) = δ
(

(k0)2 − ω(~k)2
)
θ(k0 > 0)

= δ
(

(k0 − ω(~k))(k0 + ω(~k)
)
θ(k0 > 0)

=

(
δ(k0 − ω(~k))

k0 + ω(~k)
+
δ(k0 + ω(~k))

k0 − ω(~k)

)
θ(k0 > 0) =

1

2ω(~k)
δ(k0 − ω(~k)) θ(k0)

since the second Dirac delta cannot be resolved. Therefore

d4k δ(k2 −m2) θ(k0 > 0) = dk0 d3~k
δ(k0 − ω(~k))

2ω(~k)
θ(k0 > 0) =

d3~k

2ω(~k)

Solution to exercise 66
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1. The ‘field’ ψ(x) has no dynamics of its own, it is simply a collection of inde-
pendent stochastics ψ, one at each point. These can therefore be integrated
independently.

2. Dropping the iη where possible:∫
dψ exp

(
i

~

(
µ2 + iη

2
ψ2 − g

2
ψϕ(x)2

))
=∫

dψ exp

(
i(µ2 + iη)

2~

(
ψ +

g

µ2
ϕ(x)2

)2

− ig

8µ2~
ϕ(x)4

)
∼ exp

(
− ig

8µ2~
ϕ(x)4

)

3. After integrating out the ψ we are left with an ‘effective’ ϕ4 coupling. The
Lagrangian is

L(ϕ) =
1

2
∂µϕ(x)∂µϕ(x)− m2 − iη

2
ϕ(x)2 − λ4

4!
ϕ(x)4 + J(x)ϕ(x) , λ4 =

3g2

µ2

4. The propagators for the φ and ψ fields are, respectively

Πφ(x) =
i~

(2π)D

∫
dDk

e−ik·x

k2 −m2 + iη
, Πψ(x) =

i~
µ2
δD(x)

and the SDe’s are

φ(x) =

∫
dDy Πφ(x− y)

(
iJ(y)

~
− ig

~
φ(y)ψ(y)− ig

~

(
−i~ δ

δJ(y)

)
ψ(y)

)
ψ(x) =

i~
µ2

−ig
2~

(
φ(x)2 +

(
−i~ δ

δJ(x)

)
φ(x)

)
Inserting ψ(x) and using the above definition of λ4 we obtain

φ(x) =

∫
dDy Πφ(x− y)

(
iJ(y)

~

−iλ4

6

(
φ(x)3 + 3φ(y)

(
−i~ δ

δJ(y)

)
φ(y) +

(
−i~ δ

δJ(y)

)2

φ(y)

))

5. The Euler-Lagrange equation for ψ reads

δ

δψ(x)
S = µψ(x)− g

2
ϕ(x)2 = 0 → ψ(x) =

g

2µ2
ϕ(x)2

and inserting this into the Lagrangian gives the same ϕ4 theory as above.

6. In Euclidean theory this will not work since (in zero dimensions) we would
need the action

S(ϕ, ψ) =
m2

2
ϕ2 − µ2

2
ψ2 +

g

2
ψϕ2 − Jϕ

so that the integral over ψ is badly divergent.
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7 Exercises for chapter 7

Solution to exercise 67
Assume that the particle with momentum p is on-shell, and that its energy p0 is
positive if we count it going upwards (or downwards). In that case the lower (upper)
blob describes an on-shell particle going into on-shell particles with positive energies,
i.e. a decay process. Since the incoming particles are stable, such processes cannot
occur. Therefore p cannot be on-shell.

Solution to exercise 68

1. The positivity is trivial, and
∫
dx(x2 + α2)−1 = (1/α)[arctan(x/α)]∞−∞ = π/α.

2. For x 6= 0, limα→0 fα(x) = limα→0 α/(πx) = 0, and limα→0 fα(0) = limα→0 1/(πα) =
∞.

Solution to exercise 69
If the particle is moving with momentum q, the flux factor is changed from 1/(2m)
to 1/(2ω(~q)) = 1/(2q0). The amplitude and the phase space factor are Lorentz
invariant. The decay width is therefore decreased, and the lifetime increase, by a
factor q0/m.

Solution to exercise 70

1. This is the Cauchy-Schwartz inequality:

〈c| c〉 = 〈a| a〉+ 〈b| b〉 | 〈a| b〉 |2 − 2 〈b| a〉 〈a| b〉 = 1− | 〈a| b〉 |2 ≤ 0

2. If | 〈a| b〉 | = 0 then 〈b| a〉 is simply a phase, and 〈c| c〉 = 0 so that |c〉 must
vanish.

Solution to exercise 71
For a ϕ5 theory, the 2→ 3 amplitude is an energy-independent constant at the tree
level, while it ought to decrease with energy if unitarity is to hold.

Solution to exercise 72
We may define

1 = +

2 = 1 1 + + + + + +

2 = 3× + 3× + 3× +

These three lines correspond to sm = −1, −25/8, −13/2, respectively the two-loop
three-point amplitude is given by

2 + 3×

(
1 +

1

1 + 2

)
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The number of diagrams is therefore 10 + 3× (2 + 4 + 10) = 58. The sm is given by

sm = −13

2
+ 3

(
−1− 1− 25

8

)
= −175

8

It can also be obtained from the two-loop tadpole by the stepping equation:(
~λ3

µ

∂

∂µ

)2(
−5

8

~2λ3
3

µ5

)
= −175

8

~4λ5
3

µ9

Solution to exercise 73
Assuming integration troughout, and using D = n+ 1 and p = |~p1|:

ddp1 δ(p
2
1 −m2) ddp2 δ(p

2
2 −m2) δD(P − p1 − p2)

=
1

2p0
1

dn~p1 δ(s− 2p0
1

√
s) =

1

2s
dn~p1 δ(p

0
1 −
√
s/2)

=
πn/2

sΓ(n/2)
pn−1 dp δ(p0

1 −
√
s/2)

We can rewrite:

δ(p0
1 −
√
s/2) =

√
sδ(p2 +m2 − s/4) =

1

β
δ(p−

√
sβ/2)

so that

V =
πn/2

Γ(n/2)sβ

(√
sβ

2

)n−1

For D = 3, 4, 5, 6 we find, respectively, V = π/(2
√
s), πβ/2, π2

√
sβ2/8 and π2sβ3/12.

Solution to exercise 74
We have to be a bit careful here, since s = m2 implies (p1 + p2)2 = (p1 − q2)2 = m2.
So we take the limit s→ m2:

1

2(p1 · p2)
− 1

2(p1 · q2)
=

1

s−m2

(
1− 2s

s+m2 + (s−m2) cos θ

)
=

cos θ − 1

s+m2 + (s−m2) cos θ
→ cos θ − 1

2m2

Therefore

M =
i~λ2

2
(1− cos θ)

This can be considered the sattering of E in a static F field. In the same way, the
flux factor and the phase space give a finite product:

Φσ dV (p1 + p2; p2, q2) =
1

2(s−m2)

1

32π2

s−m2

s
dΩ → 1

64π2m2
dΩ

And the cross section is

σ =

∫
~2λ4

256π2m2
(1− cos θ)2 dΩ =

~2λ4

48πm2
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Solution to exercise 75

1. Remember the symmetry factor Fsymm!

Γ = Γ(F → EE) =
1

2m

∫
| − i~1/2mλ|2 dΩ

32π2

1

2
=

~λ2m

32π

2. Of course we stick to the tree-level diagrams:

2

q
1

q
2

p
1

p 2

q
1

q
2

p
1

p

2
q

1

q
2

p

p1

3.

M = −i~λ2m2

(
1

s−m2 + imΓ
+

1

t−m2
+

1

u−m2

)
where s = (q1 + q2)2, t = (p1 − q1)2, u = (p1 − q2)2. Note that t, u < 0 and
therefore their propagators do not contain imΓ: for negative invariant mass
squared decays are impossible.

4. The only contribution to =(T ) comes from the s-channel diagram, and reads

=(T ) =
~λ2m3Γ

(s−m2)2 +m2Γ2
> 0

Strictly speaking =(T ) is only required for forward scattering but this part of
the amplitude is angle-independent anyway (at the tree level).

5. For small λ, Γ� m2. At s = m2 the first diagram dominates:

M = −i~λ
2m

Γ
→ σ =

1

2m2

(
~λ2m

Γ

)2
1

32π2
(4π)

1

2
=

~2λ4

32πΓ2
=

32π

s

This is precisely the unitarity limit as given by Eq.(19.185).

Solution to exercise 76
The process is E(q1)E(q2) → F (p1)F (p2), described (at the tree level) by two
diagrams:

2
q

1

q
2

p

p1

1
q

1

q
2

p

p
2

The particle momenta will be described by

qµ1 = E(1, ~eq), q
µ
2 = E(1,−~eq), pµ1 = (E, q~ep), q

µ
2 = (E,−q~ep)

where ~eq,p are unit vectors, and q = βE, β2 = 1−(m/E)2. The amplitude is therefore

M = −i~λ2m2

(
1

(q1 − p1)2
+

1

(q1 − p2)2

)
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We have, with ~eq · ~ep = c = cos θ, θ being the polar scattering angle:

(p1− q1)2 = m2− 2E2 + 2Eqc = −E2(1 +β2−βc) , (q1− p2)2 = −E2(1 +β2 + 2βc)

Note that both t and u range from −E2(1 + β) to −E2(1− β) so are never zero for
m > 0. With s = 4E2

M = i
4~λ2m2

s

(
1

1 + β2 − 2βc
+

1

1 + β2 + 2βc

)
The differential cross section, after integration over the azimuthal angle and including
Fsymm = 1/2, is

dσ

dc
=

~2λ4m4

4πs3

(
1

1 + β2 − 2βc
+

1

1 + β2 + 2βc

)2

Performing the final integral:

1∫
−1

dc

(
1

1 + β2 − 2βc
+

1

1 + β2 + 2βc

)2

=
2

β(1 + β2)
log

(
1 + β

1− β

)
+

4

(1− β2)2

gives the total cross section (recall that 4(1− β2)−2 = s2/(4m4)):

σ =
~2λ4

16s

(
1 +

8m4

s2β(1 + β2)
log

(
1 + β

1− β

))
As a possible check, we may take the produced F particles at rest. Then t = u =
−m2, s = 4m2 so that M = 2i~λ2 and σ = ~2λ4/(8πm2) which is indeed the limit
β → 0 of the general expression.

Solution to exercise 77

1. The ‘nonradiative’ amplitude M0 is given by

M0 =
p

= J(p)
√
~

2. The ‘radiative’ amplitude M1 is given by

M1 =
p

k
= J(p+ k)

i~
(p+ k)2 −m2 + iη

(−iλm
~

)
√
~

2

3. (p+ k)2 −m2 + iη → (m2 + 2(p · k))−m2 = 2(p · k).

4. (p · k) = k0(p0 − |~p| cos θ), with θ the angle between ~p and ~k. Therefore
M1 ∼ (k0)−1 and |M1|2 ∼ (k0)−2.

5. The radiative phase space integration element contains

d4k δ(k2) =
1

2ω(~k)
d3~k =

|~k|2

2ω(~k)
d|~k| dΩ =

k0

2
d(k0) dΩ
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6. The differential cross section contains d(k0)/k0. The total cross section there-
fore involves an integral

∫
d(k0)/k0. Since for a massless particle the minimum

energy is zero, the total cross section diverges logarithmically.

Solution to exercise 78

1. ϕ3 theory: here R(ϕ) = aϕ, with a = λ3/(3m
2). Solving Eq.(7.78) gives

τ = log(x/c) =

∫
dg

g
√

1 + ag
= − log

(√
1 + ag + 1√
1 + ag − 1

)
This implies

f(x) = − 4cx

a(c+ x)2

Requiring f ′(0) = 1 tells us that c = −4/a, so that

f(x) =
x

(1− ax/4)2
=

x

(1− x(λ3/12m2))2

2. ϕ4 theory: now R(ϕ) = aϕ2 with a = λ4/(12m2). This leads immediately to

log(x/c) = −1

2
log

(√
1 + ag2 + 1√
1 + ag2 − 1

)

which gives us after fixing f ′(x) = 1:

f(x) =
2cx√

s(c2 − x2)2
=

x

1− xa/4
=

x

1− x(λ4/48m2)

3. SB case: we now have 1 + R(ϕ) = (1 + aϕ)2 with a = λ3/(6m
2). This case is

actually quite simple:

log(x/c) = log

(
g

1 + ag

)
→ f(x) =

x

c− ax
=

x

1− xλ3/(6m2)

The numbers An follow immediately from the series expansions

z

(1− z)2
=
∑
k≥1

kzk ,
z

1− z2
=
∑
k≥0

z2k+1 ,
z

1− z
=
∑
k≥1

zk

Solution to exercise 79

1. The particle momentum at rest is kµ = (m, 0). In ϕ3 theory, the 2→ 4 process
p1 + p2 → k k k k has pµ1 = (2m,

√
3m~e) and pµ2 = (2m,−

√
3m~e), so that

d1 = (p1 − k)2 −m2 = −3m2 , d2 = (p1 − 2k)2 −m2 = −4m2 ,

s2 = (2k)2 −m2 = 3m2 , s3 = (3k)2 −m2 = 8m2 , s4 = (4k)2 −m2 = 15m2
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In terms of diagrams,

M = 24 + 12 + 12 + 12 + 6

+12 + 12 + 12 + 3

= −i~
2λ4

3

m6

(
24

d2
1d2

+
2 · 12

d1d2s2

+
12

d2
1s2

+
6

d1s2
2

+
2 · 12

d1s2s3

+
12

s2s3s4

+
3

s2
2s4

)
= 0

2. For 2→ 6 in ϕ4 theory, we have pµ1 = (3m,
√

8m~e) and therefore

d2 = (p1−2k)2−m2 = −8m2 , s3 = (3k)2−m2 = 8m2 , s5 = (5k)2−m2 = 24m2

M = 90 + 60 + 60 + 60 + 10

= i
~3λ3

4

m4

(
90

d2
2

+
2 · 60

d2s3

+
60

s3s5

+
10

s2
3

)
= 0

3. For 2→ 3 in general ϕ3/4 theory, we have pµ1 = (3m/2,
√

5/4m~e) and

d1 = (p1−k)2−m2 = −2m2 , s2 = (2k)2−m2 = 3m2 , s3 = (3k)2−m2 = 8m2

M = 6 + 3 + 3 + 3 + 3 + 3 + 3 +

= −i~
1/2λ3

3

m4

(
6

d2
1

+
2 · 3
d1s2

+
3

s2s3

)
− i~

1/2λ3λ4

m2

(
2 · 3
d1

+
3

s2

+
1

s3

)
= −i15~1/2λ3

8m2

(
λ2

3

3m2
− λ4

)
For the SB case we have precisely λ4 = λ2

3/(3m
2) so that M = 0.

Solution to exercise 80
With ~g2 = 4πα and M2 = 4K/(αN), we have −g2M2(i~) = −i(16πK/N). In the
total cross section the prefactor becomes (16π/N)2(1/2s)(1/32π2)(4π) = 16π/(N2s).
Note that Fsymm = 1 since the particles and the antiparticles are (assumed to be)
distinguishable.

Solution to exercise 81
The (one-loop) diagrams in K1 contain g2

1, and those in K2 contain g2
2; those in Kx

contain g1g2. The rest of the diagrams are identical, so K1K2 = K2
x.

Solution to exercise 82
We denote the bare propagators by single, and the dressed propagators by double
lines. Then

Π1 = 11 = 11 + 11 1 1 + 21 1 1

Π2 = 22 = 22 + 2 2 22 + 1 222

Πx = 1 2 = 1 211 + 2 211

In the last line 1 and 2 may be interchanged. To prove (7.99) is suffices to insert the
results of Eq.(7.100) and do the algebra.
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8 Exercises for chapter 8

Solution to exercise 83
Notice that in this exercise we split up the Euclidean space and not the set of mo-
menta! Therefore the total invariant mass t is simply the sum of the ‘partial’ invariant
masses t1 and t2, and indeed∫

0

dt1 dt2 t
n−1
1 tk−1

2 δ(t1 + t2 − t) =
Γ(n)Γ(k)

Γ(n+ k)
tn+k−1

Solution to exercise 84

1.

∞∫
0

dt t−1−ε =

[
−t
−ε

ε

]t=∞
t=a

+

[
−t
−ε

ε

]t=a
t=0

In the first term, we take ε > 0; and in the second one we take ε < 0. The
total vanishes.

2. For general n, we take ε > n+ 2 for a < t <∞ and ε < n+ 2 for 0 < t < a.

Solution to exercise 85

1. Using the Euler formula:

1∫
0

dx

(
log(m2)−

∑
k≥1

1

k

( s

m2

)k
xk(1− x)k

)
= log(m2)−

∑
k≥1

( s

m2

)k Γ(k + 1)2

kΓ(2k + 2)

2. In fact, this can even be done without the Stirling approximation. We can
write

Tk =
Γ(k + 1)2

kΓ(2k + 2)
→ Tk

Tk−1

=
k − 1

4k + 2
∼ 1

4
(k →∞)

and therefore the sum is only convergent if s/(4m2) < 1.

Solution to exercise 86
We can use

1∫
0

dx x−ε(1− x)−ε =
Γ(1− ε)2

Γ(2− 2ε)
=

(1− εγE + · · ·)2

(1− 2ε)(1− 2εγE + · · ·)
∼ 1 + 2ε

The rest of the ε expansion goes in the standard way; the x integral is responsible
for the ‘−2’ in Eq.(8.25).

Solution to exercise 87
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1. The one-loop effetive potential consists of one-loop diagrams without influx of
external momenta. The loop momentum ~p is therefore the same in all propa-
gators. Therefore is suffies to (a) replace every µ by |~p|2 +m2, and to include a
2ν-dimensional momemtum integral, whih commutes with the α integral. The
α integral is introduced here beause integration F (α) is relatively straightfor-
ward.

2.

F (α) =
1

(2π)2ν

∫
d2ν~p

|~p|2 + α
=

1

(4π)νΓ(ν)

∞∫
0

dt
tν−1

t+ α
=
αν−1Γ(1− ν)

(4π)ν

V1(φ) =
~Γ(1− ν)

2(4π)ν

m2+V ′′(φ)∫
m2

dα αν−1 =
~Γ(1− ν)m2ν

2ν(4π)ν

[( α

m2

)ν]α=m2+V ′′(φ)

α=m2

3. The only nontrivial step here is to realize that (1+V ′′/m2)ν−1 → ν log(1+
V ′′/m2) as ν approaches zero.

4. We adopt D = 2k−2ε to do dimensional regularization, so that ν = k−ε. Then
m2ν is to replaced by m2k(µ/m)2ε if we introduce the engineering dimension.
The important step is

Γ(1− ν) = Γ(ε− (k − 1)) =
Γ(ε)

(ε− 1)(ε− 2) · · · (ε− (k − 1))

=
(−)k−1Γ(ε)

Γ(k)
(
1− ε

1

)
· · ·
(
1− ε

k−1

) ∼ (−)k−1 Γ(ε)

Γ(k)
(1 + εHk)

Furthermore,

W ν − 1 = W k−ε − 1 = W k(1− ε log(W ))− 1 = (W k − 1)− εW k log(W )

The ε expansion is from then on trivially performed.

5. This is almost trivial: if V ′′(φ) has φ2 for its highest power of φ, then W k =
WD/2 has φD for its highest power (at least for D even). In terms of dia-
grams, the one-loop contribution fo the ϕ2n term in the effective action has n
propagators. Such a diagram will become divergent if 2n ≤ D. Therefore, for
even dimension D the terms in the effective action up to ϕD are divergent, and
higher powers have finite coefficients.

Solution to exercise 88
It is enough to look at the one-loop tadpole diagram in ϕ3 theory. In Euclidean space
this reads (up to factors of 2π and the symmetry factor 1/2)∫

dD~p

(
−λ3

~

)
~

|~p2|+m2
= −

∫
dd~p

λ3

‖vp2|+m2

In Minkowski space, including the Wick rotation:∫
dDp,

(
−iλ3

~

)
i~

p2 −m2 + iη
=

∫
dDp

λ3

p2 −m2 + iη
= −i

∫
dDpE

λ3

|~pE|2 +m2
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The Wick rotation ensures that the minus signs work out identically in the two for-
mulations. The factors (−) in Euclidean, and (−i) in Minkowski space, are precisely
the usual prefactors in the Feynman rules and this ensures that the effective poten-
tials have the same form. The minus sign referred to in the exercise is the diference
between, say λ4ϕ

4 in the Euclidean Lagrangian versus −λ4ϕ
4 in the Minkowskian

one.

Solution to exercise 89

P
b∫

a

dx
f(x)

x
= lim

ε→0

 −ε∫
a

+

b∫
ε

 f0

x
+ f1 + f2x+ f 2

x + · · ·

=

b∫
a

dx
(
f1 + f2x+ f3x

2 + · · ·
)

+ lim
ε→0

− |a|∫
ε

+

b∫
ε

 dx
f0

x

= f0 log

(
b

|a|

)
+

[
f1x+

1

2
f2x

2 +
1

3
f3x

3 + · · ·
]x=b

x=a

Solution to exercise 90

1. This is faurly trivial: we may take ν = D/2, ε = 0, and impose the upper limit
Λ2 on t after using the t-shell formula.

2. Define B(φ) = m2 + λφ2/2. Then

V ′1(φ) =
~
2
B′(φ)F (B(φ))

V ′′1 (φ) =
~
2

(
B′′(φ)F (B(φ)) +B′(φ)2F ′(B(φ))

)
=

~λ
2(4π)νΓ(ν)

Λ2∫
0

dt tν−1

(
1

t+B(φ)
− λφ2

(t+B(φ))2

)

3. (a) For Λ2 = 0 the t integral vanishes; (b) if m2 > λφ2/2 the numerator of
the integrand is always positive; (c) if m2 < λφ2/2 then the numerator is
negative for 0 < t < (λφ2/2 −m2), so one-loop concavity is certainly lost for
Λ2 < (λφ2/2−m2). For sufficiently large Λ2 the larger t values will eventually
win out. For instance, if λφ2/2 = 2m2, one-loop concavity is restored in four
dimensions (ν = 2) for Λ2 > (1.617 · · ·)m2: in two dimensions (ν = 1) for
Λ2 > (2.498 · · ·)m2.

Eq.(2.32) is the zero-dimensional analogue:

~Γ′′1(φ) =
~
2

µ− λφ2/2

(µ+ λφ2/2)2

In this case there is no t integral to save the day, and one-loop concavity is lost
for λφ2/2 > µ.

39



Solution to exercise 91
Pauli-Villars regularization is not a modification of the propagator but rather the
addition of extra (unphysical) fields. Any variation in the extra PV propagator
can therefore only depend on the extra field, and not on the ‘original’ propagator.
Therefore the Wetterich equation cannot possibly hold in this scheme.

9 Exercises for chapter 9

Solution to exercise 92
For ϕ6 theory, there are no tadpoles at al (E = 1), and the prpoagator (E = 2) has
no one-loop contribution.

Solution to exercise 93
For ϕ3 theory, Q of Eq.(9.2) is negative for D ≤ 5, and the theory is then super-
renormalizable. Applicatino of Eq.(9.2) gives the following results. The one-point
IP1 diagrams are divergent as follows: at one loop for D = 2, 3, 4, 5, at two loops for
D = 4, 5 at 3 and 4 loops for D = 5. The two-point IP1 diagrams are divergent as
follows: at one loop for D = 4, 5, and at 2 loops for D = 5. No other IP1 diagrams
are divergent. The one-point diagrams are given in Eqs.(19.44-47), the two-point
ones in Eq.(19.48-49).

Solution to exercise 94
The sm factors of the 3-loop 2-point diagrams are given in Eq.(19.56). After all one-
loop contractions have been performed using the rules (9.8) and (9.9), the daughters
are

1 +
1

+
1

+
1

+
1

1 +
1

and they all have the correct sm after we collect them in Eq.(9.14). The two-loop
contractions are, by rule (9.11) and (9.13),

−1

4
1 +

1

4

1  1

4
· 2 2

1

4

1

+
1

4

1  1

4
· −2

3

2

1

3

1

=
1

6

1

+
1

6

1  1

6
· 3 · −2

3

2

The granddaugters also have the right sm, and by rule (9.16) so does the 3-loop
divergence.

Solution to exercise 95
The uncontracted three-loop four-point diagrams are given in Eq.(19.60) The full
one-loop contraction yields

3

4
 3

2

1

+
−1

2
1 ,

3

4
 3 1 + 3 11
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3

8
 3

2 1

+
3

2 1

1

,
3

4
 − 1

2

1

3

2
 3

1

+ (−1)
1

+ (−2)
1

1

3

8
 −1

4

1

+
−1

2

1

+
1

6
11

3  6 1 , 6  (−4)
1

,
1

2
 (−1) 1

3

2
 (−1)

1

+ (−1)
1

+
2

3
11

3  6
1

+ (−2)
1

+ (−4)
1

1

3

2
 (−2)

1

,
3

2
 (−2)

1

+
2

3
11

After collecting diagrams, all daughters have the correct sm. After applying the two-
loop contraction rules (9.11) and (9.13), the (effectively) two-loop granddaughters
are

(−3)
2

+ 3
2

+
3

2
11

and the last two of these diagrams allow for the three-loop contraction. The uncon-
tracted four-loop two-point diagrams are found in Eq.(19.57); the procedure goes the
same way.

Solution to exercise 96
The one-loop contraction rules turn out to be

−1

2
 (−1)

1

−1

2
 (−1)

1

−1

2
 (−1) 1

Under these rules,
−1

4
 −1

4
1 +

1

2
1

The first diagram has sm -1/4, rather than -1/2 as it ought to. The two-loop con-
traction rules:

−1

4
1 +

1

2
1 (−1)

2

1

2
1 +

−1

2

1

 (−1)
2

(−3)
1  (−1) 2

likewise give (among other diagrams) the contractable combination

−1

4

2

+
1

2
2 +

1

2
11 +

−1

2
1

1
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which again has the first diagram off by a factor 2. The three-loop contraction rules
are

−1

4

2

+
1

2
2 +

1

2
11 +

−1

2
1

1

 (−1)
3

(1) 2 + (−1)
2

+
1

2
11 + (−2) 1

1

 (−1)
3

(−3)
2

+ (−3)
1

1  (−1) 3

again gives rise to (among many other ones) a diagram

−1

4
3

too small by a factor of 2. But these diagrams can only occur in the tadpole coun-
terterm, and that itself cannot contribute to any other 1PI diagram. This mismatch
is therefore not dangerous.

Solution to exercise 97
The self-energy diagram has two internal propagators. As the loop momentum goes
to infinity, the loop integral in D dimensions is therefore proportional to

∫
dDp (p2)−2

∼ mD−4 and is therefore logarithmically divergent in 4, and quadratically divergent
in 6 dimensions.

Solution to exercise 98
We can simply replace the one-loop 1PI blob in Eq.(9.19) by higher-loop 1PI or
pollywog ones. Note that here it is really important to order the loop corrections are
collectedinto 1PI/pollywog sets!

Solution to exercise 99
Every derivative to s effectively introduces an addition propagator of dimension m−2.
Since Σ′(s) is logarithmically divergent, the higher derivatives are finite.

Solution to exercise 100
The tadpole integral goes, at high loop momentum, as

∫
dDp(p2)−1 = mD−2, and is

therefore quartically divergent in D = 6.

Solution to exercise 101
The vertex loop diagram is logarithmically divergent; therefore any derivative in-
troduces at least a factor m−1 which makes the integral finite, just as in exercise
99.

Solution to exercise 102

1. The action contains a term
∫
d4x (∂µϕ)(∂µϕ) which implies

dim
[
L2ϕ2

]
= dim[~] → dim

[
ϕ4
]

= dim
[
~2/L4

]
where L is a length scale. Therefore the ϕ4 interaction term gives

dim

[∫
d4xλϕ4

]
= dim

[
~2λ
]

= dim[~] → dim[~λ] = 1
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2. The one-loop self-energy insertion (including the symmetry factor!) is the
diagram

and is given by

iK =

(
−iλ0

~

)
1

2(2π)4

∫
d4p

i~
p2 −m2

0 + iη

Adopting dimensional regularization, doing the Wick rotation, and using the
t-shell formula we can write

iK =
λ0 µ

2ε

2(2π)4−2ε

∫
d4−2εp

1

p2 −m2
0 + iη

= −i λ0 µ
2ε π2−ε

2(2π)4−2εΓ(2− ε)

∞∫
0

dt
t1−ε

t+m2
0

= −iλ0 (4πµ2)ε

2(4π)2−ε (m2
0)1−ε Γ(ε− 1)

Using Γ(ε− 1) = −Γ(ε)/(1− ε) and expanding in ε then yields

iK = i
λ0m

2
0

32π2

(
1

ε
− γE + log(4π) + log

(
µ2

m2
0

)
+ 1

)
3. The Dyson sum for the propagator reads

i~
p2 −m2

0 + iη
+

i~
p2 −m2

0 + iη
(iK)

i~
p2 −m2

0 + iη
+ · · ·

=
i~

p2 −m2
0 + iη

(
1− K~

p2 −m2
0 + iη

+ · · ·
)

=
i~

p2 −m2
0 +K~ + iη

and therefore m2 = m2
0 −K, or

m2 = m2

(
1− λ0~m2

32π2
(Rε − log(m2

0) + 1)

)
4. At one loop, the beta function is purely formal since the one-loop self energy

has no momentum flowing into it. Nevertheless, we can write

β(M2) = M2 ∂

∂M2
m2 = −µ2 ∂

∂µ2
m2 =

λ~
32π2

m2

5. At one loop, the wave function is not renormalized since the one-loop self-energy
has no momentum dependence.

6. The one-loop 1PI contributions to the interaction vertex afre three diagrams
of the form
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It is simplest to start in the situation where all external momenta vanish. Then
the one-loop diagrams are all equal, and their sum is given by

iV =
3λ2

0 µ
2−ε

2(2π)4−2ε

∫
d4−2εp

1

(p2 −m2
0 + iη)2

= i
3λ2

0(4πµ2)ε

32π2Γ(2− ε)

∞∫
0

dt
t1−ε

(t+m2
0)2

= i
3λ2

0(4πµ2)ε (m2
0)−ε Γ(ε)

32π2
≈ i

3λ2
0

32π2
(Rε − log(m2

0))

Introducing external momenta can only introduce finite terms, see exercises 99.
and 101.

7. At one loop,

−iλ
~

= −iλ0

~
+ i

3λ2
0

32π2
(Rε + · · ·) → λ = λ0

(
1− 3~λ0

32π2
(Rε + · · ·)

)
For the β function we may as well take the derivative to −Rε, and so find
β(λ) = 3λ2/(32π2).

8. Write ρ = 1/λ, then with β0 = 3/(32π2) we have

∂

∂ logM2
ρ(M2) = −β0 → ρ(M2) = ρ(s0)− β0 log(M2/s0)

and this leads to the desired result. For any positive value of λ(s0) the Landau
pole will be reached. Assuming that negative λ are not admissible, the only
way to avoid the Landau pole is to have λ(s0) = 0 which means that λ(M2) = 0
for all M2.

10 Exercises for chapter 10

Solution to exercise 103

γµ/aγµ = 2γµ aµ − γµγµ/a = 2/a− 4/a = −2/a

γµ/a/bγµ = 2γµ/abµ − γµ/aγµ/b = 2/b/a+ 2/a/b = 4(a · b)
γµ/a/b/cγµ = 2γµ/a/bcµ − γµ/a/bγµ/c = 2/c/a/b− 4/c(a · b) = 2/c/a/b− 2/c(/a/b+ /b/a) = −2/c/b/a

Solution to exercise 104
By construction, γ4 anticommutes with γµ (µ = 0, 1, 2, 3) since γ5 does. Also γ̄5 =
−γ5 so γ̄4 = γ4. Finally 2γ4γ4 = −2(γ5)2 = −2.

Solution to exercise 105
From γ5γ0γj = iγ0γ1γ2γ3γ0γj = −iγ1γ2γ3γj we have

γ5γ0 = iγ2γ3 = σ23 , γ5γ0γ2 = −iγ1γ3 = σ31 , γ5γ0γ3 = iγ1γ2 = σ12

and from there

γ5γjγk = −iγ5σjk = −iγ5γ5γ0γn = −iγ0γn = σn0
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Solution to exercise 106
It is easy to see that γ5σαβ only has tensor components, and therefore

γ5σαβ =
σµν
8

Tr
(
γ5σαβσµν

)
The trace is only nonzero if all the indices are different, and we find

1

8
Tr
(
γ5σαβσµν

)
= −1

8
Tr
(
γ5γαγβγµγν

)
= − i

2
εαβµν

Solution to exercise 107
For m = 0, 1:

γνΓ0γ
ν = γnuγ

νΓ0 = DΓ0 , γνΓ1γ
ν = (2−D)Γ1

Then, using the induction step:

γνγ
αγβΓm−2γ

ν = 2γβΓm−2γ
α − 2γαΓm−2γ

β + γαγβγνΓm−2γ
ν

= 2(−)m−1γαγβΓm−2 + 2(−)m−2γαγβΓ−2 + (−)m−2(D − 2(m− 2))γαγβΓm−2 + · · ·
= (−)m(D − 2m)γαγβΓm−2 + · · ·

where the ellipsis denotes terms with fewer Dirac matrices.

Solution to exercise 108

1. Multiplying by 〈a| we have 0 = 〈a|
{
|a〉 〈a| b〉 − λ |b〉

}
= 〈a| b〉 (1− λ).

2. If λ = 1 we multiply by 〈b| to find 〈b| a〉 〈a| b〉 = 1. If 〈a| b〉 = 0 then |a〉 〈a| b〉 =
0 = λ |b〉.

Solution to exercise 109

1. It suffices to takeN = 8 in Eq.(10.79). With q2 = 0 we then have det (1− zW) =
(1− 2zq0)2.

2. W cannot be a dyad since it has two nonzero eigenvalues. But since it is a
Hermitian matrix it allows for the N = 8-dimensional spae to be split up into
two 4-dimensional ones, each containing one of the nonzero eigenvalues. In each
of these subspaces we have a vector ξ1,2 to serve as the basis for a dyad. Also,
we have ξd1agξ2 = 0 since they have nonzero components in different subspaces.

3. This follows from the previous discussion.

Solution to exercise 110
Expanding the logarithm:

log(1− z/p) = −
∑
n≥1

zn

n
/pn = −

∑
n≥1

z2

2n
/p2n −

∑
n≥0

z2n+1

2n+ 1
/p2n+1

=
1

2

∑
n≥1

(z2v2)n

n
− /p

2v

∑
n≥1

(zv)n

n
(1− (−1)n)
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and this gives the result. Taking the trace and using Tr (1) = 4, Tr (/p) = 0 gives

Tr (log(1− z/p)) = log det (1− z/p) = 2 log(1− z2v2) = log
(
(1− zv)2(1 + zv)2

)
so there are two eigenvalues v and two eigenvalues −v.

Solution to exercise 111
All this follows immediately from the fact that /p±m) and (1 + γ5/s) commute, and

(/p±m)2 = ±2m(/p±m) , (/p+m)(/p−m) = 0 , (1±γ5/s)2 = 2(1±γ5/s) , (1+γ5/s)(1−γ5/s) = 0

Solution to exercise 112
By the Casimir trick and the trace identities:

η̄γµη = Tr (ηη̄γµ) = 4w kµ

η̄γ5γµη = Tr
(
ηη̄γ5γµ

)
= −4w sµ

η̄ω+η = Tr
(
ηη̄(1 + γ5)

)
= 2w(cos(θ) + i sin(θ))

It is enough to have the spinor η as a aset of four complex nunbers to work out k,s,w
and θ.

Solution to exercise 113
This is simply a matter of using the Casimir trick. For instance

v(p, s)γ5γµv(p, s) =
1

2
Tr
(
(/p−m)(1 + γ5/s)γ5γµ

)
=

1

2
Tr
(
−mγ5/sγ5γµ

)
= 2msµ

Solution to exercise 114
Again using the Casimir trick, and contracting the repeated indices:

p0 = uγ0u/2 = u†u/2 = Σ4
a=1|ua|2/2 > 0

p · p =
1

4
uγµuuγµu =

1

16
Tr
(
(/p+m)(1 + γ5/s)γµ(/p+m)(1 + γ5/s)γµ

)
=

1

16
Tr
(
(/p+m)(1 + γ5/s)(−2/p+ 4m+ 2mγ5/s)

)
=

m

4
Tr
(
(/p+m)(1 + γ5/s)

)
= m2

p · s ∼ Tr
(
(/p+m)(1 + γ5/s)γµ(/p+m)(1 + γ5/s)γ5γµ

)
= Tr

(
(/p+m)(1 + γ5/s)(2/p− 4m− 2mγ5/s)γ5

)
= 0

s · s =
1

16m2
Tr
(
(/p+m)(1 + γ5/s)γ5(2/p− 4m− 2mγ5/s)γ5

)
= − 1

4m
Tr
(
(/p+m)(1 + γ5/s)

)
= −1

Solution to exercise 115
It is an eigenspinor of both (/p+m) and (1 + γ5/s) QED.

Solution to exercise 116
Since the four spinors u(p,±s) and v(p,±s) form a basis, we always have

u(p, s′) = a+u(p, s) + a−u(p,−s) + b+v(p, s) + b−v(p, s)

Multiplying from the left by (/p + m) shows that b+ = b− = 0. Furthermore,
u(p, s)u(p, s′) = a+u(p, s)u(p, s)+a−u(p, s)u(p,−s) = 2ma+, and similarly u(p,−s)u(p, s′) =
2mb.
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Solution to exercise 117
The numerator of the left-hand side amounts to

~2
(
γµ((p+ q)2 −m2)− 2(p+ q)µ(/p+ /q +m)

)
and that on the right-hand side is

−~2(/p+ /q +m)γµ(/p+ /q +m)

By anticommutation these are the same.

Solution to exercise 118

Σz(θ) =

√
x2

(x̃+ x)2

(
1 +

/̃x/x

x2

)
=

1

2 cos(θ/2)
(1 + cos(θ) + sin(θ)/x/y)

and we use 1 + cos(θ) = 2 cos(θ/2)2, sin(θ) = 2 cos(θ/2) sin(θ/2).

Solution to exercise 119
Using cos(π/6) =

√
3/2 and sin(π/6) = 1/2 we have, for a rotation over π/3, Σ =

(1 +
√

3/x/y)/2. This leads to Σ2 = (1 + 2
√

3/x/y + 3/x/y/x/y)/4 = (−1 +
√

3/x/y)/2 and so
finally to Σ3 = −1.

Solution to exercise 120

1.

= + +

= + +

= + +

2. The single diagram for M → E(p1) Ē(p2) has the value

M = i~1/2λu(p1) v(p2)

where (as is usual) we do not indicate the spins if they are to be summed over.
Note that at the threshold M = 2m, p1 = p2 so that M = 0. This is a check.〈

|M|2
〉

= ~λ2 Tr ((/p1 +m)(/p2 −m)) = 2~λ2
(
M2 − 4m2

)
Γ(F → EĒ) =

1

2M
(2~λ2)

(
M2 − 4m2

) 1

32π2

(
1− 4m2

M2

)1/2

(4π)

=
~λ2

8π
M

(
1− 4m2

M2

)3/2

3. We shall use s = (p1 + p2)2 = (q1 + q2)2 and t = (p1 − q1)2 = (p2 − q2)2.
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(a)

2

p

p

q

q

1 1

2

p
q

1

q
22

p

1

(b)

M = −i~λ2

(
A1

s−M2
− A2

t−M2

)
A1 = v(p2)u(p1) u(q1)v(q2) , A2 = u(q1)u(p1) v(p2)v(q2)〈

|A1|2
〉

=
1

4
Tr ((/p2 −m)(/p1 +m)) Tr ((/q1 +m)(/q2 −m)) = (s− 4m2)2

〈
|A2|2

〉
=

1

4
Tr ((/q1 +m)(/p1 +m)) Tr ((/p2 −m)(/q2 −m)) = (t− 4m2)2

〈A1A∗2〉 =
1

4
Tr ((/p2 −m)(/p1 +m)(/q1 +m)(/q2 −m))

= −1

2
st− 2m2(s+ t) + 8m4

〈
|M|2

〉
= ~2λ4

(
〈|A1|2〉

(s−M2)2
+
〈|A2|2〉

(t−M2)2
− 2 〈A1A∗2〉

(s−M2)(t−M2)

)
= ~2λ4

(
B0 +B1

1

t−M2
+B2

1

(t−M2)2

)
B0 = 1 +

s+ 4m2

s−M2
+

(s− 4m2)2

(s−M2)2

B1 =
(
(s+ 4m2)(3M2 − 4m2)− 2M4

)
/(s−M2)

B2 = (M2 − 4m2)2

(c) The scattering angle θ between ~p1 and ~q1 and the variable t are related by

t =
4m2 − s

2
(1− cos θ)

and therefor the average over cos θ is given by the integral

1

2

1∫
−1

d cos θ =
1

s− 4m2

0∫
4m2−s

dt

Thus we find

σ =
~2λ4

16πs

(
B0 −

B1

s− 4m2
log

(
1 +

s− 4m2

M2

)
+

B2

M2(M2 + s− 4m2)

)
4. For m = M = 0, 〈|M|2〉 = 3.

5. (a)

2

p
1

k1

p
2

k

1
p

k2

2

k
1

p
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(b)

M = −i~λ2

(
A1

2(p1k1)
− A2

2(p1k2)

)
A1 = u(p2))(/p1 + /k1 +m)u(p1)

A2 = u(p2))(/p1 − /k2 +m)u(p1)〈
|A1|2

〉
= 8m2(s+m2) + 2(s−m2)(p1k2)〈

|A2|2
〉

= 16m4 + 2(s− 9m2)(p1k2)

〈A1A∗2〉 = 2(s+ 3m2)(2m2 − (p1k2))〈
|M|2

〉
= ~2λ4

(
4m4

(p1k2)2
+
s2 − 18m2s+ 15m4

2(s−m2)(p1k2)

+
2(s2 + 6m2s+m4)

(s−m2)2
+

2(p1k2)

s−m2

)
where we used (p1k1) = (s −m2)/2. In the CM frame, with θ the angle
between ~p1 and ~p2,

(p1k2) =
s−m2

4s

(
s+m2 + (s−m2) cos θ

)
and

σ =
~2λ4

16πs

(
s(s2 − 18m2s− 15m4)

(s−m2)3
log
( s

m2

)
+

5s3 + 55s2m2 + 3sm4 +m6

2s(s−m2)2

)
(c) The limit s→ m2 is regular:

lim
s→m2

σ =
~2λ4

12πm2

6. (a) Twelve of the diagrams are

The other ones are obtained by interchanging the two external F lines.

(b) i.

ii.
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iii. A:10, B:74, C:42, D:2424.

Solution to exercise 121

1. For the process E(p)→ D(q)F (k):

M = i~1/2λu(q)u(p)〈
|M|2

〉
=

~λ2

2
Tr ((/q +mD)(/p+mE)) = ~λ2(mE +mD)2

Γ(E → DF ) =
~λ2

16π

(mE +mD)2(m2
E −m2

D)

m3
E

2. For the process F (k1)F (k2)→ E(p1)Ē(p2), with mD = 0:

M = −i~λ2

(
A1

D1

+
A2

D2

)
, D1,2 = (p1 − k1,2)2

A1 = u(p1)(/p1 − /k1)v(p2) , A2 = u(p1)(/p1 − /k2)v(p2)〈
|A1|2

〉
= 8(p1k1)(p2k1) + 8m2

E(p1k1)− 8m2
E(p2k1) + 4m2

E(p1p2)− 4m4
E〈

|A2|2
〉

= 8(p1k2)(p2k2) + 8m2
E(p1k2)− 8m2

E(p2k2) + 4m2
E(p1p2)− 4m4

E

〈A1A∗2〉 = 4(p1k1)(p2K2) + 4(p1k2)(p2k1)− 4(k1k2)(p1p2)

+4m2
E(p1k1) + 4m2

E(p1k2)− 4m2
E(p2k1)− 4m2

E(p2k2)

+4m2
E(p1p2)− 4m2

E(k1k2)− 4m4
E

σ =
~2λ4

16πs

(
16E4 − 10m4

E

EP (E2 + P 2)
log

(
E + P

E − P

)
− 12

)√
1− m2

E

E2

with s = 4E2, P 2 = E2 −m2
E.

Solution to exercise 122
If the derivative operator cuts a fermion line, this line may be part of a closed fermion
loop. That loop has a minus sign that the propagator does not have, so this must
be compensated. Alternatively, we may cut through e ferrmion line that extends
throughout the diagram (and thus has external fields at both ends. Cutting through
such a line causes these external fields not to be connected to one another any more,
but to the endpoints of the propagator, a rearrangment of external fermions that
also calles for a minus sign.

11 Exercises for chapter 11

Solution to exercise 123
For simplicity, let ~p point along the z axis. Then [/p, γ0] = |~p|γ0γ3 and by exer-
cise 105 we see that the second term becomes simply sin(θ/2)γ1γ2, i.e. a rotation
around the z axis. For massless momenta we have |~p| = p0 and use [/p, γ0]uλ(p) =
/pγ0uλ(p) = 2p0uλ(p) so that Σpula(p) = (cos(θ/2) + i sin(θ/2)γ5)uλ(p) = (cos(θ/2) +
iλ sin(θ/2))uλ(p).
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Solution to exercise 124

|s+(p1, p2)|2 = |py1 + ipz1|2
p0

2 − px2
p0

1 − px1
+ |py2 + ipz2|2

p0
1 − px1
p0

2 − px2

−
(

(py1 + ipz1)(py2 − ipz2) + (c.c)

)
= (p0

1 + px1)(p0
2 − px2) + (p0

1 − px1)(p0
2 + px2)− 2(py1p

y
2 + pz1p

z
2)

= 2
(
p0

1p
0
2 − px1px2 − p

y
1p
y
2 − pz1pz2

)
Solution to exercise 125

A = u+(p1)ω−/p2ω+/p3ω−/p4ω+/p5u−(p6)

= u+(p1)u−(p2)u−(p2)u+(p3)u+(p3)u−(p4)u−(p4)u+(p5)u+(p5)u−(p6)

= s+(p1, p2)s−(p2, p3)s+(p3, p4)s−(p4, p5)s+(p5, p6)

|A|2 = 32(p1p2)(p2p3)(p3p4)(p4p5)(p5p6)

Solution to exercise 126
A1 can only be nonzero if the helicities of u(p1) and u(p7) are opposite; A2 is nonzero
if they are identical. So either A1 = 0 or A2 = 0.

Solution to exercise 127
We start by realizing that there must be vector q such that

u+(p2)u(p3) = ω+u+(p2)u+(p3)ω− = ω+/q

So that, by the Casimir trick,

qρ =
1

2
u+(p3)γρu+(p2)

Therefore

iεµναβu+(p1)γαu+(p2)u+(p3)γβu+(p4)

=
i

2
εµναβu+(p1)γαγργβu+(p4)u+(p3)γρu+(p2)

The Pauli identity: γαγργβ = −iεσαρβγ5γρ plus terms symmetric in α and β, then
tells us that

u+(p1)γαγργβu+(p4) = iεσαρβu+(p1)γσu+(p4)

And finally
i

2
εµναβ iεσαρβ =

{
µ ν
ρ σ

}
Solution to exercise 128
We use s = (p1 + p2)2 = (q1 + q2)2, t = (p1 − q1)2 = (p2 − q2)2, u = (p1 − q2)2 =
(p;2−q1)2. This also implies s+ t+ u = 0 for massless particles.
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1. Of the sixteen helicity cases, six are nonzero. Using the Chisholm identity (and
reversal where necessary):

M(+,+,+,+) = 2i~Qe
2s+(p1, q2)s−(p2, q1)

(
1

s
+

1

t

)
∼ 2~Qe

2 u
2

st

M(+,+,−,−) = 2i~Qe
2 s+(p1, q1)s−(p2, q2)

s
∼ 2~Qe

2 t

s

M(+,−,+,−) = −2i~Qe
2 s+(p1, p2)s−(q1, q2)

t
∼ 2~Qe

2 s

t

plus interchange of + and−. Note how nicely the Fermi sign makes M(+,+,+,+)
come out simple!

2. In terms of the Mandelstam variables s, t, and u:

〈
|M|2

〉
= 2~2Qe

4 s
4 + t4 + u4

s2t2

In the centre-of-mass frame we have

s = 4E2 , t = −2E2(1 = cos θ) , u = −2E2(1 + cos θ)2

This gives 〈
|M|2

〉
= ~2Qe

4 (3 + (cos θ)2)2

(1− cos θ)2

3. It is kinematically possible for qµ1 to equal pµ1 since the particles have the same
energy and mass. In that case t = (p1 − q1)2 = 0 strictly.

Solution to exercise 129

1. We can do this by looking at Eq.(11.40). We now have 4 helicity states rtather
than just one. If the two neutrinos have opposite helicity, we can account for
this by integrchanging k2 and q. Therefore〈

|M|2
〉

= 128~2G2
(
(pk2)(qk1) + (pq)(k1k2)

)
2. 〈|M|2〉 = 64~2G2m3

µ

(
k0

2(1− 2k0
2/mµ) + q0(1− 2q0/mµ)

)
3. The distribution of y = (2q0)/mµ is

1

Γ

dΓ

dy
= y2(9− 8y)

4. The difference between y2(9 − 8y) and y2(6 − 4y) is quite clear, especially for
large y values since the first spectrum has a maximum at y = 3/4 and the
second one is monotonic. Also the averages are different: in the first case,
〈y〉 = 0.65 and in the second case 〈y〉 = 0.70.
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Solution to exercise 130

1. The relation between m and M is m = (Mc2)/(~c). Using ~c = 3.16 × 10−26

kg m3/sec2, we find mµ = 3.34 × 1024/m and mπ = 4.42 × 1024/m. These
numbers are unwieldy: that is why in practice we often settle for Fundamental
HEP units.

2. It is easy to verify that fπ
√
~c2 has dimension GeV. From that point on we can

use Fundamental HEP units. The lifetime τπ is converted into GeV by using
~ = 6.58 × 10−25 GeV sec, which gives Γπ = 2.53 10−17 GeV. A little algebra
using Eq.(11.65) then gives fπ = 0.09 GeV.

Solution to exercise 131
This is most easily seen by taking the massless limit. The right-handed antineutrino
is described by v(q2) = v−(q2), in agreement with the factor (1 + γ5). This also asks
for u(q1) = u−(q1), corresponding to a left-handed charged lepton. And this is just
what nature asks.

12 Exercises for chapter 12

Solution to exercise 132
From Lorentz covariance we must have

Xµν =
1

4π

∫
dΩ εµ εν = Agµν +Bpµpν

From ε · p = 0 we have Xµνpµ = 0 so that A = −B p2 = −Bm2, and from ε · ε = −1
we find Xµ

µ = −1. We can then solve to find A = −1/3 and B = 1/(3m2).

Solution to exercise 133
Taking a trace with γα:

Tr (Λ(p; q)µνγµγ
α) = 4Λ(p; q)αν = Tr

(
ΣγνΣγ

α
)

and the Chisholm identity then gives

4Λ(p; q)ανγ
ν = Tr

(
ΣγνΣγ

α
)
γν = 2

(
ΣγαΣ + ΣR(γα)RΣ

R
)

= 4ΣγαΣ

since ΣR = Σ.

Solution to exercise 134
Under a Lorentz transformation, and using Σγ5 = γ5Σ:

JS → u(p)ΣΣu(q) = JS , JP → u(p)Σγ5Σu(q) = JP ,

JµV → u(p)ΣγµΣu(q) = Λµ
νu(p)γνu(q) = Λµ

νJ
ν
V ,

JµA → u(p)Σγ5γµΣu(q) = Λµ
νu(p)γ5γνu(q) = Λµ

νJ
ν
A ,

JµνT → u(p)ΣγµγνΣu(q) = u(p)ΣγµΣΣγνΣu(q) = Λµ
αΛν

βJ
αβ
T

The minus signs under parity arise from the fact that γ0γkγ0 = −γk for k = 1, 2, 3, 5.
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Solution to exercise 135

bµ = aµ − 2

(p+ q)2
(p+ q)µ(p+ q · a) +

2

p2
qµ(pa)

(bb) = (aa) +
4

(p+ q)4
(p+ q)2(p+ q · a)2 +

4

p4
q2(pa)2 − 4

(p+ q)2
(p+ q · a)2

+
4

p2
(qa)(pa)− 8

p2(p+ q)2
(p+ q · q)(p+ q · a)(pa)

(aa) +
4

(p+ q)2
(p+ q · a)2 +

4

p2
(pa)2 − 4

(p+ q)2
(p+ q · a)2

+
4

p2
(qa)(pa)− 4

p2
(p+ q · a)(pa) = (aa)

Solution to exercise 136
We use the fact that any four-vector is a linear combination of t, x, y, and z, and
that

t · t = −x · x = −y · y = −z · z = 1

Solution to exercise 137
Consider a vector uµ with (uk1,2) = 0. Then u2 < 0 so we may take u2 = −1.
For vµ = εµ(u, k1, k2)/(k1k2) we have (vu) = (vk1,2) = 0 and v2 = −1. Moreover,
εµ(v, k1, k2)/(k1k2) = −uµ. Therefore we have

Λµνk
ν
1,2 = kµ1,2 , Λµνu

µ = cos θuµ − sin θvµ , Λµνv
µ = cos θvµ + sin θuµ

so this is a minimal Lorentz transform and in the frame with ~k1,2 antiparallel it is a
rotation in the u, v plane.

Solution to exercise 138
The generator of rotations aounrd the z axis is, from Eq.(12.16):

(Tz)
α
β = i~ (xαyβ − yαxβ)

Therefore

(Tzε±)µ =
i~√

2
(xµyν − yµxν) (xν ± iyν) =

i~√
2

(∓ ixµ + yµ) = ± ~εµ+

(Tzε0)µ = i~ (xµyν − yµxν) zν = 0

Solution to exercise 139

1. This is essentially the same as exercise 123, except that we no longer require
p2 = 0.

2. It is a Lorentz-covariiant expression.
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3. Since [γ0, /p] depends only on ~p we can write

1

|~p|
γ5[γ0, /p] =

1

k0
1

γ5[γ0/k1] = − 1

k0
2

γ5[γ0/k2]

and then use

γ5[γ0/k1]u+(k1) = −γ5/k1γ
0u+(k1) = −2k0

1γ
5u+(k1) = −2k0

1u+(k1)

and similar for k2 (up to the additional minus sign). This leads immediately
to the results.

4.

u+(k1)γµu+(k2) → (Σu+(k1))γµΣu+(k2)

= (e−iα/2u+(k1))γµ
(
eiα/2u+(k2)

)
= eiαu+(k1)γµu+(k2)

Solution to exercise 140

1. The Chisholm identity gives

/ε+ =

√
2

m
(u+(k2)u+(k1) + u−(k1)u−(k2)) , /ε− =

√
2

m
(u−(k2)u−(k1) + u+(k1)u+(k2))

Hence

/ε−/ε+/p =
2

m2
(s−(k1, k2)s+(k1, k2)ω−/k2 + s+(k2, k1)s−(k2, k1)ω+/k1)

= −2 (ω−/k2 + ω+/k1)

and this proves the result.

2. The Pauli identity gives

/p/ε+/ε− − /ε−/ε+/p = −2iγ5γµε
µ(p, ε+, ε−)

and therefore εµ0 ∼ εµ(p, ε+, ε−). This is the main point; the other orthogonali-
ties are trivial.

Solution to exercise 141
Let us take r = q. Then

εµλ(k) =
uλ(k)γµuλ(q)

λ
√

2 s−λ(k, q)
→ ελ · q = 0 , ελ · p =

sλ(k, p)s−λ(p, q)

λ
√

2 s−λ(k, q)

so that
ελ · p
2(kp)

=
ελ · p

sλ(k, p)s−λ(p, k)
=

−λs−λ(p, q)√
2 s−λ(k, p)s−λ(k, q)
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13 Exercises for chapter 13

Solution to exercise 142

1. Applying the handlebar gives

/k/ε → /k/k = k2 = 0

2. The amplitude for a 1→ 2 process must have dimensionality m, see Eq.(7.23).
Since /k ∼ m and u, u ∼ m1/2 we must have dim[g] = m−1~−1/2 = L/~1/2.

3. Since we may use
∑

εα ε̄β = −gαβ, and with ω = cos θ + i sin θγ5 = ω̄:

〈
|M|2

〉
= −~g2

2
Tr ((/q +me)ω/kγ

α(/p+mµ)γα/kω) = −~g2

2
Tr (/qω/kγα/pγα/kω)

= ~g2Tr (/qω/k/p/kω) = 2(pk)~g2Tr (/qω/kω) = 8~g2 (pk)(qk)

= 2~g2 (m2
µ −m2

e)
2 = 8πα

(m2
µ −m2

e)
2

Λ2

4.

Γ(µ→ eγ) =
1

2mµ

〈
|M|2

〉 1

32π2

(
1− m2

e

m2
µ

)
(4π) =

α(m2
µ −m2

e)
3

2m3
µΛ2

5. Using the rsuul for muon decay of chapter 11, we have

B =
Γ(µ→ eγ)

Γ(µ→ eν̄eνµ)
=

96απ3(m2
µ −m2

e)
3

m8
µΛ2G2

F

≈ 1.43 1013 GeV2

Λ2

Therefore K ≈ 3.8 106 GeV, and Λ > 1012 GeV.

Solution to exercise 143
The (sum of the) two diagrams is

M = −ie2~u(p2)

[
/ε2
/p1 + /k1 +m

2(p1k1)
/ε1 − /ε1

/p2 − /k1 +m

2(p2k1)
/ε2

]
u(p1)

The handlebar on photon 1 leads to

/p1 + /k1 +m

2(p1k1)
/ε1u(p1) → /p1 +m

2(p1k1)
/k1u(p1) = u(p1)

u(p2)/ε1
/p2 − /k1 +m

2(p2k1)
→ u(p2)/k1

/p2 +m

2(p2k1)
= u(p2)

so that M vanishes.

Solution to exercise 144
The identity 4πα = Q2~, when translated according to Eq.( 13.34), reads 4πα =
q2/(~c), which is correct.
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Solution to exercise 145
It is simplest to examine the differences with the ‘original’ Furry theorem, that
gave C = −1 for vector particles. With one scalar vertex, only the odd powers
of m survive, leading to C = +1 for scalar particles. Replacing γµ by σµν again
only the odd powers of m survive, but also (σµν)R = −σµν so that again C = −1.
Replacing γµ by γ5 has the same effect as replacing it by 1 since (γ5)R = γ5, so gives
C = +1. Finally, γ5γµ keeps only the even powers of m but (γ5γµ)R = −γ5γµ so that
C = +1. Note that here the C-character of the particle is completely determined by
its coupling to fermions

Solution to exercise 146

1. The minus sign is (what else?) the Fermi sign, that is unavoidable whenever
v(p, s) and v(p, s) occur together.

2. By direct computation using the Casimir trick we have

Γ = 1 : U = 2m , V = 2m

Γ = γµ : U = 2pµ , V = −2pµ

Γ = σµν : U = 2εµν(p, s) , V = −2εµν(p, s)

Γ = γ5γµ : U = −2msµ , V = −2msµ

For Γ = γ5 we find U = V = 0, with no conclusion possible.

Solution to exercise 147
We tacitly assume to be working in the centre-of-mass frame, where the process is

e+(p1) e−(p2) → µ−(q1) µ+(q2)

so that ~q2 = −~q1.

1. By the assumption of C conservation, we only have to look at the C character
of the intermediate state: -1 for one photon, +1 for two photons.

2. In what follows, the incoming e+e− pair is simply a machine that produces a
superposition of one- and two-photon states. At the tree level, one one-photon
states are produced: the initial state is then |γ〉, with C |γ〉 = − |γ〉. The final
state |f〉 is |µ−(q1)µ+(q2)〉 and C |f〉 = |µ−(q2)µ+(q1)〉. The differential cross
section is essentially the transition rate |M(q1, q2)|2:

|M(q1, q2)|2 = 〈i| f〉 〈f | i〉 =
〈
γ
∣∣C†C∣∣ f〉 〈f ∣∣C†C∣∣ i〉

= 〈γ |C| f〉
〈
f
∣∣C†∣∣ γ〉 = |M(q2, q1)|2

The interchange q1 ↔ q2 is equivalent to replacing the scattering angle cosine
cos θ by − cos θ. The differntial cross section is therefore symmetric in cos θ at
the tree level.
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3. For more complicated observables A we define

Ω =
∑
f

|f〉 f , A = 〈i |Ω| i〉

where the sum Σf is defined by the experiment. We define C-even and C-odd
parts by

CΩ±C
† = ±Ω±

The full initial state is now

|i〉 = |γ〉+ |γγ〉 , C |i〉 = − |γ〉+ |γγ〉

where we ignore possible coefficients in the superposition. By the same reason-
ing as above we find

A± = (〈γ|+ 〈γγ|) Ω± (|γ〉+ |γγ〉)
= ± (〈γ |Ω±| γ〉+ 〈γγ |Ω±| γγ〉)∓ (〈γ |Ω±| γγ〉+ 〈γ |Ω±| γγ〉)

therefore

A+ = 〈γ |Ω+| γ〉+ 〈γγ |Ω+| γγ〉
A− = 〈γ |Ω−| γγ〉+ 〈γ |Ω−| γγ〉

A+ is any experimental observable that is symmetric in q1 ↔ q2.

4. An antisymmetric observable A− gets contributions only from the single- and
double-photon channel. The second diagram interfering with the third one is
a two-loop contribution.

As an illustration, an excellent proof for the total cross section follows from the fact
that, directly by Furry’s theorem,

µ

e e = 0

Solution to exercise 148

1. This is because under integrhange of particle and antiparticle uu and dd̄ are
invariant as long as they are not distinguished by any other variables. Since
π0 is a spin-zero particle (an s-wave bound state) this holds.

2. As fas as we know, there is no ‘anti’-light. If photons and antiphotons were
different, then for instance black-body radiation would look different sice for
every wavenumber there would not be two but four photon states.

3. If the photons had C = +1 then π0 → γγγ would be far less severely suppressed
(only by a factor α or so). Therefore C = −1, and the pion then has C =
(−1)2 = +1.
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Solution to exercise 149

1. (a) The photons can be attached in n! permutations; there are no vertices
with 2 or more photons.

(b) As Eq.(13.75) shows, in this case always the photon closest to either the
electron or to the positron has that fermion’s momentum as a gauge vector,
and the amplitude vanishes.

(c) The diagrams are nonzero for which the ‘exceptional’ photon is closest to
either the electron or to the positron. Then there are (n − 1)! ways to
attach the other photons.

2. We use p2 for all three gauge vectors, so that

ω−/ε1 l

√
2u−(k1)u−(p2)

s−(k1, p2)
, ω−/ε2 l

√
2u−(k2)u−(p2)

s−(k2, p2)
, ω−/ε3 l

√
2u−(p2)u−(k3)

s+(k3, p2)

Then, up to an overall factor
√

8e6~3,

M l
u+(p1)/ε1(/k1 − /p1)/ε2(/p2 − /k3)/ε3u+(p3)

2(p1k1) 2(p2k2)
√

8
+ (1 ↔ 2)

l
s+(p1, k1)u−(p2)(/k1 − /p1)u−(k2)u−(p2)/k3u−(p2)u−(k3)u+(p2)

2(p1k1) 2(p2k3) s−(k1, p2)s−(k2, p2)s+(k3, p2)
+ (1 ↔ 2)

l
u−(p2)/k3u−(k2)s−(k3, p2)

s−(k1, p1)s−(k1, p2)s−(k2, p2)s+(k3, p2)
+ (1 ↔ 2)

l
u−(p2)/k3/k2u+(p1)s−(k3, p2) + (1 ↔ 2)

s−(k1, p1)s−(k1, p2)s−(k2, p1)s−(k2, p2)s+(k3, p2)

=
u−(p2)/k3/p2u+(p1)s−(k3, p2)

s−(k1, p1)s−(k1, p2)s−(k2, p1)s−(k2, p2)s+(k3, p2)

l
s−(p1, p2)s−(k3, p2)2

s−(k1, p1)s−(k1, p2)s−(k2, p1)s−(k2, p2)

3. For this helicity configuration, we have

|M|2 = 2e6~3 s (p2k3)2

(p1k1)(p2k1)(p1k2)(p2k2)
= 2e6~3 s (p2k3)3(p1k3)

3∏
j=1

(p1kj)(p2kj)

The other contributions come from (a) taking the fermions’ helicity - and chang-
ing the gauge vector from p2 to p1, (b) flipping all helicities, (c) taking also k1

and k2 to be the ‘exceptional’ photon. And let us not forget the factor 1/4 in
the average!

Solution to exercise 150
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1. We use the fact that p1 + p2 − q1 − q2 = 0 and therefore

0 = (p1 + p2 − q1 − q2)2

= 2m2 + 2M2 + 2(p1p2) + 2(q1q2)− 2(p1q1)− 2(p1q2)− 2(p2q1)− 2(p2q2)

= 2m2 + 2M2 + (s− 2m2) + (s− 2M2) + 2(t−m2 −M2) + 2(u−m2 −M2)

= 2(s+ t+ u)− 4m2 − 4M2

2. This goes precisely the same way if we take the square of 0 = p1+p2−q1−q2−k.

Solution to exercise 151
Here exercise 128 is extremely useful. We have seen there that the only amplitudes
where both diagrams contribute are

M(+,+,+,+) lM(−,−,−,−) l 2~Qe
2 u

s+ t

st

If we forget the Fermi sign, the numerator becomes (s− t). We will therefore be off
by a factor (with c = cos θ):

(s− t)2u2 + s4 + t4

u4 + s4 + t4
=
c4 − 4c3 + 2c2 + 4c+ 13

(c2 + 3)2

This is equal to 1 for c = ±1 and reaches a maximum of 3/2 for c =
√

5− 2 ∼ 0.236
or 76.3 degrees.

Solution to exercise 152
With s = (p1+p2)2 = (q1+q2)2, t = (p1−q1)2 = (p2−q2)2, u = (p1−q2)2 = (p2−q1)2,
and s+ t+ u = 4m2:

M = i~Qe
2

(
As
s
− At

t

)
As = v(p1)γαu(p2) u(q2)γαv(q2)

At = v(p1)γαv(q1) u(q2)γαu(p2)〈
|As|2

〉
=

1

4
Tr ((/p1 −m)γα(/p2 +m)γβ) Tr

(
(/q2 +m)γα(/q1 −m)γβ

)
= 2(t2 + u2) + 16m2s− 16m4〈

|At|2
〉

=
1

4
Tr ((/p1 −m)γα(/q1 −m)γβ) Tr

(
(/q2 +m)γα(/p2 +m)γβ

)
= 2(s2 + u2) + 16m2t− 16m4

〈A1A∗2〉 =
1

4
Tr
(
(/p1 −m)γα(/p2 +m)γβ(/q2 +m)γα(/q1 −m)γβ

)
= −2u2 + 16m2u− 24m4〈

|M|2
〉

=
~2Qe

4

s2t2

(
2s4 + 2t4 + 2u2(s+ t)2 + 16m4(t2 + st+ s2)

+ 8m2(−t2u− t3 − 3stu+ 2st2 − s2u+ 2s2t− s3

)
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Solution to exercise 153
For e+(p1)e−(p2) → µ+(q1)µ−(q2)γ(k):〈

|M|2
〉

= ~3Qe
6 t

2 + t′2 + u2 + u′2

ss′
K

with

K =
2(p1p2)

(p1k)(p2k)
+

2(q1q2)

(q1k)(q2k)

+
2(p1q1)

(p1k)(q1k)
+

2(p2q2)

(p2k)(q2k)
− 2(p1q2)

(p1k)(q2k)
− 2(p2q1)

(p2k)(q1k)

− m2

(p1k)2
− m2

(p2k)2
− m2

(q1k)2
− m2

(q2k)2

For e+(p1)e−(p2) → e+(q1)e−(q2)γ(k):〈
|M|2

〉
= ~3Qe

6 ss
′(s2 + s′2) + tt′(t2 + t′2) + uu′(u2 + u′2)

ss′tt′
K

Solution to exercise 154

1. The transition rate for final-state radiation can be found from exercise 152:〈
|M|2

〉
= ~3Qe

6 t
2 + t′2 + u2 + u′2

s(q1k)(q2k)

With θj the angle between ~qj and ~p1, we have

t = −sx1(1− cos θ1)/2 , t′ = −sx2(1 + cos θ2)/2

u = −sx2(1− cos θ2)/2 , u′ = −sx1(1 + cos θ1)/2

Averaging over the direction of ~p1, we therefore have〈
t2 + t′2 + u2 + u′2

〉
=

2s2

3

(
x2

1 + x2
2

)
Using momentum conservation,

(q1k) = s(1− x2)/2 , (q2k) = s(1− x1)/2

The angle-averaged rate is therefore, using ~Qe
2 = 4πα:〈〈

‖M|2
〉〉

=
512π3

3s

x2
1 + x2

2

(1− x1)(1− x2)

The phase space factor, after angular integration but before the energy inte-
gration, is

d(x1, x2) =

∫
dV (p1+p2; q1, q2, k) =

1

(2π)5

∫
1

8
dq0

1 dq
0
2 dΩ1 dφ2 =

s

128π3
dx1 dx2

For the cross section, therefore

dσ =
1

2s

〈〈
|M|2

〉〉
d(x1, x2) =

2α3

3s

x2
1 + x2

2

(1− x1)(1− x2)
dx1 dx2
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2. The prefactor ~3Qe
6 is proportional to π3α3; the phase space contains two an-

gles, implying a factor π2; and the phase space also contains (2π)−5. Therefore
all factors of π cancel here.

3. For x1 → 1, (q2k) vanishes so that either k0 → 0 or ~q2 ‖ ~k, and similar for x2.
If both x1 and x2 approach 1 this means that k0 → 0. Therefore x1 = 1, x2 < 1
and x2 = 1, x1 < 1 are collinear singularities, and x1 = x2 = 1 is an infrared
singularity.

Solution to exercise 155

1. According to Eq.(13.115) the distribuition of the abgle θ between the electron
and photon momenta (in the overall centre-of-mass system) is proportional, for
small angles, to

∼ (θ2 + (m/E)2)−1

and this is invoked to state that the ‘typical’ angle is aroundm/E ≈ 0.0005/100 ≈
5 10−6.

2. From

r(α) =

1∫
cos(α)

d cos θ
1

1 + δ − cos θ
= log

(
1 + δ − cos(α)

δ

)
with δ = m2/(2E2), we find that α must obey

r(α) = f r(π) → cos(α) = 1 + δ − δ
(

2

δ

)f
3. If α is small(ish) then α ≈

√
2δ(2/δ)f/2 and this is about 3 10−3 for this δ and

f = 0.5.

Solution to exercise 156

1. This is simply

S =
∑
λ=±

∣∣∣∣p1 · ελ
p1 · k

− p2 · ελ
p2 · k

∣∣∣∣2
2. We use pµ1 = (E, ~p), pµ2 = (E,−~p), kµ = k(1, ~e) and p = |~p|, and insert that

into S.

3. Simplifying S we obtain

S =
4E2p2(1− c2)

k2(E2 − p2c2)2

and this vanishes for c = ±1. Another way to understand this is to remark
that the photon polarization can be chosen such that ~ελ ⊥ ~k and ε0λ = 0 (by

taking the gauge vector to point opposite to ~k). Then, for c = ±1, also ~ελ ⊥ ~p
so that p1,2 · ελ = 0.
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Solution to exercise 157

1. We use t = (p1 − q1)2 = m2 − 2(p1q1), u = (p2 − q1)2 = m2 = 2(p2q1).

M =
ie2~
s
v(p1)(/q1 − /q2)u(p2) =

2ie2~
s

v(p1)/q1u(p2)〈
|M|2

〉
=

e4~2Tr (/p1/q1/p2/q1)

s2
=
e4~2 (8(p1q1)(p2q2)− 4m2(p1p2))

s2
=

2e4~2(tu−m4)

s2

2. With E = p0
1,2 = q0

1,2, β = |~q1|/E and θ the angle between ~p1 and ~q1:

8(p1q1)(p2q1)− 4m2(p1p2) = 8E4β2(1− cos θ2)

dσ

dΩ
=

1

2s
(4πα)2 β

2(1− cos θ2)

2

1

32π2
β

σ =
α2π

3s
β3 =

α2π

3s

(
1− 4m2

s

)3/2

3. As m2/s→ 0,

σ(e+e− → µ+µ−) =
4α2π

3s
, σ(e+e− → ww̄) =

α2π

3s

For the muons there are 2 contributing helicity configurations. Moreover, the
Gordon decomposition shows that the µ−γµ+ interaction contains the scalar
(convection) part as well as a ‘magnetic’ part. At high energy these contribute
equally.

Solution to exercise 158
It is enough to compute M. For w(p1)w̄(p2) → w′(q1)w̄′(q2):

M = ie2~
(p1 − p2 · q1 − q2)

s
l e2~

u− t
s

For w(p1)w̄(p2) → w(q1)w̄(q2):

M = ie2~
(

(p1 − p2 · q1 − q2)

s
+

(q1 + p1 · −p2 − q2)

t

)
l e2~

(
u− t
s

+
u− s
t

)
Note that crossing symmetry is preserved since the amplitude is invariant under
p2 ↔ −q1.

Solution to exercise 159
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1. The process is e+(p1)e−(p2) → w(q1)w̄(q2)γ(k). The diagrams are

k

p
1

p
2

q
1

q
2

k

p
1

p
2

q
1

q
2

k

p
1

p
2

q
1

q
2

The amplitude, with photon polarization ρ = ±:

M(λ, ρ) = −ie
3~3/2

s
vλ(p1)γµuλ(p2)

(
Jµ1 + Jµ2 + Jµ3

)
Jµ1 =

(q1 + q1 + k · ε)(q1 + k − q2)µ

2(q1k)
→ −2qµ2

q1 · ε
q1 · k

Jµ2 =
(−q2 − q2 − k · ε)(q1 − k − q2)µ

2(q2k)
→ −2qµ1

q2 · ε
q2 · k

Jµ3 = −2εµ

Here we used k · ε = 0 and v(p1)(/q1 + /q2 + /k)u(p2) = 0.

2. We start with λ = ρ = +, and pick p2 as the gauge vector of the photon. Then

εµ =
u+(k)γµu+(p2)√

2 s−(k, p2)
, u+(p1)/ε+u+(p2) = 0

M = i
e3~3/2

√
8

s s−(k, p2)
B

B =
s+(k, q1)s−(q1, p2)s+(p1, q2)s−(q2, p2)

2(q1k)
+
s+(k, q2)s−(q2, p2)s+(p1, q1)s−(q1, p2)

2(q2k)

= s−(q1, p2)s−(q2, p2)

(
s+(p1, q2)

s−(q1, k)
+
s+(p1, q1)

s−(q2, k)

)
=

s−(q1, p2)s−(q2, p2)u+(p1)(/q1 + /q2)u+(k)

s−(k, q1)s−(k, q2)

=
s−(q1, p2)s−(q2, p2)s+(p1, p2)s−(p2, k)

s−(k, q1)s−(k, q2)

|M|2 = 2e6~3 t′u′

s(q1k)(q2k)
, t′ = (p2 − q2)2 , u′ = (p2 − q1)2

The case λ = −, ρ = + is obtained by p1 ↔ p2, and we can also flip both
helicities. This gives the quoted result.

Solution to exercise 160

1. It is easily checked that ε(1) · k1,2 = ε(2) · k1,2 = 0 and ε(1) · ε(2) = 0. The
amplitude is

M(ε1, ε2) = −2ie2~
(

(p1ε1)(p2ε2)

(p1k1)
+

(p2ε1)(p1ε2)

(p2k1)
− (ε1ε2)

)
We also have

(p1,2ε
(1)) = 0 , (p1ε

(2)) = −(p2ε
(2)) = −E2 sin θ , (p1,2k1) = E2(1± cos θ)
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Thus we find

M(ε(1), ε(2)) = −2ie2~
M(ε(1), ε(2)) = M(ε(2), ε(1)) = 0

M(ε(2), ε(2)) = −2ie2~
(
− sin θ2

1− cos θ
− sin θ2

1 cos θ
+ 1

)
= −2ie2~(−(1 + cos θ)− (1− cos θ) + 1) = +2ie2~〈

|M|2
〉

= 8e4~2

2. For this choice, we have (pε1) = (pε2) = 0 so only the seagull survives. We
have (

ε+1
)µ

=
u+(k1)γµu+(p1)√

2 s−(k1, p1)
,
(
ε−2
)µ

=
u−(k2)γµu−(p1)

−
√

2 s+(k2, p1)
=
u+(p1)γµu+(k2)√

2 s+(p1, k2)

ε+1 · ε−2 =
u+(k1)γµ/p1γµu+(k2)

2s−(k1, p1)s+(p1, k2)
= −s+(k1, p1)s−(p1, k2)

s−(k1, p1)s+(p1, k2)
l 1

3. We can take p1, say, as gauge vector for all polarizations. This if photon j and
i have the same helicity, εj · εi = 0. Therefore diagrams with seagulls do not
contribute. In a given diagram, if photon n is the first one to be emitted by
the incoming p1, there will be a vertex factor (p1 + p1 − kn · εn) = 2(p1εn) = 0
and that diagram vanishes. Thus M = 0.

4. (a) For ww̄ to n photons, the number of diagrams an can be shown to be

an =
n!√

3

((
(1 +

√
3)/2

)n+1

−
(

(1−
√

3)/2
)n+1

)
so that a3 = 12. The diagrams are

6× + 3× + 3×

(b) By the reasoning of item 3, the only possibly nonzero diagrams are

1

p 
1

p
2

k3

k2

k 2

p 
1

p
2

k3

k

k

1

(c)

M = −4ie3~3/2 (p2ε
+
1 )(ε+2 ε

−
3 )

2(p2k1)
+ (1↔ 2)

(p2ε
+
1 )

(p2k1)
=

u+(k1)/p2u+(p1)

2(p2k1)
√

2 s−(k1, p1)
= − s−(p2, p1)√

2s−(k1, p2)s−(k1, p1)

(ε+2 ε
−
3 ) = −u+(k2)γα/p1γαu+(k3)

2s−(k2, p1)s+(k3, p1)
=
s+(p1, k2)s−(k3, p1)

s−(k2, p1)s+(k3, p1)

M = ie3~3/2
√

8

(
s−(p2, p1)s+(p1, k2)s−(k3, p1)

s−(k1, p2)s−(k1, p1)s−(k2, p1)s+(k3, p1)
+ (1↔ 2)

)
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l e3~3/2
√

8
s−(p2, p1)s−(k3, p1)

s−(k1, p1)s−(k2, p1)s+(k3, p1)

(
s+(p1, k2)

s−(k1, p2)
+
s+(p1, k1)

s−(k2, p2)

)
= e3~3/2

√
8

s−(p2, p1)s−(k3, p1) u+(p1)(/k1 + /k2)u+(p2)

s−(k1, p1)s−(k1, p2)s−(k2, p1)s−(k2, p2)s+(k3, p1)

l e3~3/2
√

8
s−(p2, p1)s−(k3, p1)s−(k3, p2)

s−(k1, p1)s−(k1, p2)s−(k2, p1)s−(k2, p2)

(d) Each of the other photons may also be the ‘exceptional one’, and we can
flip all helicities as well. This gives the quoted result. If we let k0

3 → 0
then〈

|M|2
〉
→ 8e6~3 (p1p2)

(k3p1)(k3p2)

(
(k1p1)2(k1p2)2 + (k2p1)2(k2p2)2

(k1p1)(k1p2)(k2p1)(k2p2)

)
and since for k3 = 0 we have (p1k1) = (p2k2) and (p1k2) = (p2k1), the last
factor in brackets is simply equal to 2.

Solution to exercise 161

1. There is just one diagram, with a photon with momentum k exchanged. The
only new ingredient is the factor Z1Z2.

2. This is, in fact, the original definition of the flux factor, see Eq.(7.17).

3. Taking M →∞ where possible, and working the q1 rest frame, we have

d4q2 δ(q
2
2 −M2) δ4(q + 1 + k − q2) = δ((q1 + k)2 −M2)

= δ(2(q1k) + k2) = δ(2Mk0 + k2) =
1

2M
δ(k0 + k2/M) ≈ 1

2M
δ(p0

1 − p0
2)

=
p0

1

M
δ((p0

1)2 − (p0
2)2) =

p0
1

M
δ(|~p1|2 − |~p2|2) =

p0
1

2M |~p1|
δ(|~p1| − |~p2|)

The result for dV follows immediately. Additionally,

k2 = −|~k|2 = −|~p1 − ~p2|2 = −2|~p1|2(1− cos θ) = −4|~p1|2(sin θ/2)2

4. In the M →∞ limit, we have (p1 + p2 · q1 + q2) = 4Mp0
1 so that

|M|2 = 16π2(αZ1Z2)2 M2(p0
1)2

|~p1|2(sin θ/2)4

dσ

dΩ
=

1

4M |~p1|
16π2(αZ1Z2)2 M2(p0

1)2

|~p1|4(sin θ/2)4

|~p1|
16π2M

5. Denoting by pµc the classical (non-quantum) momentum, we have in the non-
relativistic limit

p0
1

|~p1|2
=
p0
c

~
~2

|~pc|2
≈ ~mcc

|~pc|2
=

~c
2EK

and inserting this leads immediately to the Rutherford formula.
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Solution to exercise 162
Replacing scalars by Dirac particles means replacing

(p1 + p2 · q1 + q2) ≈ 4Mp0
1 → u(p2)γµu(p1)u(q2)γµu(q1)

In the M →∞ limit we can replace q2 by q1, and then we have, looking at the spins:

u(q1, s)γ
µu(q, s) = 2Mg0µ , u(q1, s)γ

µu(q1,−s) = 0

We must therefore replace

16M2(p0
1)2 = (p1 + p2 · q1 + q2)2 →

1

4
8M2 Tr

(
(/p2 +m)γ0(/p1 +m)γ0

)
= 8M2(2p0

1p
0
2 − (p1p2) +m2)

= 8M2((p1)2 + |~p1|2 cos θ +m2) = 16M2
(
(p0

1)2 − |~p|2(sin θ/2)2
)

Solution to exercise 163
This is simple verification. If, in Eq.(13.144), we leave out the σµν term then we
reproduce exactly Eq.(13.141).

Solution to exercise 164
For muon pair production we can write the transition rate in various ways ways, for
example:

F (p1, p2, q1, q2) = 2e4~2 (p2q2)2 + (p2q1)2

(q1q2)2
= 2e4~2 (p1q2)2 + (p1q1)2

(q1q2)2

This makes it particularly easy to implement Eq.(13.163). For the choice p+
1,2 we take

the first form, and for the choice p−1,2 we take the second one. This nicely cancels the
factors (s′ + 2(p1,2k))2:

(s′ + 2(p1k))2F (p+
1 , p

+
2 , q1, q2) = 2e4~2 (t′2 + u′2)

(s′ + 2(p2k))2F (p−1 , p
−
2 , q1, q2) = 2e4~2 (t2 + u2)

and the radiative transition rate indeed beomes〈
|Mr|2

〉
= e6~3 t

2 + t′2 + u2 + u′2

ss′
s

(p1k)(p2k)

Solution to exercise 165
When the photon is soft but not collinear, the last term in brackets is not IR divergent
and can be neglected, so the soft-photon fator remains. When the photon is collinear
with q1, say, the double-pole term is automatically correct since it is always so. The
coefficient of e2~/(q1k) can then be written as

2(q1q2)

(kq2)
+

(kq2)

(q1 + k · q2)
=

2(q1q2)2 + 2(q1q2)(kq2) + (kq2)2

(kq2)(q1 + k · q2)
=

(q1q2)2 + (q1 + k · q2)2

(kq2)(q1 + k · q2)

which gives Eq.(13.171) for the choice r0 = q2.
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Solution to exercise 166
We use the explicit representationwith gauge vector r, and choose positive helicity
for the photon.

ηµ = εµ+ −
(ε+p)

(qp)
qµ =

A

2(pq)
√

2 s−(q, r)

A = −2qµu+(q)/pu+(r) + 2(pq)u+(q)γµu+(r)

= −u+(q)γµu+(q)u+(q)/pu+(r) + 2(pq)u+(q)γµu+(r)

= −u+(q)γµ/q/pu+(r) + 2(pq)u+(q)γµu+(r)

= u+(q)γµ/p/qu+(r) = u+(q)γµu+(p)s+(p, q)s−(q, r)

→ ηµ =
u+(q)γµu+(p) s+(p, q)

2(pq)
√

2
=
u+(q)γµu+(p)√

2 s−(q, p)

For negative helicity the proof is completely analogous.

Solution to exercise 167

1. The amplitude reads

M(p1, s1, p2, s2) = ie2~ v(p1, s1)

(
/ε2
/p2 − /k1 +m

2(p1k1)
/ε1 + /ε1

/p2 − /k2 +m

2(p1k2)
/ε2

)
u(p2, s2)

= i
e2~
4
v(p1, s1)

(
/ε2

(/p2 +m)− (/p1 −m)− (/k1 − /k2)

(p1k1)
/ε1

+/ε1
(/p2 +m)− (/p1 −m) + (/k1 − /k2)

(p1k2)
/ε2

)
u(p2, s2) (1)

2. We have (ε1,2 · k1 + k2) = 0, and k1 + k2 is at rest in the centre-of-mass frame.

3. In the static limit, we have (p1k2) = (p1k2) = mk0
1,2 = m2. Also, /p1,2 anticom-

mute with /ε1,2 in that limit. Therefore

M(p1, s1, p1, s2) = − ie
2~

4m2
v(p1, s1)

(
/ε2(/k1 − /k2)/ε1 − /ε1(/k1 − /k2)/ε2

)
u(p1, s2)

= − e2~
2m2

εµ(ε1, k1 − k2, ε2) v(p1, s1)γ5γµu(p1, s2)

4. Since all three vectors ε1, ε2 and k1 − k2 lack a timelike component, their
combination εµ(ε1, k1 − k2, ε2) can only have a timelike component, so it must
be proportional to p1. In fact,

εµ(ε1, k1 − k2, ε2) =
1

m2
ε(p1, ε1, k1 − k2, ε2) pµ1

Therefore

M(p1, s1, p1, s2) = − e2~
2m3

ε(p1, ε1, k1 − k2, ε2) v(p1, s1)γ5u(p1, s2)
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(It may be interesting to note that both ε(p1, ε1, k1−k2, ε2) and v(p1, s1)γ5u(p1, s2)
are pseudoscalar objects, so the amplitude is still a Lorentz scalar.) From

γ5u(p, s)(γ5u(p, s)) = −γ5(/p+m)(1 + γ5/s)γ5 = v(p,−s)v(p,−s)

we see that
v(p1, s1)γ5u(p1, s2) ∼ v(p1, s1)v(p1,−s2)

and therefore

M(p1, s1, p1, s1) = 0

M(p1, s1, p1,−s1) l
e2~
m2

ε(p1, ε1, k1 − k2, ε2) l 2e2~ sinφ

where φ is the angle between ~ε1 and ~ε2.

14 Exercises for chapter 14

Solution to exercise 168
If we take the initial state to be Dirac particles (and using Q = Q = e for simplcity)
we have

Ma =
ie2~
s
Jµ u(q1)γµv(q2) , Jµ = v(p1, s1)γµu(p2, s2)

where we indicate the spins of the initial fermions as well. Summing only over the
final-state spins and performing the phase-space integration gives, with P = p1+p2 =
q1 + q2,∫

dV Σ |Ma|2 =

∫
dΩ

e4~2

s2
JµJ

∗
ν Tr ((/q1 +m)γµ(/q2 −m)γν)

1

32π2
β

=
e4~2

12πs2
JµJ

∗
ν (P µP ν − sgµν)

The forward scattering amplitude is

Mf =
e2~2

s2
v(p1, s1)γµu(p2, s2)Fµν(m2, P )u(p2, s2)γνv(p1, s1)

=
e2~2

s2
JµJ

∗
ν (P µP ν − sgµν)K(m2, s)

with the same conclusion <K(m2, s) = −αβ(3−β2)/(6~)θ(s > 4m2). Summing over
the initial spins does not lead to an amplitude but to a sum of amplitudes

Solution to exercise 169
The change from x to y in the integral implies

1∫
0

dx → 1

2

1∫
−1

dy =

1∫
0

dy
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for any integrand symmetric in x↔ 1− x. Then, assuming γ = ziβ with z = ±,

B =

[(
3y

2
− y3

2

)
log
(s

4
(γ2 + y2)

)]y=1

y=0

−
1∫

0

dy
3y2 − y4

γ2 + y2

= log

(
s(1 + γ2)

4

)
−

1∫
0

dy

(
3 + γ2 − y2 − γ2(3 + γ2)

γ2 + y2

)
= log(m2)− 8

3
− γ2 + γ(3 + γ2) arctan(1/γ)

= log(m2)− 8

3
+ β2 +

zβ(3− β2)

2
log

(
β + z

β − z

)
and we see that the sign z drops out.

Solution to exercise 170
For m = 0, we have log(−sx(1−x)− iη) = log(s)+log(x(1−x))− iπθ(s > 0). Then,

1∫
0

dx 6x(1− x) = 1 ,

1∫
0

dx 6x(1− x) log(x(1− x)) = 12

1∫
0

dx(x− x2) log(x) = −5

3

For s→∞ we have β → 1 so

β(3− β2)

2
log

(
1 + β

1− β

)
≈ log

(
(1 + β)2

1− β2

)
≈ log

(
4

1− β2

)
= log

( s

m2

)
Solution to exercise 171

1. The tricky bit is the integration along the cut. To the right, we have, with
z = |q| > 0, q = iz + η so −q2 = z2 − iη, and to the left we have q = iz − eta
hence −q2 = z2 + iη; that part of the integral is therefore

α

12iπ3r

∞∫
2m

d(iz)
e−zr

iz

(
FΠ(z2 + iη)− FΠ(z2 − iη)

)
2. Expanding to the next order, the right-hand side of Eq.(14.38) becomes

3

4

y1/2

m3/2
− 29

32

y3/2

m5/2

and the Uehling correction then reads

1

4πr
→ 1

4πr

(
1 + e−2mr α

4
√
π

(
1

(mr)3/2
− 29

16(mr)5/2

))
3. The series expansion in y in Eq.(14.38) is convergent up to the point where
q = 0 is reached for y = −2m. It therefore has a finite radius of convergence of
2m. The y integral, however, extends to infinity. Compare this to the discussion
in appendix 19.1.
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4. If me is the classical electron mass (in kg) the Bohr radius is rB = ~/(αmec)
so in our convention it is rB = 1/(αm). The exponent exp(−2mrB) is then
about exp(−274). To have a correction of 10−4 we would need mr ≈ 0.4
hence a distance r ≈ 0.003 rB. If we increase m the distances for a given
correction become proportionally smaller; or, at a given r, their effect becomes
exponentially suppressed.

Solution to exercise 172

1. For very small Γ we may approximate (see Eq.(7.10)):

σresonance(s) ≈ 12π2 Γ`
M

δ(s−M2)

so that

[<Πh(s)−<Πh(0)]resonance = − s

4π2α
P
∫ ∞

4m2
π

dz
σresonance(z)

z − s
≈ 3

α

Γ`
M

s

s−M2

If s −M2 is of the order of MΓ then the δ-approximation is no longer valid,
and we get correction terms. To leading order in Γ:

[<Πh(s)−<Πh(0)]resonance ≈
3

α

Γ`
M

s

(s−M2)2 +M2Γ2

(
(s−M2)

(
1− Γ

πM

)
+
MΓ

π
log
( s

M2

))
2.

[<Πh(s)−<Πh(0)]plateau = − s

4π2α
P

∞∫
4m2

π

dz
σplateau(z)

z − s

= − α

3π
q2NcP

∞∫
4M2

dz
s

z(z − s)
=

α

3π
q2Nc log

∣∣∣∣s− 4M2

4M2

∣∣∣∣
Solution to exercise 173
This is done by applying Eq.(13.11-15). It is important to realize that, for the kµnν

term in the photon propagator, the piece of diagram

is just a complicated way of writing (−ie2/~)/n so that it does not matter on which
side the handlebar was actually performed.

Solution to exercise 174
The SDe for the fermion propagator can be written as

i~Π(p) =
i~

/p−m
− i~a(s)/p+m0b(s)

/p−m
Π(p)

Multiplying with /p−m immediately gives the solution

Π(p) =
1

/p(1 + a(s))−m0(1− b(s))
=

/p(1 + a(s)) +m0(1− b(s))
s(1 + a(s))2 −m2

0(1− b(s))2
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Solution to exercise 175
The denominator of Eq.(14.51), D(s), vanishes (by construction!) at s = m2. Its
leading term is therefore (s−m2)D′(m2), with

D′(m2) =

[
(1 + a(s))2 + 2s(1 + a(s))a′(s) + 2m2b′(s)(1− b(s))(1− a(m2))2

(1− b(m2))2

]
s=m2

= (1 + a(m2))

(
(1 + a(m2)) + 2m2a′(m2) + 2m2b′(m2)

(1 + a(m2))

1− b(m2)

)
The numerator, evaluated at s = m2, cancels the overall factor (1 + a(m2)). The
subtlety here is that of course /p has to change if we vary s; but such effects are
necessarily proportional to s−m2 and hence contribute only to the non-pole terms.

Solution to exercise 176
The denominator is

N = /p(1 + a(s))−m0(1− b(s))

Formally putting /p = m, even though this is actually impossible,2 and requiring N
to vanish, gives Eq.(14.50) correctly. We can take the derivative unambiguously if
we adhere to ∂/∂/p = 2/p∂/∂s:

∂

∂/p
N = 1 + a(s) + 2sa′(s) + 2m0/pb

′(s) = 1 + a(s) + 2sa′s(s) + 2/pm
(1 + a(s)

1− b(s)

so that we can write

N ∼ (/p−m)

(
1 + a(m2) + 2m2a′(m2) + 2/pmb′(m2)

1 + a(m2)

1− b(m2)

)
If, in the coefficient of b′(m2), we simply put /p → m then we get Eq.(14.52), but if
we first allow ourselves to multiply with the factor (/p−m) then we obtain the wrong
sign.

Solution to exercise 177
In D dimensions, we must use γαγα = D = 4− 2ε. Hence

γα/pγα = 2γαpα − γαγα/p = (−2 + 2ε)/p

γα/p/qγα = 2/q/p− (−2 + 2ε)/p/q = 4(pq)− 2ε/p/q

γα/p/q/kγα = 2/k/p/q − (2(pq)− 2ε/p/q)/k = 2/k/p/q + 2ε/p/q/k − /k(2(pq))

= 2/k/p/q + 2ε/p/q/k − /k(2/p/q + 2/q/p) = −2/k/q/p+ 2ε/p/q/k

Solution to exercise 178
If we put m = s = λ = 0, the k integral reduces to

∫
d4−2εk(k2)−2 which is strictly

zero; no finite terms can survive. If we keep λ 6= 0 then

a(0) =
α

4π
(4πµ2)εΓ(ε)(2− 2ε)

1∫
0

dx (1− x)
(
λ2(1− x)

)−ε
2Since Tr (/p) = 0 and Tr (m) = 4m.
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=
α

4π

(
4πµ2

λ2

)ε
Γ(ε)(2− 2ε)

1∫
0

dx (1− x)1−ε

=
α

4π

(
4πµ2

λ2

)ε
Γ(ε)

2− 2ε

2− ε
∼ α

4π

(
Rε − log(λ2)− 1

2

)
Solution to exercise 179
The phase space formula in its full form reads, including the correct compensating
factors of µ:

V1→2 =
(2π)4−2ε

((2π)3−2ε)2µ
2ε+2ε−2ε

∫
d4−2εq1 δ(q

2
1 −m2

1) d4−2εq2 δ(q
2
2 −m2

2) δ4−2ε(P − q1 − q2)

=
µ2ε

(4π2)1−ε

∫
d3−2ε~q1

1

2q0
1

δ((P − q1)2 −m2
2)

With t = |~q1|2 the δ function can be rewritten as

δ((P − q1)2 −m2
2) =

1

2
√
s
δ

(
q0

1 −
s+m2

1 −m2
2

2
√
s

)
=

q0
1√
s
δ

(
t− sβ2

4

)
so that with the t-shell formula we have

V1→2 =
µ2επ3/2−ε

(4π2)1−εΓ(3/2− ε)
1

2
√
s

∫
dt t1/2−ε δ(t− sβ2/4)

=
1

8π

(
4πµ2

s

)ε
β1−2ε π1/24ε

2Γ(3/2− ε)

and finally, to first order in ε:

π1/24ε

2Γ(3/2− ε)
=

π1/24ε

2(1/2− ε)Γ(1/2− ε)
≈ 4ε

(1− 2ε)(1− εψ(1/2))
≈ 1− εγE + 2ε

so that

V1→2 =
s−εβ1−2ε

8π

(
1− εγE + ε log(4πµ2) + 2ε

)
Solution to exercise 180
We have two relations:

v =
k0 + k

k0 − k
, λ2 = (k0 + k)(k0 − k)

so that

k0 =
λ

2
(v1/2 + v−1/2) , k =

λ

2
(v1/2 − v−1/2)

and we find
dk0

dv
=

k

2v
,

k

(k0)2

dk0

dv
=

(v − 1)2

v(v + 1)2
=

1

v
− 4

(v + 1)2

Solution to exercise 181

73



1. The boost does not affect the 2nd and 3rd components, and

x0 → γx0 + βγx1 = γ(1 + β cos ξ) , x1 → βγx0 + γx1 = γ(β + cos ξ)

2. Note that cos θ = ±1 for cos ξ = ±1, so θ ↔ ξ is indeed a bijection.

γ(1 + β cos ξ) = γ

(
1 +

β cos θ − β2

1− β cos θ

)
=

γ(1− β2)

1− β cos θ
=

1

r(θ)

γ(β + cos ξ) = γ

(
β +

cos θ − β
1− β cos θ

)
=
γ(1− β2) cos θ

1− β cos θ
=

cos θ

r(θ)

Solution to exercise 182
It is easiest to take the derivatives, and see that

d

dβ
log

(
1 + β

1− β

)
=

2

1− β2

d

dβ

(
1

4
log

(
1 + β

1− β

)2

+ Li2

(
− 2β

1− β

))
=

−1

β(1− β2)
log

(
1 + β

1− β

)
Solution to exercise 183
The first step is

1

s1s12

+
1

s2s12

=
s1 + s2

s1s2s12

=
s12

s1s2s12

=
1

s1s2

and the induction step relies on the fact that s1s2 · · · sj−1sj+1 · · · sn = (s1s2 · · · sn)/sj
so that ∑

P

1

s`1s`1`2 · · · s`1···`n
=

n∑
j=1

s`j
s`1s`2 · · · s`ns`1···`n

=
1

s`1 · · · s`n

Solution to exercise 184
We can write

1

B
=

2

sβ

(
1

z − β
− 1

z + β

)
leading to

1∫
0

dz
1

B
=

2

sβ

(
log

(
1− β
−β

)
− log

(
1 + β

β
)

))
For s > 4m2, β = |β| + iη so that log(−β) − log(β) = −iπ. The other integral is
most easily done as follows:

βs

2

1∫
0

dz
logB

B
=

1∫
0

dz

(
1

z − β
− 1

z + β

)(
log
(s

4

)
+ log(z − β) + log(z + β)

)
= log(s/4)(−L+ iπ) + a1 + a2 + a3 + a4

a1 =

1∫
0

dz
log(z − β)

z − β
=

1

2

(
log(1− β)2 − log(−β)2

)
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a2 =

1∫
0

dz
− log(z + β)

z + β
=
−1

2

(
log(1 + β)2 − log(β)2

)

a3 =

1∫
0

dz
log(z + β)

z − β
=

1−β∫
−β

dy

y

(
log(2β) + log

(
1 +

y

2β

))

= log(2β) log

(
1− β
−β

)
− Li2

(
β − 1

2β

)
+ Li2(1/2)

a4 =

1∫
0

dz
− log(z − β)

z + β
= − log(1 + β) log(1− β) + log(β) log(−β) + a3

and then we use log(−β) = log(β)− iπ and

Li2

(
β − 1

2β

)
= −1

2
log

(
1 + β

2β

)2

− Li2

(
1− β
1 + β

)
which is the last identity of Eq.( 19.441) with z = (1 + β)/(2β).

Solution to exercise 185

1. We take q the incoming fermion, and p the outgoing fermion. The diagram to
be computed is the expression ieV µ/~ where

V µ = −i e
2~

(2π)4

∫
d4k

T µ

D

D = (k2 + iη)((k + p)2 + iη)((k + q)2 + iη)

T µ = γα(/p+ /k)γµ(/q + /k)γα (2)

and T µ is sandwidched between u(q) and u(p).

2. The Feynman trick:

1

D
= 2

∫
δxy (k2 + 2x(qk) + 2y(pk) + iη)−3 = 2

∫
δxy (`2 − sxy + iη)−3

where s = 2(pq) and we must shift k → ` = k − xq − yp.

3. In 4− 2ε dimensions, shifting the integration momentum, and using the Dirac
equations on both sides:

T µ = −2((/q + /k)γµ(/p+ /k) + 2ε(/p+ /k)γµ(/q + /k)

= −2(/̀+ (1− x)/q)γµ(/̀+ (1− y)/p) + 2ε(/̀− x/q)γµ(/̀− y/p)
∼ (−2 + 2ε)/̀γµ/̀− 2/qγµ/p((1− x)(1− y) + εxy)

since the terms linear in ` integrate to zero. Further,

/̀γµ/̀∼ −2 + 2ε

4− 2ε
`2γµ , /qγµ/p ∼ −sγµ
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4. We now have

V µ = −i 4παµ2ε

(4π2)2−ε2

∫
δxy

∫
d4−2ε`

γµ

(`2 − sxy + iη)3
γµ

×
(

(2− 2ε)2

4− 2ε
`2 + s(1− x− y + (1− ε)xy)

)
After the Wick rotation and using the t-shell formula:

V µ =
α(4πµ2)ε

2πΓ(2− ε)

∫
δxy

∞∫
0

dt t1−ε

(t+ sxy − iη)3

×
(

(2− 2ε)2

4− 2ε
t− s(1− x− y + (1− ε)xy)

)
γµ

∞∫
0

dt
t2−ε

(t+ sxy − iη)3
= (sxy − iη)−ε

2− ε
2

Γ(ε)Γ(2− ε)

∞∫
0

dt
t1−ε

(t+ sxy − iη)3
= (sxy − iη)−1−εΓ(1 + ε)Γ(2− ε)/2

5. We can therefore write

V µ =
α

2π

(
4πµ2

s

)ε
γµ
(

(1− ε)2Γ(ε)b0 − Γ(1 + ε)(b1 − 2b2 + (1− ε)b0)

)

b0 =

∫
δxy (xy)−ε =

1∫
0

dx
x−ε(1− x)1−ε

1− ε
=

Γ(1− ε)Γ(2− ε)
(1− ε)Γ(3− 2ε)

=
Γ(1− ε)2

Γ(2− 2ε)

(
1

2(1− ε)

)

b1 =

∫
δxy (xy)−1−ε =

1∫
0

dx
x−1−ε(1− x)−ε

−ε
=

Γ(−ε)Γ(1− ε)
−εΓ(1− 2ε)

=
Γ(1− ε)2

Γ(2− 2ε)

(
1− 2ε

ε2

)

b2 =

∫
δxyx(xy)−1−ε =

1∫
0

dx
x−ε(1− x)−ε

−ε
=

Γ(1− ε)2

Γ(2− 2ε)

(
−1

ε

)

and inserting all this gives Eq.(14.128).

Solution to exercise 186
As in the previous exercise we replace the outgoing antifermion with momentum q by
an incoming ferimon with momentum q. This amounts to replacing q by −q in our
treatment of section 14.4, and we must also realize that now B = (xp + (1 − x)q)2.
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After we have split off the [γµ, /p − /q] term in T µ1 , we can let q → p for the static
limit, as long as we work to first order in p − q. That means that B = m2 so that
the integral over x (or z) becomes trivial, and we only have to integrate over y. We
therefore find

V µ =
α

4π
(V0γ

µ + V1γ
µ + V2γ

µ + [γµ, /p− /q]V3)

V0 = Rε

1∫
0

dy 2y(1− ε)2(y2m2)−ε = Rε − log(m2)− 1

(V1)0 = Rεε

1∫
0

dy 2y(−2m2)(y2m2)−1−ε = 2(Rε − log(m2))

(V1)1 =

1∫
0

dy 2y
−2m2

m2y2 + λ2
= −2 log(m2/λ2)

V2 =

1∫
0

dy 2y(4m2y +m2y2)(2m2)−1 = 5

V3 =

1∫
0

dy 2y
m

2
(y2 − y)(m2y2)−1 = − 1

2m

Note that, compared to Eq.(13.6.3), p and q have been interchanged! This explains
the sign of the coefficient in Eq.(14.130).

Solution to exercise 187

1. Eq.(14.156) can be written as the simple linear relation

d

(
1

α

)
= −nf

3π
d log(M2)

and this can be integrated trivially.

2. 3 · (−1)2 + 3 · 3 · (2/3)2 + 3 · 3 · (−1/3)2 = 8

3. At the Landau pole we have 1/α(M2) = 0 and therefore

M = M0 exp

(
3π

2nfα(M2
0 )

)
For the numbers given this evaluates to about 2.5× 1033 GeV, very far above
the Planck scale. QED is certainly not valid at such high scales, and possibly
QFT itself has to be replaced by something else, at least involving quantum
gravity.
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Solution to exercise 188
Numbering the photons to keep them apart, and concentrating on one diagram:

3

1

2
=

3

1

2
−

3

1

2

3

1

2
=

3

1

2
=

3

2

1 (3)

So if we include all permutations of (1, 2, 3) everything cancels

Solution to exercise 189
Contracting with one and two metric tensors gives

gµνgµν = gµµ = 4

X gµνgPρσ = gµµ g
ρ
ρ + gµρgµρ + gµρ g

ρ
µ = 4 · 4 + 4 + 4 = 24

Solution to exercise 190
Compared with exercise 189 we have to replace

4 → (4− 2ε)

24 → (4− 2ε)2 + 2(4− 2ε) = (16− 16ε+ 4ε2) + (8− 4ε) = 24

(
1− 5ε

6

)
+O

(
ε2
)

Solution to exercise 191

1. Diagrammatically, the Ward derivative of exercise 117 can be written as

e
∂

∂pµ p+q
=

p+qp+q

µ

Therefore, attaching a zero-momentum external photon to a fermion loop with
loop momentum p amounts to taking the derivative of the loop integrand to
the loop momentum.

2. The loop integral over loop momentum p has the form∫
d4p

∂

∂pµ
F (p0, p1, . . . , dpD) =∫

dp0 dp1 · · · dpµ−1 dpµ+1 · · · dpD
[
F (p0, . . . , pµ−1, X, pµ+1, . . . , pD)

]X=+∞
X=−∞

since for a nice theory like QED the loop integrand vanishes at infinity, this
gives zero.
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15 Exercises for chapter 15

Solution to exercise 192
These things are most easily done by concentrating on the coefficients of gµν , say,
and requesting a zero result for aribtrary momenta. If one γ5 is present we find not
a1 = a3 = a5 = −a2 = −a4 = −a6 but a1 = a2 = a3 = a4 = a5 = a6, and then the
result follows from momentum conservation q1 + q2 + q3 = 0.

Solution to exercise 193
Algebraically, the diagram of Eq.(15.32) reads(

−q2gµα + qµqα
) i~
q2

(
−gαν +

qαnν + nαqν

(qn

)
δjk

=
i~δjk

q2

(
−q2gµα + qµqα

)(
−gαν +

nαqν

(qn)

)
=

i~δjk

q2

(
q2gµν − qµqν − q2n

µqν

(qn)
+
qµ(qn)qν

(qn)

)
= i~

(
gµν − nµqν

(qn)

)
δjk

Solution to exercise 194
For the (+,−) case we have

ω−/ε1(+) =

√
2

s−(q1, p2)
u−(q1)u−(p2) , ω−/ε2(−) =

√
2

s+(q2, p1)
u−(p1)u−(q2)

ε1(+) · ε2(−) =
s+(q1, p1)s−(q2, p2)

s−(q1, p2)s+(q2, p1)

A1(+,−) = 2
u+(p1)u−(q1)u−(p2)(/q1 − /p1)u−(p1)u−(q2)u+(p2)

s−(q1, p2)s+(q2, p1)

= 2
s+(p1, q1)s−(p2, q1)s+(q1, p1)s−(q2, p2)

s−(q1, p2)s+(q2, p1)

= 2s+(p1, q1)2 s−(q2, p2)

s+(q2, p1)
= −2s+(p1, q1)s−(q1, p2)(ε1(+) · ε2(−))

= −u+(p1)(/q1 − /q2)u+(p2)(ε1(+) · ε2(−)) = −A3(+,−)

The case (−,+) is obtained by interchanging the two gluons so that A2(−,+) =
A1(+,−)cq1↔q2 andA3 picks up a relative minus sign, leading toA3(−,+) = A2(−,+).

Solution to exercise 195

Tr
(
T jT kT kT j

)
= Tr

(
T jT kT kT j1

)
=

1

2

(
Tr
(
T kT k

)
Tr (1)− 1

N
Tr
(
T kT k1

))
=

1

2

(
N − 1

N

)
Tr
(
T kT k

)
=
N2 − 1

2N

N2 − 1

2

Tr
(
T jT kT jT k

)
=

1

2

(
Tr
(
T k
)2 − 1

N
Tr
(
T kT k

))
=
−1

2N
Tr
(
T kT k

)
= − 1

2N

(N2 − 1)

2
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Solution to exercise 196
This frelies on the cyclic property of traces.

Tr ([A,B]C) = Tr (ABC −BAC) = Tr (ABC − ACB) = Tr (A[B,C])

[jkmn] = hjk`hmn` = 4Tr
(
T `[T j, T k]

)
Tr
(
T `[Tm, T n]

)
= 2Tr

(
[T j, T k][Tm, T n]

)
= 2Tr

(
T j[T k, [Tm, T n]]

)
Here we have used B = T k and C = [Tm, T n].

Solution to exercise 197
This goes the same way as exercise 196, now with C = [T `, [Tm, T n]]:

[jk`mn] = hjkp[p`mn] = 4Tr
(
T p[T j, T k]

)
Tr
(
T p[T `, [Tm, T n]]

)
= 2Tr

(
[T j, T k][T `, [Tm, T n]]

)
= 2Tr

(
T j[T k, [T `, [Tm, T n]]]

)
Solution to exercise 198
The most straightforward way to prove this (preferably using computer algebra) is
simply to use the fully expanded form

[jklmn] = r(j, k, l,m, n)− r(j, k, l, n,m)− r(j, k,m, n, l) + r(j, k, n,m, l)

−r(j, l,m, n, k) + r(j, l, n,m, k) + r(j,m, n, l, k)− r(j, n,m, l, k)

where r(a, b, c, d, e) = Tr
(
T aT bT cT dT e

)
, and write out all terms; then, to cyclically

shift the arguments of the traces so that T j, say, occurs in the first position. All
terms will cancel precisely.

Solution to exercise 199

1. The single-gluon case gives zero because that is simply the transversality of the
gluon polarization. By Eq.(15.40), for the two-gluon case the single diagram
diagram is proportional to

Y (q1, ε1; q2, ε2;−q1 − q2,−q1 − q2) =

(q1ε1)(q1ε2)− (q2ε1)(q2ε2)− q2
1(ε1ε2) + q2

2(ε1ε2) = 0

because of transversality and masslesness, see Eq.(15.39).

2. This is precisely the argument of section 15.4.2. The qq parts of the ∆’s drop
out because of the previous result.

3. By Eq.(15.42) we can write for tree amplitudes:

F

F

=
F

+
F

We have to sum over all possible ways to assign the outgoing gluons to the
blobs. By the induction assumption, the first diagram on the right-hand side
vanishes. The rest of the argument is precisely that leading to Eq.(15.96)
except that the very last diagram is now absent.
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4. For tree diagrams, an internal propagator is specified completely by the gluon
momenta occurring on one of its endpoints, leading to a split-up of the set of
all diagrams that contain that propagator. We can therefore write

=
F

+

and the last diagram vanishes. Since we can pick any internal propagator the
argument holds generally.

5. As Eq.(15.96) shows, the inclusion of quarks is totally straightforward.

Solution to exercise 200
If N = 4 then ‘protons’, ‘neutrons’, and generally ‘baryons’ would consist of 4 quarks
rather than 3.3 They would therefore be bosons rather than fermions, with no Pauli
exclusion principle. Nuclear matter would tend to consist of arbitrarily large numbers
of nucleons all in the ground state, that is big enormous nuclei of many stellar masses.
These would tend to collapse into black holes, leaving the observable universe empty
except for leptons.

Solution to exercise 201

1. Since the gluons are massless, E is the only energy scale. Therefore amplitudes
either go as E4−n or the theory is unacceptable.

2. The maximum number of propagators occurs in those diagrams that contain
only 3-point vertices. The diagrammatic sum rules for such connected tree
diagrams read

n+ 2I = 3V3 , V3 = I + 1 ⇒ I = n− 3

3. For n − 3 propagators we have a total denominator (E2)n−3; contracting two
3-point vertices into a 4-point one can only lower this power.

4. We have to contract all Lorentz indices, so that (p · p), (p · ε), and (ε · ε) are
the only possible scalar factors in any numerator.

5. Every diagram must be ∼ E4−n, coming from powers of p in the numerator and
powers of E in the denominators. Since the denominators go at most as E2n−6

there can be at most n− 2 powers of p in the numerator. Note the important
fact that, since E is the only energy scale, it is not possible for contributions
O (E2−n) to cancel ‘partially’ down to O (E4−n).

6. If both gluons have positive helicity:

(εj · εk) ∼ u+(qj)γµu+(rj)u+(qk)γ
µu+(rk) ∼ s+(qj, qk)s−(rk, rj)

If gluon j has positive helicity and gluon k has negative helicity:

(εj · εk) ∼ u+(qj)γµu+(rj)u−(qk)γ
µu(rk) ∼ s+(qj, rk)s−(qk, rj)

3As section 17.7 shows, the ‘up’ quarks would have charge 3/4, and the ‘down’ quarks charge
-1/4, leading to ‘nucleons’ of charge 3,2,1,0, or -1.
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7. If all gluons have the same helicity, we choose rj = r1 for all j, so that (εj · εk)
always vanishes.

8. If gluon 1 has helicity opposite from gluon 2, 3, . . . , n we choose r1 = q2 and
r2,3,...,n = q1. Then, again all (ε · ε) = 0.

9. If gluon 1 and 2 have helicity opposite from gluons 3, 4, . . . , n then we can
ensure (ε1 · ε2) = 0 by giving them the same r1 = r2, and also (εk · εk) = 0
by having r3 = · · · = rn. Then we can choose, for instance, r3 = q1 to have
(ε1 · ε3,...,n) = 0 but (ε2 · ε3,...,n) will no longer vanish: at most we can choose
r1,2 = q3 or so to make also (ε2 · ε3) = 0.

Solution to exercise 202

1. These two forms are the only ones possible if we want to end up with a single
Lorentz index µ.

2. We are allowed to use the Feynman gauge for the gluon propagators. For n = 2
we have one 3-point vertex and one propagator, giving p−1. We can add an
additional gluon by either attaching it with a new 3-point vertex, giving an
extra p in the numerator and an extra propagator p−2, or turning a 3-gluon
vertex into a 4-gluon one, thereby removing one p from the numerator.

3. The same argument as above, where the most propagators come from diagrams
that contain only 3-point vertices.

4. The two relations follow from power counting of the p’s and the ε’s, respectively.
We therefore have α = 2γ − n ≤ 2(n − 1) − n = n − 2, and 2β = n − α ≥
n− (n− 2) = 2.

5. As in exercise 201, we can give all gluons the same gauge vector.

6. Again, power counting. We now have α ≤ n−1 and 2β ≥ (n−1)−(n−1) = 0.
Obviously, β ≥ 0 anyway since there is no way to arrive at negative powers of
the polarization vectors! But we see that β = 0 is possible.

7. If β ≥ 1 then we have at least one factor (ε · ε) which can be made to vanish.
Therefore we must have β = 0, α = γ = n− 1.

8. The only diagrams left consist of a qq̄ line with /ε insertions, just like QED,
possibly multiplied by their scalar factors (ε · p)α(p · p)−γ. We can therefore
always choose the gluons to all have the q or the q̄ momentum as their gauge
vector, depending on the helicity case, and the amplitude vanishes just as in
the QED case e+e− → γγ · · · γ.
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16 Exercises for chapter 16

Solution to exercise 203
For the handlebar on gluon 1 we have

Y (−p, ν; q1, q1; q2, β) = ∆(q2)βν −∆(p)βν

The second term, multiplied with (the numerator of) the axial-gauge propagator,
gives (

−gµν +
pµnν
(pn

+
nµpν
(pn)

)
∆νβ(p) = −pµpβ + gµνp2 + pµ

nν∆
νβ(p)

(pn)

and every term containing pµ drops out when contracted with the fermion line.
Therefore the Feynman-’t Hooft and axial gauge give the same result (in this case!).

Solution to exercise 204
Performing partial integration twice, and dropping the total derivatives:

(∂µVν)(∂
νV µ) = ∂µ(Vν∂

νV µ)− Vν(∂µ∂νV µ)

= −∂ν(Vν∂µV µ) + (∂νVν)(∂µV
µ) = (∂ · V )2

In terms of explicit Feynman rules, such partial-integration results are the effect of
momentum conservation, since (k1 · V1)(k2 · V2) = (k1 · V2)(k2 · V1) if k1 + k2 = 0.

Solution to exercise 205

nµnα
λ

Rαν = −n
µqν

(qn)
, −qµqαRαν = −q

µnν

(qn)
+

(n2 + λq2)

(qn)2
qµqν

q2Rµν = −gµν +
qµnν + nµqν

(qn)
− (n2 + λq2)

(qn)2
qµqν

Solution to exercise 206
This is straightforward. The loss of the factor 1/2 in the third line comes about since
Eq.(16.28) tells us that the loop has to be manipulated both in the clockwise and in
the anticlockwise direction.

Solution to exercise 207

d
a

b c

− d
a

b
c

− da

bc

∼ habnhcnd − hanchnbd − hcbnhand

= −hnbahcnd − hnachbnd − hncbhand = 0

since now we have a cyclic permutation of (c, b, a).
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Solution to exercise 208
The vanising of the the handlebarred fermionic tadpole followos immediately from
Eq.(13.11). If we let a cross vertex stand for the inverse fermion propagator:

= −

= = − + − = 0

Alternatively you may argue that this handlebar amounts to multiplication by zero,
but that spoils the diagrammatic fun. The gluonic self-energy due to quarks has two
diagrams;

Under the handlebar the first one vanishes exactly as in QED, and we are left with

+

So the gluon self-energy is transverse if these tadpoles vanish (they do).

Solution to exercise 209

hjkmhkmn = hkmjhkmn = 4 Tr
(
T k[Tm, T j]

)
Tr
(
T k[Tm, T n]

)
= 2

(
Tr
(
[Tm, T j][Tm, T n]

)
− 1

N
Tr
(
[Tm, T j]

)
Tr ([Tm, T n])

)
= 4 Tr

(
TmT jTmT n − TmT jT nTm1

)
= 2

((
Tr
(
T j
)

Tr (T n)− 1

N
Tr
(
T jT n

))
−
(

Tr
(
T jT n

)
Tr (1)− 1

N
Tr
(
T jT n

)))
= −2N Tr

(
T jT n

)
= −N δjn

Solution to exercise 210
Since we are aiming for a zero result we can drop overall factors along the way. With
p2 = s: ∫

dDq

q2 + iη
=

∫
dDq

(q − p)2

(q2 + iη)((q − p)2 + iη)

=

1∫
0

dx

∫
dDq

(q − p)2

((q − xp)2 + x(1− x)s+ iη)2

∼
1∫

0

dx

∫ ∞
0

dt t1−ε
−t+ s(1− x)2

(t− x(1− x)s− iη)2
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=

1∫
0

dx

(
− Γ(ε− 1)Γ(3− ε)(−sx(1− x))1−ε

+ Γ(ε)Γ(2− ε)s(1− x)2(−sx(1− x))−ε
)

∼
1∫

0

dx

(
(2− ε)x1−ε(1− x)1−ε + (ε− 1)x−ε(1− x)2−ε

)

= (2− ε) Γ(2− ε)2

Γ(4− 2ε)
+ (ε− 1)

Γ(1− ε)Γ(3− ε)
Γ(4− 2ε)

=
Γ(1− ε)Γ(2− ε)

Γ(4− 2ε)

(
(2− ε)(1− ε) + (ε− 1)(2− ε)

)
= 0

Solution to exercise 211
For the gluonic self energy, only the first two diagrams occur on the right-hand side
of Eq.(16.50). Let the total gluon momentum be qµ. Iterating the first diagram with
the SDe for the ghost, obtain two powers of q, and together with the second diagram
this gives precisely Bν ∆νµ(q), where Bν is whatever the result of the loop integrals in
the blob is.4In a covariant gauge, we must have Bν ∝ qν since it is the only available
vector, and therefore Bν∆

µν(q) = 0.

Solution to exercise 212
We can use Eq.(14.60), the mass renormalization of QED. There we found, to one
loop,

m = m0(1− a− b) ∼ m0

(
1 +

3α

4π
(Rε − log(M2)

)
where we introduced the renormalization scale M . Thus

M2 ∂

∂M2
m ∼ −3α

4π
m

The only difference for QCD is in the colour factor. Keeping the quark colours
explicitly, the colour factor reads

(T jT j)ab = (T j)ac(T
j)cb =

1

2

(
δab δ

c
c −

1

N
δac δ

c
b

)
=
N2 − 1

2N
δab

Using N = 3, the β function is therefore multiplied by a factor 4/3 when we go from
QED to QCD, and α is replaced by αs.

Solution to exercise 213

1. The Fierz identity tells us that T `T jT ` must be a conbination of T j and Tr (T j),
and this last trace vanishes.

4See also Eq.(7.15) in reference [2].
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2.

T `T tT `T j =
1

2

(
Tr
(
T j
)

Tr
(
T j
)
− 1

N
Tr
(
T jT j

))
= − 1

2N
Tr
(
T jT j

)
3. The same argument as in item 1 applies.

4.

hj`nTr
(
T jT `T n

)
= 2 Tr

(
T jT `T n

)
Tr
(
T jT `T n

)
−2 Tr

(
T `T jT n

)
Tr
(
T jT `T n

)
=

(
Tr
(
T jT `T jT `

)
− 1

N
Tr
(
T jT `

)
Tr
(
T jT `

))
−
(

Tr
(
T `T jT jT `1

)
− 1

N
Tr
(
T `T j

)
Tr
(
T jT `

))
=

1

2
Tr
(
T j
)

Tr
(
T j
)
− 1

2N
Tr
(
T jT j

)
−1

2
Tr
(
T jT j

)
Tr (1) +

1

2N
Tr
(
T jT j1

)
= −N

2
Tr
(
T jT j

)
Solution to exercise 214
The colour current has been proven to be conserved to all orders in physical ampli-
tudes (in section 16.4). The divergent parts of these amplitudes must therefore also
conserve the current, and therefore so must the counterterms.

17 Exercises for chapter 17

Solution to exercise 215

1. The tree-level amplitude for the process W−(p)→ e−(q1)ν̄e(q2) is

M = −igW~1/2 u(q1)(1 + γ5)/εv(q2) = −2igW~1/2u−(q1)/εu−(q2)

We may take for the polarization:

εµ± =
1

mW

√
2
u±(q1)γµu±(q2) , εµ0 =

1

mW

(qµ1 − q
µ
2 )

The polarizations ε0 and ε− give no contribution, and

u−(q1)/ε+u−(q2) =

√
2

mW

s−(q1, q2)s+(q1, q2) ∼
√

2 mW

so that 〈
|M|2

〉
=

8

3
~gW2mW

2

The same results, of course, from〈
|M|2

〉
=

~gW2

3
Tr
(
/q1(1 + γ5)γµ/q2(1 + γ5)γν

)(
−gµν +

pµpν
mW

2

)
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The width is

Γ(W− → e−ν̄e) =

∫
1

2mW

〈
|M|2

〉 dΩ

32π2
=

~gW2mW

6π
=

~GFmW
3

6
√

2π

2. The W− can decay into e−ν̄e, µ
−ν̄µ, τ−ν̄τ , dū and sc̄; the decay into bt̄ is

kinematically out or reach. The total width is therefore

ΓW =
~GFmW

3

6
√

2π

(
1 + 1 + 1 + 3 · (1 + 1)

)
=

3~GFmW
3

π
√

8

This evaluates to about 2.04 GeV/~c for mW = 80.4 GeV/c2.

3. Let us write ΓW = kΓ(W− → e−ν̄e), so that in the Standard Model k = 9. At
total invariant mass

√
s equal to mW, the cross section of Eq.(17.25) evaluates

to

σ(µ−ν̄µ → e−ν̄e)
⌋
s=mW

2 =
2~2gW

2

3π Γ2
W

=
24π

mW
2k2

=
3

2

16π

s

1

k2

and this respects the unitarity limit for all k ≥ 1. Note that J = 1 and there are
2 helicity states for the incoming muon, but only 1 for the incoming anti-muon
neutrino.

Solution to exercise 216
Without Cabibbo mixing, and writing Γh = ~gW2mW/(π

√
8), we have two hadronic

decay modes:

Γ(W → qq̄) = Γ(W− → dū) + Γ(W− → sc̄) = 2Γh

With Cabibbo mixing, we have 4 decay modes:

Γ(W− → qq̄) = Γ(W− → dū) + Γ(W− → dc̄) + Γ(W− → sū) + Γ(W− → sc̄)

= Γh
(
(cos θc)

2 + (sin θc)
2 + (sin θc)

2 + (cos θc)
2
)

= 2Γh

Solution to exercise 217

1. The process is t(p)→ b(q)W+(k), so the tree amplitude is

M = −i~1/2gW u(q)(1 + γ5)/εu(p)

The transition rate, assuming the b quark to be massless, is5

〈
|M|2

〉
=

~gW2

2
Tr
(
/q(1 + γ5)γµ(/p+mt)(1 + γ5)γν

)(
−gµν +

1

mW
2
kµkν

)
= ~gW2Tr (/qγµ/pγν)

(
−gµν +

1

mW
2
kµkν

)
= ~gW2Tr

(
2/q/p+

1

mW
2
/q/k/p/k

)
= ~gW2Tr

(
2/q/p+

1

mW
2
/q/p/p/p

)
= 2~gW2 (mt

2 −mW
2)

(
2 +

mt
2

mW
2

)
5The averaging over the top colours is exactly compensated by the sum over the bottom colours.
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The phase space integration element is

1

32π2

(
1− mW

2

mt
2

)
dΩ

and the decay width is

Γ(t→ bW ) =
~gW2

8π

mt
3

mW
2

(
1 +

2mW
2

mt
2

)(
1− mW

2

mt
2

)2

=
~GF

8π
√

2
mt

3

(
1 +

2mW
2

mt
2

)(
1− mW

2

mt
2

)2

For fixed mW this goes indeed as mt
3. With mW = 80.4 GeV and mt = 172.4

GeV, we have Γ(t → bW ) ≈ 1.47 GeV, hence a lifetime of about 4.48× 10−25

seconds. QCD corrections increase the lifetime by about 10 per cent.

2. This follows from the W decay width, which is 9 times the electronic decay
width.

3. In the decay process t(p)→ b(q)νe(k1)e+(k2) the amplitude is

M ∼ u−(q)γµu(p)u−(k1)γµv−(k2) ∼ s−(q, k1)u+(k2)u(p)

If Ee+ has its maxumal value mt/2, then ~q and ~k1 must be parallel, so that
s−(q, k1) = 0.

4. If we introduce the CKM matrix, then we also have available the decays t− →
sW and t → dW , leading to a factor |Vtb|2 + |Vts|2 + |Vtd|2 which equals 1 by
the unitarity requirement.

Solution to exercise 218
Eq.(17.54) can be written out:

g2
1 + g2

2 + 2g1g2γ
5 = 2gW

2 +QUQW + 2gW
2γ5

this matrix equation implies two separate relations:

g2
1 + g2

2 = 2gW
2 +QUQW , g1g2 = gW

2

and subtracting these we find (g1 − g2)2 = QUQW, which is negative.

Solution to exercise 219
For the process DD̄ → W+W− the only difference is in the fermion exchange dia-
gram, in which the W+ and W− occur in the opposite order:

M1 = −2i~gW2 v(p1)(1 + γ5)/ε+
/q+ − /p1

(p1 − q+)2
/ε−u(p2)

The handlebar therefore results in an opposite sign:

M1cε+→q+ = −2i~gW2v(p1)(1 + γ5)/ε−u(p2)
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so that 2gW
2 is replaced by −2gW

2 to arrive at Eq.(17.58). For the process

D̄(p1) U(p2) → W+(q+, ε+)Z(q0, ε0)

there are again three diagrams, two involving fermion exchange. Again neglecting
the masses we have

M1 = −i~gW v(p1)(1 + γ5)/ε+
/q+ − /p1

(q+ − p1)2
(vU + aUγ

5)/ε0u(p2)

M2 = −i~gW v(p1)(vD + aDγ
5)/ε0

/p2 − /q+

(q+ − p2)2
(1 + γ5)/ε+u(p2)

M3 = i~
gWgWWZ

s
v(p1)(1 + γ5)γαu(p2)Y (q+, ε+;−q+ − q0, α; q0, ε0)

Upon implementing the handlebar ε+ → q+ we have

M1 → −i~gW(vU + aU) v(p1)(1 + γ5)/ε0u(p2)

M2 → +i~gW(vD + aD) v(p1)(1 + γ5)/ε0u(p2)

M3 → −i~gWgWWZ v(p1)(1 + γ5)/ε0u(p2)

and this leads immediately to Eq.(17.59). Note that from this process only one
condition is found, not two.

Solution to exercise 220
The decay process Z(p, ε)→ f(q1)f̄(p2) has the tree-level amplitude

M = i~1/2 u(q1)(vf + afγ
5)/εv(p2)

so that, assuming a single colour for the fermions:〈
|M|2

〉
=

~
3

Tr
(
/q1(vf + afγ

5)γµ/q2(vf + afγ
5)γν

)(
−gµν +

1

mZ
2
pµpν

)
=

4~
3

(v2
f + a2

f )mZ
2

(the pµpν term gives no contribution). We find the partial decay width to be

Γ(Z− → ff̄) =
1

2mZ

〈
|M|2

〉 4π

32π2
=

~(v2
f + a2

f )mZ

12π

Using Eq.(17.65) we can write this as

Γ(Z → ff̄) =
αmZ

48cW2sW2

(
1 +

(
1− 4sW

2|qf |
)2
)

= γ(q)

where qf is the fractional charge of the fermion. The kinematically available fermion-
antifermion pairs are

q = 0 : νeν̄e , νµν̄µ , ντ ν̄τ

q = −1 : e+e− , µ+µ− , τ+τ−

q = +2/3 : uū , cc̄

q = −1/3 ; dd̄ , ss̄ , bb̄
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The total decay width, keeping in mind that the quarks come in 3 colours, is therefore

ΓZ = 3γ(0) + 3γ(−1) + 6γ(2/3) + 9γ(−1/3)

Using α = 1/137, sW
2 = 0.23, and mZ = 91.19 GeV/c2 this amounts to ΓZ = 2.29

GeV/c~. There are two important corrections: the value of α at the Z mass is rather
1/128, and the quark decays have a nonnegligible QCD correction factor of about
1 + αs/π, with αs ∼ 0.1. These change the total width to ΓZ ∼ 2.5 GeV/c~. The
measured value is about 2.49.

Solution to exercise 221

1. We consider the process

e+(p1, λ) e−(p2, λ) → q(q1, ρ) q̄(q2, ρ)

where we indicate the momenta and the helicities. All fermions are massless,
so we use helicity methods. The amplitude is, with Σ = s−mZ

2 + imZΓZ:

M(λ, ρ) =
i~
Σ
uλ(p1)(ve + aeγ

5)γµuλ(p2) uρ(q1)(vq + aq)γ
µuρ(q2)

M(+,+) l 2~u (ve − ae)(vq − aq)/Σ
M(+,−) l 2~ t (ve − ae)(vq + aq)/Σ

M(−,+) l 2~ t (ve + ae)(vq − aq)/Σ
M(+,+) l 2~u (ve + ae)(vq + aq)/Σ

The angular averages are 〈
t2
〉

Ω
=
〈
u2
〉

Ω
= s2/3

so that〈〈
|M|2

〉〉
Ω

=
4~2s2

3

(v2
e + a2

e)(v
2
q + a2

q)

(s−mZ
2)2 +mZ

2ΓZ
2 = 192π2 s2Γ(Z → ee)Γ(Z → qq)

mZ
2
(
(s−mZ

2)2 +mZ
2ΓZ

2
)

and the total cross section is

σ(s) =
1

2s

〈〈
|M|2

〉〉
Ω

4π

32π2
= 12πΓ(Z → ee)Γ(Z → qq)

s/mZ
2

(s−mZ
2)2 +mZ

2ΓZ
2

2. Taking the numerator s/mZ
2 into account, we have

∂

∂s
σ(s) ∝ s2 −mZ

4 −mz2ΓZ
2

so that the maximum resides at s = mZ

√
mZ

2 + ΓZ
2, or

√
s ∼ mZ + ΓZ

2/(4mZ).
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3. The term imZΓZ comes from the cut fermionic self-energy of the Z:

s

This cut diagram contains 4 spinors, and therefore scales as s. Therefore we
have to replace mZΓZ by sΓZ/mZ since it must coincide with mZΓZ at s = mZ

2.
With this modification we have

∂

∂s
σ(s) ∝ s2(mZ

2 + ΓZ
2)−mZ

6

so the maximum is now shifted to s = mZ
3/
√
mZ

2 + ΓZ
2, or

√
s = mZ −

ΓZ
2/(4mZ). Numerically, ΓZ

2/(4mZ) is about 16 MeV/c~.

Solution to exercise 222
Recall the reasoning of exerise 117, employed in exercise 191:

(/q +m)

q2 −m2
γα

(/q +m)

q2 −m2

= 2qα
/q +m

(q2 −m2)2
− γα

q2 −m2
= − ∂

∂qα

(
/q +m

q2 −m2

)
We similarly have

−gµλ + qµqλ/mW
2

q2 −mW
2

Y (q, λ;−q, β; 0, α)
−gβν + qβqν/mW

2

q2 −mW
2

=
1

(q2 −mW
2)2

(
Y (q, µ,−q, ν; 0, α)− qµ

mW
2
Y (q, q;−q, ν; 0, α) + Y (q, µ;−q,−q; 0, α)

qν

mW
2

)
=

1

(q2 −mW
2)2

(
2qαgµν − qµgνα − qνgµα − qµ

mW
2

(
qνqα − q2gνα

)
+
(
−qµqα + q2gµα

) qν

mW
2

)
=

1

(q2 −mW
2)2

(
2qα

(
gµν − qµqν

mW
2

)
+
qµgνα + qνgµα

mW
2

(q2 −mW
2)

)
= − ∂

∂qα

(
−gµν + qµqν/mW

2

q2 −mW
2

)
and also

∂

∂qα
Y (q, µ;−q − k, ν; k, β)

=
∂

∂qα

(
(2q + k)βgµν − (q + 2k)µgνα + (k − q)νgµα

)
= Xµναβ

Solution to exercise 223

1. Using the propagator in the unitary gauge:

Π(q)µν =
i~

q2 −mW
2

(
−gµν +

qµqν

mW
2

)
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the semi-connected diagram(s) can be written as

Π(q1)µα
iQW

~
Y (q!, α; q2, β;−q1 − q2, ε) Π(q2)νβ Xµν

where X stands for the rest of the diagrams (the blob). Under the handlebar
this gives

Π(q1)µα
iQW

~
Y (q!, α; q2, β;−q1 − q2,−q1 − q2) Π(q2)νβ Xµν

= Π(q1)µα
iQW

~

(
qα1 q

β
1 − q2

1g
αβ − qα2 q

β
2 + q2

2g
αβ
)

Π(q2)νβ Xµν

= Π(q1)µα
iQW

~

(
qα1 q

β
1 − (q2

1 −mW
2)gαβ − qα2 q

β
2 + (q2

2 −mW
2)gαβ

)
Π(q2)νβ Xµν(4)

Using the following identity twice, once for q1 and once for q2,

Π(q)µα
(
qαqβ − (q2 −mW

2)gαβ
)

= i~gµβ

then leads to the handlebar rule.

2. For the first two diagrams, the handlebars give

+

= − + −

The first and fourth diagram cancel one another, as do the second and third
ones. The fermionic contribution to γ, Z mixing vanishes under the handlebar
exactly as in QED. The W two-point loop integrand can be written as

k
µ

Z

k

q
1

q
2

=

igWWZ

~
Y (q1, λ; q2, ρ;−k, µ)Π(q1)λαΠ(q2)ρβ

iQW

~
Y (−q2, β;−q1, α; k, ε)

Under the handlebar this is transformed into

−igWWZQW

~
Y (q1, α; q2, β;−k, µ)

(
Π(q1)αβ − Π(q2)αβ

)
The loop momentum can be chosen either to be q1 or q2, and q1 + q2 = k. Now,

Y (q1, α; q2, β;−k, µ) = (q1 − q2)µgαβ + (q2 + k)αgβµ − (k + q1)βgαµ

=
(
−kµgαβ + 2kαgβµ − kβgαµ

)
+
(

2qµ1 g
αβ − qα1 gβµ − q

β
1 g

αµ
)

=
(
kµgαβ + kαgβµ − 2kβgαµ

)
+
(
−2qµ2 g

αβ + qα2 g
βµ + qβ2 g

αµ
)

The terms linear in either q1 or q2 drop out as usual, and the integrand is
therefore

i
gWWZQW

~
(
2kµgαβ − kαgβµ − kβgαµ

)
Π(q)αβ = i

QW
2cW

~sW
XαβµνΠ(q)αβkν

and this is precisely the opposite of the W tadpole diagram (the last one) under
the handlebar.
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Solution to exercise 224
The s-channel diagram is

H

Z

Z Z

Z

The other two diagrams are obtained by crossing s ↔ t and s ↔ u

1. The s-channel diagram for energy E � mZ reads

Ms = −i~gZZH2
(s

2

) 1

s−mH
2

(s
2

)
∼ −i~gZZH

2

4
s

The last lemma obtains when we discard terms of order O (mH
2/s) as well as

O (mZ
2/s). This is the nonsafe term.

2. Adding all three crossings we have s + t + u = 4mZ
2 so the nonsafe terms

cancel. Here we have assumed that all three of s,|t| and |u| are much larger
than mZ

2,mH
2.

Solution to exercise 225
To have mW = 0 we need cW = 0 as well; and then gWWZ = 0 so the whole diagram
disappears.

Solution to exercise 226

1. For the decay H(p)→ t(q1)t̄(q2) the amplitude is

M = i~1/2 gt u(q1)v(q2) , gt =
emt

2sWmW

for the decay width we find〈
|M|2

〉
= ~g2

t Tr ((/q1 +mt)(/q2 −mt)) = 2~g2
tmH

2

(
1− 4m2

t

mH
2

)
Γ(H → tt̄) =

~g2
t

8π
mH

(
1− 4m2

t

mH
2

)3/2

so this width is indeed linear in mH when mH becomes large.

2. For the decay H(p)→ W+(q1, ε1)W−(q2, ε2) the amplitude is

M = i~1/2gWWH (ε1 · ε2) , gWWH =
2mW

2

v

so this partial decay width is found by

〈
|M|2

〉
= ~gWWH

2

(
−gαβ +

q1αq1β

mW
2

)(
−gαβ +

qα2 q
β
2

mW
2

)

=
~gWWH

2

4

mH
4

mW
4

(
1− 4

mW
2

mH
2

+ 12
mW

4

mH
4

)
=

~mH
4

v2

(
1− 4

mW
2

mH
2

+ 12
mW

4

mH
4

)
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and so we find

Γ(H → W+W−) =
~mH

3

16π

(
1− 4

mW
2

mH
2

+ 12
mW

4

mH
4

)(
1− 4mW

2

mH
2

)1/2

Γ(H → ZZ) =
~mH

3

32π

(
1− 4

mZ
2

mH
2

+ 12
mZ

4

mH
4

)(
1− 4mZ

2

mH
2

)1/2

Note the symmetry factor in the ZZ decay! For mH � mZ,mW these widths
go as mH

3.

3. For large mH the WW and ZZ decay modes are dominant, so

ΓH ∼
3

32π

mH
3

v2
, mH � mZ,mW

Putting ΓH = mH gives mH ∼ 5.8 v ∼ 1.4 TeV/c2.

Solution to exercise 227
We assume that the fermions have no colour, and that Higgs exchange dominates
the scattering. Then for F1(p1)F̄1(p2)→ F2(q1)F̄2(q2) the amplitude is, far above the
Hiiggs mass, given by

M ∼ −i~g
2

s
v(p1)u(p2) u(q1)v(q2)〈

|M|2
〉

= ~2g4 β4 , β2 = 1− 4M2/s

and the cross section is

σ =
1

2sβ

〈
|M|2

〉 4πβ

32π2
=

~2g4 β4

16πs

The unitarity bound in the J = 0 channel is, from Eq.(19.185)

σ =
4π

s β2

Therefore unitarity will be violated at high enough s if g4 > 64π2, or M larger than
about 5v ≈ 1.2 TeV/c2: a number remarkably similar to the ‘unitarity bound’ on
the Higgs mass of exercise 226.

Solution to exercise 228
An elegant way to do it is to start with massless fermions, and to realize that a two-
point vertex −im/~ give the right propagator by Dyson summation. The combined
two-point vertices are therefore

−im
~
− im

~
H

v
= −im

~
Φ

v

The same combination Φ = H + v occurs.

94



Solution to exercise 229
Dropping terms linear in k and going over to 4− 2ε dimensions:

1

(2π)4

∫
d4k

γα(/k +m)2γα
(k2 −m2 + iη)2(k2 + iη)

→ (4− 2ε)µ2ε

(2π)4−2ε

1∫
0

dx 2x

∫
d4−2εk

k2 +m2

(k2 − xm2 + iη)3

= i
(4− 2ε)(4πµ2)ε

(4π)2Γ(2− ε)

1∫
0

dx 2x

∞∫
0

dt
t2−ε −m2 t1−ε

(t+ xm2)3

= i
(4− 2ε)

(4π)2

(
4πµ2

m2

)ε
Γ(ε)

1∫
0

dx x
(
(2− ε)x−ε − ε x−1−ε)

= i
(4− 2ε)

(4π)2

(
4πµ2

m2

)ε
Γ(ε)

(
1− ε

1− ε

)
≈ 4i

(4π)2

(
Rε − logm2 − 3

2

)
Solution to exercise 230
The diagram has 3 fermion propagators, leading to and integrand with up to 3
powers of momenta in the numerator and 6 in the denominator; the vertices must
be of vector/axial-vector type so contain no momenta. Using the Feynman trick and
shifting it is always possible to make the denominator look like (k2 +A+ iη))3, where
k is the loop momentum and A a combination of the bosons’ momenta and of the
various masses in the problem. The leading power of loop momenta in the numerator
of the integrand is therefore k3, which vanishes by symmetry. The remaining terms
go like k2/(k2 +A+ iη)3 at most, leading to a logarithmic divergence Γ(ε) (see also
exercise 229).

Solution to exercise 231
This exercise is actually rather a research project, so no further information is given.

Solution to exercise 232

1. The 7 diagrams are:

1 : W

W

W

Z

2 : W

W

W

γ

3 : W

W

W

H

4 :
W W

Z

5 :
W W

W

6 :
W W

γ

7 :
W W

H

2. Näıve power counting tells us that for generic loop momentum t the propaga-
tors go as t−2 for γ,H, and as t0 for W,Z; the vertices scale with t for the
WWγ,WWZ vertices, and as t0 for the other one. This gives a sextic di-
vergence for diagram 1; a quartic divergence for diagrams 2, 4, and 5; and a
quadratic one for diagrams 3, 6, and 7.

3. (a)

µ ν
=

i~
q2 −m2

(
−gµν +

qµqµ

m2

)
=

µ ν

F
+

ν

S

µ

µ ν

F
=
−i~gµν

q2 −m2
,

ν

S

µ
=
−i~

q2 −m2

1

m2
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The propagator ′S ′ has the wrong sign for a particle; this is necessary if
we assume every handlebar to refer to an outgoing momentum.

(b) With the single loop momentum contained in both p and q, and k a fixed
external momentum:

1 :
p

µ ν
W W

W

Z
+ +

k

q

=

(1a)
S

W

Z

S
+ (1b)

F

W

Z

S

+ (1c)

W

S

F

Z

; + (1d)
F

Z

W

F

2 :

γ

µ ν
W W

W

+ +

k

q

p

= (2a)
γ

S

F

W

+ (2b)
F

W

F

γ

4 :

q

W+ W+
µ ν

Z

= (4a)
S Z

+ (4b)

Z
F

5 :

W

W+ W+
µ ν

q

= (5a)
WS

+ (5b)
WF

The integrand of diagram (1a) has 6 powers of t in the numerator, and
4 in the denominator, and might appear, therefore, to contain a sextic
divergence. Explicitly, however, it reads

gWWZ
2

mZ
2mW

2

A1

(q2 −mZ
2)(p2 −mW

2)

A1 = Y (p, p;−k, µ; q, q)Y (k, ν;−p,−p;−q,−q)
= (qα)(∆(k)µα −∆(q)µα)(∆(q)νβ −∆(k)νβ)(−qβ)

= −k2 qµ∆(k)νβqβ

so that only two powers of the loop momentum survive in A1. The diagram
(1a) is thus quadratically divergent ‘only’.

(c) We can combine diagrams (1b) and (4a), again at the integrand level:

(1b) =
gWWZ

2

mZ
2

A2

(q2 −mZ
2)(p2 −mW

2)

A2 = Y (p, α;−k, µ; q, q)Y (k, ν;−p, α;−q,−q)
= (∆(p)µα −∆(k)µα)(∆(k)να −∆(p)να) = p2∆(p)µν + (QD)

⇒ (1b) =
gWWZ

2 ∆(p)µα

mZ
2(q2 −mZ

2)
+ (QD)

where (QD) stands for terms that can only give a quadratic divergence.

(4a) = −1

2

gWWZ
2

mZ
2(q2 −mZ

2)
Xµναβ(qα)(−qβ)

= − gWWZ
2 ∆(q)µν

mZ
2(q2 −mZ

2)
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Note the symmetry factor 1/2 in diagram (4a)! Therefore

(1b) + (4a) =
gWWZ

2(∆(p)µν −∆(q)µν)

mZ
2(q2 −mZ

2)
+ (QD)

=
gWWZ

2 ∆(k)µν

mZ
2(q2 −mZ

2)
+ (QD) = (QD)

where we note that here ∆(p)µν − ∆(q)µν = ∆(k)µν since we can drop
terms linear in q. The other quartic divergence threatens in diagrams
(1c), (2a) and (5a). By the same method as above,

(1c) =
gWWZ

2 ∆(q)µν

mZ
2(p2 −mW

2)
+ (QD) , (2a) =

QW
2 ∆(q)µν

mZ
2(p2 −mW

2)
+ (QD)

and, now without a symmetry factor since the W loop is oriented:

(5a) =
QW

2

sW2mW
2(p2 −mW

2)
Xµανβ(pα)(−pβ)

= − QW
2 ∆(p)µν

sW2mW
2(p2 −mW

2)

Using

gWWZ
2 +QW

2 = QW
2

(
cW

2

sW2
+ 1

)
=
QW

2

sW2

we find, as before,

(1c) + (2a) + (5a) =
QW

2(∆(q)µν −∆(p)µν)

sW2mW
2(p2 −mW

2
+ (QD) = (QD)

Diagrams (1d), (2b), (4b) and (5b) are themselves already (QD).

Note that the cencellations of the quartic divergences are, unsurprisingly, ex-
actly those that ensure unitarity in the processes WW → ZZ and WW →
WW for up to 2 longitudinal external polarizations.

Solution to exercise 233
The same remark applies as in exercise 231.

18 Exercises for chapter 18

Solution to exercise 234
The third term in brackets would appear with a minus sign instead of a plus sign.
For the total cross section, this could mean an overestimate by as much as a factor
of 7 around s = 5000 GeV2.

Solution to exercise 235
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1. The process D̄(p1)D(p2) → W+(q1, ε1)W−(q2, ε2)

The only difference with e+e− → W+W− is in the factor A2:

A2(λ) = −QWQDmZ
2

s(s−mZ
2)

+
4gW

2

s−mZ
2
δλ,−

Since the first term goes as s−2, at high energy it is only relevant for the
double-longitudinal case. Writing x = QD/QW we have

M(+; 0, 0) ≈ ~e2 x

2

mZ
2

mW
2
(1− c2)1/2 ≈ 4πα(1− c2)1/2 x

2cW2

M(−; 0, 0) ≈ ~e2 x

2
(1− c2)1/2

(
1

sW2
− mZ

2

mW
2

(
x

2sW2
− 1

))
≈ 4πα(1− c2)1/2

(
1

4sW2
+

2x− 1

4cW2

)
For the actual d-type quarks, x = 1/3.

2. The process Ū(p1)U(p2) → W−(q1, ε
w)W+(q2, ε

z)

The best strategy is simply to reinterpret, and assign q1, ε1 to the W−, and
q2, ε2 to the W+, as indicated above. Then B1 remains unchanged. On the
other hand, A2 changes sign (with now x = QU/QW. On the other other hand,
also B2 changes sign because of the antisymmetry of the Y function. Therefore,
the same results as for the previous item are obtained, with x = −2/3 for the
actual u-type quarks.

3. The process D̄(p1)U(p2) → W+(q1, ε1)Z0(q0, ε0)

(a) The fermions now always have negative helicity. The amplitude consists
of 3 diagrams at tree level:

M(λ1, λ0) =
3∑
j=1

Aj Bj(λ1, λ0)

A1 = −2i~gW(vu + au)
1

t
, t = (q1 − p1)2

A2 = −2i~gW(vd + ad)
1

u
, u = (q0 − p1)2

A3 = +2i~gWgWWZ

1

s−mW
2
, s = P 2 = 4E2 , P µ = pµ1 + pµ2

B1(λ1, λ0) = u−(p1)/εwλ1(/q1 − /p1)/εzλ0u−(p2)

B2(λ1, λ0) = u−(p1)/εzλ0(/q0 − /p1)/εwλ1u−(p2)

B3(λ1, λ0) = u−(p1)γαu−(p2)Y (q1, ε
w
λ1

;−P, α; q0, ε
z
λ0

)

(b) Kinematics and polarization:

pµ1 = (E, 0, 0, E) , pµ2 = (E, 0, 0,−E)
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qµ1 = (q0
1, q~e) , qµ0 = (q0

0,−q~e) , aµ = (1, ~e) , bµ = (1,−~e)

q0
1 = E − δm

4E
, q0

0 = E +
δm
4E

, q = βE

β2 = 1− 2
σm
s

+
δ2
m

s2
, δm = mZ

2 −mW
2 , σm = mZ

2 +mW
2

εµ± =
1√
8
u±(a)γµu±(b)

(εw0 )µ =
1

βmW

(
(1− δm/s)qµ1 −

2mW
2

s
P µ

)
(εz0)µ =

1

βmZ

(
(1 + δm/s)q

µ
0 −

2mZ
2

s
P µ

)
(c) Amplitudes: define

K± = u−(p1)/ε−u−(p2) , K0 = u−(p1)/q0u−(p2)

Then

B1,2(+,+) = −1
2 s−(p1, b)

2s+(a, p1)s+(a, p2)

B1,2(−,−) = −1
2 s−(p1, a)2s+(b, p1)s+(b, p2)

B1(+,−) = +
1

β2s
(2t+ σm − βδm − δ2

m/s)K0

B1(−,+) = +
1

β2s
(2t+ σm + βδm − δ2

m/s)K0

B1(0,+) = +
1

βmW

(t(1− δm/s) +mW
2(1− β + δm/s))K+

B1(0,−) = +
1

βmW

(t(1− δm/s) +mW
2(1 + β + δm/s))K−

B1(+, 0) = − 1

βmZ

(t(1 + δm/s) +mZ
2(1− β − δm/s))K+

B1(−, 0) = − 1

βmZ

(t(1 + δm/s) +mZ
2(1 + β − δm/s)K−

B1(0, 0) = +
1

β2mWmZ

(t(1− δ2
m/s

2) + 4mZ
2mW

2/s)K0

B2(+,−) = − 1

β2s
(2u+ σm + βδm − δ2

m/s)K0

B2(−,+) = − 1

β2s
(2u+ σm − βδm − δ2

m/s)K0

B2(0,+) = − 1

βmW

(u(1− δm/s) +mW
2(1 + β + δm/s))K+

B2(0,−) = − 1

βmW

(u(1− δm/s) +mW
2(1− β + δm/s))K−

B2(+, 0) = +
1

βmZ

(u(1 + δm/s) +mZ
2(1 + β − δm/s))K+
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B2(−, 0) = +
1

βmZ

(u(1 + δm/s) +mZ
2(1− β − δm/s))K−

B2(0, 0) = − 1

β2mWmZ

(u(1− δ2
m/s

2) + 4mZ
2mW

2/s)K0

B3(+,+) = B3(−,−) = 0

B3(+,−) = B3(−,+) = −2K0

B3(0,±) = − 1

βmW

(s− 2σm + δ2
m/s)K± = −B3(±, 0)

B3(0, 0) = − 1

mWmZ

(s+ σm)K0

(d) High-energy limit: qµ1 ∼ q aµ, qµ0 ∼ q bµ

s−(b, p1)2s+(a, p1)s+(a, p2) l 4u
√
tu/s

s−(a, p1)2s+(b, p1)s+(b, p2) l 4t
√
tu/s

K0 l
√
tu−mW

2mZ
2 , K+ l u

√
2/s , K− l t

√
2/s

M(+,+) l
4~gW
s

(
(vu + au)u+ (vd + ad)t

)√
u/t

M(−,−) l
4~gW
s

(
(vu + au)u+ (vd + ad)t

)√
t/u

M(+,−) ∼ M(−,+) ∼ M(0,±) ∼ M(±, 0) ∼ 0

M(0, 0) ∼ 2~gWgWWZcW

√
tu

s

4. The process D̄(p1)U(p2) → W+(q1, ε
w) γ(q2, ε

0)

This is obtained from the previous case by

mZ → 0 , (vu + au)→ QU , (vd + ad)→ QD , gWWZ → QW

and disregarding the longitudinal Z polarizations. Only M(+,+) and M(−,−)
survive in the high-energy limit.

Solution to exercise 236
Since we are aiming for a zero result we can drop all overall factors. The following
FORM program does the hard work:

nwrite statistics;

V k,q1,q2,e1,e2,h1,h2,r,v1,v2; S m,x,y,z,r2,fi,mh;

L N = (g_(1,k)+m)*g_(1,e2)*(g_(1,k)-g_(1,q2)+m)*

(g_(1,k)+g_(1,q1)+m)*g_(1,e1)

- (g_(1,k)+m)*g_(1,h2)*(g_(1,k)-g_(1,q2)+m)*

(g_(1,k)+g_(1,q1)+m)*g_(1,h1); trace4,1;

id k = z*r - x*q1 + y*q2; id z^2 = 1; .sort

id z = 0; id r.v1?*r.v2? = r2*v1.v2/fi;
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id h1.q1 = 0; id h1.q2 = 0; id h2.q1 = 0; id h2.q2 = 0;

id e1.q1 = 0; id e2.q2 = 0; .sort

id h1 = e1 - q1*e1.q2*2/mh^2; id h2 = e2 - q2*e2.q1*2/mh^2; .sort

id q1.q1 = 0; id q2.q2 = 0; id q1.q2 = mh^2/2;

id r.r = r2; id q1.e2*q2.e1 = 1; b r2;

print;

.end

The loop integrand is now seen to be

N ∝ k̂2

(
32

4− 2ε
− 8

)
M

mH
2
− 8Mxy + 8

M3

mH
2

∝ ε

2− ε
k̂2 + (M2 −mH

2xy)

After using Wick rotation and the t-shell formula, and with a = M2 − mH
2xy, we

have the integral

∞∫
0

dt

(
ε

2− ε
t2−ε − a

)
(t+ a)−3 =

ε

2− ε

(
a−ε

Γ(ε)Γ(3− ε)
2

)
− a

(
a−1−εΓ(1 + ε)Γ(2− ε)

2

)
= 0

Solution to exercise 237

1. This follows directly from the cutting rule if we take the state i to be the
Higgs, state f to be the two gluons, and restrict the intermediate state k to
the fermion-antifermion pair.

2. The expression is obtained by simply app;lying the Feynman rules. Note that
the cut propagators of p1 and p2 are on-shell, leading to relatively simple denom-
inators. Also recall that to the right of the cutting line we have to also complex
conjugate the coupling constant i’s. The factor 1/2 is, surprisingly, the symme-
try factor for indistinguishable gluons!6 Using q1,2 · η1,2 = 0, (p1 + p2 · η1,2) = 0
and(q1 + q2 · p1 − p2) = 0 we have

T (q1, q2) = 2M(η1 · η2)(t · r) + 4M(r · η1)(r · η2)

with rµ = pµ1 − p
µ
2 and tµ = qµ1 − q

µ
2 .

3. The phase space can be written as

dV =
β

16π
dc , β2 = 1− 4M2

mH
2
< 1

where c is the cosine of the angle between ~p1 and ~q1 in the rest frame:

(r · t) = 2(p1 · q1)− 2(p1 · q2) = −mH
2βc , (p1 · q1) = mH

2(1− βc)
6To understand this, consider computing the cross section for e+e− → γγ where we keep the

photon directions fixed and integrate over the fermion solid angle.
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Therefore

Y =

∫
dV

r · t
p1 · q1

=

∫
dV
−4βc

1− βc

=
β

4π

1∫
−1

dc

(
1− 1

1− βc

)
=

1

4π

(
2β − log

(
1 + β

1− β

))

The second integral is a bit more involved: we can write, with P µ = qµ1 + qµ2 ,

Y µν =

∫
dV

rµrν

p1 · q1

= A

(
gµν − P µP ν

mH
2

)
+B tµtν

A =
1

2

(
gµν +

tµtν
mH

2

)
Y µν =

β

32π

1∫
−1

dc
(r · r) + (t · r)2/mH

2

(p1q1)

=
β

8π

1∫
−1

dc

(
−1− βc+

1− β2

1− βc

)
=

1

4π

(
−β +

1− β2

2
log

(
1 + β

1− β

))

Therefore∫
dV
T (q1, q2)

p1 · q1

= 2M(Y + 2A)(η1 · η2) = − β2M

2πmH
2

log

(
1 + β

1− β

)
F1

µνF2µν

Combining all factors we find precisely the right result, once we realize that,
in Eq.(18.58),

=
(

Li2(1/x+) + Li2(1/x−)

)
= π log

(
1 + β

1− β

)
, 0 < β < 1

Solution to exercise 238

1. One diagram is

π
1

2

3

To otain the other ones we can either consider all permutations of (1, 2, 3), or
only the cyclic permutations, and take both directions for the fermion line.
This last choice is simplest. If the pion were a vector particle, Furry’s theorem
would assert that both fermion flows give the same result; but since the pion is
scalar, Furry’s theorem tells us that the fermion flows give an opposite result.
The three cyclic permutations of the photons therefore vanish separately.

2. Assuming conservation of charge conjugation, and with C = (−1) for each
photon, the pion must have C = (−1)2 = (+1). A final state of three photons
has charge conjugation C = (−1)3 = (−1), and the decay is forbidden. Note
that, from the simple fact that π0 → γγ occurs but π0 → γγγ does not, we
might in this way conclude that photons have C = (−1) and pions C = (+1).
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3. For any odd number of photons the same charge conjugation argument applies,
as does the Furry argument.

Solution to exercise 239
Using Fj

µν = qµj ε
ν − qνj εµ we have

Mπ =
α

4πfπ
εµνρσF1

µνF2
ρσ l

α

πfπ
εµνρσε

µ
1ε
ν
2q
ρ
1q
σ
2〈

|Mπ|2
〉

=

(
α

πfπ

)2(
−2

{
q1 q2

q1 q2

})
=
α2m4

π

2π2f 2
π

Γ(π0 → γγ) =
1

2mπ

α2m4
π

2π2f 2
π

4π

32π2

1

2
=

α2m3
π

64π3f 2
π

Solution to exercise 240
If s = 0 the loop integrals in A1 and A3 become simple. Using the definitions for
J2ω,n of Eq.(19.193) we have in PV regularization, with L(µ) = µ2 log(Λ2

0/µ
2) and

dropping finite terms:

A1 =
i

(4π)2
4g2

f

(
Λ2

0 − 3L(m)
)

A2 = − i

(4π)2
λ
(
2Λ2

0 − L(m̃1)− L(m̃2)
)

A3 =
i

(4π)2
g2
s

(
1

m̃2
1

L(m̃1) +
1

m̃2
2

L(m̃2)

)
The quadratic divergence will disappear if we take λ = 2g2

f , with no constraint on the
masses, as in Eq.(18.84) (in dimensional regularization, we actually have the weaker
constraint

2g2
f (m

2)1−ε = λ((m̃2
1)1−ε + (m̃2

2)1−ε)

if this is to hold for ‘general’ ε then we need m = m̃1 = m̃2 so again λ = 2g2
f ). Let

us now take m̃1,2 = m̃ for simplicity, and write gs = 2km̃. Then the logarithmic
divergence will also drop out provided

m2

m̃2
=

1

3
+

2

3

(
k

gf

)2
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