A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk

February 2009

A First Course in Digital Communications

Introduction

- Have considered only the detection of signals transmitted over channels of infinite bandwidth.
- Bandlimited channels are common: telephone channel, or even fiber optics, etc.
- Bandlimitation depends not only on the channel media but also on the source, specifically the source rate, R_s (symbols/sec).
- Band limitation can also be imposed on a communication system by regulatory requirements.
- The general effect of band limitation on a transmitted signal of finite time duration is to *disperse* (or *spread*) it out ⇒
 Signal transmitted in a particular time slot interferes with signals in other time slots ⇒ *inter-symbol interference*(ISI).
- Shall consider the demodulation of signals which are not only corrupted by additive, white Gaussian noise but also by ISI.

Major Approaches to Deal with ISI

- Force the ISI effect to zero \Rightarrow Nyquist's first criterion.
- Output Allow some ISI but in a controlled manner ⇒ Partial response signaling.
- O Live with the presence of ISI and design the best demodulation for the situation ⇒ Maximum likelihood sequence estimation (Viterbi algorithm).

- 4 同 6 - 4 三 6 - 4 三 6

Communication System Model

ISI Example

Nyquist Criterion for Zero ISI

$$\mathbf{y}(t) = \sum_{k=-\infty}^{\infty} \mathbf{b}_k s_R(t - kT_b) + \mathbf{w}_{o}(t),$$

where $s_R(t) = h_T(t) * h_C(t) * h_R(t)$ is the overall response of the system due to a unit impulse at the input.

$$\mathbf{b}_k = \begin{cases} V & \text{if the } k \text{th bit is "1"} \\ -V & \text{if the } k \text{th bit is "0"} \end{cases}$$

Normalize $s_R(0) = 1$. Look at sampling time $t = mT_b$:

$$\mathbf{y}(mT_b) = \mathbf{b}_m + \underbrace{\sum_{\substack{k=-\infty\\k\neq m}}^{\infty} \mathbf{b}_k s_R(mT_b - kT_b)}_{\text{ISI term}} + \mathbf{w}_o(mT_b)$$

What are the conditions on the overall transfer function $S_R(f) = H_T(f)H_C(f)H_R(f)$ which would make ISI term zero?

Time-Domain Nyquist's Criterion for Zero ISI

The samples of $s_R(t)$ due to an impulse should be 1 at t = 0 and zero at all other sampling times kT_b $(k \neq 0)$.

Frequency-Domain Nyquist's Criterion for Zero ISI

If W < 1/(2T_b) ⇒ ISI terms <u>cannot be made zero</u>.
If W = 1/(2T_b) ⇒ S_R(f) = T_b over f ≤ |1/(2T_b)|, s_R(t) = sin(πt/T_b)/(πt/T_b).
If W > 1/(2T_b) ⇒ Infinite number of S_R(f) to achieve zero ISI.

Pulse Shaping when $W = \frac{1}{2T_b}$

A First Course in Digital Communications

Raised Cosine Pulse Shaping

$$S_R(f) = S_{\mathsf{RC}}(f) = \begin{cases} T_b, & |f| \le \frac{1-\beta}{2T_b} \\ T_b \cos^2\left[\frac{\pi T_b}{2\beta} \left(|f| - \frac{1-\beta}{2T_b}\right)\right], & \frac{1-\beta}{2T_b} \le |f| \le \frac{1+\beta}{2T_b} \\ 0, & |f| \ge \frac{1+\beta}{2T_b} \end{cases}$$

$$s_R(t) = s_{\rm RC}(t) = \frac{\sin(\pi t/T_b)}{(\pi t/T_b)} \frac{\cos(\pi\beta t/T_b)}{1 - 4\beta^2 t^2/T_b^2} = \operatorname{sinc}(t/T_b) \frac{\cos(\pi\beta t/T_b)}{1 - 4\beta^2 t^2/T_b^2}$$

With the rectangular spectrum

Eye Diagrams

To observe and measure (qualitatively) the effect of ISI.

Left: Ideal lowpass filter, Right: A raised-cosine filter with $\beta = 0.35$.

Eye Diagrams with SNR= $V^2/\sigma_w^2 = 20 \text{ dB}$

Left: Ideal lowpass filter, Right: A raised-cosine filter with $\beta = 0.35$.

Design of Transmitting and Receiving Filters

- Have shown how to design $S_R(f) = H_T(f)H_C(f)H_R(f)$ to achieve zero ISI.
- When $H_C(f)$ is fixed, one still has flexibility in the design of $H_T(f)$ and $H_R(f)$.
- Shall design the filters to minimize the probability of error.

• Noise is assumed to be Gaussian (as usual) but *does not necessarily have to be white.*

PSD $S_{w}(f)$ watts/Hz

Given the transmitted power P_T , the channel's frequency response $H_C(f)$ and the additive noise's power spectral density $S_{\mathbf{w}}(f)$ choose $H_T(f)$ and $H_R(f)$ so that the zero ISI criterion is satisfied and the $\text{SNR} = \frac{V^2}{\sigma_{\mathbf{w}}^2}$ is maximized.

Compute the average transmitted power:

$$P_T = \frac{V^2}{T_b} \int_{-\infty}^{\infty} |H_T(f)|^2 \mathrm{d}f$$
 (watts).

Write the inverse of the SNR as

$$\begin{aligned} \frac{\sigma_{\mathbf{w}}^2}{V^2} &= \frac{1}{P_T T_b} \left[\int_{-\infty}^{\infty} |H_T(f)|^2 \mathrm{d}f \right] \left[\int_{-\infty}^{\infty} S_{\mathbf{w}}(f) |H_R(f)|^2 \mathrm{d}f \right] \\ &= \frac{1}{P_T T_b} \left[\int_{-\infty}^{\infty} \frac{|S_R(f)|^2}{|H_C(f)|^2 |H_R(f)|^2} \mathrm{d}f \right] \left[\int_{-\infty}^{\infty} S_{\mathbf{w}}(f) |H_R(f)|^2 \mathrm{d}f \right]. \end{aligned}$$

Apply the Cauchy-Schwartz inequality:
$$\left|\int_{-\infty}^{\infty} A(f)B^*(f)df\right|^2 \leq \left[\int_{-\infty}^{\infty} |A(f)|^2df\right] \left[\int_{-\infty}^{\infty} |B(f)|^2df\right], \text{ which holds with equality if and only if } A(f) = KB(f). \text{ Identify } |A(f)| = \sqrt{S_{\mathbf{w}}(f)}|H_R(f)|, |B(f)| = \frac{|S_R(f)|}{|H_C(f)||H_R(f)|}. \text{ Then } |H_R(f)|^2 = \frac{K|S_R(f)|}{\sqrt{S_{\mathbf{w}}(f)}|H_C(f)|}, \quad |H_T(f)|^2 = \frac{|S_R(f)|\sqrt{S_{\mathbf{w}}(f)}}{K|H_C(f)|}.$$

Design Under White Gaussian Noise

• For white noise (at least flat PSD over the channel bandwidth):

$$|H_R(f)|^2 = K_1 \frac{|S_R(f)|}{|H_C(f)|},$$

$$|H_T(f)|^2 = K_2 \frac{|S_R(f)|}{|H_C(f)|} = \frac{K_2}{K_1} |H_R(f)|^2,$$

- K_1, K_2 set power levels at transmitter and receiver.
- The transmit and receive filters are a matched filter pair.

$$H_R(f) = |H_R(f)| e^{j \angle H_R(f)},$$

$$H_T(f) = K |H_R(f)| e^{j \angle -H_R(f)}$$

The maximum output SNR is

$$\left(\frac{V^2}{\sigma_{\mathbf{w}}^2}\right)_{\max} = P_T T_b \left[\int_{-\infty}^{\infty} \frac{|S_R(f)| \sqrt{S_{\mathbf{w}}(f)}}{|H_C(f)|} \mathrm{d}f \right]^{-2}.$$

Design Under White Gaussian Noise and Ideal Channel

- If the channel is ideal, i.e., $H_C(f) = 1$ for $|f| \leq W$ and $K_1 = K_2$ then $|H_T(f)| = |H_R(f)| = \sqrt{|S_R(f)|}/\sqrt{K_1}$.
- If $S_R(f)$ is a raised-cosine spectrum then both $H_T(f)$ and $H_R(f)$ are square-root raised-cosine (SRRC) spectrum:

$$H_T(f) = H_R(f) = \begin{cases} \sqrt{T_b}, & |f| \le \frac{1-\beta}{2T_b} \\ \sqrt{T_b} \cos\left[\frac{\pi T_b}{2\beta} \left(|f| - \frac{1-\beta}{2T_b}\right)\right], & \frac{1-\beta}{2T_b} \le |f| \le \frac{1+\beta}{2T_b} \\ 0, & |f| \ge \frac{1+\beta}{2T_b} \end{cases}$$

$$h_T(t) = h_R(t)$$

= $s_{\text{SRRC}}(t) = \frac{(4\beta t/T_b)\cos[\pi(1+\beta)t/T_b] + \sin[\pi(1-\beta)t/T_b]}{(\pi t/T_b)[1 - (4\beta t/T_b)^2]}$

RC and SRRC Waveforms ($\beta = 0.5$)

Example: Transmission rate $r_b = 3600$ bits/sec, $P[\text{bit error}] \le 10^{-4}$. Channel model: $H_C(f) = 10^{-2}$ for $|f| \le 2400$ Hz and $H_C(f) = 0$ for |f| > 2400 Hz. Noise model: $S_{\mathbf{w}}(f) = 10^{-14}$ watts/Hz, $\forall f$ (white noise).

(a) Since $r_b = 3600$ bits/sec and W = 2400 Hz, choose a raised-cosine spectrum with $\beta \frac{r_b}{2} = 600$ or $\beta = \frac{1}{3}$.

$$S_R(f) = \begin{cases} \frac{1}{3600}, & |f| < (1-\beta)\frac{r_b}{2} = 1200 \text{ Hz} \\ \frac{1}{3600} \cos^2 \left[\frac{\pi}{2400}(|f| - 1200)\right], & 1200 \text{ Hz} \le |f| \le 2400 \text{ Hz} \\ 0, & \text{elsewhere} \end{cases}$$

(b)
$$|H_T(f)| = K_1 |S_R(f)|^{1/2}$$
 and $|H_R(f)| = |S_R(f)|^{1/2}$. Since
 $|H_T(f)||H_C(f)||H_R(f)| = S_R(f)|$. Evaluated at $f = 0$ gives
 $\frac{1}{\sqrt{3600}} K_1(10^{-2}) \frac{1}{\sqrt{3600}} = \frac{1}{3600}$, or $K_1 = 100$.
(c) $Q\left(\sqrt{\left(\frac{V^2}{\sigma_{\mathbf{w}}^2}\right)_{\max}}\right) \le 10^{-4} \Rightarrow \left(\frac{V^2}{\sigma_{\mathbf{w}}^2}\right)_{\max} \ge 14.04 \approx 14$.

$$P_T = \frac{1}{T_b} \left(\frac{V^2}{\sigma_{\mathbf{w}}^2} \right)_{\max} \left[\int_{-\infty}^{\infty} \frac{|S_R(f)| \sqrt{S_{\mathbf{w}}(f)}}{|H_C(f)|} \mathrm{d}f \right]^2 = 3600 \times 14 \times \frac{10^{-14}}{10^{-4}} \left[\int_{-\infty}^{\infty} |S_R(f)| \mathrm{d}f \right]^2$$

But $\int_{-\infty}^{\infty} |S_R(f)| df = s_R(t)|_{t=0} = 1$. Therefore $P_T = 5 \ \mu$ watts.

Duobinary Modulation

- If bandwidth is very limited and one cannot afford to use more than $\frac{1}{2T_b}$ Hz, the only way to achieve zero ISI is to have flat $S_R(f)$, which is practically difficult to implement.
- An alternative is to allow a certain amount of ISI but in a controlled manner ⇒ *Duobinary* modulation.
- Shall restrict the ISI to only one term, namely that due to the previous symbol.

Overall System Response of Duobinary Modulation

A First Course in Digital Communications

Using Precoder in Duobinary Modulation

4

$$P[\mathbf{y}(t_k) = -2V] = P[\mathbf{y}(t_k) = 2V] = \frac{1}{4}; \ P[\mathbf{y}(t_k) = 0] = \frac{1}{2}.$$

$$P[\text{error}] \approx \frac{1}{4} \operatorname{area}(\mathbf{P} + \frac{1}{2}[\operatorname{area}(\mathbf{D} + \operatorname{area}(\mathbf{P})] + \frac{1}{4} \operatorname{area}(\mathbf{S}) = \frac{3}{2}Q\left(\frac{V}{\sigma_{\mathbf{w}}}\right),$$

• Let $H_C(f) = 1$ over $|f| \le \frac{1}{2T_b}$ and consider AWGN with PSD $\frac{N_0}{2}$. Then

$$\left(\frac{V^2}{\sigma_{\mathbf{w}}^2}\right)_{\max} = P_T T_b \left[\sqrt{N_0/2} \int_{-\frac{1}{2T_b}}^{\frac{1}{2T_b}} 2T_b \cos(\pi f T_b) \mathrm{d}f\right]^{-2} = (P_T T_b) \left(\frac{2}{N_0}\right) \left(\frac{\pi}{4}\right)^2$$

is

$$P[\text{error}]_{\text{duobinary}} = \frac{3}{2}Q\left(\frac{\pi}{4}\sqrt{\frac{2P_TT_b}{N_0}}\right).$$

• For binary PAM with zero ISI
$$\left(\frac{V^2}{\sigma_{\mathbf{w}}^2}\right)_{\max}$$

$$\begin{split} P_T T_b \left[\int_{-\infty}^{\infty} \frac{|S_R(f)| \sqrt{S_{\mathbf{w}}(f)}}{|H_C(f)|} \mathrm{d}f \right]^{-2} &= P_T T_b \left[\sqrt{N_0/2} \int_{-\frac{1}{2T_b}}^{\frac{1}{2T_b}} |S_R(f)| \mathrm{d}f \right]^{-2} = P_T T_b \left(\frac{2}{N_0}\right) \\ P[\text{error}]_{\text{binary}} &= Q \left[\sqrt{\frac{2P_T T_b}{N_0}} \right]. \end{split}$$

• Duobinary modulation requires an addition of $\left(\frac{4}{\pi}\right)^2$ or 2.1 dB to achieve the same error probability as the zero-ISI modulation.

Maximum Likelihood Sequence Estimation (MLSE)

- Do not attempt to eliminate the ISI but rather takes it into account in the demodulator.
- The criterion is to minimize the sequence error probability.
- Consider a sequence of N equally likely bits transmitted over a bandlimited channel where the transmission begins at t = 0and ends at $t = NT_b$, with T_b the bit interval.
- h(t) is the impulse response of the overall chain: modulator/transmitter filter/channel, assumed to be nonzero over [0, LT_b] ⇒ The number of ISI terms is L.

Modulator/Transmitter Filter/Channel

- The receiver sees one of the $M = 2^N$ possible signals, $s_i(t) = \sum_{k=0}^{N-1} b_{i,k} h(t - kT_b)$, $i = 1, 2, ..., M = 2^N$, corrupted by $\mathbf{w}(t)$: This as a humongous M-ary demodulation problem in AWGN.
- The decision rule is:

$$\gamma_i = \frac{2}{N_0} \int_{-\infty}^{\infty} r(t) s_i(t) dt - \frac{1}{N_0} \int_{-\infty}^{\infty} s_i^2(t) dt, \quad i = 1, 2, \dots, M$$

and choose the *largest*.

• Substituting $s_i(t) = \sum_{k=0}^{N-1} b_{i,k} h(t - kT_b)$, the decision rule is

Compute:

$$\gamma_i = \frac{2}{N_0} \sum_{k=0}^{N-1} b_{i,k} \int_{-\infty}^{\infty} r(t)h(t - kT_b) dt - \frac{1}{N_0} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} b_{i,k} b_{i,j} \int_{-\infty}^{\infty} h(t - kT_b)h(t - jT_b) dt$$
and choose the *largest*.

• Define
$$h_{k-j} = \int_{-\infty}^{\infty} h(t - kT_b)h(t - jT_b)dt$$
 and $r_k = \int_{-\infty}^{\infty} r(t)h(t - kT_b)dt$. Then the decision rule is

$$\gamma_i = \frac{2}{N_0} \sum_{k=0}^{N-1} b_{i,k} r_k - \frac{1}{N_0} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} b_{i,k} b_{i,j} h_{k-j}, \ i = 1, 2, \dots, M$$

and choose the *largest*.

• The path metric γ_i can be expressed as

$$\gamma_i = \frac{2}{N_0} \sum_{k=0}^{N-1} b_{i,k} r_k - \frac{1}{N_0} \sum_{k=0}^{N-1} b_{i,k}^2 h_0 - \frac{2}{N_0} \sum_{k=0}^{N-1} b_{i,k} \sum_{j=1}^k b_{i,k-j} h_j.$$

• Note that $b_{i,k} = \pm 1$ and $\frac{b_{i,k}^2 h_0}{2} = \frac{h_0}{2}$ is a constant. Also since h(t) = 0 for $t \ge LT_b$, which means $h_j = 0$ for $j \ge L$, the path metric becomes

- Branch metric depends on: (i) the present output of the matched filter, r_k; (ii) the present value of the considered bit pattern, b_{i,k}; (iii) the previous L 1 values of the considered bit pattern b_{i,k-1}, b_{i,k-2}, ..., b_{i,k-(L-1)}.
- The system has memory, namely the ISI terms ⇒ Can use a finite state diagram and the trellis to represent the transmitted signals.
- States are defined by the previous L-1 bits.
- Determination of the best path through the trellis can be accomplished most efficiently with the *Viterbi algorithm*.

Example

- There are two ISI terms, which are due to $h_1 = 0.6$ and $h_2 = 0.2 \Rightarrow L = 3$ or the memory is L 1 = 2 bits in length.
- The branch metric term is $b_{i,k}r_k 0.6b_{i,k}b_{i,k-1} 0.2b_{i,k}b_{i,k-2}$.
- The inputs b_{i,k-1}, b_{i,k-2} represent the system memory and hence are states of the state diagram.

State and Trellis Diagrams

Starting state is chosen to be 00. Before t = 0 everything is zero.

Consider SNR = $E_b/\sigma^2 = 16$ dB (if $E_b = 1$ joule, then $\sigma = 0.158$). The sample output is $r_k = y_k + w_k$, where $y_k = b_k + 0.6b_{k-1} + 0.2b_{k-2}$.

k	0	1	2	3	4	5	6
b_k	0	1	0	1	0	0	1
b_k	-1	+1	-1	+1	-1	-1	+1
y_k	-1.0	0.4	-0.6	0.6	-0.6	-1.4	0.2
w_k	-0.074	0.059	0.116	0.336	-0.216	-0.163	0.165
r_k	-1.074	0.459	-0.484	0.936	-0.816	-1.563	0.365
k	7	8	9	10	11	12	13
b_k	1	0	1	0	0	0	0
b_k	+1	-1	+1	-1	-1	-1	-1
y_k	1.4	-0.2	0.6	-0.6	-1.4	-1.8	-1.8
w_k	-0.062	0.220	0.050	0.247	0.113	0.311	0.080
r_k	1.338	0.020	0.650	-0.353	-1.287	-1.489	-1.720
k	14	15	16	17	18	19	
b_k	1	1	0	0	1	0	
b_k	+1	+1	-1	-1	+1	-1	
y_k	0.2	1.4	-0.2	-1.4	0.2	-0.6	
w_k	-0.296	-0.054	-0.181	-0.034	0.189	-0.177	
r_k	-0.096	1.346	-0.381	-1.434	0.389	-0.777	

Computations of Branch Metrics

$$b_k r_k - b_k \sum_{j=1}^{2} b_{k-j} h_j = b_k r_k - 0.6 b_k b_{k-1} - 0.2 b_k b_{k-2}$$

b_{k-2}	b_{k-1}	b_k	Branch Metric
0(-1)	0(-1)	0(-1)	$-r_k - 0.6 - 0.2 = -r_k - 0.8$
0(-1)	0(-1)	1(+1)	$+r_k + 0.6 + 0.2 = +r_k + 0.8$
0(-1)	1 (+1)	0(-1)	$-r_k + 0.6 - 0.2 = -r_k + 0.4$
0(-1)	1(+1)	1 (+1)	$+r_k - 0.6 + 0.2 = +r_k - 0.4$
1(+1)	0(-1)	0(-1)	$-r_k - 0.6 + 0.2 = -r_k - 0.4$
1(+1)	0(-1)	1(+1)	$+r_k + 0.6 - 0.2 = +r_k + 0.4$
1(+1)	1 (+1)	0(-1)	$-r_k + 0.6 + 0.2 = -r_k + 0.8$
1(+1)	1 (+1)	1 (+1)	$+r_k - 0.6 - 0.2 = +r_k - 0.8$

Branch metrics and (*partial*) path metrics for all possible paths for the first 3 bit transmissions.

Pruned Trellis Up To k = 12

