
6

Stochastic genes and persistant
decisions

6.1 Simulating stochastic production and

decay

6.1.1 Collect 10 000 numbers x, each selected by x = −nc · ln(ran2) where
ran2 is another random number selected in [0; 1] and nc = 10. Plot the his-
togram h(x) in a graph where the x axis is linear and the y axis is logarithmic.

6.1.2 Repeat the Gillespie simulation of Eqs. (6.1) and (6.2), including that
the mRNA lifetime is exponentially distributed with a mean lifetime that
gives nc = 20 proteins per mRNA. Compare with a simulation where we set
nc = 10, but maintain the mean production level of proteins.

Answer Consider the production of mRNA as reaction number 1:

r1 =
α

nc

·
(
0.01 +

(N/200)2

1 + (N/200)2 + (N/200)4

)
(6.1)

If this happens, the number of proteins is updated by N → N − nc ln(ran)
with ran ∈ [0, 1]. In this way, a positive number of proteins is selected with the
average expectation of nc. The other event is a degradation event with rate:

r2 =
N

τ
(6.2)

After this reaction is chosen the number of proteins is updated as N → N−1.
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Figure 6.1 Simulation of bistable system with two different proteins per
mRNA levels. (A) nc = 20, (B) nc = 10.

The Gillespie algorithm, in the limit where the mRNA lifetime is very
short, reads: select the smallest of:

t1 = − ln(ran1)/r1 (6.3)

t2 = − ln(ran2)/r2 (6.4)

and update N accordingly, while increasing time t → t+min(t1, t2). Setting
τ = 30 min, α = 20 min−1 and nc = 20, we obtain the behaviors shown in
Fig. 6.1.

6.1.3 Consider protein and associated mRNA production and decay, through
rate Ω for M → M + 1, rate ω for M → M + P for each M , rate γm for
M → M − 1 for each M and rate γP for P → 0 for each protein. What is
the average number of proteins per mRNA? Simulate the process using the
Gillespie algorithm and the rates Ω = 0.02, ω = 0.1 (protein per second per
mRNA), γ = 0.01 (mRNA lifetime of 100 s) and γp = 0.002 (protein lifetime
of 500 s).

Answer The average number of proteins is given by average lifetime =1/γm =
100 s multiplied by protein production per time unit, ω · γm = 20 proteins
per message.
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Figure 6.2 Simulation of production of mRNA and associated protein.

With m as the available number of mRNA and p the number of proteins,
the simulation is set up as:

(1) t1 = − ln(ran1)/Ω for m → m+ 1
(2) t2 = − ln(ran2)/(m · ω) for p → p+ 1
(3) t3 = − ln(ran3)/(m · γm) for m → m− 1
(4) t4 = − ln(ran4)/(p · γP) for p → p− 1

where rani is random numbers independently chosen uniformly in the interval
[0, 1]. Notice that in this coarse-grained simulation we put all mRNA together
in one scalar variable m with a probability of reactions that is multiplied by
m. As the mRNAs are independent, this simplification is allowed. The result
of simulations is shown in Fig. 6.2.

6.1.4 Repeat the investigation of the toggle switch [238] shown in Fig. 6.5:

du

dt
=

a

1 + v2
− u and

dv

dt
=

b

1 + u2
− v (6.5)

for a = b = 10, by determining fixed points for both equations, as well as their
crossing points. Hint: plot the right-hand side of the equations for u and v
in [0, 10]. Simulate the equations using the Gillespie algorithm by assuming
that both u and v are produced and decay in discrete units of size 1.
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Figure 6.3 Simulation of production of repressilator. Right-hand panel shows
null-clines where the grey dots reflect system positions during a small part
of the simulation on the left.

Answer Define four different processes:

(1) u → u+ 1 with rate r1 =
10

1+v2

(2) u → u− 1 with rate r2 = u
(3) v → v + 1 with rate r3 =

10
1+u2

(4) v → v − 1 with rate r4 = u.

The updates proceed as in standard Gillespie with selecting four times, ti =
ln(−rani)/ri and performing the associated update for the shortest selected
time. For eventual better representation of production one may update u →
u− ln(ran), respectively v → v− ln(ran) when increasing the u or v number.
Results are shown in Fig. 6.3.

6.2 Stochastic simulation of the λ-switch

6.2.1 Consider the following model for a lambdoid like phage:

dCI

dt
=

0.1 + (CI/0.2)2

(1 + (CI/0.2)2) · (1 + (Cro/0.5)2)
− CI

dCro

dt
=

1

(1 + (CI/0.2)2)
− Cro
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Figure 6.4 Null clines for changes in CI and Cro in a simplified model for
phage lambda switch. Above the lines both concenrations will decline, below
they will increase. Thus deterministc drift will tend to focuss dynamics along
intersection of the lines.

resembling PRM activated by CI and repressed by Cro, and PR repressed
by CI (see Fig. 6.11). What does the product in the denominator of the “PRM
term” correspond to in terms of operator design? Plot regions of (CI,Cro)
∈ [0, 1]× [0, 1] where dCI/dt > 0, and dCro/dt > 0. Identify stable and un-
stable fixed points. Hint: identify null-clines by solving steady-state equations
in terms of Cro as a function of CI.

Answer The product in the denominator corresponds to a design where
one operator can be occupied by CI, whereas the other can be independently
occupied by Cro. Both operators influence the promoter for CI, whereas only
one represses the promoter for Cro.

In steady state the equations can be rephrased:

dCI

dt
=

0.1 + (CI/0.2)2

(1 + (CI/0.2)2) · (1 + (Cro/0.5)2)
− CI = 0 ⇒
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Cro = 0.5 · 0.1 + (CI/0.2)2√
(1 + (CI/0.2)2) · CI

dCro

dt
=

1

(1 + (CI/0.2)2)
− Cro = 0 ⇒ Cro =

1

1 + (CI/0.2)2

which is plotted in Fig. 6.4 with an indication of regions where CI increases,
and Cro increases. One see that there are three intersections with lines where
dCI = 0 and dCro/dt = 0, of which the middle is unstable.

6.2.2 Simulate the model in Question 6.2.1 using Gillespie algorithm with
discretized production into units of CI and Cro of characteristic size δ = 0.1,
but with dilution being considered to occur in very small units, say 0.01. Dis-
cuss the timescale in the simulation, and the step size δ in terms of promoter
activity. Hint: define four processes, two production events and two decay
events, each happening with rates given by the respective terms in Eq. 6.20
divided by the size of the change (δ = 0.1 for production and 0.01 for decay).
If any variable becomes less than 0, then set it equal to zero, since concen-
trations cannot be negative.
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Figure 6.5 Gillespie simulation for CI and Cro in a simplified model for the
phage λ switch. The dots in panel (B) show positions of the systems during
the simulations shown in panel (A).
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Answer The timescale 1 is the decay/dilution time of both the proteins in
the equations. In the simulation we use δ = 0.1 and define the processes:

(1) CI → CI + δ with rate r1 =
1
δ
· 0.1+(CI/0.2)2

(1+(CI/0.2)2)·(1+(Cro/0.5)2)

(2) CI → CI − 0.01 with rate r2 = CI/0.01
(3) Cro → Cro+ δ with rate r3 =

1
δ
· 1
(1+(CI/0.2)2)

(4) Cro → Cro− 0.01 with rate r4 = Cro/0.01

and assign respective times randomly, as in the standard Gillespie procedure
(ti = − ln(ran)/ri, ran ∈ [0, 1]). In Fig. 6.5 we show a simulation where we
have replaced the fixed δ protein production with exponentially distributed
bursts, thus adding −δ · ln(ran) at each production event.
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Figure 6.6 Production and decay of a simplified λ switch, assuming in addi-
tion that Cro is a quickly adjusting variable.
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6.2.3 Rewrite the equations in Question 6.2.1 in nM units, where we
assume that CI binding has binding constant K = 40nM , and Cro has
100nM , instead of 0.2 and 0.5, respectively. How many proteins per mes-
sage does δ = 0.1 then correspond to?

Answer Basal production of CI of 1 should be repressed by bindingK = 0.2,
implying that a real KCI = 40 nM should be supported by a basal production
of 200 nM per time unit. Similarly, fully expressed Cro production should be
repressed by binding K = 0.5, implying that a real KCro = 100 nM should
be supported by Cro production of 200 nM per time unit.

d[CI]

dt
= 200 nM · 0.1 + ([CI]/40 nM)2

(1 + ([CI]/40 nM)2) · (1 + ([Cro]/100 nM)2)
− [CI]

d[Cro]

dt
= 200 nM · 1

(1 + ([CI]/40 nM)2)
− [Cro] (6.6)

in units of the CI and Cro dilution time ∼ cell generation of E. coli. A δ = 0.1
accordingly correspond to 20 nM of protein per mRNA (or 20 proteins per
message).

6.2.4 Rewrite the equations in Question 6.2.1 as a one-variable simulation,
by assuming that Cro is a fast variable that instantly adapts to the steady-
state value set the equation for Cro:

dCI

dt
=

(0.1 + (CI/0.2)2) · (1 + (CI/0.2)2)

(1 + (CI/0.2)2)2 + 4
− CI = Prod− CI

Plot the production and decay terms separately, as well as their sum.

Answer See Fig. 6.6.
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