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Exercises on Ch.7 Applications of molar Gibbs energy 
diagrams 

7.3 Illustration of the Gibbs–Duhem relation. Exercises 1and 2 

7.4 Two-phase equilibria in binary systems. Exercise 1 

7.5 Allotropic phase boundaries. Exercise 1 

7.7 Driving force for the formation of a new phase. Exercise 1 

7.10 Ternary systems. Exercise 1 

 

7.3 Illustration of the Gibbs–Duhem relation 

Exercise 7.3.1 

Prove analytically that xAμA + xBμB + xCμC = yAμAaCc + yBμBaCc when a + c = 1 and the 
composition falls on the line between AaCc and BaCc. 

Hint 

xA = ayA/(a + c) = ayA; xB = ayB; yA + yB = 1. The mole fraction of C is constant, xC = c. 

Solution 

yAμAaCc + yBμBaCc = yA(aμA + CμC) + yB(aμB + CμC) = yAaμA + (yA + yB)cμC + yBaμB = xAμA + 
xBμB + xCμC

Exercise 7.3.2 

Consider a solution phase in a binary A–B system. Define A and AB as the two 
components. Where in the system will μAB have its highest value? 

Hint 
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In a preceding section we treated this question graphically but now we should do it 
analytically. Start with the Gibbs–Duhem relation at constant T and P and replace the old 
set of components, A and B, with the new set, A and AB. 

Solution 

Let NA and NB be the contents according to the old set and  and  according to the 
new set. Then   
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;''
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ABB NN = .BAABμ μ + μ=  The Gibbs–Duhem relation 

gives:  
When , i.e. when , then we get 

;)()(0 '''''
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0' =AN BABA NNN == ' 0/ =BAB dd μμ  and there is a 
maximum in ABμ  at the composition of AB. 

7.4 Two-phase equilibria in binary systems 

Exercise 7.4.1 

Suppose a solution phase β has a higher A content than required by equilibrium with an 
A-rich stoichiometric phase θ. When it comes into contact with θ it will precipitate θ and 
its surface layer will lose A and thus grow richer in B. Suppose that the lattice parameter 
varies strongly with the composition. The surface layer will then be under coherency 
stresses as long as it is coherent with the bulk of unchanged β. Examine if this 
phenomenon will increase or decrease the chemical potentials for the local two-phase 
equilibrium. 

Hint 

The stressed β material has an additional energy and should thus have a new Gm curve 
which is higher than the ordinary Gm curve but tangent to it at the initial β composition 
where there should be no stresses. 

Solution 

The common tangent construction shows that μB is higher but μA is lower. See diagram. 

 

7.5 Allotropic phase boundaries 

Exercise 7.5.1 
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Consider an isobarothermal section of a ternary system with three phases taking part in a 
three-phase equilibrium. Each two-phase field has an allotropic phase boundary. Show 
reasonable positions of the three lines. Is it necessary or possible that they intersect inside 
or outside the three-phase triangle? Will there be one or three points of intersection? 

Hint 

In the ternary case, an allotropic phase boundary is the line of intersection between two 
Gm surfaces. The two phases must have the same Gm value along that line. 

Solution 

Consider the point where the α + β and α + γ lines intersect. There, α has the same Gm as 
β and γ. Consequently, β and γ also have the same Gm there and the β + γ line must 
intersect in the same point. By simple constructions one may show that the intersection 
falls inside the three-phase triangle in a regular triangle but not in a very thin triangle (see 
diagram). 

 

7.7 Driving force for the formation of a new phase 

Exercise 7.7.1 

On solidification an Fe-C melt normally first precipitates γ (fcc-Fe with dissolved C) and 
then either graphite (in grey cast iron), which gives a stable state, or cementite, Fe3C, (in 
white cast iron), which gives a metastable state. Compare the driving forces for the 
nucleation of graphite and cementite from the melt at the temperature where the 
extrapolated lines for L/L + graphite and L/L + cementite intersect (see diagram). 

     

Hint 
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Make the comparison by means of a schematic molar Gibbs energy diagram and assume 
that the melt is in equilibrium with γ which has precipitated first. Start by drawing curves 
for L, cementite and graphite with a common tangent. Then draw a curve for γ showing 
that L is not stable. Finally, draw the common tangent to γ and L and evaluate by how 
much the curves for graphite and cementite fall below it. The eutectic liquid has <inline>. 

Solution 

4.10)17.025.0/()17.01(/ =−−=ΔΔ cem
m

gr
m GG  (see diagram). The larger composition 

difference is favoured during nucleation but not during growth, of course. 

 

7.10 Ternary systems 

Exercise 6.10.1 

Use a geometrical interpretation of the equation for calculating a partial molar quantity in 
order to prove that the intercepts of a tangent plane in a ternary Gm diagram represent the 
partial Gibbs energies, as already indicated by Fig. 4.9. 

Hint 

Use a construction similar to the one described by Eq. 4.45 for volumes. Choose xB and xC 
as the independent composition variables. 

Solution 

GC = Gm + ∂Gm/∂xC – xB∂Gm/∂xB – xC∂Gm/∂xC  
     =Gm + (1 – xC) ∂Gm/∂xC – xB∂Gm/∂xB
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