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Introduction

@ Have considered only the detection of signals transmitted over
channels of infinite bandwidth.

o Bandlimited channels are common: telephone channel, or even
fiber optics, etc.

o Bandlimitation depends not only on the channel media but
also on the source, specifically the source rate, R,
(symbols/sec).

@ Band limitation can also be imposed on a communication
system by regulatory requirements.

@ The general effect of band limitation on a transmitted signal
of finite time duration is to disperse (or spread) it out =
Signal transmitted in a particular time slot interferes with
signals in other time slots = inter-symbol interference(ISI).

@ Shall consider the demodulation of signals which are not only
corrupted by additive, white Gaussian noise but also by ISI.
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Major Approaches to Deal with ISI

@ Force the ISI effect to zero = Nyquist's first criterion.

Q Allow some ISI but in a controlled manner = Partial response
signaling.

© Live with the presence of ISI and design the best
demodulation for the situation = Maximum likelihood
sequence estimation (Viterbi algorithm).
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Communication System Model
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ISI Example
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Nyquist Criterion for Zero ISl

y(t) = > bpsgr(t — kT}) + wo(t),

k=—o0

where sr(t) = hp(t) * ho(t) * hr(t) is the overall response of the
system due to a unit impulse at the input.

L _ [V ifthe kthbitis “1"
BT =V if the kth bit is 0"

Normalize sg(0) = 1. Look at sampling time t = mT}:

y(me) =b,, + E bksR(me — ka) +Wo(me).
k=—o0
k#m

/

TV
ISI term

What are the conditions on the overall transfer function
Sr(f) = Hr(f)Hc(f)Hg(f) which would make ISI term zero?
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Time-Domain Nyquist's Criterion for Zero IS

The samples of sgr(t) due to an impulse should be 1 at ¢ = 0 and
zero at all other sampling times kT}, (k # 0).

Im pulseapplied
) att=0
t —  He(f)xHo(f)xHg(f) |— (1)

0
@ - ~ /
Su(f) < sat)
SO e
ample® t
L L p Sk
®)
0
—ZTb _Tb Tb 2Tb 3Tb 4Tb
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Frequency-Domain Nyquist’s Criterion for Zero ISI

o If W< ﬁ = |SI| terms cannot be made zero.

O IfW = gk = Su(f) =Ty over f < ||, sn(t) = 5D,

o IfW > ﬁ = Infinite number of Sg(f) to achieve zero ISI.
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Pulse Shaping when W = %,
S(f)
Tb
R R S
2T, 2T,

sr(t) decays as 1/t = if the sampler is
not perfectly synchronized in time, con-
siderable ISI can be encountered.

0

5 2 -1 0
‘/Tb
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Input to the impulse modulator

(Y

O,

1
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T,
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Raised Cosine Pulse Shaping

Ty, 1l < 52
Sr(f) = Src(f) = Tyeos? [52 (1f1- 522)], 2 <IAI<HL .

0 Ifl > 52

’ 2Ty,

sin(wt/Tp) cos(wBt/Tp)
(mt/Ty) 1—432t2/T?

0.8 B=0.5
0.6

AF

cos(mBt/Ty)
1—4B22)12°

sr(t) = src(t) = = sinc(t/T})

T

0.2r

-1 -05 f'? 0.5
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With the rectangular spectrum
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Eye Diagrams

To observe and measure (qualitatively) the effect of ISI.

Left: Ideal lowpass filter, Right: A raised-cosine filter with 3 = 0.35.
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Eye Diagrams with SNR

Left: Ideal lowpass filter, Right: A raised-cosine filter with 3 = 0.35.
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Design of Transmitting and Receiving Filters

@ Have shown how to design Sg(f) = Hr(f)Hc(f)HR(f) to

achieve zero ISI.
@ When H¢(f) is fixed, one still has flexibility in the design of

Hrp(f) and Hg(f).
@ Shall design the filters to minimize the probability of error.

9 fixed ? L=k,
x(t):itVJ(t—kﬂ,)—»HT(f) »Hc(f) an > He(f) 2%
P Y r) y©) (KT,

w(t)
Gaussian noise, zero-mean
PSD S, (f) wattsHz

o Noise is assumed to be Gaussian (as usual) but does not
necessarily have to be white.
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x(t)= 3 £VS(t-KT,) —»]

k=-c0

where wo(mTy) ~ N(0,02,), with o2,

F(y(mT) [-V)

N

v

F(y(mT,) [V)

o

Vv

Since Plerror] = Q ( ) = Need to maximize -
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y(mT,)

y(KT,)

? fixed ? t=KT,
Hy (f) —»{ Hc(f) =m - Hi(f) 7%—»
\*/r(t) y(®)
w(t)
Gaussian noise, zero-mean
PSD S, (f) wattgHz

y(mTy) = £V + wo(mTy),

= o0 Sw(HIHR(f)|?df.
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? fixed ? t=KT,
x(t)= 3 £VS(t—KT,) —| Hy(f) He(h) el —"%»
P \*/ r) yO  y(KT,)

w(t)
Gaussian noise, zero-mean
PSD S, (f) wattgHz

\ 4

Given the transmitted power Pr, the channel’s frequency response
Hc(f) and the additive noise’s power spectral density Sy (f)
choose Hr(f) and Hi(f) so that the zero ISI criterion is satisfied
and the SNR = ;/_33 is maximized.

A First Course in Digital Communications 17/36



Clapte 9: Signaling Over Bandlimited Cla nels

O000000000000e®O00O!

Q@ Compute the average transmitted power:
2
Pr =1 f |Hr(f)|?df (watts).

Q Write the inverse of the SNR as

a.

% - L [ I |HT<f>|2df} [ /- sw<f>|HR<f>|2df]

_ L[ ISe)P ] { = ) }
N PrT, {/Oo |Hc(f)|2|HR(f)|2df [m SW(f)|HR(f)| dry.
© Apply the Cauchy-Schwartz inequality'

2
[ ADB(NAF| < [ IAWPaF] 75 1B ], which
holds with equality if and only if A(f) = KB(f). ldentify

Pl = VSwIDHHA(P ), B = S8l Then

2 _ K|Sr(f)| 2 _ |SR |V
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Design Under White Gaussian Noise

o For white noise (at least flat PSD over the channel

bandwidth):
2 1Sr(f)]
AP = K
NP = Kol = L2

o K, K5 set power levels at transmitter and receiver.
@ The transmit and receive filters are a matched filter pair.

Hp(f) = [Hg(f)|e<Hr),
Hr(f) = K|HR(f)|e?*~Hrl),

@ The maximum output SNR is

(7).~ | [
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Design Under White Gaussian Noise and Ideal Channel

o If the channel is ideal, i.e., Ho(f) =1 for |f| < W and
Ky = K> then [Hy(f)| = [Hr(f)| = V/ISr()I/VE1.

o If Sr(f) is a raised-cosine spectrum then both Hr(f) and
Hpg(f) are square-root raised-cosine (SRRC) spectrum:

VT, /i< £
Hr(f) = Hg(f) = VT cos [ <‘f‘ 2Tb )] ) 2Tb < |fI < 12—’;5 :
0, I > 5

hT(t) = hR(t)
—  sorrelt) = (48t/Ty) cos[m(1 4 B)t/Ty] + sin[n (1 — B)t/T)]
(wt/Ty)[1 — (46t/T)?] '
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RC and SRRC Waveforms (3

1.2

s

— Raised cosine (RC)
- - Square-root RC
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Example: Transmission rate 7, = 3600 bits/sec, P[bit error] < 10~%. Channel model:
He(f) = 1072 for | f| < 2400 Hz and Ho(f) = 0 for |f| > 2400 Hz. Noise model:
Sw(f) = 1071* watts/Hz, Vf (white noise).
(a) Since r, = 3600 bits/sec and W = 2400 Hz, choose a raised-cosine spectrum
with B% =600 or B8 = %

36100’ Ifl < (1 —pB)% =1200 Hz
Sr(f) =1 se55 cos? 355 (If] — 1200)] , 1200 Hz < | f| < 2400 Hz
elsewhere

)

(b) [Hr(f)| = K1|Sr()|V/? and [Hr(f)] = |Sr(f)[1/2. Since
[ (Pl He (£)|[HR(£)] = Sr(f)|. Evaluated at f = 0 gives

1 — _ _1 —
50 K1(1072) o5 = 5505+ or K1 = 100.

() @ <\/(%)max> <1074 = (%)max > 14.04 ~ 14.

Py 1(V2>max{/m|5R(f\/Sw(fdf —3600x14x%{LZ\SR(f)\df}2~

Ty \og [He ()

But [ |Sr(f)IAf = sr(t)l,—o = 1. Therefore Pr =5 pwatts.
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Duobinary Modulation

o If bandwidth is very limited and one cannot afford to use more
than 2_’}% Hz, the only way to achieve zero ISl is to have flat
Sr(f), which is practically difficult to implement.

@ An alternative is to allow a certain amount of ISI but in a
controlled manner = Duobinary modulation.

@ Shall restrict the ISI to only one term, namely that due to the
previous symbol.

s Samplesof sy(t)
A//
Interferingterm ————

®

@

-3, -2, -T, 0 T, 2T, 3T, 4T,
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Overall System Response of Duobinary Modulation

2Ty cos(m fTy), 2Tb <f< 2Tb
0, elsewhere

SR(f):{
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Using Precoder in Duobinary Modulation

y(tk) = Vi+Vi 1+ Wo(tk), where t, = kT, — %, k=0,£1,£2,...
2V + wo(tx), if bits k and (k — 1) are both "1”
0 + wo(tx), if bits k and (k — 1) are different .
—2V + wo(tg), if bits k and (k — 1) are both “0"

Output data bits
»  Precoder |——»
by, by d,=b,0d,,

b, =0thend, =d, , = y(t,)=+2/+w,,(t,)
b, =1thend, =d,, = y(t)=0+w,,(t)
F(y(t) 1)

f(y(t)10;) fy(t)10r)

y(t,)
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9 Ply(ty) = —2V] = Ply(ty) =2V] = 1; Ply(ty) =0 = %

area® + %[area@ + area@)] + i area@ = §Q <1> ,

Ow

| =

Plerror| =~

@ Let Ho(f) =1 over |f]| < ﬁ and consider AWGN with PSD MQl Then

—2

V2 v 2
<E>mx7PTTb \/NO/Z/ 11’ OTy cos(nfTy)df| = (PrTy) <m> (2)2
2T,
Plerrof]guobinary = ZQ (Z\/2€3"0Tb> .
@ For binary PAM with zero ISI (;/—22) is
- —92 -2
= |ISr(H)IVSw(f) _ _ (i)
PrT /700 —He( df} = PrT, \/No/z/ + [Sr(f)Idf = PrT, o

2PrTh
P[error]binary = Q \/b
No

@ Duobinary modulation requires an addition of (%)2 or 2.1 dB to achieve the

same error probability as the zero-1SI modulation.
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Maximum Likelihood Sequence Estimation (MLSE)

@ Do not attempt to eliminate the IS| but rather takes it into
account in the demodulator.

@ The criterion is to minimize the sequence error probability.

o Consider a sequence of N equally likely bits transmitted over
a bandlimited channel where the transmission begins at t =0
and ends at ¢t = NTj, with T} the bit interval.

@ h(t) is the impulse response of the overall chain:
modulator/transmitter filter/channel, assumed to be nonzero
over [0, LT,] = The number of ISI terms is L.

w(t)
»  h(t) S(t)=$ r(t)= ?

Modulator/Transmitter Filter/Channel

N-1
b(t) =) b,d(t—KT,
{bJ} Impulse ® kZ:l; QLK)
Modulator
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@ The receiver sees one of the M = 2V possible signals,
si(t) = S0y bish(t —kTy), i =1,2,...,M = 2V, corrupted by
w(t): This as a humongous M-ary demodulation problem in AWGN.

@ The decision rule is:

Compute:
2 [ 1 [
v = i /_Oo r(t)s;(t)dt — i /_Oo s2(tydt, i=1,2,...,M

and choose the /argest.

© Substituting s;(t) = k 0 ' bih(t — kTy), the decision rule is
Compute:
5 N
Yi = F / t — k‘Tb)dtf
k=0
| NoIN-
D S b / Wt — KTy)h(t — §T;)dt
=0 j=0

and choose the /argest.
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o Define hp—; = [*_h(t — kTy)h(t — jTp,)dt and
ri = [0 r(t)h(t — kTy)dt. Then the decision rule is

Compute:
9 N—-1 N—1N-1
,m;)biym kzojzoblkb,]hk Gyi=1,2,... M

and choose the /argest.

@ The path metric y; can be expressed as

g N-1 1 Nl N- k
Vi = FO Z biykrk — Fo Z i, kho Z i,k Zbi,k*jh]"
k=0 k=0 k= j=1
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ho . .
@ Note that b; ;, = £1 and ’5 = % is a constant. Also since

h(t) = 0 for t > LTy, which means h; = 0 for j > L, the path
metric becomes

VZ:NlOZ zkrk szbzk]

branch metric

@ Branch metric depends on: (i) the present output of the matched
filter, r; (ii) the present value of the considered bit pattern, b; 1;
(iii) the previous L — 1 values of the considered bit pattern

bi,k—la bi,k_g, ce 7bi,kf(L71)-

@ The system has memory, namely the ISl terms = Can use a finite
state diagram and the trellis to represent the transmitted signals.

@ States are defined by the previous L — 1 bits.

@ Determination of the best path through the trellis can be
accomplished most efficiently with the Viterbi algorithm.
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Example

h(t)
Y5,
0 T, 2T, 25T,
(@)

@ There are two ISI terms, which are due to A1 = 0.6 and
ho = 0.2 = L = 3 or the memory is L — 1 = 2 bits in length.

@ The branch metric term is bi’ka — O.Gbi’kbi7k_1 - 0'2bi,kbi,k—2-

© The inputs b; 1, b; ;2 represent the system memory and
hence are states of the state diagram.
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State and Trellis Diagrams

States

b_,b_, (defining states) .
0
b,

S T 2T, 3T, ar, LLL
)
e’ b b, by  LLL
ro A r, T, wo o LLL
(b) Trellis
denotes present input bit b, =0 (or —1)
(a) State diagram o denotes present input bit b, =1 (or +1)

Starting state is chosen to be 00. Before ¢ = 0 everything is zero.
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Consider SNR = E},/0? = 16 dB (if E, = 1 joule, then o = 0.158). The
sample output is 7 = yr + wg, where yi = by + 0.6b;,_1 + 0.2b;_o.

k] 0 | L] 2 | 3 4] 5 | 6|
O 0 1 0 1 0 0 1
b -1 +1 -1 +1 -1 -1 +1
we | —1.0 04 | —06 06| —06| -—14 0.2

wy | —0.074 0.059 0.116 0.336 | —0.216 | —0.163 0.165
Tk —1.074 0.459 | —0.484 0.936 | —0.816 | —1.563 0.365

k 7 8 9 10 11 12 13
b 1 0 1 0 0 0 0
by +1 —1 11 1 -1 -1 1
Uk 1.4 —0.2 0.6 —0.6 —14 ~1.8 ~1.8

wy | —0.062 0.220 0.050 0.247 0.113 0.311 0.080
Tk 1.338 0.020 0.650 | —0.353 | —1.287 | —1.489 | —1.720

k 14 15 16 17 18 19
b 1 I 0 0 I 0
by +1 +1 -1 -1 +1 —1
m 0.2 1.4 —0.2 —14 0.2 —0.6

wg | —0.296 | —0.054 | —0.181 | —0.034 0.189 | —0.177
Tk —0.096 1.346 | —0.381 | —1.434 0.389 | —0.777
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Computations of Branch Metrics

2
bkrk — b 3 be—jhy = bpry, — 0.6bgbp—_1 — 0.2bxbg_o

7j=1
‘ br_o ‘ br_1 ‘ b ‘ Branch Metric ‘
0(-1)|0(=1)|0(=1)| —rp,—06—-02=—7r,—0.8
0(=1) |0(=1) | 1(4+1) | 4rx +0.6+0.2=+7r+0.8
0(=1) [1(+1)|0(=1) | =rg+06—-02=—r,+04
0(=1) | 1 (+1) | 1(+1) | 47, —06+0.2=+r; — 0.4
1(+1)|0(=1) |0(-1)| —rg—06+02=—rp,—04
1(+1) | 0(=1) | L (+1) | +r£+0.6 — 0.2 = +rp + 04
1(+1) |1 (+1) | 0(-1)| —rg+0.6+02=—r;+0.8
1(+1) | 1(+1) | 1 (+1) | +r— 0.6 — 0.2 = +r, — 0.8
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Branch metrics and (partial) path metrics for all possible paths for
the first 3 bit transmissions.

1.074
(N
\\,\
AN
0
r,=-1.074
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Pruned Trellis Up To k£ =12
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