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Solutions to Chapter 1

Exercise 1.1 Verify explicitly that || - ||; is a norm on C"
Solution: We need to verify those three conditions in Definition 1.13 for || - ||;:

L. Since ||lz[|y = > 7, |7;], it is obvious that |[z|; > 0. [|z]l, = 0 if and only if z; = 0
forall j=1,--- ,n,ie x=0;

2. Nlewlly = 325y laws| = lal 375, ;] = laf[l«]ly for all a € F;

3. ||z +yllh = 27 |z + |- Since

25 + | < o]+ lysl,

we have
n n
oz gl < (sl + lyl) = Z ;| + Z sl = [zl + lylh,
j=1 Jj=1 Jj=1

e flz 4yl < llzll + llyll-
Exercise 1.2 Verify explicitly the steps in the proof of the Holder inequality.

Solution: Starting from (1.3) that

Z%%I < —Hl’ll” + —||y||

1/q

where the minimum of the right hand side is achieved at A = A\ = ||y||q/ P/|z||,’?. Since

1 1
+

4o =1,
p q
we have \? . .
0 P _ p(1-1/q) _
— [} = == Yllg = =lzllpllyllg,
pll [ pll 15 yllq pll ollyllq
and .
Ao 1 11 1
70 y q _ T y Q( /p) = —||lx y .
. yllg qll lpllylld qll pllyllg
Thus,

V4 —q
202112+ 20yl =l iyl
P q

Consequently, we have the Holder inequality

n
>yl < lelpllylly-
7j=1



Exercise 1.3 Prove Theorem 1.23.
Solution: Check those three conditions in Definition 1.13 for || - ||:

1. Since [|7|| = max;j—1,_, |z;|, it is obvious that ||z|s > 0. ||z|l« = 0 if and only
if v =0;

2. ||l = max;—y,. n

az;| = |a|maxj_, ., |z;| = |a|||z] for all a € TF;

3. |z + ylloo = maxj_y__,|z; + y;|. Since
25+ yi| < lasl + ly;l,
we have

max |z; +y;] < max (ol +[yl) £ max |zl + max |y = ||zl + [[ylloo,
j=1,..n J=1,...,n i=1,...,n j=1,..n

)

e [z + yllo < ll#lle + [[9lloc-

Since

, u 1/p . 1/p ] 1
lim <Z|x]~|p> < lim (n max |:cj|p> = lim n'/? max |z;| = max |z;],
p—r00 — p—r00 j 7=1,..., j=
]:

7j=1,...,p pP—00 =1,...,p
and
, z 1/p . 1/p
fim (foﬂﬂp) > lim < max |xj\p) = max |z;],
p—00 — p—oo \ j=1,...p 7j=1,...,p
J_
we have lim, .« |||, = ||2||cc. For any p > 1,

1/p - 1/p
e [r,] = (mas fo) " < (3 g )"
]:17“'71) ]:lrnzp .
7=1
ie. 12l < 2l

Exercise 1.4 Prove Lemma 1.25.

Solution: Since ([y1] + |y2| + -+ [yn])? > |11 [P + |y2|P + - - - + |yn|P is true for n = 2
by Lamma 1.24, we can prove it by induction. Suppose

(gl + lyl + -+ )P = nl” + [gal” + - + ly; )
is true for n = 2,3, ..., k, where k is an upper bound integer. Thus, we have
(lyr] + ly2| + -+ k| + lyec1))? = (| + |y2] + - - + lye])? + |yrs1 [P (case of n = 2),
and
(yal + g2l + -+ [gl)” = [gal” + lyol” + - + [gel” (case of n = k).
Consequently, we have
(yal =+ w2l + -+ lgel + D" = fon P+ g2l” + -+ [yl + [y,

i.e. the inequality is true for all n > 2.



Exercise 1.5 Show that there are “holes” in the rationals by demonstrating that ,/p cannot
be rational for a prime integer p. Hint: if p is rational then there are relatively prime
integers m,n such that \/p = m/n, so m* = pn®.

Solution: Starting from the hint. If m? = pn?, p divides m? which implies p divides

m. Hence, there exists an integer k for which m = pk. Thus, we have pk? = n?,

which implies p also divides n. This is a contradiction to the assumption that m,n is
relatively prime.

Exercise 1.6 Write the vector w = (1, —2,3) as a linear combination of each of the bases
{e®} {u®} {v®} of Example 1.62.

Solution:

1. w=eM —2e? 4 3e6);
2. w = 3u® — 5u® 4 3u®;
3. w= 'U(l) — U(Q) + ,0(3);

Exercise 1.7 (a) Let V be a vector space. Convince yourself that V' and {©} are subspaces
of V and every subspace W of V is a vector space over the same field as V.

(b) Show that there are only two nontrivial subspaces of R3. (1) A plane passing
through the origin and (2) A line passing through the origin.

Solution: (a) Since V' is a vector space, it is obvious that au+ v € V forall a, f € F
and u,v € V. Hence, V is a subspace of V itself.
Since V' is a vector space, {O} C V. a® + 0 = O € {O} for all o, € F and

© € {©}. Hence, {O} is a subspace of V.
If W is a subspace of V', using

au+ fv e W, forall a, f € F and u,v € W,

and the fact that V' is a vector space, it is easy to verify that W satisfies the properties
(Definition 1.1):

e For every pair u,v € W, there is defined a unique vector w =u+v € W,
e For every a € F,u € W, there is defined a unique vector z = au € W;
e Commutative, Associative and Distributive laws
1. u+ v = v+ u (inherited from vector space V);
(u+v)+w=u+ (v+w) (inherited from vector space V);
©eW (Let «a=0,8=0);
For every u € W there is a —u € W (Let « = —1, 8 = 0);
lu = u for all w € W (inherited from vector space V);
a(fu) = (af)u for all a, f € F (inherited from vector space V');
(o + B)u = au + Pu (inherited from vector space V');

No Ot N
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8. a(u+v) = au+ av (inherited from vector space V).

Thus, W is a vector space.

(b) First, we show that (1) A plane passing through the origin and (2) A line passing
through the origin are subspaces of R3.
(1) A plane passing through the origin can be represented as any vector v = (z,y, z) €
R3 satisfies

ar + by 4+ cz =0,

where t = (a,b,c) € R? is a non-zero vector. This is essentially saying that v € N(¢).
According to Lemma 1.81, N(¢) is a subspace of R3.
(2) A line passing through the origin can be represented as any vector v = (z,y, z) € R?
satisfies

x =at for all a € F,

in which t = (a, b, c) € R3 is a non-zero vector. This is essentially saying that v € R().
According to Lemma 1.81, R(t) is a subspace of R3.

Next, we show that any nontrivial subspace of R? is essentially (1) or (2). R?® can
be represented by the span of any 3 of independent vector u, u® u®) belong to
R3. Therefore, any nontrivial subspace of R another than R3 and © can only be
Ru®) (i =1,2,3) or R([u,u¥])) = N(u®9)) (i, = 1,2,3, i # j), of which the
former is an instance of (1) and the latter is an instance of (2).

Exercise 1.8 (a) Prove or give a counterexample to the following statement: If o) ... v®
are elements of a vector space V and do not span V, then v, ... v® are linearly in-
dependent.

(b) Prove that if v, o™ are linearly independent, then any subset vV, ... v®*)

with k£ < m is also linearly independent.
(c) Does the same hold true for linearly dependent vectors? If not, give a counterex-
ample.

Solution: (a) False. For example, vV = (1,0,0),v® = (0,1,0),v® = (1,1,0) is
linearly dependent and they do not span R3.
(b) Proof by contradiction. If v, ... v®* with k < m is linearly dependent, i.e. there

exists a non-zero solution (ay, as, ..., ax) for

then (o, g, ..., g, Qgat, ...y Q) With ag1 = - -+ = oy, = 0 is a non-zero solution for

v 4+ apv® + -+ g™ =0,

(m

which contradicts to the assumption that v, ... 0™ is linearly independent.

(¢) It is not true for linearly dependent vectors. In the example of (a), vV, v® v®) is
linearly dependent, but v, v(® is linearly independent.



Exercise 1.9 Show that the basic monomials {1, z, 2% z3,... 2"} are linearly independent

in the space of polynomials in z. Hint: Use the Fundamental Theorem of Algebra
which states that a non-zero polynomial of degree n > 1 has at most n distinct real
roots (and exactly n complex roots, not necessarily distinct).

Solution: Starting from the hint. Since for non-zero vector v = (g, aq, ..., ), the
solution of
g+ + -+ ax” =0

respected to x has at most n distinct values, which means that no non-zero u €
C™*! can satisfy the above equation for arbitrary x. Thus, only u = © solve the
above equation irrespectively of the value of z, i.e. {1,z,2% 23 ... 2"} are linearly
independent.

Exercise 1.10 The Wronskian of a pair of differentiable, real-valued functions f and ¢ is
the scalar function

Wifa).g(o)] = det (10 50 ) = o) (@) - Flaloto),

(a) Prove that if f, g are linearly dependent, then W[f(z), g(z)] = 0.
(b) Prove that if W|[f(x), g(z)] # 0, then f, g are linearly independent.

(c) Let f(z) = 2% and g(x) = |z|3. Prove that f and g are twice continuously differen-
tiable on R, are linearly independent but W{[f(z), g(z)] = 0. Thus (b) is sufficient but
not necessary. Indeed, one can show the following: W|f(x), g(z)] = 0 iff f, g satisfy a
second-order linear ordinary differential equation.

Solution: (a) If f, g are linearly dependent, there exist «, 5 € F and «, § are not all
zeros, satisfying
af(x) + Bg(x) =0,
which also implies
af'(z)+ B¢ (z) = 0.
Assume that o # 0, then we have f(z) = —gg(x) and f'(z) = —gg’(x). Thus,

Wf(x), g(x)] = f(z)g'(x) = f'(x)g(x) = —gg(l’)g'(w) + —g'(x)g(x) = 0.

(b) This is the contrapositive of (a). Thus, it is true since (a) is true.

(c) f(z) is obviously twice continuously differentiable on R since it is a polynomial
function of order 3.
2, >0 322, x>0 " 6x, x>0
g(m)—{_x:),, x <0’ () = —322, <0’ () = —6x, x<0 °
It is easy to check that
lim g(z) = lim g(z) =0,

z—0t z—0~



in which g can be g, ¢’ or ¢”. Hence, g(x) is twice continuously differentiable on R.

The equation for af (z) + Sg(x) = 0 can be considered separately for z > 0 and = < 0.
For x > 0, the solution is @ = —f; For z < 0, the solution is @ = (. It implies that
—0B = 3, thus a = 8 = 0 is the only possible solution, i.e. f, g are linearly independent.
We can directly check that

325 — 325 x>0
3 3171 ) - —
W[x,|m|]—{_3$5+3x5, :r;<0}_0'

Exercise 1.11 Prove the following theorem. Suppose that V' is an n > 1 dimensional vector
space. Then the following hold.

(a) Every set of more than n elements of V' is linearly dependent.
(b) No set of less than n elements spans V.

(c) A set of n elements forms a basis iff it spans V.

(

d) A set of n elements forms a basis iff it is linearly independent.

Solution: (a) Suppose that one set is T = [v1) 0@ . ™) ¢ C™ with m > n.
According to Theorem 1.82 and Corollary 1.83, we have

dim(N(T)) + dim(R(T)) = m,

where dim(X) denotes the dimension of space X. Since the span of T is a subspace
of V, we have dim(R(7)) = r < n. Thus, dim(N(T")) = m — r > 0, which means the
null space of 7" is not {6}, i.e. {vM, 0@ . . v™} is linearly dependent.

(b) In the example of (a), dim(N(T)) and dim(R(T)) are both non-negative integers.
If m < n, we have dim(R(T)) < m < n, which means the span of T" can not be V
itself.

(c) If a set of n elements {v™, 0@ ... v} forms a basis, any arbitrary u € C* =V
can be expressed by a linear combination of than set. Hence, {v(), v® ... v} spans
V.

Conversely, if {v(l),v(2), - 7v(")} spans V', every elements in V' can be expressed as
a linear combination of {v™M v® .. . v} we need to prove that the expression is
unique. Let 7 = [pM 0@ .. v™]  Since {v™, 0@, ... v} spans V, we have
dim(R(T)) = n. Thus, dim(N(T)) = n —n = 0, which indicates that the linear
expression of any element in V by {v®) v® . 2™} is unique.

(d) Follow by the same notation in above solution, if {v®,v® ... v} forms a basis,
then dim(R(T")) = n and thereby dim(N(T')) = 0. Thus, the null space of T is {©},
ie. {oM 0@ 9™} is linearly independent.

Conversely, if {v®,v® ... v} is linearly independent, dim(N (7)) = 0. Thus,
dim(R(T)) = n, which means the span of {v™,v®, ... v™} is V. Therefore, every
element in V' can be expressed as a linear combination of {v™® v ... v} and the
expression is unique due to N(T) = {0}, i.e. {vW 0@ .. 0™} forms a basis.



Exercise 1.12 The Legendre polynomials P,(x),n = 0,1, ... are the ON set of polynomials
on the real space Ls[—1,1] with inner product

(f.9) = / falgla)da.

obtained by applying the Gram-Schmidt process to the monomials 1, x, 2%, 23,... and
defined uniquely by the requirement that the coefficient of ¢" in P,(t) is positive. (In
fact they form an ON basis for Ly[—1, 1].) Compute the first four of these polynomial.

Solution: First, let No(x) = 1. Py(z) should have have the form Py(x) = ¢ > 0 and
(Py, Py) = 1, where c is a constant. Hence, Py(z) = 1/v/2. By applying Gram-Schmidt

process
<x>N0)
N =x— —~—"—2_Ny=uz.
(z) == No Vo) 0=
Thus, Pi(z) = Ni/v/(N1, N1) = /3/2x. Similarly,
2 No) (22, Ny) 1
No(z :x2—(x’—0N — N = — =
2(7) (No, Np) 0 (N1, Nq) ! 3
Then,
3v10 1
PQ(QI) = Ng/\/ (NQ,NQ) = T(SE2 — 5)
3 No) (x3, Ny) (x3, Ny) 3
Ny(z) = 28— &N o @ N @ N) s 3
#(2) (No, No) " % (N, Ny) 0 (Ng, Ny) ™2 5
Thus,

5V 14 3
Pg(l’):Ng/\/ (Ng,Ng): 4 (ZL’S—gfL’)
Exercise 1.13 Using the facts from the preceding exercise, show that the Legendre poly-

nomials must satisfy a three-term recurrence relation
2P, (x) = anPyi1(x) + b, Py () + ¢y Poq(x), n=0,1,2,...

where we take P_;(z) = 0. (Note:If you had a general sequence of polynomials {p,(z)},
where the highest-order term on p,(z) was a nonzero multiple of ¢", then the best you

could say was that
n+1

TP, (T) = Z a;p;i(z).

What is special about orthogonal polynomials that leads to three-term relations?)
What can you say about a,, b,, ¢, without doing any detailed computations?

Solution: Suppose that
Pn(x) = knxn + pn—l(x>a



in which £, is the leading coefficient of the term z”, and p,_;(x) is a polynomial of de-
gree < n—1. Then P, 1(x)—xkyi1/kn Py () is a polynomial of degree < n, and it can be
uniquely expressed as the linearly combination of the ON basis Py(z), Pi(x),. .., P,(z),
ie.

Ky,
Poii(z) — H xP Za]

Due to the orthogonality property,

(Prsala) = S0P (0). (@) =y (Pio), Pi0)) = 0
thus

Qj = (Pn+1(x)—k;;:1 xPn(x)vPJ(JJ)> = —kzzl (xPn(x), Pj(x)) = —k;;:l (Pn(x),xPj(xD

For j < n —1 we have the degree of 2P;(z) < n, which means (P,(z),zP;(z)) = 0.
Hence, o; = 0 for j < n—1. Consequently, it results the three term recurrence relation

kn—l—l

PTL+1 (ZU) - k

zP,(x) = a,Py(z) + a1 Py1().

Furthermore, by applying inner product with P, ;(z) on both side of the above equa-
tion, we have

k k
oy = == (xPn(x), Pn_l(a:)) = = <Pn(x), xPn_l(x)>,
in which
k . n—1
zP, 1(x) = i P,(z)+ ;@-Pj(az).
Again, due to the orthogonality property,
Kk
(Pn(x),xPn_l(x)> ==
Thus,
o kn—lkn+1
Ap_1 = —T
Similarly,

By writing in the form of
zP,(x) = a,Pyi1(x) + b, Po(x) + ¢ P (),

we have




Exercise 1.14 Let Ly[R,w(z)] be the space of square integrable functions on the real line,
with respect to the weight function w(z) = e **. The inner product on this space is
thus

(f.9) = / " f@)g@w(z)d

The Hermite polynomials H,(xz),n = 0,1,... are the ON set of polynomials on
Ly[RR, w(z)], obtained by applying the Gram-Schmidt process to the monomials 1, z, 22, z*
and defined uniquely by the requirement that the coefficient of z,, in H, () is positive.
(In fact they form an ON basis for Ly[R, w(x)].) Compute the first four of these polyno-
mials. NOTE: In the study of Fourier transforms we will show that [ e st Jt =

\/7?6*52/ 4. You can use this result, if you wish, to simplify the calculations.

PRI

Solution: Let h,(x) be the unnormalized polynomial of H,(x), and ho(z) = 1. Since
(Ho(z), Ho(z)) = 1, we have Hy(z) = 1//T.

(ZE, ho)

h = — ho =
1(ZL’) x (hO;hO) 0 xZ,
thus
Hr) = V2,
(h17h1) \AL/E
Then
h (1’) — 2 _ (anhO)h . (IZ,hl)h :xQ_l
? (ho,ho) © (hy,hy) " 2
and
Hy(z) = _ e Q(ﬁ — 1)
V (h27h2) % 2
Then
hs(z) = 2° — (xg’h())h — (xg’hl)h — (xg’hz)h B B
’ (ho,ho) © (ha,hy) " (ha ha) 2"
and
H) = —8 _2V3 (0 30
(hs,hs) 3V 2

Exercise 1.15 Note that in the last problem, Hy(x), H2(x) contained only even powers of
and Hq(z), H3(x) contained only odd powers. Can you find a simple proof, using only
the uniqueness of the Gram-Schmidt process, of the fact that H,(z) = (—1)"H,(z) for
all n?

Solution: We can prove it by induction. Since Hy(x) = Ho(—z) = 1//x and Hy(z) =
—H(—) = (/2/¥/7)x, we assume that for k = 0,1,...,n, Hy(z) = (—1)*H(x). By

using the Gram-Schmidt process to get h,1(—z), we have

oS (0 ()
hia (=) = (=2)"" — kZ:O (Hy(—2), Hy(~))

Hk(_x)>

9



in which
(Hi(—=), He(—z)) = (=1)**(Hp(z), Hi(z)) = (Hp(z), Hp(z)),

and

(=)™, Hi(=)) Hi(—w) = (=1)" " (=) (&"", Hy(w)) He()
= (=1)""" (2", Hy(2)) Hi ().

Therefore,

hn+1(—9€) — (_1)n+1 (anrl o
k=0

After the normalization we have
Hypir(—z) = (=1)"" Hyy oy (2).

Exercise 1.16 Use least squares to fit a straight line of the form y = bx + ¢ to the data

in order to estimate the value of y when x = 2.0. Hint: Write the problem in the form

0 0 1
8| |11 b
81 |31 c/)’
20 4 1
Solution: Let
0 0 1
8 11 b
V= e A= N E W = <c) .
20 4 1

The solution w to the least square problem is the solution w of the normal equation

AT Aw = AT,

()

ie. b=4.0,¢c=1.0. For x = 2.0,y = bx + ¢ =9.0.

Thus,

10



Exercise 1.17 Repeat the previous problem to find the best least squares fit of the data to
a parabola of the form y = ax?® + bz + c¢. Again, estimate the value of y when z = 2.0

Solution: In this problem, each row of matrix A should be [z? z 1] for each value of

x. Thus
0 01 .
1 11
A= 9 3 1 and w=1\|b»
16 4 1

By solving the normal equation ATAw = ATv, we have w = [2/3 4/3 2|T. For
r =20, y=ar®+bxr +c=22/3.

Exercise 1.18 Project the function f(¢) = t onto the subspace of Ls[0, 1] spanned by the
functions ¢(t),1(t), 1 (2t), (2t — 1), where

1, for0<t<1/2

1, for0<t<1
= ’ - - = — <
o(t) { 0. otherwise Ww(t) 1, for 1/2'_ t<1
0, otherwise

(This is related to the Haar wavelet expansion for f.)

Solution: If we can express the projection of f(¢) on the subspace as
proj[f(t)] = ag(t) + b (t) + cip(2t) + dp(2t — 1),

then

L Um.em) 1, (ft 1) 1
(o 0) 2 (Wm.wm) 4
L U@y 1 (). 2t—1) _ !
(v(@2t),9(2t) & (w2t —1),9(@2-1) 8
Exercise 1.19 A vector space pair V := (V|| -||) is called a quasi-normed space if for every
z,y € V and o € F, there exists amap || - || : V' — [ 0,00) such that
(i) ||z|| > 0 if x # 0 and ||0|| = 0. (positivity)
(ii) [Joz] = [el]|z]|. (homogeneity)

(iii) ||z + || < C(||z|| + ||lyl||) for some C > 0 independent of x and y.

If C =1 in (iii), then V is just a normed space since (iii) is just the triangle inequality.
If C=1,|x| =0 but x # 0, then V is called a semi-normed space.

(a) Let n > 1 and for x = (z1,29,...,2,) € R” and y = (y1,¥2,...,Yn) € R” let
(z,y) :== >, x;y;. Recall and prove that (-,-) defines the Euclidean inner product on
the finite-dimensional vector space R" with Euclidean norm (22 + - -- + 22)/2. Note
that the Euclidean inner product is exactly the same as the dot product we know from
the study of vectors. In this sense, inner product is a natural generalization of dot
product.

11



(b) Use the triangle inequality to show that any metric is a continuous mapping. From
this deduce that any norm and inner product are continuous mappings.

(c) Let 0 < p < 00, [a,b] C R and consider the infinite-dimensional vector space Ly[a, b]

of p integrable functions f : [a,b] — R, i.e., for which fab |f(z)[Pdx < oo where we
identify functions equal if they are equal almost everywhere. Use the Cauchy-Schwarz
inequality to show that (f,g) f f(z)g(z)dz is finite and also that (-,-), defines an
inner product on Lsya,b|. Hint: you need to show that

[ 1swsttar < ([ 1rpa) ([ owpa)”

Let 1/p+1/q¢ =1,p > 1. The Hélder-Minkowski inequality

[ 1s@atar < ([ 1rwra) ([ o)

for f € Lyla,b],g € Ly,a,b], generalizes the former inequality. Prove this first for step
functions using the Hoélder inequality, Theorem 1.21, and then in general by approxi-
mating L,[a, b] and L,[a,b] functions by step functions. Note that without the almost
everywhere identification above, L,a, b] is a semi-normed space.

(d) Show that L [a b] is a complete metric space for all 0 < p < oo by defining
= (J; (@) = g(x)[rda)"7.

( ) Show that Lp[a, b] is a complete normed space (Banach space) forall 1 <p < oo
and a quasi-normed space for 0 < p < 1 by defining ||f]| := f |f (z)[pdz) /P

(f) Show that L,[a,b] is a complete inner product space (Hilbert space) iff p = 2.

(g) Looa, b] is defined as the space of essentially bounded functions f : [a,b] — R for
which || f|loc[a, b] 1= sup,c(qy [f ()] < 00. Cla,b] is the space of continuous functions
f :la,b] = R with the same norm. Show that both these spaces are Banach spaces.

Solution: (a) It is easy to check that (-,-) satisfy

r+y,2) = (r,2) +(y,2)
az,y) = a(z,y) fora € F

:v,) (y, )

z,2) = ||z|* > 0 and equal iff x = 0

L
2. (ax
3. (
4.

Thus, (-,-) together with vector space R"™ defines an inner product space.

(b) Suppose that z,2" € R" and z, 2’ are close to each other in the sense that

=1,...,

where ¢ is an arbitrary positive real number. Apparently, in R the metric of two scalar
is d(wj, %) = vy —24],j=1,...,n. Let

J) — (4! 4 S
20 = (2, @y, 2, Ty, ), = 1,2, m = 1

12



and d(z,z') defines a metric in R”. Thus, due to that a metric must satisfies the
triangle inequality

MY +d(zW, @) ... 4 d(z2 207D 1 d(zD 2

8
I\

(
< d(z, 2W) + d<z< ), 2) +d(2?, y)
(

Since n is a finite integer and € can be arbitrarily small, we have d(x,2") — 0 if 2’ — x.
Suppose that we have z, 2/, y,9y' € R,

max (Jz; — 2}]) < &1, and ;Max (\y] —yil) < &2,

then

d(z,y) —d(z',y) +d(z',y) — d(2',y)
d(z, ") +d(y,y)

n(€1+82)

d(z,y) —d(z',y) =

<
<

which means d(x,y) — d(2’,y') — 0 if 2/ — z and ¥ — y. Thus, any metric is a
continuous mapping.
It easy to check that the norm ||z|| = ||z — 0| define a metric d(z,0) since
1. |l = 0]] > 0 and equal iff x =0
2. flx =0 =10 —=|
3. o+ 2| < el + 1 ]]
Thus, any norm is a continuous mapping.
(c) Let’s define the step function f corresponding to f € L,la,b] as

flayi= = () < g, = [,

2n a

where n is the number of steps, L*JAiS the rounding operator toward —oo. Apparently,
|lr—z;| < (b—a)/(2n) and lim,,_,, f(z) = f(z). Thus, by using the Holder’s inequality,

Theorem 1.21, we have
n p s p 1/q
a
(Sur) (Swr)
j=1 j=1

/ @) ldo =

where p > 1, 1/p+1/q=1. Let p = g = 2, then we have

b—a 20
| < S OIAP
j=1

13

" 1/2
a

zw) |

j=1



since

T |= / £ (@)g(a)lda,
I | = / £ (@) e,
n—o0

li |2 /|g |d:r
n—oo

thus
b b b
/ F(2)g(a)|d < / fa)Par) ([ laPas)” < .

As (f,9) f f(x)g(x)dx < f |f(x)g(x)|dz, therefore f f(x)g(x)dx < co. We can
easily check that

L (f.9)=(9,[)

2. (f+h.g)=(f9)+(hg)

3. (af,g9) =al(f,g), for all « € R

4 (£, £) =0, and (f, f) = 0 iff f =0

Thus, (-,-) defines an inner product on Ls|a, b].

(d) If sequence f;(x) € Lya,b],j = 1,2,... is a Cauchy sequence, namely for any
g > 0, there is an n. € N such that for any m > n.,n > n., we have

1/p
fm7fn = (/ |fm - >|pdx> <ég, 0<p<OO,

which implies that if n. is large enough, f,,(z) is equal to f,(z) almost everywhere for
m,n > ne. If f;(z), j=1,2,... converges, let f(x) = lim; o fj(x). Thus,

) - d1,0) = / (o)) " (/ b i) Y ) <

for m > n.. Since f,,(z) € Lyla, ] thusf | fm(x)[Pdx < 0co. Consequently, f |f(x)Pdx <
00, by definition, f(z) € L [a b] and thereby Ly[a,b] is a complete metric space.

(e) According to the definition of norm | f|| := f |f(z)[Pdz)/?, we have ||f — g| =
d(f,qg), where d(f, g) is defined in (d). Therefore, the conclusion of (d) tells us L,[a, b]
is complete upon the equipped norm || - ||. For 1 < p < oo, the Minkowski inequality
guarantees the triangle inequality

I1F+ gl < 1171+ lgll,
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thus, || f|| defines a norm and thereby L,[a,b] is a complete normed space. However,
for 0 < p < 1 we have

1F +gll < 257272(LF 1+ Hlgll) < K (LI + Dgl),

for and K > 2(1=P)/P. Thus || - || defines a quasi-norm and thereby L,[a, b] is a complete
quasi-normed space.

(f) If p = 2, the inner product is given by

b
(r.9) = [ s@gta)dz,
thus
b 1/2
1= VT = ([ 1kas)
is a norm and we can easily check that it satisfies the parallelogram law
L+ gl + 1f = gl =2(IF1* + llall?).

Therefore, Ls|a, b] is a Hilbert space.
If L,[a,b] is a Hilbert space, it must satisfies the parallelogram law that

1F +gl* + I1f = all* = 2(IL717 + llgl1*),

for any f,g € L,[a,b]. Let

ﬂ@:{(%%lm’agxg%gaﬂ@:{

0, otherwise

(44) "

2 “gr<ae<bh
0, otherwise

)

then we have ||f||> = ||g]|> = 1 and ||f +g||*> = || f — g||* = 2%/P. Consequently, we must
have
92/p 4 92/p — 4,

for which only p = 2 is valid.

(g) Suppose fj(x) € Lola,b], j = 1,2,... and lim; . f;j(x) = f(x) is a Cauchy
sequence, for any € > 0, there is an n. € N such that for any m > n., we have

| fm(x) = f(@)]|oo = sup |fi(x) — f(2)] <e.

z€[a,b]

Since Sup,e(q 4 |fm ()] < 0o, then we have sup, i,y |f(2)| < 00, ie. f(z) € Lugla,b]
and thereby Ly a,b] is a Banach space.
Similar proof can be made for that C/[a, b] is a Banach space.

Exercise 1.20 Prove that
b
(f.9) = / F@)g(x) + f(a)g (@))dz

15



defines an inner product on C*[a, b], the space of real-valued continuously differentiable
function on the interval [a,b]. The induced norm is called the Sobolev H' norm.

Solution: We would need to verify (f, g) is well-defined on C'[a, ] and it satisfies the
properties in definition 1.15 case two.

The operation is well defined because continuous function on a closed interval is inte-
grable.

1. (f,9) = (g,f) follows directly from the fact multiplication of real number is

commutative.

2. (f+h,9) = (f,9)+(h,g). Since both f and h € C'[a, ], so is f+h, since differential

operation is linear, and the sum of continuous function is continuous. Then the
above result arrives easily by the fact integration is a linear operation.

3. (af,g) = a(f,g) follows by homogeneity of integration.

(f f) >0 and equal iff f=0.As(f,f)= fab[f(x)2 + f'(x)?]dx, since [f(x)? +
f'(x)?] > 0,50 (f,f) > (b—a)0 = 0, and the equality holds iff f(z) = 0, and
=0

f'(x) V [a,b],l.ef_O.

Exercise 1.21 Let 1 < p < oo and consider the infinite-dimensional space [,(R) of all real
sequences {z;}2°; so that (500, [a]P)1/? < o0.
Also define

lo(R) := sup{|z1|, |z2|, ....}

. Then show the following.
a) (z;,y;) = >0y z;y; defines an inner product on ,(R) iff p = 2.

(
(
(
(
I

b) 1
c)

»(R) is a complete normed space for all 1 < p < co.

»(R) is a quasi-normed, complete space for 0 < p < 1.

d) Recall the Holder-Minkowski inequality for [,(R),1 < p < co. See Theorem 1.21.
n particular, prove that

(x1 + 29+ -+ 2,)? <2 + 25+ +22)

for all real number x1, zs, ..., x,. When does equality hold in the above?

Solution: (a) Let ||z, = (3202, |ziP)YP. If (zi,u:) = Yoo, ziyi is the associated
inner product of [,(R), namely ||z|, = v/(z,z) for z € [,(R), then it must satisfy the
parallelogram equality

lz+ 15 + llz = wl; =2l + ly117).

for x,y € [,(R). Let z = (1,0,0,0,...) and y = (0,1,0,0,...), then

lz+ylly + o — ylly = 227 + 27 = 212,

16



while
2([lzll5 + llyll3) =
Hence, we must have
22/ = ¢,

where only p = 2 is valid.
(b) For 1 < p < oo, suppose z; € [,(R),i = 1,2,... is a Cauchy sequence that
lim; .o x; = x, namely

tim o, — 2], = 0
Since ||z;||, < oo for all 4, then we have ||z||, < co. Thus, by definition = € [,(R) and
thereby [,(R) is complete.

(¢) Proof is similar to (b). However, for 0 < p < 1, we have ||z +yl|, < K(||z|, + |vll,)
and K > 1, which makes || - || a quasi-norm. Thus, [,(R) is quasi-normed complete
space.
(d) Let © = [z1,29,...] and y = [1,1,...] € [5(R). According to Holder’s inequality,
we have

|G, m)* < Nz - llyllz,
where |(z, ) = (X7 )%, lyll3 = n and [lo]3 = X0, 2. Thus, we have

(1 + a9+ +2,)? <2 + a5+ +12).

The equality holds if and only if 21 = x5 = --- = x,.
Exercise 1.22 Let V be an inner product space with induced norm || - ||. If z L y show
that

lzll + llyll < V2lz +yll, z,yeV.

Solution: Let ( denote the inner product in V', and thereby the induced norm for

xeVis|z| = \/ x,x). Thus
2|z +yl* = (el + 1yl)* = 2(11= 1 + lyl® + 2(2, ) = (l2l* + llyll* + 2l z[]y]])
= lll® + llyll* = 2llz Iyl + 4(z, )
= ([lz]| = llyl)* + 4(z,y)

Since = L y, we have (x,y) = 0. Thus
2|z +yl* = (el + Iyl)* = Ul = [lyl)®

Exercise 1.23 Let V' be an inner product space with induced norm || - ||. Prove the paral-
lelogram law
lz+yll* + llz = yl* = 2]lzl” + 2llyl*, =,y V.

The parallelogram law does not hold for normed spaces in general. Indeed, inner prod-
uct spaces are completely characterized as normed spaces satisfying the parallelogram
law.

17



Solution: Let (-, -) denote the inner product in V', and thereby the induced norm for

xeVis|z| = \/[L’Z’ Thus
lz +yl* + llz = ylI* = (z + g2+ y) + (& — y, 2 — y)

= (z,2) + (y,9) + 2(z,y) + (z,2) + (y,y) — 2(z,9)
= 2|z)1* + 2||y|I>.

Exercise 1.24 Show that for 0 < p < oo, f,g9 € Ly[a,b] and z;,y; € [,(F), the Minkowski
and triangle inequalities yield the following:

e For all f,g € L,[a,b], there exists C' > 0 independent of f and g such that

(/“bmmg(x)'pdx)l/p ¢ ( /ab|f(x)|pd$>l/p+ (/ab|g<x>|pdx>l/p].

e For all x;,y; € [,(IF), there exists C’ > 0 independent of x; and y; such that

0o 1/p o 1/p 00 1/p
(zmm) <o (zw) +(Dw)
=1 =1 =1

1/
Solution: For f,g € L,[a,b], let | f], denotes ( I f(x)|pdx> "I 1< p < oo, the
Minkowski inequality holds, i.e.

1+ glle < 171l + llgllp,

thus, C' = 1. If 0 < p < 1, we have

(/ @)+ o) " (/ @+ 9(a)P)d 7 dueto (e bP <@ 4. ab30)

1/p 1/p
< v ! ((/b |f(x)|pdx) + (/b |g($)|pd:p) ) (convexity of a'/P)
<257 (I llp + llgly).

Hence, any constant C' > 25" is valid.
Similar proof can be made for the case in [,(F) space.

Exercise 1.25 An n x n matrix K is called positive definite if it is symmetric, K7 = K and
K satisfies the positivity condition 27 Kz > 0 for all z # 0 € R*. K is called positive
semi definite if 7 Kx > 0 for all z € R™. Show the following:

e Every inner product on R" is given by
(z,y) =2" Ky, @,y €R"

where K is symmetric and a positive definite matrix.

18



e If K is positive definite, then K is nonsingular.

e Every diagonal matrix is positive definite (semi positive definite) iff all its diagonal
entries are positive (nonnegative). What is the associated inner product?

Solution: Suppose z,y € R™ and let {eq, es, ..., e,} denote the unit basis in R™, where
T = X161+ T2 + -+ Tpn, Y =Y1€1 + Y22+ 0+ Ynp,

then . .
(z,y) = Z ziy; (i, €5) = Z Ky,
ij=1 ij=1
where K;; = (e;,e;) = (ej,€;) = Kj;. Let K to be the matrix whose (¢, j)-th entries is
K;;, then we have

(z,y) = 2" Ky,
and K is symmetric. The symmetric K must have n eigenvalues A\, Ao, ..., \, and
their associated non-zeros eigenvectors vy, vs, ..., v,. Consequently,

(vs,v;) = vl Kv; = v} \jv; = \i(viv;) > 0.

Since (v]v;) > 0, we must have \; > 0, i = 1,2,...,n. Thus, K is a positive definite
matrix.

Conversely, suppose (z,y) = 27 Ky, where K is a positive definite matrix. We can
check that

1. (y,2) =y"Ke = (W' K2)T =27 KTy = 2T Ky = (2,y), since K = KT.

2. (ax,y) = axT Ky = a(x,y).

3. (z+y,2)=(@+y) ' Ke=a"Kz+y"Kz = (z,2) + (v, 2).

-

4. (z,2) = 2T Kz > 0 if z # 0, since by definition K is a positive definite matrix.

Thus, (z,y) = 27 Ky is a valid norm in R",

If K is positive definite, it must have an eigen-decomposition

K =VAVT,
in which A = diag(Ay, A, ..., \,), with proper ordering so that Ay > Ay > -+ > A,,.
V =1[vy vy ... wv,]is a unitary matrix whose row vectors are the eigenvectors
of K. Since \; > 0, ¢ = 1,2,...,n. This eigen-decomposition is also a singular
decomposition of K, whose singular values o;, i = 1,2,...,n are also its eigenvalues.
Aso; >0, 1=1,2,...,n, K is nonsingular.

For a diagonal matrix D = diag(dy, ds, . ..,d,) and any x # 0 € R",
v Dr = Z d;x?.
i=1
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Ifd; >0o0rd; >0,i=1,2,...,n, then we have 27 Dz > 0 or 7 Dz > 0. By definition,
D is a positive or positive semi definite matrix.

Conversely, suppose a diagonal matrix D = diag(dy,ds,...,d,) is positive or positive
semi definite, we have

elDe;=d; > (or >)0, i=1,2,...,n,

in whiche;=[0 0 ... 0 1 0 ... ... 0]7is the unit vector whose non-zero entry
is ¢-th entry.
For x,y € R", the associated inner product respected to the diagonal matrix D is

(33', y) = xTDy = Z dzxzyla

i=1
where d; >0, 1 =1,2,...,n.
Exercise 1.26 Let V' be an inner product space and let vy, vs,...,v, € V. The associated
Gram matriz:
(1)17,01) <U17U2> S ('Ul,'Un)
K — (U27.U1) (027 U2> o <U27 Un)
(/Un,/Ul) (UnaUQ> cee (Un,'l}n)
is the n x n matrix whose entries are the inner products between selective vector space
elements. Show that K is positive semi definite and positive definite iff all vy,..., v,

are linearly independent.

Given an m X n matrix V,n < m, show that the following are equivalent:
— The m x n Gram matrix AT A is positive definite.
— A has linearly independent columns.

— A has rank n.
— N(4) = {0}.
Solution: Let {ej, e, ..., e,} denote the unit basis in R, then v; = [vfl) Ul@) . v§n)]T

can be expressed as

n
v; = E vPe,.
p=1

Thus,
(61761) <61762> cee <€luen)
" €, € €a,€2) ... (ea,€,
() = 3 o ey ot | (4 )l

gl : : : :

(en)el) (ena62> s (enaen)
:;,G'
Furthermore, let V = [v; vy ... v,] € R"" K can be expressed as
K=VTGV.
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According to conclusion of Exercise 1.25, G is a positive definite matrix.

Suppose that K is a positive definite matrix, then rank(K) = n, which requires
rank(V') = n, i.e. vy, vs,...,v, must be linearly independent.
Conversely, suppose that vy, vs, ..., v, are linearly independent. For any x # 0 € R",

V =y # 0 because V is nonsingular. Hence, 27 Kz = yT Gy > 0, by definition K is
a positive definite matrix.

For any x #£ 0 € R", y = Ax € R™ is the non-zero linear combination of the columns
of A. If A has linearly independent columns < y # 0 < 2T AT Az = yTy > 0 & ATA
is positive definite.

A has linearly independent columns < A has rank n.

y=Ax #0€R™ for any z # 0 € R" & N(A) = {0}.

Exercise 1.27 Given n > 1, a Hilbert matrix is of the form:

1 12 ... 1/n
K 1{2 1{3 - 1/(n;+])
1/n 1/(n+1) ... 1/(2n—1)

e Show that in Ly[0, 1], the Gram matrix from the monomials 1, z, z? is the Hilbert
matrix K(3).

e More generally, show that the Gram matrix corresponding to the monomials
L,x,...,2" hasentries 1 /(i +j—1), i,7=1,...,n+ 1 and is K(n+ 1).

e Deduce that K(n) is positive definite and nonsingular.
Solution: Let f;(z) = 2" € Ly[0,1], i = 1,2,...,n, then we have

piti-1 1 1

itj—1|, i+j-1

1
() = /O £ =

thus, (f;, f;) = [K(n + 1)];;, namely, K(n + 1) is the Gram matrix of f;(z), i =
1,2,...,n.

Since the monomials 1, z, 2%, ...,2" ! are linearly independent, according to the con-
clusion of Exercise 1.26, their Gram matrix K(n) is positive definite and thereby non-

singular.

Exercise 1.28 Use Exercise 1.25 to prove: If K is a symmetric, positive definite n xn,n > 1
matrix, f € R” and ¢ € R, then the quadratic function:

tTKe — 227 f+ ¢
has a unique minimizer ¢ — fT K~ f = ¢ — fTa* = ¢ — (2*)T K2* which is a solution to

the linear system Kx = f.
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Prove the following: Let vy,...,v, form a basis for a subspace V' C R™, n,m > 1.
Then given b € R™, the closest point v* € V is the solution z* = K~'f of Kz = f
where K is the Gram matrix, whose (i, j)th entry is (v;,v;) and f € R™ is the vector
whose ith entry is the inner product (v;, b). Show also that the distance

[o* = bl = VI[blI* = f T

Solution: Since K is positive definite, K1 exists and it is also positive definite.
Hence,

T Ko —20" f+c=a"Ke — 22" f+ fTK ' f+c— fTKf
= (Ko~ f)f (e =K' f) +c— fTE7'f
=(Kz— f)'TK Y (Kz— f)+c— fTK'f.

As K1 is positive definite, (Kz — f)TK~Y(Kx — f) is an inner product of (Kz — f)
respected to K !, namely,

(Ke — 'K YKz — f) = (Kz — f, Kz — f)g1 >0,

and the equality is reached only if Kz — f = 0. Thus, 2* = K~ 'f is the unique
minimizer and the minimal is ¢ — fT K~ f.

Let b € R™ and v € V. Since vy, v9,...,v, form a basis for V', v can be expressed as a
linear combination of vy, vs,...,v, as

V= 2101 + XU + - - - + 2,0, = Uxz,

in which U =[v; v ... v,] ER™"and z = [, 2o ... z,]7 € R™

For a,b € R™, suppose that the inner product in R™ is defined as
(a,b) = a’ Gb,
where G is certain positive definite matrix, and the distance between a and b is defined

as
la = bl = v(a—b,a—0b).

Hence, the squared distance between v and b can be expressed as

Uz —b|]> = (Uz — b)"G(Uzx — b)
= 2TUTGUz — 20" GUx + b' Gb.

By definition, UTGU = K, b"'GU = fT and b"Gb = (b,b) = ||b||?, because v] Gv; =
(vi,v;) and bTGu; = (b,v;) for 4,5 =1,...,n. Hence,

Uz —b||> = 2" Kz — 2fT2 + ||b]]%,

and its minimizer is z* = K~'f and the minimal is ||b||*> — fTK~1f = ||b]|*> — fTz*.

Thus, the minimal distance is the square root of the minimal, i.e.
[0" = bl| = V/I[[b]]> — fTa.
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Exercise 1.29 Suppose w : R — (0, 00) is continuous and for each fixed j > 0, the moments,
;= Jp?w(x)dz are finite. Use Gram-Schmidt to construct for j > 0, a sequence
of orthogonal polynomials P; of degree at most j such that [, P;(z)P;(x) = d;; where
d;; is 1 when ¢ = j and 0 otherwise. Recall the P; are orthogonal if we only require
Jg Pi(x)Pj(x) = 0,7 # j. Now consider the Hankel matrix

Ho M1
M1 2

K= M2 3

Prove that K is positive-semi definite and hence that P; are unique. The sequence
{P;} defines the unique orthonormal polynomials with respect to the weight w.

Solution: Suppose that K € R™ " and any z € R", thus

n

ZT}(Z = E Zﬁ@}(m

ij=1
2n—2
= E 20" E Zi%Zj
k=0 it+j—2=k
1<i,j<n
2n—2
= g /ka(x)dx E 2%
k=0 YR it+j—2=k
1<ij<n
n
— i—1 j—1
= 22" 2% w(z)dx
B \ig=1

Thus, K is positive semi definite.

Exercise 1.30 For n > 1, let ty,t5,...,t,41 be n + 1 distinct points in R. Define the
1 <k < n+ 1th Lagrange interpolating polynomial by

n+1 1

Li(t) ::Ht —Z.’ teR.
j=1 kT
j#k

Verify that for each fixed k, Ly is of exact degree n and Ly(t;) = dix.

Prove the following: Given a collection of points (say data points), y1,..., Y1 in R,
the polynomial p(t) := Z?;l y;L;(t),t € R is of degree at most n and is the unique
polynomial of degree at most n interpolating the pairs (¢;,y;), 7 =1,...,n+ 1, ie.

p(t;) =y, for every j > 0.
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Now let y be an arbitrary polynomial of full degree n on R with coefficients ¢;,0 < j <

n. Show that the total least squares error between m > 1 data points tq, ..., t,, and the
sample values y(t;),1 <i < m is ||y — Az||* where x = [c1, ..., el y = (Y1, -, Y]
and
1t 3 ...t}
1ty 3 ... 13
e I
1 t, t3, ... t"

which is called the Vandermonde matrix.
Show that

det() = [ -t

1<i<j<n+1

Solution: Since there are n terms of product of degree—1 polynomials for Ly, L is of
exact degree n. If j # k, Li(t;) has the term 2= = 0, thus Ly(t;) = 0. If j = k,

tp—t; —
Ly(t;) has the term %, which the numerator cancels the denominator and the rest
¢ J
parts are

n+1t -
Li(ty) = [[ 77— =1

Pt

i#k

Hence, Li(t;) = 0ix.

Since L;, j =1,...,n+11s of exact degree n, p(t) := Z;L;rll y;jL;(t),t € R is the linear
combination of L;, 7 =1,...,n+ 1 and thereby is at most of degree n. Moreover,

n+1

p(t;) = Zyi%’ = Y.
=1

Let p(t) = S0 at™™!, we have p(t;) = S0 a;ti = y; for j = 1,...,n + 1, which can
be expressed as a linear system

1 t# 2ty a, U
1ty t2 ... 1y as Yo
Lt ti+1 S An+1 Yn+1
::Te]RU:l)X(nH)
Since 1,19, ...,t,11 are distinct, the row vectors in T are linearly independent. Thus,
T is nonsingular, and for a given [y; ¥ ... yn41)’ there is a unique solution for the
coefficients [a; ay ... any1]T. Hence, p(t) is unique.
Similarly, given polynomial p(t) = Z?:ll ¢;t771, the least squares error between p(t;)
and the sample value y; for i =1,...,m is
m m n+1 2
2 i—
3ot =3 (et <) = ot
i=1 i=1 \j=1
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where

1 tl tz tTll C1 U1

1 tg t th Co Y2
A = 2 2 s xr = s y =

1ty 2, ...t Cn Ym

To prove that det(A) = [],<;cj<p.1(t; — i) for square Vandermonde matrix A, we use
the principle of mathematical induction.

For n 4+ 1 = 2, we can easily check that
1t
1<i<j<2

Suppose that det(A) = [[,<;cjcp 1 (t; — 1) is true for some n > 1, then for the case of
n+1, o

1 & ..t

1t 2 ...
N

Lt t%ﬂ st

By subtracting t¢; times the (n — i)th column of A to the (n — i + 1)th row (i =
0,...,n — 1), we obtain the matrix

1 0 0 L 0

1 ty—t tolta —t1) ... i Hta—t1)
B=1. : : :

1 tpyr =t tpsi(tepr —t1) oo U (tngr — 1)

Considering the sub-matrix C' = Ba.;, 11241, Since each row has a linear factor (t; —
t1), i=2,...,n+ 1, we have

det(A) = det(B) = det(C) = det(D) [] (ti—t),

2<i<n+1
where
1ty t2 ... ¥
h_ 1 &3t ...ty
L tn ti-ﬁ-l R s

By the assumption, det(D) = [[,c;< <,y (t; — ti). Thus,

det(A) = ( I _ti))< II @ —t1)> = I @-uw.

2<i<j<n+1 2<i<n+1 1<i<j<n+1
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Solutions to Chapter 2

o0 ——
n=2 n(logn)®

Exercise 2.1 Use the integral test and Example (2.3) to show that )
iff a >1

converges

Solution: Since

/S 1 B { log(log s) —log(log2), a=1;
2

lOg LU)CL (log?)lf‘;:glogs)l*“, a 7£ 1.
Hence,
. © 1 00, a<l
im — = —a
s—oo [ z(logz)e %, a>1.
and the integral converges iff @ > 1. Therefore, >, m converges iff a > 1.

Exercise 2.2 Are [~ e "ldz and [ zdx convergent? If so, evaluate them.

s2
/ e lldy =2 — et — o722,

S1

Solution: Since

thus,

S2
lim e lldy = 2.
§1—>—00, S2—00 51

S9 1
/ vdr = (5% — %),

thus f;o xdx is not well defined, and thereby it is divergent.

While

Exercise 2.3 In Chapter 1, we defined completeness of a metric space. Formulate Lemma
2.7 into a statement about completeness of the real numbers.

Solution: For every F : (a,z) — R, if lim,_,o F(z) = F(z) exists and F(z) € R, then
F'is a complete mapping to the real number R.

Exercise 2.4 Prove Theorem 2.9 using the fact that a monotone (i.e. all terms have the
same sign) bounded sequence converges. What is this limit?.

Solution: Since g(z) > 0, faoog(x)dx is convergent, fg,o g(x)dx is convergent for any
C' > a and let | Cof) g(x)dx = y. If there exist nonnegative constants C, C” such that for
x> C"|f(z)] < Cg(x)|, then we have

[ iwias < [~ cowar=cy,

1



namely [ |f(x)|dz is convergent. Since 0 < f(z) + |f(z)| < 2|f(z)|, we have

0< / (Fl@) + 1 f(@) )z < 2 / | f(@))de <2 / (@),

for any s > a. Hence f x)+ | f(z)|)dx is a monotone bounded sequence as s — 00
and thereby [*(f(z) + \f( )|)dx converges. Noting that [ f(x)dz = [7(f(z) +
|f(x))dz — [7|f ( )|dx is the difference of convergent integrals, thus [ f(x)dz con-
verges.

Exercise 2.5 Show, using Definition 2.13 that f 1 \/7 =T.

Solution: Since

lim = lim —arcsin(s) = g,

0 dx
s——1T Jo /1 — 22 s——1+

and
: , , T
lim = lim arcsin(s) = BL

/0 dx
s—=1= Jo /1 — 22 s—1—

we have

/ L de LT
=—+_-=n.

—1 \ 1 — x2 2 2

Exercise 2.6 (a) Show that [  sin lnm sinvz) 74 is absolutely convergent.

(b) Show that | /2 1/(Vt cos(t))dt is divergent. (Hint: Split the integral into two
integrals from [0,7/4] and from [r/4,7/2]. For the first integral use that cos(t) is
decreasing and for the second integral expand cos(t) about 7/2.)

(c) Show that [, 1dz is divergent.

Solution: (a) Since

1
L™z
then we have

g_g\/g(y sin(In s)| + 2 cos(In s)) < /5

SlIl

/ \/m Vs(1 = 2cot(lns)) | sin(ln )],

sin(ln x)

NG

4 2
dr < 5—1—5\/5(] sin(ln s)| 4+ 2 cos(In s)).

Hence
!|sin(Inz)

d:
NG x

lim
s—=0t Jg

=
(b) Since
1 /4

1
“</s Vicos®)" “es(®) ), Vi

2

dt = V2(/7 = 2V/5),



lim,_,o+ [ /4 \/Ecos dt converges. However, for 7/4 < s < 7/2, we have

S 1 S 1 2 ‘ 28
[ oo L=l (‘mh“) ' h(ﬁ))

Hence, limg_, (/) f:/ . mdt diverges.

(c) Since
S1 1 1 1
/1 . r = 1In(—s1), /52 . T n(ssy),

Exercise 2.7 Test the following integrals for convergence/absolute convergence/conditional
convergence:

1 1 .
J_, 2dx diverges.

Jio mdw a>1.

b) [ sy,

(a)
(
(c) J°0 P(z)e”l*ldz, P is a polynomial.

(d) [, P(z)In(1 + 2%)e " dzx, P is a polynomial.
(

(

(

(

T

e) floo cosxsin:pdm.
f) [ sign(z)dz.

g) floo %dw
h) fg Inz d$

z(In In z) 100

Solution: (a) Since ( > (0 for x > 10,

1
z(Inz)(Inlnz)e

s s l—a __ 1—-a
/ 1 dp — / 1 dp — (Inln 10) (Inlns) ‘
10 |z(Inz)(Inln z)e (Inz)(Inln x)* a—1
Hence
, s 1 Inln10)'~
lim =7
s—o0 J1 [z(Inz)(Inln z)e a—1

. 00 1
1.¢. flO z(lnz)(Inlnz)e

(b) Since

dx, a > 1 is absolute convergence and thereby convergence.

2
1
Sk ‘dx / Coi Lz = 5(=Ci(2) + Ci(25) + Ins),

1

|C°S"” ‘da; diverges. However,

/ BT e = —Ci(1).
1 'T

o0 3 . o .
Hence, f1 €2Ldz is conditional convergence.

thus limg e [}

3



Similarly,

Hence, [*°_P(x)e”"ldz is absolute convergence.

(d) Let P(x) = > " ;a;z’. Since |z > In(1 + 2?), we have

o0 . 2 o 1 — 22 ]
/ 2P In(1 + 2*)e ™" dx §/ |z e dx:F(1+§).

[e.9] —00

Hence, [*°_ P(z)In(1+ 22)e~""dx is absolute convergence.

1
2

o ) * Gin 2 1 [ sint
/ Cosxsmxdx _ / sin xda: _ _/ sin "
1 T 1 2x 2 /s t

Similar to that in (b), [;° #2tdt is conditional convergence. Particularly,

2 ¢
1 [ sint 1

—/2 ——dt = 7(r - 25i(2))

(e) Since cos zsinx = 3 sin 2z, thus

2
(f) Since
0 S92
/ sign(x)dx +/ sign(z)dz = s1 + $o,
S1 0

. S . . .
thus limg, oo sy—00 fsf sign(x)dx is divergence.

& 2 & t
/ cos 2z dr — / cos m
1 r 2 t

According to (b), |. > %Stdt is conditional convergence. Particularly,

2
/ S — _Ci(2)
2

(g) Since

t
(h) Since
/S Inx p _/8 Inx p _ Eipo(—2Inln9)  Eig(—2Inlns)
o |r(Inlnx)100 ™ /o g(InIn 2)100 v (Inln9)9 (Inlns)% ~’
where
Fio(—2Inlns)  —2%(Inlns)®T(—99, —2Inln s) 99
= = —2"1(99, —2Inlns).
(Inln s)% (Inln )9 (99, ~2Inlns)

thus, we have lim, ., ['(99, —2Inlns) = 0, and thereby fgoo de is absolute
convergence.



Exercise 2.8 Let f : [a,00) — R with f € R[a,s], Vs > a and suppose that [ f(z)dz
converges. Show that Ve > 0, there exists B. > 0 such that

/500 f(z)dz

Solution: According to Theorem 2.8, if faoo f(z)dz converges, there exists B. such
that for s,t > B, we have
/S f(z)dx — /tf(x)dx
Let t — oo, then we have
[ rwys = [ swas| = | [ sy

Exercise 2.9 Show that if f,¢: [a,00) = Rand [ f(z)dz and [ g(x)dz converges, then
Vo, B € R, [ [af(x) + Bg(x)]dx converges to a [~ f(z) + 8 [ g(z)dx.

Solution: Apparently,

/as[af(:c) + Bg(x)]dx = /as af(z)dr + /as Bg(x)dr = a/as f(x)dz + ﬁ/:g(x)dx.

Hence,

s > B. implies <e

< Ee.

< E.

lim S[ozf(x) + Bg(x)]dr = « le /S f(z)dz + ILm /S g(x)dx,

S§—00 a

namely, [ [af(z) + Bg(x)]dx converges to a [ f(x) + 8 [ g(x)dx.

Exercise 2.10 The substitution rule for improper integrals. Suppose that g : [a,00) —
R is monotone, increasing and continuously differentiable and lim;_,, g(t) = co. Sup-
pose that f : [g(a),00) — R and f € Rla, s],Vs > g(a). Show that [ f(g(t))g (t)dt
converges iff fgo(z) f(z)dz converges and if either converges, both are equal.

Solution: Suppose that F'is an antiderivative of f, then we have

[ ey~ [ Fiowya

= F(g(s)) — F(g(a))
9(s)
= f(z)dx.

g(a)
Since s — oo gives g(s) — oo, if lim, o [ f(g(t))g'(t)dt converges, we have the

convergence of limg(s)—oo gg((;)) f(z)dz and

/wﬂﬂﬂwﬁﬂﬁ=/:fmmw

5



Exercise 2.11 For what values of a do the series below converge?

Solution: Since

Hence, according to the integral test, -, # converges for a > 1 and diverges for

a<1.

Since

| Inlns —Inln2, a=1;
o z(lnx)e T W2

a—1

Hence, Y7, m converges for a > 1 and diverges for a < 1.

/S 1 [ Inlnlns—Inlnln2, a=1;
; r(lnz)(Inlnz)® (nln3)'7?—(nlns)’® = g 4 g,

a—1

Since

Hence, Y, Wllnlnn)a converges for a > 1 and diverges for a < 1.

sin

- dz to establish the conver-

Exercise 2.12 Use integration by parts for the integral fls
gence of the improper integral floo o idx.

/smxdx:_/ d(cos )
1 T 1 z

Solution: Since

cosx|! ®cosw
= — -—d,
X s 1 a
thus,
S : S
) sin ) CoS T
lim dx = cos(1) — lim dx.
S—00 1 €T S5—00 1 IQ

oo oo 0 gi .
Because fl |C‘;§”‘dx < fl m%dx converges, f1 *=%dx converges accordingly.

Exercise 2.13 If f = f; +ifs is a complex-valued function on [a, 00), we define

/:O f(x)dz = /aoo fl(x)dx+i/aoo fo()dz,

whenever both integrals on the right—hand side are defined and finite. Show that

© iz
1 T

converges.



Solution: Since

o piw * cosx +isinx > cosx [ sinx
—dx = — dx = dr +1 dr,
LT 1 T 1 T 1 T

in which [~ € 2dz and [~ #22dz both converge, thus [~ & converges.

Exercise 2.14 Suppose that f : [—a,a] = R and f € R[-s,s], V0 < s < a, but [ ¢
R[—a, a]. Suppose furthermore that f is even or odd. Show that [* f(z)dz converges

iff fi)a f(x)dx converges and
“ 2y f@)dx, if f even;
/_afmdx - { 0, if £ odd.

Solution: If f is even or odd, for 0 < s < a we have

; 0 s 2 [J f(z)dz, if f(z)= f(—=) (even);
/_S f(z)dx = /_s f(x)dz +/0 flx)dx = { O,f if f(x)=—f(—z) (odd).

Hence,

' s B 21ims—>a f ( ) if f even;
lim flx)dx = { lim, .- [y f(z)dz hms_m Jy f(x)dz, if f odd.

s—a —s

Therefore, ffa f(z)dz converges iff fi)a f(z)dz converge and

“ 2 [ f(x)dx, if f even;
- f(@)de { ’ if f odd.

Exercise 2.15 Test the following integrals for convergence/absolute convergence/conditional
convergence. Also say whether or not they are improper.

) [z da, a > 0.
b 1sm 1/3:

xT

(a

(

(c) fo t(1 —1t))""dt, a > 0.
0 1
(
(
(

e) [Te )~23dg.
e |a:| 1dw

g) The Beta function, Definition 33:

1
Blng) = [ o 1- o
0



Solution: (a) Since

/ l|lz|~ a]da:—/ |z|"%dx = 2 lim
s—0+t

Fora >0 and a # 1,

1 l1—a
. _ .S —1
2 lim % =2 lim
s—0+ J, s—»0t a—1

Hence, fjl |z|~*dz is an improper integral. It converges if 0 < a < 1 and diverges if
a>1.
For a =1,
1
2 lim r%=—-2lim Ins.
s—0t s—0t

S
Hence, f_ll |z|tdz diverges.

Therefore, fjl |z|~*dx is an improper integral. It is absolute convergence for 0 < a < 1
and divergence for a > 1.

(b) For 0 < s < 1,
12
dx</ Mdz=1(01(2)—01(2> —lns).
s x 2 s

/1
S

sin(1/x)
/s Sm(;/x)da: - Sl( ) —Si(1),

thus lim,_,o+ fl sin 1/35 de = m/2 — Si(1). fol Mdm is an improper integral and
conditional convergence.

(c) Since

sin(1/x)

Hence, fol

/1 (t(1 —¢)) “dt = /1/2 (t(1—1¢)) "dt + /1 (t(1 —¢)) “dt,

1/2
and let r =1—1,

/1 (H(1 = 1)) “dt — /01/2 (r(1 = 1)) dr,

1/2
we have

1/2 12 4
/ [(t(1 —¢))"*|dt = / 1—t))‘“dt:2/ (t(l—t))‘“dt<2“+1/ St
0 0

as well as
1/2 1/2 4
2/ (t(1—1t)) “dt > 2/ —dt.
0 o ¢

8



According to (a), fol/ 2 tiadt converges for 0 < a < 1 and diverges for a > 1. Therefore,

fol (t(1 —t)) “dt is an improper integral. It is absolute convergence for 0 < a < 1 and
divergence for a > 1.

(d) since
1 - 1 -
/ sin x da::/ Smxdx:Si(l),
0 T o <
and .
lim sinz 3
s—0t X

1 . .
fo =2dx is a regular integral and convergence.
xX

(e) Since

/ le " (z — 1)_2/3|dx = / e (x—1)"dx < 6_1/ e Nz —1)"%3da,
1 1 1

[ e7®(x — 1)7%/3dx is an improper integral and absolute convergence. Actually,

1
= e ~2/3 Ll
ez —1)"de=e"T(=].
1 3

(f) Since
& 2 > 2 ! 2 o 2
le™ 2|~ da = e |z|tdr = 2 lim e x  dr + 2 e "z du,
—o0 —o0o s=0t Jg 1
and
v 1
lim e x e > e ! lim o
s—0t s—0F

S S

. 1 _ . 0o 2 _ . . .
where lim,_ o+ fs r~tdx diverges, thus f_ooe ®|z|71dz is an improper integral and
divergence.

(g) If p,q > 1, Beta function is a regular integral and thereby convergence. If either
0<p<lor0<qg< 1, very similar to (c), it is an improper integral and absolute
convergence.

Exercise 2.16 Cauchy Principal Value. Sometimes, even when fab f(z)dz diverges for a
function f that is unbounded at some ¢ € (a, b), we may still define what is called the
Cauchy Principal Value Integral: Suppose that f € Rla,c — €] and f € R[c+ ¢,b] for
all small enough € > 0 but f is unbounded at c. Define

PV, / Hoyde = lim [ / " f@)de + i f(:c)dx}

e—)*

if the limit exists. (P.V. stands for Principal Value).
(a) Show that f_ll 2dx diverges but P.V.f_l1 Ldz = 0.

9



(b) Show that P.V. f Ldr=In%< if c € (a,b).
(c) Show that if f is odd and f € R[e, 1], V0 < e < 1, then P.V.f_l1 f(z)dz = 0.

Solution: (a) Since fol %dx and f£)1 %dx diverge, then f_ll %dx diverges. However

| <1 |
P.V./ —dx = lim {/ —dx—i—/ —dm}
—1 T 6—)0* -1 X B X

= lim (—Ine+1Ine) =0

e—0t

(b) For ¢ € (a,b),

c—¢e b
PV/ dr = lim l/ ! dx—l—/ ! dx]
T —c e—ot | ), T—c epe T —C

= lim (Ine —In(c—a) + In(b—¢) —Ine) = In (b_c).

e—0t+ c—a

(c) For 0 < e <1 and f is odd,

PV, /_ 11 () = Tim, / F2)dz + / @ dx} (let y = —2)
=t - [ v+ [ sl
:61_1)1%1+ / f(z dm—i—/ f(x } =

Exercise 2.17 (a) Use integration by parts to show that

MNx+1)=al'(z), x>0

This is called the difference equation for I'(x)

(b) Show that I'(1) = 1 and deduce that for n > 0,I'(n 4+ 1) = n!. Thus I" generalizes
the factorial function.

(c) Show that for n > 1,

I'(n+1/2)=(n—1/2)(n—3/2)...(3/2)(1/2)x"/?
Solution: (a)

I'z+1)= / t e~ dt
0

+x / tTetdt
0 0

=0—-0+a2'(z—1)=2l(z—1).

— _tCCe—t

10



(v }
(1) = / etdt = —t| =1.

0

From (a) we have I'(n + 1) = nl'(n). By using the mathematical induction, we have

I'n+1)=n!
(c) Forn > 1,
I'n+1/2)=(n—-1/2)I'(n—1/2)
=(n—-1/2)(n—-3/2)'(n — 3/2)
= (n—1/2)(n—3/2)...(3/2)(1/2)L'(1/2),
where

['(1/2) = / t=12etdt = /7 erf(V/1) = VT
0 0
Exercise 2.18 (a) Show that
B(p.q) = / P (L +y) Py
0

(b) Show that

1

B(p,q) = (1/2)p+q_1/ (14 2)P (1 — 2)7  do.

-1
Also B(p,q) = B(q,p).

(c) Show that for
B(p,q) =B(p+1,9)+ B(p,g+1).

(d) Write out B(m,n) for m and n positive integers.

Solution: (a) Since
1
B(p,q):/ P71 —t)9  dt,
0

let t =y/(1+y), then

11



(b) Let t = (1 + x), then

Blp,q) = /11 (l)pl(x—i— 1y (1 _ %(x+ 1))q1d(%(m+ 1))
- ( ),, o Hl 1 +2)P (1 —2) e
)

1
2
1 pP+q— 1

- (5 1 +2)P (1 — 2)7 d.

Similarly, let ¢ = 1(x — 1), then we have
1 ptq—1 1
B(q,p) = (5) / (14 2)P (1 — 2)7 'd.
-1
Hence, B(q,p) = B(p,q)-
(c)

1
Bp+1,9) + B(p,g+1) = tpl—tqldt+/tp(1—t)th
0

1
N1 =)+ 1 — t)dt

I
c\h%

tp "1 —t)7'dt = B(p,q).
(d) Since

F(p)F(q):/ tpletdt‘/ rite " dr
0 0

:/ / Pt e
t=0 Jr=0

Let ¢t = yx and r = y(1 — x), we have

- f a0 ey

% 1
= / e YyPtatdy . / P N1 — 2)7 da
y:O x=0
=T(p+9)B(p,q9)

Therefore,

L))

= = BPa)

I'(p+q) (w0
For positive integers m and n, according to Exercise 2.17(b), we have

-1 -1
By — (m = 1ln = 1)
(m+n—1)!

12



Exercise 2.19 Large O and little o notation Let f and h : [a,00) — R, g : [a,00) —
(0,00). We write f(z) = O(g(x)),x — oo iff there exists C' > 0 independent of x such
that

|f(z)| < Cg(x), V large enough «

We write f(z) = o(g(x)),z — oo iff lim, , f(z)/g(x) = 0. Quite often, we take
g = 1. In this case, f(z) = O(1),z — oo means |f(z)| < C for some C independent
of z, i.e. f is uniformly bounded above in absolute value for large enough x and
f(z) = o(1),x — oo means lim, ,, f(x) = 0.

(a) Show that if f(x) = O(1) and h(z) = o(1) as ¢ — oo, then f(z)h(z) = o(1),z — c©
and f(z) + h(z) = o(1),z — oo. Can we say anything about the ratio h(z)/f(z) in
general for large enough 7

(b) Suppose that f,g € Rla,s], ¥ s > a and faoog(x)d:c converges. Show that if
f(z) = O(g(z)),x — oo, then [ f(x)dx converges absolutely.

(c) Show that if also h is nonnegative and
f(x) =0(g(x)),2 — o0, g(x) = O(h(x)),z — oo

then this relation is transitive, that is

Solution: (a) If f(x) = O(1) and h(x) = o(1),

lim |f(z)g(z)] < C lim |g(z)] = C-0=0.

T—00

Thus, by definition f(x)g(z) = o(1),z — oco. Similarly,
: < : _
lim |f(z) + g(2)] < O+ lim [g(z)] = C.

Thus, by definition f(z)+ h(z) = o(1),x — oco. Since it is possible that f(z) = o(1) if
f(z) =0(1) for x — oo, h(z)/f(x),z — oo is undetermined.

(b) If f(z) = O(g(x)),z — oo, there exists a o > a and C' > 0 that for x > x,

|[f(z)] < Cg().

Therefore,

Aﬂﬂﬁmzlﬂﬂmm+/ﬂﬂmw

Zo
00

< / F@)ldr+C [ g@)de

o

< [Cl@lds e [ gtayin

13



Since [ g(z)dz converges, then [ |f(z)|dz converges.
(c) If f(x) =0O(g(x)),z — o0, g(x) = O(h(z)),r — oo, then there exists B,C > 0

f(z)| < Bg(x), |g(z)| < Ch(z), h(z) =0, v — oc.
Hence,
|f(z)] < BCh(x), v — oo,
where BC' > 0. By definition, f(z) = O(h(x)),x — oo.

Exercise 2.20 Show that

Solution:

s 2 rr(n+2)(n—1)
H(l_n(n—i-l))_n n(n+1)

n=2 n=2

Exercise 2.21 Show that

nﬁl(H (n+1)?2n+9)) :%

Solution:
= 6 11 (2n+5)(n+3)
H(” (n+1)(2n+9)) _H(n+1)(2n+9)
. (7-9---- (2n45))(4-5----- (n+3))
Tl (2-3 (n+1)(11-13---- (2n +9))
— lim 7-9-(n+1)(n+2) 21

n—c02-3-(2n+7)2n+9) 8

Exercise 2.22 Show that

o0

H(1+x2n) = 1i

n=0

, x| < 1.
x
Hint: Multiple the partial products by 1 — x.

14



Solution:

Q=) [ +2") =1 —2)A+z)1+2*)(1+2") ...
=(1—-2*)(1+2%)(1 + %)
=(1-2"1+2"
:T}LIEO(l—x2n+l)—1, lz] <1

Hence, [T77, (14 2%") = &, |z| < L.

Exercise 2.23 Let a,b € C and suppose that they are not negative integers. Show that

ﬁ (” (nc—ll—_a)b(;—il—b)> — T

n=1

Solution:

ﬁ a—b—1 _lo—o[ (n+a—1)(n+b+1)
skt n+a(n+b) B vt (n+a)(n+b)

(14+a—1)(n+b+1)

= lim
n—00 (n+a)(1+0)
_a
b+ 1
Exercise 2.24 Is [[72, (1+n™!') convergent?
Solution: According the Theorem 2.27, since >~ n~'is not convergent, thus [, (1 +n"1)

is not convergent, too.

Exercise 2.25 Prove the inequality 0 < e* — 1 < 3u for u € (0,1) and deduce that
[T2, (1+ (e —1)/n) converges.

Solution: Let f(u) = (e* —1)/(3u). Since f'(u) > 0 for u € (0, 1), and

£0) = tim flu) =S =

u—07F 3 3

—1
f(1) = —5— ~ 0.572761,

Hence,
0<e"—1<3u, ue(0,1)

el/n — 1 1 N 1 N 1 N 1
= — — [ 0 —_—
n n2  2n3  6nt ’

Since

S0 (™ —1)/n converges. Therefore, []°2, (14 (e'/™ —1)/n) converges.

n=1

15



Exercise 2.26 The Euler—Mascheroni Constant. Let

H“:i%’ n > 1.
k=1

Show that 1/k > 1/z,x € [k, k + 1] and hence that
1 k+1 1
- > / —dx.
k T

n+1 1
H, > / —dx =In(n+ 1),
1

x
1 (1 1
n+1+n( n—l—l)
00 1 k
:—Z<n+1> /k < 0.
k=2

Deduce that H,, — Inn decreases as n increases and thus has a non—negative limit
v, called the Euler—Mascheroni constant and with value approximately 0.5772... not
known to be either rational or irrational. Finally show that

Deduce that

and that

[Hyt1 —In(n+1)] — [H, —Inn| =

n

11 (1 * %>/ = H (1 + %) [Te =" exp (~(H, ~nm)).

k=1 k=1
Deduce that

= 1

14+ = eV =¢.
H( —i—k)e e
k=1

Many functions have nice infinite product expansions which can be derived from first
principles. The following examples, utilizing contour integration in the complex plane,
illustrate some of these nice expansions.

Solution: Of course if z € [k, k+ 1] > k > 0, then 1/k > 1/x and

1 k+1 1 k+1
- = / —dx > / ldac.
k k k k s

Hence,
nopktl g n_ okl g ntl |
Hn:Z/k %d:vZZ/k de:/l Eda:zln(nqtl).
k=1 k=1
Thus,
1 1
[Hyt1 —In(n+1)] — [H, —Inn| = ] +In(1- ]
00 1 k
_ —Z( 1) Jk <0,
— \n+

16



Since the Taylor expansion of In (1 —1/(n+ 1)) is

" (“nil) :_g(nil)k/k’

CE Y C— i ! k/’f<O
n — = — .
n-+1 n—+1 P n+1

Hence, H,, — Inn decreases as n increases.

- 1 —-1/k __ - 1 - —-1/k

H(l—l—E)e _H(1+E He

k=1 k=1 k=1
:(n_l_l)e—(Hn—lnn)e—lnn

1
n+ ef(hnflnn).

then

Hence,
. - 1 —1/k _ 12 n+1 —(hp—Inn) _ _—v
L D e

Exercise 2.28 Using the previous exercise, derive the following expansions for those argu-
ments for which the RHS is meaningful.

(1) sin(z) = 2 [ 32, (1 = (z/j)?).
(2) cos(z) =[]32, (1 _ (my)

(3) Euler’s product formula for the gamma function

ﬁ [(1+1/n)"(142/n)""]

(4) Weierstrass’s product formula for the gamma function

o

(O(e) ™ = 2e T] [(1+ 2/k)e /).

k=1
Here, v is the Euler—Mascheroni constant.
Solution: (1) Since

sin(mx) 1 1
e al(2)F(1—2) T(A+2)(1-2)




and

L 14w/

then we have

! g T /) (4 15— x/))
(1421 —z) (1 )E (1+1/j)l+otl-e
_ oy 77 (L+1/5)* = (/)
RREED | Sy

Hence,

and thereby sin(z) = 2 [[52, (1 — (z/jm)?).
(2)

sin(2x)

2sin(x)

22T (1 - (22/47)%)
o2 (1 - (x/gm)?)
22 [[E, (1 (22/jm)?

2 H] L (1= (22/25m)?)

‘H( (?ﬂ)zﬁ(l‘(m))

(3) Let g(z) = InI'(x). By using I'(z + 1) = z['(z) repeatedly, we have

cos(z) =

n—1

g(x+n)=> In(z+j)+ g(x),

=0

and

n—1
Ln(:c):ZI (J)+zln(zr+n—-1)<glz+n) < Zln )+ azlnn =U,(z).
j=1

18



Since

lim U, (z) — L,(z) = lim z(Inn —In(z +n — 1))

n—o0 n—oo

1
— i m(— ) =
nlm z In (1 @ 1)/n) 0,

then
n—1 n—1
ﬂ@=3§g(&kw—§;m@+40:ﬂgg<§;wu—4mw+ﬁ)—mx+xmn)
j= J=
and

j=1
Tn — 1)!
= lim n(n— 1)
nsoox(z+1)...(x+n—1)
Zpl
— lim (n+1)"n

n—>oox(l‘+1)...($—|—n)
L gy T

;Cn—)oojzl 1 —|—;E/j

1 o L4/
o~ llas1r
e 1T L/
= ge™le™ ,
o757
= xe™? ﬁ(l + l/j)me_x/j ﬁ —1 + a:/]
= xemH(l +a/j)e" ",
j=1

19



Solutions to Chapter 3

Exercise 3.1 Let g(a) = ffﬁa f(t)dt and give a new proof of lemma 3.1 based on a com-
putation of the derivative g’(a).

Solution: By fundamental theorem of calculus, for all a:

g(a):/7r af(t)dt:F(Qw+a)—F(a)

Thus
g'(a) = F'(2mr +a) — F'(a) = f(2r +a) — f(a) =0

which means g(a) is a constant function

Exercise 3.2 Verify lemma 3.3

Solution: Euler’s formula e = cos(y) + i sin(y)

1. ele?2 = et1tiWiptatiys — pTitiyi+Tatiys — o2z1+22

2. |e*| = |e®|| cos(y) + isin(y)| = e (cos?(y) + sin?(y)) = €*

3. €% = e%(cos(y) +isin(y)) = e®(cos(y) — isin(y)) = e%e ¥ = e*

Exercise 3.4 Suppose f is piecewise continuous and 27-periodic. For any point t define the
right-hand derivative f(¢) and the left-hand derivative f}(t) of f by

fu) = f(£+0)

fr(t) = lim ==
1o = Ji 10

respectively. Show that in the proof of Theorem 3.12 we can drop the requirement for
f” to be piecewise continuous and the conclusion of the theorem will still hold at any
point t such that both f5(t) and f](¢) exist.

Solution: All we need to show under the new condition

L)+ (- 1) = 26()

x—0+ 2sin ( g)

still exists
We can split the expression into

i (L0 H0) — 0 ()~ (=)

e=0+"  2sin () 2sin(%)

]

N



o f o) — )

t
z—0+ 2 sjn(£> z—0+ 2 Sjn(%)

For each t, Define b (z) = f(t +z) — f(¢),and hy (z) = f(t) — f(t — x)
By assumption f is piecewise continuous, we have

. JF . . — .
A hi (@) = Jig b () =0

Also fr(t) and f}(t) exist, which can be rewritten (change of variable) as

fle+t) - f{t+0)

Then by L’Hopital’s rule the limit we are looking at exists

Exercise 3.5 Show that if f and f’ are piecewise continuous then for any point t we have

J'(t+0) = fr(t) and f'(t = 0) = fL(t)

Solution: Starting from the hint. for u > ¢ and u sufficient close to t there is a point

¢ such that t < ¢ < v and
f(u) — f(t+0)
u—t

= f'(c)

Then take the limit v — t+ and limit v — ¢t— we obtained the result desired

Exercise 3.6 Let ) )
tesin(7), fort#0
pity = Fone)s fort 7
0, fort=20

Show that f is continuous for all t and that f(¢) = f(t) = 0. Show that f'(t + 0)
and f'(t — 0) do not exist for ¢ = 0. Hence argue that f’ is not a piecewise continuous
function.

Solution: By definition

710 = tim LW SO+ EmA) =0 sin(1 )

u—0+ u—0 u—0+ u u—0+

Since sin function is bounded by -1 and 1, by comparison test, we have f5(0) = 0 and
by similar argument we have f;(0) =0

t—0+

f(040) = lim f'(t) = lim [sin G) - COS(%)]

which does not exist, identical argument can be made regard f'(0 — 0)



Exercise 3.7 let )
2sin( 5
) =1 —, for0< It <
1, fort=20
Extend f to be a 2m-periodic function on the entire real line. Verify that f satis-
fies the hypotheses of Theorem 3.12 and is continuous at t=0. Apply the localiza-
tion Theorem(3.12) to f at ¢ = 0 to give a new evaluation of the improper integral

foowdng.

0 x

Solution: First verify the properties

1. f is piecewise continuous on [—m, 7]

2. f’is piecewise continuous on [—m, 7]

For (1) since f is differentiable everywhere except at ¢t = 0, so all we need to verify is
f is continuous at ¢ = 0. By L’Hopital’s Rule

lim f(t) = o 2502) _yp cosa) £(0)

t—0 t—0 t t—0 1

For (2) for t # 0,f'(t) = teos()-2sin(3) is differentiable, so all we need to verify is f’ is

t2
continuous at t = 0. Apply L’Hopital’s Rule

lim f'(¢) = lim teos(3) — 2sin(3) — lim cos(3) — # — cos(3) —0
t=0 t—0 t2 t—0 ot
Exists Follow Theorem 3.11
e 1[0 sin[(k+ 1
lim Si(0) = lim — Dy(—2)f(x)dz = lim sin[(k + 5)7] i
k—o0 k—oo T s k—oo T 5 €T

Since function integrating is even function, and we can do a change of integrating vari-
able with z/ = (k + 1)z, we have:

ko+1 . ! 00 3
lim Sp(0) = 2 i [ SR g / (@) 4,
0

k—o0 T k—oo g x x

By Theorem 3.12

1= £(0) = lim S,(0)
k—o0
After simple substitution, we obtained result we desire.

Exercise 3.8 Let
0 for —m<z< -3

fl@)={1 for ~5<a<3
0 forg<ax<m
in a Fourier series on the interval —pi < x < w. Plot both f and the partial sums Sy

for k = 5,10, 20,40.0bserve how the partial sums approximate f. What accounts for
the slow rate of convergence?



=5 k=10
15 15
—fit} —fit}
. |—s.0 P "
1 v 1 ,
0.5 0.5
0 7C¥ju u?f:f 0 %f*+¥
05 0.5
-4 2 0 2 4 2 0 2
t
k=20 k=40
156 15
—fit) —fit)
A — 5.4 —— 8,1
1 1 -
0.5 0.5
05 05
-4 2 0 2 4 2 0 2
Solution: Above are the plots generated by matlab By definition
1 (2 1 = 2sin(%T
Ay, = —/ cos(nz)dr = —sin(nzx)|? - = M
T x nm 2 nm
b, =0 (Odd Function)
ag = T
- k
Sk (t) 5 + Z a,, cos(nt)
n=1
Note: a, is essentially an alternating decreasing sequence.
The major reason for the slow convergence is the discontinuity at x = —5 and x =

so Gibbs Phenomena applies

Below is the matlab code used to generate the plots

1 clear;
2 k=10;
3 x =linspace(—pi,pi);

B



f =ones (100,1);

£(1:25)=0;

f(76:end)=0;

idx=1:%k;

A=zeros (k,100);
a=2+*sin(pixidx/2) ./ (pixidx);
10 for i=1l:k

© 0w N O O

11 for 3=1:100

12 A(i,j)=cos(x(]J)*1);
13 end

14 end

15 S_k=1/2+ax*A;
16 plot (x,f,x,S_k);

Exercise 3.9 Consider Example 3.9: f(¢) =¢,0 < t < . Is it permissible to differentiate
the Fourier sine series for this function term-by-term? If so, say what the differentiated
series converges to at each point. Is it permissible to differentiate the Fourier cosine
series for the function f(t) term-by-term? If so, say what the differentiated series
converges to at each point.

Solution:

Fourier sin:
o0

A Z 2(_1)(n+1) Sln(nt)
n=1

n

Fourier cos:
T T s= cos[(2j — 1)t]
~3 ZZ—(j—l
7=1

Differentiate term-by-term we have
Fourier sin:

1~ Z 1) cos(nt)

Which does not converge, since 2(—1)™+) cos(nt) does not go to 0
Fourier cos:

Exercise 3.10 Derive Lemma 3.24 from expression (3.13) and Lemma 3.23.
Solution:



[\
3

Fi(t — ) f(z)dx

2 Fk(t — ZL’) + Fk(t

(Expression 3.13)

+ )

S— — —

1

m

1
- - 5 f(z)dx

s 2

™ . ik

:i/ Fift “””HF’“(H“”)[SH%(Z;)]% (Lemma 3.23)

km J, 2 sin §
_2 %<F (t — 22) + Fy(t +2 ))[Sin(lm)]?d (Ch f variable)
= o ; k X k x Sin(x) X ange ojJ varwaowe

Exercise 3.11 Expand

in a Fourier series on the interval —m < x < 7. Plot both f and the arithmetic sum 6
for k = 5,10, 20,40. Observe how the arithmetic sums approximate f. Compare with

flx) ={

Exercise 3.8.
Solution:

As you can see in the figure below, the new approximate has a slower convergence
rate with respect to mean-square norm (due to the fact we are taking mean values),
but better point wise convergence result(no more Gibbs Phenomenon). Below is the

0 for—7r<x§—%

v v
L for =5 <z<73
0 forg<z<m

matlab code used to generate the plots

Nl = e S

I I R T = T T T = S = Sy
= © © 0 N o U A W N = O

k=20;
theta_k=0;
x =linspace(—pi,pi);
f =ones(100,1);
£(1:25)=0;
f(76:end)=0;
for n=1:k
idx=1:n;
A=zeros (n,100);
a=2+sin(pi*idx/2) ./ (pixidx) ;
for i=1:n

for j§=1:100

A(i,Jj)=cos (x(3)*1i);

end
end
theta_k=theta_k+1/2+axA;
end
theta_k=theta_k/k;
subplot (2,2, 3);
plot (x, f,x,theta k);
title ('k=20");




1.5

0.5

-0.5

1.5

0.5

-0.5

k=
| f(t)
(7 |5
_'_,.-" | | "‘x.
-4 -2 0 2
t
k=20
—it)
. ——
_J (S
-4 -2 0 2

1.5
— f(t)
1 I‘ S, (0
| 1
0.5 |
.I'II‘ ’II".
-0.5 : '
-4 z, 0 2
t
k=40
1.5 -
3l _ — (1)
—— S, (1)
0.5t l
D L —] e
-0.5 : : :
-4 2 0 2
t




22 xlabel('t'");
23 legend('f(t)','S_k(t)")

Exercise 3.12 let f(z) =x,x € [-7, 7.
(a) Show that f(z) has the Fourier series

o
g =~ (—1)""tsin(nx).
n=1

(b) Let @ > 0 Show that f(z) = exp(ax),x € [—m,n| has the Fourier series

3 [\)

o0

e — koz cos(kx) — ksin(kx)
( + Z Oé2 + k2

(c) Let a be any real number other than an integer. Let f(z) = cos(ax),x € [—m, 7]
Show that f has a Fourier series

. 1 oo . . -
sin(ar) L1 Z[sm(a +n)m N sin(« n)ﬂ] cos(n).
am T = a+n a—n
(d) Find the Fourier series of f(z) = —asin(az),x € [—m, 7]. Do you notice any
relationship to that in (c)?
(e) Find the Fourier series of f(z) = |z|,z € [, 7.
(f) Find the Fourier series of
-1, <0
f(x) = sign(z) ={ 0, 2=0
1, z>0
Do you notice any relationship to that in (e)?
Solution:
(a) f(x)is odd function, so a, =0
2 [
b, = —/ xsin(nz)dz
T Jo
2 [
b, = —/ xsin(nz)dz
™ Jo
2 ™ 2 [T .
= ——uxcos(nz)| +— [ cos(nz)dx (Integration by Part)
™m o ™ Jy
2
= cos(nm)
2
I _1 n—1
2()



flz) =243 (a,cos(nz) + by, sin(nx))

. inr_ ,—inx inx —inz
(b)By Euler’s formula we have sin(nz) = “——— and cos(nz) = “——
1 ™ e _ pmam
ag = — edr = ———
TJ_ . am
1 ™
a, = — e cos(nx)dx
™ —T

1 & ) 7r .
_ 2_ [/ e(a-l—m)a:dx + / e(a—zn)zdx]
m ™ -

o
a? 4 n?

b, = —/ e sin(nz)dz

1 i ) i )
_ 2_ [/ €(a+zn)$dx _ / e(a—zn)mdl,]
(KO — -

—n
— (=)
1

flx) =%+ >0 (an cos(nx) + by sin(nx))
(c) we can take part (b)’s result, and plug in «i instead of «, and take the real part.

The remaining is purely algebraic manipulation.
(d) Notice that f(z) = —asin(az) = <L(cos(ax)), and it’s piecewise smooth so the

Fourier series is:

nsm a+n)r  nsin(a —n)mT, .
—= Z + | sin(nz)
a—+n a—n

(e) Even function, so b, =0

ag =

2 ™
—/ xdr =
™ Jo

T 2 Q
- — / sin(nx)dx  (Integration by Part)
o ™ J,

fla) =35+ % y- () eos(n) = cos(na)

n2

(f) Notice that f(x) is the derivative of the function in (e), and it’s piecewise smooth,
so the Fourier series is:

2 i )"~ Lsin(nz) + sin(nw)
™ n



Exercise 3.13 Sum the series Y>> 27" cos(nt), and Y~ 27" sin(nt).
Hint: Take the real and imaginary parts of the Y >° 27"¢™ You should be able to
sum this last series directly. Solution:

oo
4 1
Z 27" = (Sum of GeometricSeries)

T 2- cos(t) — isin(t)
_4-2 cos(t) + 2¢sin(t)

5 — 4 cos(t)
So the cos sum is:
4 — 2 cos(t)
5 — 4 cos(t)
The sin sum is:
2sin(?)
5 — 4 cos(t)

Exercise 3.14 Find the L,[—m, 7] projection of the function fi(z) = 22 onto the (2n + 1)-
dimensional subspace spanned by the ON set

1 cos(kz) sin(kz)

Vor Vmo T
for n=1. Repeat for n=2,3. Plot these projections along with f;. Repeat the whole
exercise for fy(z) = 2. Do you see any marked differences between the graphs in the

two cases?
Solution:

k=1,...n

For fi(x), it is an even function, so b, = 0,
2 [T 22
ap = —/ w?de = ——
T Jo 3

Similar to calculation with Excercise 3.12(a), but this time with two-steps of integration
by part, we have:

2 s
a, = —/ x? cos(nx)dw
T Jo
4 n
= ﬁ(—l)

For f(z), it is an odd function, so a,, = 0, Similar to calculation above, but this time
with three-steps of integration by part, we have:

2 K
b, = —/ 23 sin(nx)dz
T Jo
12 272 (—1)"
Sl G Y e S
n3( ) n

Below is the matlab code used to generate the plots

10



10

—f2(t)
——s2,(1)

e

10

k=
Y p—rrrre
[——S1,0

-5 0
t

k=

-5 0
t

11

10

k=

\

— (1)
SR )




x=linspace (—pi,pi);
fl=x."2;
f2=x."3;
k=3;
idx=1:%k;
Al=zeros (k,100);
A2=zeros (k,100);
al=4*(—1).7idx./ (idx."2);
a2=12* ((—1) .71idx) ./ (idx."3)—=2xpi " 2* ((—1) . 1dx) ./idx;
for i=1:k
for 3=1:100
Al (i, j)=cos(x(]J)*1);
A2 (1, J)=sin(x(J) *i);
end

© 00 N O U s W N =

N e e e
s W N = O

end
S1_ k=pi~2/3+al*Al;
S2_k=a2+*A2;

== e e
o N o w»

subplot (2,3, 3);
plot(x,fl,x,S1 k);
title('k=3");

xlabel ('t");

legend ("fl1(t) "', 'Sl k(t)")
subplot (2,3,6);
plot(x,f2,x,52 k);
title('k=3");

xlabel ('t");

legend ('f2(t)"','S2_k(t)")

NONONON NN N NN e
0w N O gaos W N = O ©

Notice that we can interpret fi(z) = 1(-L(fs(z))) Because fi(z) is continuous, however
fz(x) has a point of discontinuity at the edge, we observe Gibbs Phenomenon in fy(x)

but not in fi(x)

Exercise 3.15 By substituting special values of x in convergent Fourier series, we can of-
ten deduce interesting series expansions for various numbers, or just find the sum of

important series.
(a) Use the Fourier series for f(z) = 2? to show that
o0 (_1)n—1__ 2

n? 12

1
(b) Prove that Fourier series for f(x) = x converges in (—m, ) and hence that

f: R
Loyl 4

(c) Show that the Fourier series of f(x) = exp(az),z € [—m, 7| converges in [—, pi)

exp(api)+exp(—api)
2

to exp(ax) and at x = 7 to . Hence show that

am
tanh(ar) = 1+ 300, 2%,

2+Oé2

12



(d) Show that

T 1 = (=t
1 37" ; nz—‘
(e) Plot both f(x) = 2% and the partial sums

= 50 ZO an, cos(nz) + by, sin(nx))

for k=1,2,5,7. Observe how the partial sums approximate f.
Solution:

(a) The Fourier series is already derived in Exercise 3.14, since f(z) has smooth deriva-
tive, it’s Fourier Series converges point-wise in (—7,7), take z = 0, we obtained the
desired equality.

(b) The Fourier series is already derived in Exercise 3.12(a), since f(z) has smooth
derivative in (—m, ), the series converge within the same range. Then take x = 7 we
obtained the desired equality.

(c) The Fourier series is already derived in Exercise 3.12(b), since f(x) has smooth
derivative in (—m, ), the series converge within the same range. And since its deriva-
tive is right-continuous at —7 and left-continuous at 7, then at point « it converges to
the average of the two limit, which is “lepdterp(zop))

Then take x = m we obtained the desired equality.

(d) Follow the Fourier series obtained in Exercise 3.12(c), take a = % and x = 0, we

2
obtained the desired equality (e) Identical Result to Exercise 3.14

Exercise 3.16 Let fi(z) = z and fo(x) = 7* — 322, —7 < ¢t < 7. Find the Fourier series of
f1 and f5 and use them alone to sum the following series:

S, S
>t
Yo, GF
Doy

- W o

Solution: Fourier series fi(x) is already obtained as in Exercise 3.12(a) For f3(x) it’s
a modified version from Exercise 3.14, we can obtained it’s Fourier series easily:

n—1

_ i 12(—1)

n=1

1. Directly obtained from Excercise 3.15( ), it’s equal to > 7, —(2:;2: =2_1
2. Take x = 7 for fo(x), we have Y 2 5 ==
3. Multiply by -1 to Exercise 3.15(a), 0 =" = — =

4. Apply Parseval’s identity to fo(x), we have ) >° 4 = 2=

13



Exercise 3.17 By Applying Parseval’s identity to suitable Fourier Series:
(a) show that

-1 _

=t 90
(b) Evaluate

>

—~ a’+n?

(c) Show that

; 2l+1 _6'

Solution:

(a) Same as Exercise 3.16.4
(b) From Exercise 3.15 (c):

o0

Z 1 o Y B 1
—~ a®+n? ~ 2atanh(ar)  2a2
(c) Apply Parseval’s identity to f(x) = |x|, note (—1)"—1 = 0forneven and (—1)"—1 =
—2fornodd

2 o0

T 16 272
7+;(21+1)4 B

Thus we obtained the quality desired

Exercise 3.18 Is

= cos(nx)
D
n=1

The Fourier series of some square integrable function f on [—n,x]?
The same question for the series

Solution:

Neither of them are.
Prove By contradition, assume they are, then they will satisfy Parseval’s identity
However, neither of the series sum converge (in fact they diverge to infinity): > >0, L

n=1n
note: Famous divergent series, and can apply integral test to prove it’s a divergent

series)

> W’ apply comparison test with the series above so neither of them can be
the Fourier series of some square integrable function

14



Solutions to Chapter 4

Exercise 4.1 Verify the rules for Fourier transforms listed above.

Solution:
Flaf + bg] J% / Z (af(t) + bg@))e—wdt
—a 1 > —t -
v /_ ey /
= aF|[f] + bFlg].
Folaf +bg) = % / : (af (V) + bg(A))e“tdA
1 = 1)\t -
-0 /_ N+ /
— oF*[f] +b]—"*[ I
Fie )0 = = / e
1 —int
:\/_ , d)‘n/—oof et
4"
=1 K}_[f]()\)
n n z)\t
FI 0 = = / A (e
1 14 o
G / Fea
= (i F )
Since
! _L > ! e—z’At
N = o= [ Fea
1 —ixt|™ 1 o -
= \/—Q_Wf(t)e t:—oo_\/_Q_ﬂ' _OO(—Z)\)f(t)G
N > VST
:mm/_oof(t)e dt = INFLFI(V),
thus

FLFMIA) = GN"FIFIN).

z)\td)\



Since

PN = 2= [ 1o

1 x|~ 1 = At
— o fe T - [ ansein
_ _“\/127 / FOVENAN = —it FIfI(N).

thus
FFN) = (=it)" FI£1().
Let bt —a =r, then t = T/b +a/b,dt = dr/b and

FLF(bt — a)](N) m / F(bt — a)e— Mt

—i(r/b+a/b) )\d,r
\/27T /

L e / —iXr/b L ixas A
— —,p—tAafb__ /b, — Zp—ida 2y
be Ner: _Oof r)e r be ]:[f](b)

Exercise 4.2 Let f,g,h: R — R. Let a,b € R, show that:

(i) Convolution is linear:
(af +bg)«h=a(f*h)+b(g=h).
(ii) Convolution is commutative:
frg=gxf
(iii) Convolution is associative:
(fxg)xh=[x(gxh)
Solution: (i)

(af +bg) *h = /°°< £() + bg(@)hit — x)dz

/ f(x)h(t — x)dx + b/ g(x)h(t — z)dx
(f % h) +b(g * h).
(ii) Let y =t — x, then x =t — y, dr = —dy and

f*g—/ F()glt - 2)d
_/ )

‘/ ft=y)g(y)dy = g = f.



(iii)
deaven= [ ([ st~ o)t - pay

Let y = x + z, then

[Z(/_Zf(@g(y—m)d%) /Oof (/ ()h(t—a:—z)dz)dx

f(z)(g*h)(t —x)dx

zf*@*h)

8

Exercise 4.3 Let

1 for —r<t<l
_ 2 2
II(t) = { 0 otherwise ’

the box function on the real line. We will often have the occasion to express the Fourier
transform of f(at+0b) in terms of the Fourier transform f(\) of f(t), where a, b are real
parameters. This exercise will give you practice in correct application of the transform.

1. Sketch the graphs of II(¢), II(t — 3) and w(2¢t — 3) = I1(2(t — 3/2)).

2. Sketch the graphs of II(¢), II(2¢) and II(2(¢ — 3)). Note: In the first part a right
3-translate is followed by a 2-dilate; but in the second part a 2-dilate is followed by a
right 3-translate. The results are not the same.

3. Find the Fourier transforms of ¢;(t) = II(2t — 3) and go(t) = II(2(¢ — 3)) from parts
1 and 2.

4. Set g(t) = I1(2t) and check your answers to part 3 by applying the translation rule
to

9(1) = g(t —3). gu(t) = glt — 3), noting (1) = 1t — ).
Solution: 1. See Figure 1.
2. See Figure 2.
3.
Flal) = 7= [ty
V21

7/4 )\td

iM gy
\/271'/

2732 sin(\/4)

B V2T A




1 I 1 I1(t-3) | 1 11(2t-3)
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 . 0
2 -1 0 1 2 1 2 3 4 5 1 3
Figure 1:
] I1(t) ] 11(2t) ] H(2(t-T))
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
2 -1 0 1 2 2 1 0 1 2 1 3
Figure 2
FladN = —= [ o)t
V2T ) oo
1 13/4 .
= — e "Ndt
V2T J11/a
_ 2e7 ¥ sin(A\/4)
V2T
4. Since 2sin(A/4)
sin
Flg(N) = ——=—

then

Exercise 4.4 Assuming that the improper integral fooo(sin x/x)dx = I exists, establish its

V2 A

Flg)() = e 2F[gl(V), Flg) () = e Flgl ().




value (2.1) by first using the Riemann-Lebesgue lemma for Fourier series to show that

I = lim Smxdm = llm/ Dy (u

k—o00 0 k—o00

(k+1/2)m

where Dy (u) is the Dirichlet kernel function. Then use Lemma 3.11.

Solution: Let z = (k 4+ 1/2)u, then dx = (k + 1/2)du and

(k+1/2)7 T gin(k - 1/2
khm sinx dr — khm / Mdu
—o0 /g €T —oo Jo u
5 .
k+1/2 k+1/2
— lim / sin(k +1/2u e / sin(k +1/2)u ,
k—o0 0 u k—o00 5 u

The second part of the integral is zero and it can be replaced as
Tsin(k+1/2 Tein(k 4+ 1/2
lim / sin(k+1/2)u ) _ 0 = fim / sin(k +1/2)u
koo s u k—oo Js  2sin(u/2)

If ¢ is sufficient small and u € [0, 0], u <> 2sin(u/2), thus the first part of the integral
can be replaced as

O 3 5 .
lim / sin(k + 1/2)udu ~ lim sin(k + 1/2)u
0

————du.
u koo Jo o 2sin(u/2) "

k—o0

Consequently, we have

i /” sin(k + 1/2)udu ~ lim T sin(k.: +1/2)u
0 u koo Jo  2sin(u/2)

Tsin(k +1/2)u _/’T 1 < oo
/0 2sin(u/2) du = ; 2+;COSTLU du-z.

Exercise 4.5 Define the right-hand derivative f(t) and the left-hand derivative f](t) of f

by
() = Tim f(U)—f(HO)’ £ = lim f(w) = ft=0)

u—rt+ u—t u—t— u—1t

du,

k—o0

where

)

respectively, as in Exercise 3.4. Show that in the proof of Theorem 4.17 we can drop

the requirements 3 and 4, and the right-hand side of (4.12) will converge to w
at any point ¢ such that both f5(¢) and f](¢) exist.
Solution: In the proof of Theorem 4.17
¢ sin Lx ¢ sin Lx ¢ sin Lx
/(f(t+:v)+f(t—x)) d.r:/f(t+x) das+/f(t—m) — dx,
0 0 0

when L — oo, in the right hand side, the first part will converge to f(t +0)/2 if f(t)

exist and the second part will converge to f(t —0)/2 if f](t) exist. Hence, the total

result converge to w.



Exercise 4.6 Let a > 0. Use the Fourier transforms of sinc (z) and sinc ?(z), together with
the basic tools of Fourier transform theory, such as Parseval’s equation, substitution,
.. to show the following. (Use only rules from Fourier transform theory. You shouldn’t
do any detailed computation such as integration by parts.)

()

I () e = 2

Solution:

i
3

A

2

=

Sl

S

v
||
Q
w

8 3

“r]/\

©,

=

Q

=

\/

\_//\m

=3

S

S

v
IS

(o ) P
= ¢t /_ :F[(Si;l;x 2] (A)f[(SiZ;“:)z] (\)dA

& A A
=qat / VT tri{ — VT tri d\
—oo V202 2a ) +/ 2a2 26L
2 2a
L (i) A\

2 —2a

2a 2 3
=7ra2/ <1—i) = 2o
0 2a 3

Exercise 4.7 Show that the n-translates of sinc are orthonormal:

< . 1 forn=m
/Oosmc (x —n) - sinc (x—m)da:—{ 0 otherwise, n,m=0,%1,...




Solution:

/00 sinc (z —n) - sinc (r — m)dx = /OO Flsinc (z —n)](A) - Flsinc (z —m)](A)dA

1 > A )
= 7 - rect? (%) e~ Hn=m)A gy

1 ™

- —i(n—m)/\d)\.
2m ) . ¢

Hence,

2T 0 otherwise,

—T

1 [ . =
o L= s, =0

Exercise 4.8 Let
1 —2<t<~1

fy=41 1<t<?2
0 otherwise.

Compute the Fourier transform f (M) and sketch the graphs of f and f.

Compute and sketch the graph of the function with Fourier transform f (—N).

Compute and sketch the graph of the function with Fourier transform f’ (A).

Compute and sketch the graph of the function with Fourier transform f * f (N).
Compute and sketch the graph of the function with Fourier transform f (A\/2).

Solution:
o f(t) =rect(t+ 3/2) + rect(t — 3/2), thus

~

fO) = (e732 4 &3 2)sine (%) = 2cos(3\/2)sinc (%)

See Figure 3.
o f(=N) =71 =7,

2(=Acos(A) + 2X cos(2A) 4 sin(A) — sin(2X))

f'(N) = VerFl=itf(1)](\) = e

See Figure 4.

~

o [x [N =@n)*2F[FA(0)](N) = 2m)*2F[f(1)](A) = 27 f(). See Figure 5.
o f(A\/2) =2V2rF[f(2t)](\). See Figure 6.



0.8

0.6

04r

021

Figure 4: f'(\)

Exercise 4.9 Deduce what you can about the Fourier transform f()) if you know that f(¢)
satisfies the dilation equation

f@) = f2t) + f(2t = 1)



15 T T T T T T T T T

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 6: f()\/2)



Solution:

. S\ —iN2 )\ —iN2 [\
fW:%f(a)*e 2 f(a) :HeTf(a)

Exercise 4.10 Just as Fourier series have a complex version and a real version, so does the
Fourier transform. Under the same assumptions as Theorem 4.17 set

Cla) = 5[F(@) + f=a)], 8(0) = 5 [~F(@) + f=a)], @ >0

and derive the expansion

)_l/oo (C’( )cosat+5( )sinat)da,

/ F(s) cos(as)ds, S(a) = /_ Z £(s) sin(as)ds

Show that the transform can be written in a more compact form as

1 oo o0
= —/ da/ f(s)cosa(s —t)ds
T Jo —oo
Solution:

1 oo

—/ C ) cos at + S(a )sinat)da
T Jo

1

L[ ( (cos at + isinat) + f(—a)(cos(—at) + i sin(—at)))da

2 Jo
1 o0
=— (cos at + isin at)do
27 J_o
1 OO zatd f(t)
=— o = .
27 J_o

V s ([ reeas) |
5| [ et [ ]
5 | e e
_ /_ Z £(s) cos(as)ds
L

-3 [ i)
ﬁ[— /OO o s+ [ goen]
Sy

—00

7’LC¥S lOéS dS

= /_Oo f(s)sin(as)ds

10



Substitute the expansion of C'(a) and S(a) into the expansion of f(t), then we have
ft) = ! /OO </OO f(s)cos(as) cos(at)ds + /OO f(s)sin(as) sin(at)ds> dov
= —/ </ f(s)(cos(as) cos(at) + sin(as) sm(at))ds)d

/da/ f(s)cosa(s —t)ds

Exercise 4.11 There are also Fourier integral analogs of the Fourier cosine series and the
Fourier sine series. Let f(t) be defined for all ¢ > 0 and extend it to an even function
on the real line, defined by

f@), ift>0
F(t):{ f(=t), ift<0

By applying the results of Exercise 4.10 show that, formally,

2 oo e.9]
ft) = —/ cos at da/ f(s)cosas ds, t>0
0 0

T
Find conditions on f(¢) such that this pointwise expansion is rigorously correct.

Solution: According to the result of Exercise 4.10,

/ da/ Jcosa(s — t)ds

1 o oo
= —/ cos at da/ F(s)cosas ds + —/ sin vt da/ F(s)sinas ds.
0 —00 T Jo -

m 00

Since F(s),cosas are even functions and sin as is odd function, we have

/F(s)cosasds:Z/ F(s)cosasds:Q/ f(s)cosas ds,
0 0

—00

/ F(s)sinas ds = 0.

o0

Thus, for ¢t >0

2 o o
=Ft)== d ds.
f(t) (1) /0 cos at a/o f(s)cosas ds

If f(t) satisfies the assumptions in Theorem 4.17, this pointwise expansion is rigorously
correct.

11



Exercise 4.12 Let f(t) be defined for all £ > 0 and extend it to an odd function on the real

line, defined by
| @), ift >0
G“V‘{—ﬂ—w,ﬁt<o

By applying the results of Exercise 4.10 show that, formally

2 o0 o0
f(t) :—/ sin at da/ f(s)sinas ds, t>0
0 0

™
Find conditions on f(¢) such that this pointwise expansion is rigorously correct.

Solution: According to the result of Exercise 4.10,
1 o o0
G(t) = —/ da/ F(s)cosa(s —t)ds
T Jo —o0
1 o o0 1 o . oo )
== cos ot da G(s)cosas ds + — sin at da G(s)sinas ds.
0 — 0 _

T o T 00

Since cos as is even function and G(s),sin as are odd functions, we have

/ G(s)cosas ds =0,

—00

/ G(s)sinas ds:2/ G(s)sinas d5:2/ f(s)sinas ds.
- 0 0

[ee)

Thus, for t > 0

2 o0 o0
=G(t)=— i d i ds.
f(t) (t) /o sin ot oz/o f(s)sinas ds

™

If f(t) satisfies the assumptions in Theorem 4.17, this pointwise expansion is rigorously
correct.

Exercise 4.13 Find the Fourier Cosine and Sine transforms of the following functions:

f(t) ::{ (1): t€[0,q]

t>a

(1) = { cos(at), te€0,al

0, t>a

Solution: For the first function,

fm@:/mﬂwmwmﬁ

—00

“ 1
= / cos(at)dt = — sin(ax)
0

(67

12



Fa=[ " f(t)sin(ad)dt
= /a sin(at)dt = l(1 — cos(aa))

0 (%

For the second function,
Je) :/ f(t) cos(at)dt
= / cos(at) cos(at)dt

0
a cos(aa) sin(a?) — a cos(a?) sin(aa)
2

a? — o2

frler= |

f(t) sin(at)dt

_ / cos(at) sin(at)dt

0
a cos(a?) cos(aa) + asin(a?) sin(aa) — a
2

a? — o?

Exercise 4.14 Use the fact that f(t) = sinc (¢ + a) is frequency bandlimited with B = 7
to show that

sinc (t +a) = Z sinc (j + a)sinc (t — j)

j==o0

for all a,t. Derive the identity

1= Z sinc (t — 7).

j=—o00

Solution: Since we have the Fourier transform
F(t+a) «— e f(N),

Substitute f(¢), f(A\) and B in the proof of Theorem 4.18 with f(¢ + a), ¢?* f(\) and
7, respectively. Then, we have

oo

A . 1 T )
em)\f()\) = k_z: CkelkAa Cr = %/ﬂ f()\)GZ(a_k))\v
thus,
1 © . 1 00 T 0
f(t+a) = sinc (t+a) = . /oo e F(N)eMdN = o ; Ck /7r e F DA = k;m cpsine (t+k),

13



where
1 ,
f( )& @A\ = f(—k + a) = sinc (—k + a).

Cr =
27T

Hence, setting k = —

sinc (t +a) = Z sinc (j + a)sinc (t — 7).

j==o0

Let a = —t, then sinc (¢ + a) = sinc (0) = 1, and sinc (j — t) = sinc (¢t — j) since

sinc (x) is an even function. Thus, we have

Exercise 4.15 Suppose f(t) satisfies the conditions of Theorem 4.18. Derive the Parseval

formula
7rk
[ iora= o [T iiopa=5 3 100

k=—o00

Solution:
/ |f( ] dt = —/ \ dA

is valid from the property of Fourier transform. We only prove that

ICKE }jv”k

Since .
B T . Bt .
0= 3 fCghme (=)
then
o [ gm . Bt N[~ i Bt
Kmvwhﬁ—[ngiﬂBﬁmwﬂ JOQE&“BWM(W i) ar
o~ T T [ Bt . Bt
i];mf(g)f (E)/_msmc (? — j)sinc (? — 4)dt.
Due to the orthogonal property that
* Bt . Bt | o=
/_oosmc (7—j)SIHC (?—z)dt—{ 0 ity

then we have

/m| R SRS

o0 k——oo

14



Exercise 4.16 Let )
sint fort #0

o L)
1) { 1, for t = 0.

. _ <
FO = 7r<1 2), for |A] <2
0, for |A\| > 2.

1. Choose B =1 and use the sampling theorem to write f(t) as a series.

2. Graph the sum of the first 20 terms in the series and compare with the graph of
ft).
3. Repeat the last two items for B =2 and B = 3.

Solution: 1.

0= 3 (Y e (L)

j=—00
. 2. See Figure 7
B=1
1 x x
é Y sampling series
08} AR . ) -

0.4 * : :
-10 5 0 5 10

Figure 7: B=1

3. See Figure 8 and Figure 9.

Exercise 4.17 If the continuous-time band limited signal is x(t) = cost, what is the period
T that gives sampling exactly at the Nyquist (minimal B) rate? What samples z(nT)
do you get at this rate? What samples do you get from z(t) = sin¢?

15



sampling series

1

sampling series

(1)

Figure 9: B =3

16



Solution: For z(t) = cost, £(\) = w(6(A—=1)+d(A+1)). Thus, By = 1 and
T = 7/ Bpin = m. Consequently, z(nT) = z(nm) = cos(nm)
(

Similarly, for z(t) = sint, £(A\) = —inr(6(A—1) —d(A+1)). Thus, Bynn = 1 and
T = 7/Bmin = 7. Consequently, z(nT) = z(nm) = sin(nr).
Exercise 4.18 Show that the function

foexp(e), if-l<A<l
=15 i[> 1,

is infinitely differentiable with compact support. In particular compute the derivatives
Ci\—nn (£1) for all n.

Solution: limy 4 %h()\) = +o0

Exercise 4.19 Construct a function g(\) which (1) is arbitrarily differentiable, (2) has
support contained in the interval [—4,4] and (3) g(A\) = 1 for A € [1, 1]. Hint: Consider
the convolution iR[—M] * ha(A\) where R[5 is the rectangular box function on the
interval [—2,2], ho(A) = h(A/2), h is defined in Exercise 4.18 and ¢ = [*°_h(A)dA.

Solution: Problematic because of Exercise 4.18, and ¢ — oo is indefinite.

Exercise 4.20 Let f(t) = for a > 0.

a
e
e Show that f(t) = me~*?. Hint: It is easier to work backwards.
e Use the Poisson summation formula to derive the identity
io: 1 mwl4e?™

n2+a> al-—e2m

n=—oo

What happens as a — 0+? Can you obtain the value of ) ° n—lg from this?

Solution:

1 o ' oo ) e—a)\+i)\t o0 a + it
- / f()\)el)‘td)\ — / e—a)\—i-z)\td)\ — : — ’
o ) ] —a+it|,_, +a

thus,

a+ 1t a
R = = f(t).
e<t2—i—a2) rra 10

By using the Poisson summation,

Y fm)= ) f(2m),

n=—oo n=—oo

17



we have

_ 7a\27rn|
Z e = Z
2 o0
— z _ﬂ- 67277,0,71'
a a =
.m o0 e 2ma _7r1—i—e a
o 1—e2m g1 —¢e2ma
Since
> 1 1 =1
Y e e
then
i 1 1fml4e? 1
— n2+a2 2\al—e2m g2
_ 1+ma+e*(—1+ma)
a 2a%(—1 + e?ma)
Hence,
. 1+ ma+ e (—1+ ma) . 3 m3a® + O(a?) =1
lim = — il
a0+ 2a%(—1 + e?ma) a—0+ 4ma’ + O(a?) = n?

Exercise 4.21 Verify Equations (4.22).

117 = [ 1= [ s T

loll? = / " () gDt = / A+ o) - T e M 4 gy)

—00 —

= [ s s = 11
According to Plancherel identity

2x(l£17 = 1%, 2nllgl* = llall®,

Solution: As

then

then we have

VI = 3l
Consequently,
B NG Nt +t0)?  s=trne [ S
DOg‘/ e ’f‘/_of e ) ) s = Duf

18



Since

g(t) = FO + d)e™,
then

A GOV [ D FO A AR - amain ok :
Dyg = 2 d\ = N2 L gy A A ds =D, f.
04 fm Tk /. L /;“ o) i = Dof

Exercise 4.22 Let

0, ift<0
/) :{ V2et, ift >0
Compute (Dtof)(DAof) for any ¢, \g € R and compare with Theorem 4.21.

Solution: Since ||f[|? = [°2e~%dt =1 = || f||% and f()) = V2372 then

> 1
Dy f = / (t —to)?2e 2'dt = t§ — to + 3
0

(A= Xo)
Dy f = / e +01 d\ = undefined(— 00).

Hence, (Dy, f)(Dy, f) — o0 > 1/4.

Exercise 4.23 Show that the eigenvalues of a covariance matrix are nonnegative.

Solution: Since C'= E((t — u)(t —u)”), for arbitrary vector v # 0,

v'Cv=E("(t—u)(t—u)v) = E(s*) >0,

where s = v7 (t —u) = (t —u)”v is a scalar random viable. Therefore, C' is semidefinite
positive and its eigenvalues are nonnegative.

Exercise 4.24 Show that C'is in fact the covariance matrix of the distribution (4.24). This

takes some work and involves making an orthogonal change of coordinates where the
new coordinate vectors are the orthonormal eigenvectors of C'.

Solution: Since C' is semidefinite positive, we have the eigen-decomposition C' =
VAVT where V is an orthonormal matrix consisted the eigenvectors of C', and A is a

diagonal matrix that A = diag(o?,03,...,02) with o > 0.

Let s be the new coordinates of random variables ¢ under the coordinate transform
V', then we have t = Vs and p = E(t) = E(Vs) =V - E(s) = Vv, or alternatively
s = VTt and v = VTu. Due to the eigen-decomposition, under this new coordinate
system we have

Bl -~ ={ 0 157

19



which means that {si,ss,...,s,} are independent. Thus, the multivariate normal
distribution under the new coordinate system is

o - o [ )

i=1"1 =1

1 1 T3 —2 -2 -2 ]
= exp |=(s —v) diag(o, “,05°,...,0,°)(s — v
e O [ ) st (s =)
1

= ORI exp %(t — )T VATV ,u)]
B (27r)”1 det(C) T %@ e - M] =Pl

Exercise 4.25 If the random variables are independently distributed, show that

Clti,t;) = 070y

Solution: If the random variables are independently distributed, the covariance of any
pair (t;,t;) is zero if ¢ # j. This is because that

E((ti — pa)(t; — 1)) = E(tity) — E(t:) E(t;).

If ti,tj are independent, E(tzt]) = E(tz)E(tj> and thus E((tz - /L,)(t] - /1,])) =0. If
i=J, B((ti — )ty — ) = of

Exercise 4.26 Show that E(T;T};) = u* + 024,
Solution: If i # j, since T; and T} are independent, E(T;T;) = E(T;)E(T;) = p*.
£ = j, 0 = B(T?) — BX(T) = E(T?) — %, thus E(T?) = 0% + 1.

Exercise 4.27 Let f(z) = exp(—sz?) for fixed s > 0 and all z. Verify that f()\) =
\/7/sexp(—A?/4s). Hint: By differentiating under the integral sign and integration
by parts, establish that

df(\ Az ; 2
% = =2 f(), 50 f(A) = Cexp(~X/45)

for some constant C'. To compute C, note that

2 00
{/ e % dx} / / 2+3’2)dxdy = / d@/ e~ rdr
- 0 0

Solution: Since



then we have

df()‘> _ > —sx? —idx
I —/_ —ze e dx

o0

_i Csz?_idz _i > —(sx?+ilz) __iA
~ 2" z=—0c0 28 _Ooe de = 23f<)\)'
Hence, .
fO) = Cem e,
As
2d :/ —2$$2d — i
| P = [ ertan = [T
and

/ |FOV)]2dA = C? / e N2\ = 02/ 2rs,

[e.e] — 00

according to the Plancherel identity

2n [ U)o = [ IF0Pax

—00 [e.e]

f) = \ﬁ/

Exercise 4.28 Let g : R — R. Find a function H such that for all z,

%27 / " g(t)dt = (H x g)(2).

(H is called the Heaviside function)

we have C = \/§ . Hence

Solution:
(H * g)(x) = / Hla = g(t)dt - %2_7 / st

L7 t>0
H(t):{(\)/ﬂ t<0

so H could be

Exercise 4.29 Let f,g : R — R. Let [’ exist. Assuming the convergence of the relevant
integrals below, show that

(f*9)(x) = f'(x)* g(x).
Solution:

Frofa) = [ (- talae= [ 1o =90t = 1) g(o)

[e.9]
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Exercise 4.30 For a € R, let

Compute f, * fp for a,b € R. Deduce that

z fo(z)
N

(fa* fa)(x) =

Does f, * (1 — fp) exist? For a € R, let

0 {0 t<0
Jalt) == exp(—at), t>0.

Compute g, * gp.

Solution:

T < a-+b.

/ e — 1) f,(t)dt _{a:—(a—i—b) r>a+b

Thus
z, >0

Gar £ ={ 67 220
. Since 1 — f,(t) = f_p(—t), then

(fax (1= fo))( / falz — ) fyp(—t)dt = /_ min(b’xia)dt.

[e.9]

}—mn@>

Hence, f, * (1 — f,) does not exist.

fOx e—(atb)t g — _l_expi;f—(ba—’_b)x)’ x>0

0, x < 0.

(9o * go)(2) = /OO Ga( — t)gp(t)dt = {

—00

Exercise 4.31 Fourier transforms are useful in “deconvolution” or solving “convolution
integral equations.” Suppose that we are given functions g, h and are given that

fxg=nh

Over task is to find f in terms of g, h.

(i) Show that
Flf1 = Flhl/Flgl

and hence, if we can find a function k such that
FIn]/Flg] = Flk]

then f = k.
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(ii) As an example, suppose that

frexp(—t?/2) = (1/2)texp(—t*/4).

Solution: (i) If f * g = h, then we have F[f] - F|g] = F[h]. Thus, F[f] = F[h]/F|g].

(i)
Flf xexp(=t?/2)] = F[f] - Flexp(—1*/2)] = F[(1/2)t exp(—t>/4)],
thus

Flf]- e N2 = ivore™
= F[f] = iv2xe /2
=f= V2te 12,

Exercise 4.32 (i) The Laplace transform of a function f : [0; 00) — R is defined as

L) = [ F@) exp(-ptd
0
whenever the right-hand side makes sense. Show formally, that if we set

g9(z) ::{ flx), ©=0

0, z <0

then

LIf)(p) = V2r Flg)(~ip).
(ii) Let h: R — R and define:

| M=), >0
h+($)"{0, z <0

and

| h(=x), >0
h-(z) ‘_{ 0, z<0

Show that h(z) = hy(z) + h.(x) and express F|h| in terms of L[h,]| and L[h_].

Solution: (i)
) = / " Ft)emdt

:/ g(t)e_i(_ip)tdt
= §(—ip) = V2r Flg](—ip).
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/ —wc)\dx
0

]( iA) + L[hy](iN)).

foil- w
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Solutions to Chapter 5

Exercise 5.1 Why is the row of 1’s needed in the sample matrix for example (5.2)7

Solution: The row of 1’s is particularly helpful for the Oth sample whose 2nd ~ mth
rows are [0 0 ... 0], to distinguish it from the sample of no input signal, as well as
keep all n samples the same length m.

Exercise 5.2 Using the method of expression (5.2) design a sample matrix to detect a
1-sparse signal of length n = 16. Apply your matrix to a signal with a spike xg = —2.

Solution: The & matrix is

l1111111111111111
010101010101010°1
00110011001 10O01T1
0000111100001 11T1
0ooooo0oo00011111111

The sample for zg = —2is [-2 —2 0 0 —2|T.

Exercise 5.3 Show that even though ¥, is not a vector space, it can be expressed as the
set—theoretical union of subspaces Xr, = {x : supp(z) C Ty} where T}, runs over all
k-element subsets of the integers {1,2,...,n}, i.e.

Yk = Upn X,
Solution: In the view of set, which considers the n elements of a vector outside the
vector context, ¥y defined in (5.3) is essentially interpreted by ) = Up, X1, .
Exercise 5.4 Verify that the matrix ®7.®p is self-adjoint

Solution:
(P7:P7)" = O(P7)" = 7 Pr

Exercise 5.5 In the proof of Theorem 5.4 show in detail why ®(—hg.) = ®(hg) = ©.

Solution: If hg # O, since Yo, N N(P) = {O} and apparently hg € Yo, then
hs g N((I)) and thereby @(—hsc) = @(hs) 7£ O.

Exercise 5.6 In the proof of Theorem 5.4 show why the ¢; norm rather than some other ¢,
norm is essential.

Solution: Because in the proof of Theorem 5.4 we used the result of the Definition
5.3, which is based on ¢; norm.



Exercise 5.7 Show that if ® satisfies the null space property of order £k then it also satisfies
the null space property for orders 1,2,...,k — 1.

Solution: Since ¥op C Xo(p41) for any integer 1 < p < [n/2], then ¥y, NN (®) = {O}
is valid for any 1 < p < k —1if 35, N N(®) = {O} is valid, i.e. @ satisfies the null
space property of order k.

Exercise 5.8 We order the components of z € C™ in terms of the magnitude of the absolute

value, so that

Show that oy (x) = >0, [7i;], i.e., ox(2) is the sum of the absolute values of the

n — k smallest components of z. Show that

Argmin inf ||z — z||; = 2"
ZEX L

where x* has index set T = {iy,4s,...,4}. Thus, z¥ is the closest k-sparse approxi-
mation of x with respect to the ¢; norm.

Solution: If z € ¥, we denote the k indices with nonzero values in z by S, and the
n — k indices with zero values in z by 5S¢ thus

or(x) = mf |z — z|[; = inf Z |z; — 2]

zZ€EX ZEX ~
= ing (Z |xi—zi|+2|xi—0|> (let z; = x; for i € S)
*€=k \ies iese
= inf > il
iese

Hence, choosing S° to be the indices where the elements have the smallest absolute
value can result in the infimum of oy(z). Meanwhile, the z results in the infimum of
ok (x) have the form of

zi;, =x; for j=1,... kand z;; =0for j=k+1,...,n

Exercise 5.9 If
r=(3,-2,6,0,3,—1,2,-5) € C,

find 2% and oy(x) for k= 1,2,...,7.

Solution: z! = (0,0,6,0,0,0,0,0), o(x) = 16;
2:(0060000—5),02(x):11;
— (3,0,6,0,0,0,0,-5) o (00603,0,0,—5)03(x):8;
— (3,0,6,0,3,0,0,-5), 04(z) =
5 = (3,-2,6,0,3,0,0, 5)or(306030,2, —5) o5(x) = 3:
=(3,-2,6,0,3,0,2,-5), o(x) = 1;
—(3,-2,6,0,3,~1,2, -5), 07(z) = 0;
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Exercise 5.10 Show that if ® satisfies the null space property of order k, Definition 5.3,
then there exists a p € (0,1) such that ® satisfies the null space property of order k
with constant p.

Solution: If ¢ satisfies the null space property of order k, Definition 5.3, then for
every index set S with #(S) = k we have

[hslly < [|hselly, ¥V heN(®),h#6,

then we have
sl < pllhsellr, ¥V h e N(@),h#6,

where p € (0,1). For any index set T'C S, let R =T — S. then

sl = [[hrlly + kel < pllhse|lr = p(l|hrells — [[hr]l1)-

Hence
Azl < pllhrell — (14 p)||hrllL < pllhge

1-
Exercise 5.11 Give the details of the derivation of inequalities (5.18).

Solution: Any k-sparse x can be decomposed as the linear combination of the eigen-
vectors vy, va, ..., v, of 5Py, as

T = a1V + QoVs + -+ + UpQy,

where r < k and vy, vg, ..., v, are orthonormal,corresponding to the eigenvalues Apax(7') =
>\1 Z )\2 Z s Z )\r = )\mm(T) > 0 of (I);(I)T Thus,

[zll5 = las* + [aol® + - - - + |a,[?,
and we have
H(I)TxH% = .T*(I);(I)T.CE = )\1|a1]2 + )\2‘(12’2 + -4 )\T|CLT‘2.

Apparently,
Amin(T)[[2]13 < [[@725 < Amax (T) |23

Since Amin < Amin(7) and Apax > Amax (1) for over all index sets 7" with < k indices,
then
)‘minumug < H(I)JEH% < )‘maXHxH%

Exercise 5.12 Show that (1) hy, € X, (2) by, - hg, = 0 for £ # ¢ and (3)
h=> hr,
=0

Solution: (1) By definition, 7,¢ = 0,1,...,a — 1 are k-index sets and T, is r-index
set where r < k. Therefore, hy, € Xy.

(2) Since Ty and T} are disjoint sets as £ # ¢, then Ty - Ty = 0.
(3) By definition, h = Y",_, hr,



Exercise 5.13 Verify the details of the proof of Lemma 5.10.

Solution: Since
21 = 0g) < [|[@(z+ 213 < 2(1 + 0),

2(1 = dar,) < [[@(z — 2')lIz < 2(1 + dar),

then

2(1 = dox) —2(1 + 69) 1 2(1 4 o) — 2(1 — day.)

< 2oz + )3 = (= = 2)|l2) < ,
4 4 4
namely
1
=0 < 2(12(z + 25 = (2 = 2)[5) < dan.
Therefore,
(@2, D2)| < 0o,

for ||z||2 = ||Z/||2 = 1. By renormalizing, we have

(P, D2)| < boge[|]l2]l "]

Exercise 5.14 If d5; = 1/4 for some k and the sample matrix @, verify from Theorem 5.13
that the estimate ||Z — z||; <5 : 5673|lz — 2¥||; holds for the approximation of a signal
x by a k-sparse signal 2.

Solution: Can not find Theorem 5.13.

Exercise 5.15 Show that even though RIP implies the null space property, the converse is
false. Hint: Given an m x n sample matrix ® let = = AP be a new sample matrix,
where A is an invertible m x m matrix. If ® satisfies the null space property, then so
does =. However, if ® satisfies RIP we can choose A so that = violates RIP.

Solution: Suppose that a sample matrix ® satisfies RIP, and thereby it is implied
to satisfy the null space property. A is an invertible matrix and = = A®. It is clear
that N(®) = N(A®), thus = also satisfies the null space property. @ satisfying RIP
indicates that

[2(2)[13 < (1 + o) |l3,

for x € ¥}, with d; < 1, which implies that
12 (2)[I5 < 2[5,

if ® satisfies RIP. For arbitrary xyp € ), and ||zg|ls = 1, let o = ||®(x0)||3. Then, we
can form A as a diagonal matrix with all diagonal entries to be /3 where 3 > 2/a.
Hence

1Z20l3 = |ADzoll = Ba > 2,

which means that = violates RIP. Therefore, we can have a sample matrix = which
satisfies the null space property but violates RIP.
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Exercise 5.16 Verify the inequality (5.39) via the following elementary argument.

1. Using upper and lower Darboux sums for fln In xdx, establish the inequality
n—1 n n
Zlnj < / Inxdr < Zlnj.
j=1 ! j=2

2. Show that

3. Verify that

Solution: 1. Since 1
J
lnjg/ Inzdr <In(j + 1),
J

for 7 > 1. Hence
n—1 n—1 G+1 n n
ZlanZ/ lnxdx:/ lnxdxﬁZlnj.
j=1 j=1"J ! =2

2. Since

" n
Inzder =nln | — 1
/1 nrar =n n<e>—|— ,
and from 1. we have

n—1 n n
exp (Z lnj) < exp (/ lnxdx) < exp (Zlnj),
1

j=1 =2
thus -~
_ | < _ < nl
(n—1) e(e) <n
3. Because |
(nﬁ'@':n (n—1)---- (n—k+1) <nk,
and from 2. we have
1 1/7e\k
Ll
k! e\k
thus
e = ()
Elln—Fk)! — kEl —e\EkE/ = \k



Exercise 5.17 Verify the identity (5.43).

Solution:
DD Ti=>_2 . 1ok
i=1 j=1 i=1 j=1 k=1
-3y (3ot
i=1 k=1 j=1
DHT
i=1 k=1

Exercise 5.18 Show that E(HCI)ngg) = fooo 7p(7T)dT = 1 by evaluating the integral explic-
itly.

Solution: Let x = m7/2, then

00
|
0

3
©

e

|

3

3

o

IS

\‘

I
Yol

Sl I Few

I I
N TN

Hence,

/OOO rp(r)dr = 1.

Exercise 5.19 Verify the right-hand inequality in (5.46) by showing that the maximum
value of the function f(€) = (1 + ¢€)exp(—e + €2/2 — €3/3) on the interval 0 < € is 1.

Solution: Since
f'(e) = —2” exp(—e + €/2 — €/3),
f'(e) <0 for e > 0. Hence, fnax appears at f(e =0) =1 for € > 0. Therefore,

—e m/2
m/2 _ [6 (1 + 6)]
f (E) - e—m(e2/4—63/6) S 17

and thereby , L
[6—6(1 + 6)}7”/ < e—m(e /4—e /6)

Exercise 5.20 Verify the right-hand inequality in (5.47) by showing that g(e¢) = (1 —
€)ete/2=¢/3 < 1 for 0 < e < 1.

Solution: since
g'(€) = (x — 2)z”exp(e + €2/2 — €°/3),
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g'(€) <0 for 0 < e < 1. Hence, gmax appears at g(e = 0) = 1 for 0 < e < 1. Therefore,

€ m/2
mizgy _ (€L —€)]
g (E) - e—m(62/4—€3/6) S 17

and thereby
[66(1 o 6)]m/2 < efm(e2/4763/6).

Exercise 5.21 Using Lemmas 5.19, 5.20 and the mean value theorem, show that for the

uniform probability distribution p; the “worst case” is w = (1,...,1)/y/n.

Solution: Lemma 5.19 shows that the “worst case” must occur for all z; > 0. Lemma
5.20 shows that when all z; > 0, the “worst case” must occur for § = 7/4, viz., any
two entries of x must equal. Therefore, the “worst case” is z = w = (1,...,1)/y/n.

Exercise 5.22 Demonstrate the roughly logarithmic dependence of required sample size on

n for fixed k by verifying that if n = 10'° k = 6,m = 22000 then the estimate (5.64)
guarantees that the method will work with a probability of failure less than 6 x 10722,
Thus squaring n requires only that m be doubled for success.

Solution: According to Theorem 5.17, the method will work with a probability of
failure less than e, where

) k n 12 In2
wo(y) e () e (5)) 50

in which 6 ~ 0.4142 and cy(€) = €2/4 — €3/6. Thus ¢z ~ 0.0022293 and then e~ ~
5.0143 x 10722 < 6 x 10722,

Exercise 5.23 Work out explicitly the action of the Vandermonde coder/decoder Example

5.2 for (a) k=1, and (b) k = 2.

Solution: (a) for k=1,

Thus, any 2k x 2k submatrix is

(I)sub:(l 1)7
Qi  Qj

where 1 < i # j <n, and Det(®gu,) = a; —a; # 0.

(b) for k = 2,
1 1 ... 1
| a1 ag anp,
=l a2 .. @



Thus, any 2k x 2k submatrix is

1 1 1 1
P — A, Aky Qg Qfy
— &2 CL2 a2 aQ )
CLk1 CLkQ ak3 ak4

where 1 < k; # k; <n for,j = 1,2,3,4. Thus, Det(Psu,) = £ [[,(ar, — ax;) # 0.

Exercise 5.24 (a) Show that the minimization problems (5.7) and (5.8) are equivalent. (b)
Show that the minimization problems (5.9) and (5.10) are equivalent.

Solution: (a) v € F(y) & bz =y <y =r® .z for k=1,...,m. And

n n
Argmin,||z||; < Argmin, Z |z;| < Argmin, Zuj for —u; <z; <w.
j=1 Jj=1

(b)

Argmin,, Z ly; — r@ . x| < Argmin, Z w; for —w; <y —r9 .z <.
i=1 i=1

Exercise 5.25 Show that the /., minimization problems analogous to (5.7) and (5.9) can
be expressed as problems in linear programming.

Solution: The linear programming problem for the /., analogous problem of (5.7) is

mint, such that gy, = rk) s, —t<uz; <t.

The linear programming problem for the ¢, analogous problem of (5.9) is

mint, such that —1t¢ <y, — r g <t.

Exercise 5.26 Let ® be a sample matrix with identical columns ® = (c,¢,...,c) where
llc|]2 = 1. Show that d; = 0, so this matrix does not satisfy RIP.

Solution: If x is 1-sparse, then || ®z||% = ||z||3||c||5 = ||z]|3. Thus, the satisfied §; for
(1 =a)lz]z < lPx; < (1+ )=,
is 01 = 0. Therefore, this matrix does not satisfy RIP.

Exercise 5.27 Use the eigenvalue property (5.18) to show that for any sample matrix ¢ it
is not possible for 6, = 0 if k > 2.

Solution: If §; = 0 for k > 2, then we have A\, = Apax = 1, which means any ®5.®p
is an identity matrix, namely, the columns of ®; are orthonormal, over all index set T’
with < k indices where k > 2.



However, for any & € C"™*" with m < n, we can always find two columns in ® which are
not orthogonal, then we can form a submatrix ®; that containing such non-orthogonal
columns, and obtain an invertible ®%®, # I, for which it has Apin(7) < Amax(T)
strictly. Hence, we always have Apni, < Amax over all index set T' with < £ indices
where k£ > 2, and thereby §, > 0 for k > 2.

Exercise 5.28 Use the m x n sample matrix with constant elements ®;; = 1/y/m and k-
sparse signals x such that ; = 1 for « € T' to show that this sample matrix is not RIP

for k > 2.

Solution: If z is k-sparse and has exact k non-zero entries, then ||z]|3 = k and
|®z||3 = k*. Apparently, ||®z||? > 2||x||3 if £ > 2, which violates the RIP condition
|®z||2 < (1+ 6)||z||3 for & < 1.

Exercise 5.29 Derive (5.53).

Solution: Since

( ) —00 27'['6 27T 0 €

Let x = mt?/2, then t = \/2z/m, dt = dz+\/1/2mz. Hence,

1 o ok
E(t**) =2,/ 22\ / - / —kxk_%e_”dx
TV 2m J, m
ok

2 )

ok (2k)!
T ombym ARk VT
(2k)!
N k!(2m)k
Because (2h)!
k;!Qk. =(2k—-1II>1,
thus
(2k)! N

El(2m)*k — mk
Exercise 5.30 Verify the right-hand inequality in (5.58).

Solution: Since u = me(l +¢€)/2,

3u?
u(l—e) | _ % 0%
‘ [ m T 2m?

] = emU=D2T /2 — /8 4+ 363 /4 + 3¢ /8]



Thus,

66(1—62)/2[1 —€/2 — €%/8 + 363 /4 + 3¢* /8]
f(E) = e—(€2/4—e3/6)

—_ e€/2+62/47253/3 |:1 o 6/2 - 62/8+3€3/4+3€4/8].

Actually, we have —5.66922 x 1078 < f(¢) — 1 < 0 for 0 < e < 0.0294155, which let
the inequality

< €7m<€2/47€3/6)

— )

to be satisfied in a very weak sense.

Exercise 5.31 Verify the inequality (5.62).

Solution: For ¢ =0,1,...,57—1, 7=1,2,..., we have

L (2=2) [y 2\ _4i2i—2-20 4 DR+
A 2W+1) ~ 2.25(2j — 1)

(2) — 20— 1)(20 + 1)

2j — 1
mn

m+n—1

where m = 2j — 20 — 1,n = 20 + 1. Apparently, if m +n — 1 = k, then (mn)nm = k
when m =k,n=1or m = 1,n = k. Hence,

(25 —2 2j
49(j2£ )22(21211)'

Exercise 5.32 Verify the inequality (5.63).

Solution: Let

o (2R)! 3k B (2k)!
Jk) = k!(2m)k/(2k; +1)ymk  El(2k + 1)6F
f(z) > 1 when k > 6. Hence,

EN(O,\/%)(IL/%) > Em(t%)a

it k > 6.
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Solutions to Chapter 6

Exercise 6.1 Use the theorems above to show the following:
(i) If x = {ka*} then X|z] az

= a7
3

(ii) If # = {ka**} then X[z] = 2=

(z=a)*

Solution:
(1) X[z] = > oy kabzF = —20(220:0 akz*k)/(?z = —z@(ﬁ)/f)z = —(Zfz)g.
(i) X[e] = a~* S22 kabe ™ = ™[ 25] = i

Exercise 6.2 Verify Theorem 6.4.

Solution: (i)

B o B o B B oo B B 1
X =Y apz =) mpz =2ty a0 = ;X[Z]-
k=0 k=l k=l

(i

00 00 0o -1 -1
x® [2] = Z ZrHl =k — (Z $k+l2—(k+l)> — 5l (Z 2k Z sz—j> — (X[z] _ Z sz—j>
k=0 k=0 k=0 §=0 §=0
Exercise 6.3 Let x5, = a*, k > 0,a € R. Recalling that
z
Z|{d*}] =
o] =
show that )
x(=2) [2] = ———
z(z —a)
and that . 5
X(3)[z] _Z (a/2)
l—a/z
Solution:
z 1




Exercise 6.4 Consider the space of 2N-tuples f' = (f'[0],..., f/[2N —1]). Let u = e=27/2N,
define the appropriate inner product (f’, ¢')an for this space and verify that the vectors
e® = (eW'0],...,(e® 2N —1],£ = 0,...,2N — 1, form an ON basis for the space,
where e'[n] = p=*".

Solution: The inner product (f’, ¢')an is defined as

2N—-1

(Fod)on = 53 O S 1olg'Tl

Since e’ [n] = p=" = e27/2N et 2N = M and according to Lemma 6.14 and Lemma
6.15, we conclude that e = (e®'[0],..., (e®'[2N —1],£=0,...,2N —1, form an ON
basis for the space.

Exercise 6.5 1. Show that a 2N-tuple f’ satisfies the relation f'[n| = f'[2N —n — 1] for all
integers n if and only if f' = Rf, (6.10), for some N-tuple f.

2. Show that f’ = Rf for f an N-tuple if and only if f’ is a linear combination of
2N-tuples E®) k' =0,1,...,N — 1 where

1 ’ !
_(M—waﬂohd+lﬁmehm[m>::aﬁ{%4n+1/mk}

EW[n] = 5

andn =0,1,...,2N — 1. Recall that e(="'[n] = e@N=F)'[n].

Solution: 1. If a 2N-tuple f’ satisfies the relation f'[n] = f'[2N —n—1] for all integers
n, let f, fln] = f'[N +n],n=0,...,N —1 to be an N-tuple, then we have f' = Rf.
Conversely, if f is an N-tuple and f' = Rf, then we have f'[n] = f/[2N —n — 1] for
n=0,. . 2N —1.

2. Since
EWDN—n—H:aﬂ%@N—n—1+U®M
— cos[2m — %(n +1/2)k]
%(n +1/2)k]
= EW[n],

= cos|

then if f’ is a linear combination of E*) we have f'[n] = f/[2N —n — 1]. Conversely,

let EE% = (E®™[0],..., E®[N — 1]) be the N-tuple consisted of the first N entries of



the 2N-tuple of E® . Since e®’ |k =1,...,2N — 1 form an ON basis, then

(k) n(h) _ k h
< Ejp, By >y =< EW B >,y
1 2N—-1 1
= o Z(/fk/ze(k) [n] + (/22N -0 [n]) (Iuh/Ze(Zth) ] + ph/2e® M)
n=0
1 2N —
=N Z —(RHRD 26K 1] e M) ]
K=tk =th n=0
_ i ﬂ—<k'+h’>/2 <o) Y S
==+k,h'==xh

Fork,h=0,...,N=1,if k £ h, < B}, B{})) >x=0andif k = h, < E{}) B} >y#0.

Thus, Elljé, k=0,..., N—1form an orthogonal basis, and any f is a linear combination
of E™) and therefore any f' = Rf is a linear combination of E®*)

1/2

Exercise 6.6 Verify the orthogonality relations

L ifth=k#£0
<E® EMW s,v={1 ifh=k=0
0 ifh#k

Solution: According to the result of Exercise 6.5, if k # h, < e e) >,y=0=<
E® EM >on=0If k = h, < E®W,E® >oy= 13 pewn i ® T2 50 when
k=h=0 < E® EM >,y=1; when k = h # 0, p=FF/2 < ¢® ®) >, =1 and
pEEER)/2 < o) o(=R) 50 v =0, thus < E®) EW >,0=1/2.

Exercise 6.7 Using the results of the preceding exercises and the fact that f[n] = f[N + n]
for 0 < n < N — 1, establish the discrete cosine transform and its inverse:

FIk] = wlk) 3 fln] cos [%(n+1/2)k], k=0,...,N—1,
Nzlw COS[%(nH/?)k], n=0,...,N—1,

k=0
where w[0] = 1/v/N and w[k] = 1/2/N for 1 <k < N — 1.

Solution: We assume that the N-tuple {f[n|} is given and the N-tuple {F[k]|} is
defined by the discrete cosine transform. Since

cos {%(wr %)k] — —cos {%(n—{—%)@]\f—k)] , k=0,...N—1,



and cos [Z(n+ 1)N]| = 0, we can extend F to a 2N-tuple by defining F[2N — k] =
—Fk], w[2N — k] = w[k], for k = 0,... N, (so F|[N] = 0 and we assume w[N] # 0). In
analogy with Exercise 6.6, it is straightforward to derive the orthogonality relation

2;22;1 cos [%(n + %)k} cos [%(m T %)k} P
Thus .
2 e 94 -
]::f[”] 2;101 cos {%(er %)k} cos [%(nju 5)4 = N f[m],
pom = 3 it o[ ] = gy -2
= JZZOIW[k]F[k] cos {%(m + %)kl L om=0,...,N—1,

the desired inverse discrete cosine transform.

Exercise 6.8 Find the Z transforms of the following sequences:
(1) {(1/4)*}5°.
(i) {(=70)*}5°.
(iii) {8(—74)" +4(1/4)"}¢°.
(iv) {Bk}r.
(v) {k23°}5°.
(vi) {2F/k!}ee.
(vil) {z;}5° where

(viii) {cos(k0)}g°

Solution: For z = {a*}°, X[z] = z/(z — a), thus
() X[2] = /(= — 1/4);

(i) X[z] = z/(z + Ti);

(iii) X[z] = 82/(z + Ti) + 4z/(z — 1/4);

For z = {ka*}3°, X[z] = az/(z — a)?, thus

(iv) X[z] = 5z/(z = 1)*;



For v = {k?a"}§°, X[2] = —20[az/(» — a)’]/0z = az(z + a)/(z — a)®, thus
(v) X[2] = 3z(2 + 3)/(z — 3)3;

(vi) X[e] = %
(vil) X[z] = 2/(1 + 2°);
(viii) X[2] = 2(2 — cos0) /(1 + 2% — 2z cos ).

Exercise 6.9 Let x = {x;}5°, y, 2 be sequences. Show that
(i) xxy=y=xuz.
(ii) (ax +by)*z=a(z*xz)+bly*2),a,b € R.
Solution: (i) Let wy = z xy and wy = y * x, then W1[z] = X[2]Y[z] = Y[2]X][z] =
W3[z], by the uniqueness of Z transform we have x x y = y .

(ii) Similar to (i), proved by using the linearity and uniqueness of Z transform.

Exercise 6.10 Let x(t) be the signal defined on the integers ¢ and such that

1 ift=0,1
z(t) = { 0 otherwise.

*x(t).

1. Compute the convolution zo(t) =
2. Compute the convolution z3(t) = x * (z % x)(t) = x * x2(1).
) =

3. Evaluate the convolution z,(t) = x * x,,_1(t) for n = 2,3,... . Hint: Use Pascal’s
triangle relation for binomial coefficients.

Solution: 1. x9(0) = 1,29(1) = 2,25(2) = 1 and x»(t) = 0 for ¢ > 3.

2. 23(0) = 1,23(1) = 3,23(2) = 3,23(3) = 1 and x»(t) = 0 for ¢t > 4.

3. :vn(t):(]f:t,(n o for 0 <t <n, and @,(t) =0 fort > n+1.

Exercise 6.11 Find the inverse Z transforms of the the following:

23
Solution:

(1) Z271(5) = (i}



(i) 271 (557) = {(1/3)(=1/3)"}5".

(i) 271 (5257) = {(4/3)(=1/3)"}5".

(iv) 2 (z5) = {(=D""1(1/3)*ulk — 1]}0%.
(

(

v) Z7H(E) = {70 /3) ulk — 10350 + {(4/3)(=1/3)F )5
vi) 21 (Z(;_i)) = id(k — 1) — {12 = {—iFulk — 2]}5e.
(vii) Z*1<M> —{0,3,4,-5,-1,0,0,...}.

23
Exercise 6.12 Prove that if .
k=0

is a power series in 1/z and ¢ is a positive integer, then the inverse Z transform of
27t X|z] is the sequence {z}_¢}&.

Solution: Since
oo
_g _ i
X[z E TRz = g Tz,
j=0

then
Z7 N2 X[2]) = {@h—e ulk — 0}

Exercise 6.13 Using partial fractions, find the inverse z transforms of the following func-
tions:

) (z— 1)(z 2)"

11) z272+1

2z+1

111) Z+1)(z 3)°

iv) 2z+1 -

V)TZH)

22272
vi) (CeE

(i
(
(
(
(
(

Solution:
) ey = 75— o3 thus 271 (5 — o) = {(2F = Dulk — 1]}5° = {2° - 1},

in(m/3)z 23 00
<sm(7r/3) 22— 2Scos(7r/3)z+1> - {T Sln(k‘ﬂ'/3)}0 :

G 241 7 1 _ f(Tak—1 1 k—
(iii) (zH)J{Z??)) =T 4( , thus Z— ( s T 4(z+1)> ={({3 1+Z(_1> Dulk —
135

2

: z _ z z Z _J1 — 00
(iv) BT — 3@ T aeony thus 27 ( 3Tty T 3(z—1)> ={5(=2)7" + 315

. 2 o sin(7/3)z
(11) 22—241 sm(7r/3) 22—2cos(m/3)z+1" thus 2~




2

z _ 1 1 1 1 _
(v) o) — o tomn e thus Z7 ((z—l)2 T z2—z+1> {(k =

Dulk — 1]+ ulk — 1] — 23 sin(k‘ﬁ/i’))}o = {k — 2L sin(kr/3)}5.

v) i =~y t o oy thus 27 (—4(513) + 520 T o

{=33Fulk — 1] + 3(k — Dulk — 1] + Hulk — 1]}5° = {=3"/4 + 2k + 115
Exercise 6.14 Solve the following difference equations, using Z transform methods:

(1) 8Ykto — 6Yk+1 +uyr = 9,90 = 1,y1 = 3/2.

(i) Yrr2 = 2911 + 4 = 0,90, 41 = 1.

(ili) Yrr2 — SYrr1 — 6y = (1/2)%, 50 = 1,91 = 2.

(iv) 2Ukt2 — 3Ykt1 — 2yp = 6k + 1,50 = 1,41 = 2.

(V) Yro — 4y =3k — 5,90 = 1,51 = 0.

Solution:
(i) Since
82 Y[z] —1— §z_l —62(Y[z] - 1)+ Y[z] = 0
2 (2 —1)
we have 5 . q
z z z
V=T33 e
and thus
yp =3+ 2% —227F | > 0.
(ii) Since
Y[zl =1—27") —22(Y[z] = 1)+ Y[2] =0
we have
z
Y[z] = :
z—1
and thus
(iii) Since
2Y[2] - 52Y 2] — 6V 2] = —2
(22 — 1)’
we have 9 ) A
Yz = _
== T ae D T B
and thus 1) - .
—1 24~ 6
=2 — — |,k >0.
U ( 21 33 +77)’ =0
(iv) Since
22V —1—2:7) —Ba(Y[e] — 1) — 2V[e] = — 2 4 7

(z—1)2  2-1

):



we have

Y]s] = 122 22z 4z 7
5(z2—2) (=12 =z—-1 5(2z+1)
and thus 22k 3y
g =12k = S 4 S k20,
(v) Since ; -
z z
2Y[z] —4Y 2] = EEE
we have . . . .
R e s Sl P S G ¥
and thus

e =1—k+ (=2)"1 =21k >0.
Exercise 6.15 (i) Let a,b, ¢, d, e be real numbers. Consider the difference equation:

Y43 + bYpt2 + cypp1 + dyr = e.

(i) Let Y'[z] be as usual. Show that

ez
z—1

Y[z](az3 +b22 4z + d) = 23(ay0) + z2(ay1 + byo) + z(ays + by + cyo) +

Deduce that when yo = y; = 0,

z(ays) + 5
az3 + 022 +cz+d

Y] =
(iii) Use (i) - (ii) to solve the difference equation
Yk+3 + Wrao + 26yry1 + 24y, = 60
subject to yo = y1 = 0, y2 = 60.

Solution: Take Z transform to the difference equation of (i),

(74

az? (V2] —yo— 2" yr — 27 2y0) + 022 (Y[e] —yo — 2 yn) +e2(Y[z] — o) +dY 2] = —

After some rearrangement, we have

ez
z—1

V[2)(az® + b2® + ez + d) = 2°(ayo) + 2% (ays + byo) + z(ays + bys + cyo) +
By letting yo = y; = 0, we get

Vi = S
a4+ b2 4z +d

8



Fora=1,b=9,c=26,d = 24,e = 60, y, = 60, we have

60z + 2= 1 40 135 96

23—1—922—1—262—1—24:2—1 z—|—2+z+3_z+4'

Y] =
Therefore, by taking the inverse Z transform, we get

Ur = 1 + 5(_2>2+k + 3(_1)k23+2k o 5(—3)2+k,k Z 0.

Exercise 6.16 Let N = 6 and f[n] = n,n = 0,...,5. Compute the DFT F[n] explicitly
and verify the recovery of f from its transform

Solution:

N
F[k] — Z f[n]efikan/N’
n=0

thus, F[0] = 15, F[1] = —3 + 5.19615i, F[2] = —3 + 1.73205, F[3] = —3, F[4] =
—3 — 1.73205i, F[5] = —3 — 5.19615i. By using

1 N
f[n] — N Z F[k]ei27rkn/N7
k=0

we can recover f[n] = n.

Exercise 6.17 (i) Let N =4 and f[n] = a,,n =0, ...,3. Compute the DFT F[n] explicitly
and verify the recovery of f from its transform.
(ii) Let N =4 and f[n] = a,,n = 0,...,3. Compute the DCT F[n] explicitly and
verify the recovery of f from its transform.

Solution: (i) F[0] = ag+ a1 +az +as, F[1] = ag —ia; — ag +iag, F[2] = ag —ay +as —
as, F[3] = ag +ia; — ay — iag. 1t is easy to check the recovery process.

(ii) the DCT and inverse DCT are

FIk] = w[k] S fn] cos [%(n+1/2)k], k=0,...,N—1,
fn] = Z_w[k:]F[k} cos [%(n + 1/2)k;], n=0,... N—1,

where w[0] = 1/v/N and w[k] = 1/2/N for 1 <k < N — 1.
Thus, F[0] = 3(apt+ai+as+as), F[1] = \%(cos(w/é%)(ag —ag) + sin(7/8)(a; — az)), F[2] =
$(ap — a1 — as + ag), F[3] = %(cos(w/S)(ag —ay) +sin(7/8)(ap — as)).

We can check the inverse process directly.



Exercise 6.18 This problem investigates the use of the FFT in denoising. Let

f = exp(—t*/10) (sin(t) + 2 cos(5t) + 5t*) 0 < ¢ < 2.

Discretize f by setting fr, = f(2kn/256),k = 1,...,256. Suppose the signal has been
corrupted by noise, modeled by the addition of the vector

x=2xrand(1,2°8)—0.5

in MATLAB, i.e., by random addition of a number between —2 and 2 at each value of k,
so that the corrupted signal is ¢ = f + z. Use MATLAB’s fft command to compute g
for 0 < k < 255. (Note that g, = gx. Thus the low-frequency coecients are go, . . ., gm
and §os6_m, - - - , §256 for some small integer m). Filter out the high-frequency terms by
setting gx = 0 for m < k < 255 —m with m = 10. Then apply the inverse FF'T to these
filtered g5 to compute the filtered g,. Plot the results and compare with the original
unfiltered signal. Experiment with several different values of m.

The following sample MATLAB program is an implementation of the denoising proce-
dure in Exercise 6.18.

t=linspace (0,2%xpi,2"8);

x=2%(rand (1,2°8) —0.5);
f=exp(—t."2/10).x(sin(t)+2*xcos(b*xt)+5xt." 2);

g=1f+x;

m=10; % Filter parameter.

hatg=fft (g);

%1f $hatg$ is FFT of $g$, can filter out high frequency
%components from $hatg$ with command such as

denoisehatg=[hatg(1:m) zeros(1,2°8—2xm) hatg(2°8—m+1:2"8)];

figure

subplot (2,2 ,1)
plot(t,f) % The signal.
title (’The_signal’)
axis ([0 2xpi 0 20])
xlabel ('t )

ylabel (7f")

subplot (2,2 ,2)
plot(t,x) % The noise.
title (’The._noise’)
axis ([0 2xpi —2 2])
xlabel ('t )

ylabel ('x7)

subplot (2,2 ,3)

10



plot(t,g) % Signal plus noise.
title (’Signal_plus.noise’)
axis ([0 2xpi 0 20])
xlabel ('t )

ylabel(’g’)

subplot (2,2 ,4)

plot (t,ifft (denoisehatg)) % Denoised signal.
title (’Denoised.signal’)

axis ([0 2xpi 0 20])

xlabel ('t )
ylabel('g’)
Solution:
The signal The noise
20 - - 2 - -
l L
< 0
-1
-2 +
0 2 4 6
t t
Signal plus noise Denoised signal
20 ' ' 20 ' g
15 157
o 10 © 10
5 57
0 0
0 2 4 6 0 2 4 6
t t

Figure 1: Exercise 6.18

Exercise 6.19 Consider the signal
f(t) = exp(—t*/10) (sin(t) + 2 cos(2t) + sin(5t) + cos(8t) + 2t*) 0 < ¢ < 2.

11



Discretize f by setting fr = f(2kw/256),k = 1,...,256. Suppose the signal has been
corrupted by noise, modeled by the addition of the vector

x=2xrand (1,2°8) —0.5

Discretize f by setting fr, = f(2kmw/256),k = 1,...,256, as in Exercise 6.18. Thus the
information in f is given by prescribing 256 ordered numbers, one for each value of
k. The problem here is to compress the information in the signal f by expressing it
in terms of only 256¢ ordered numbers, where 0 < ¢ < 1 is the compression ratio.
This will involve throwing away some information about the original signal, but we
want to use the compressed data to reconstitute a facsimile of f that retains as much
information about f as possible. The strategy is to compute the FFT f of f and
compress the transformed signal by zeroing out the fraction 1 — ¢ of the terms fk
with smallest absolute value. Apply the inverse FFT to the compressed transformed
signal to get a compressed signal f,, . Plot the results and compare with the original
uncompressed signal. Experiment with several different values of ¢. A measure of the
information lost from the original signal is L2error= || f — f¢||2 = || f|l2, so one would
like to have ¢ as small as possible while at the same time keeping the L2 error as small
as possible. Experiment with ¢ and with other signals, and also use your inspection
of the graphs of the original and compressed signals to judge the effectiveness of the
compression.

The following sample MATLAB program is an implementation of the compression
procedure in Exercise 6.19.

% Input: time wvector t, signal vector f, compression rate c,
%(between 0 and 1)

t=linspace (0,2xpi,2"8);
f=exp(—t.72/10).%(sin(t)+2*xcos(2xt)+sin (5*t)+cos(8xt)+2xt."2);
c=.5;

hatf=fft ({);

% Input vector [ and ratio c: K= ¢ <=1.

% Output is wvector fc in which smallest

% 100c% of terms f_k, in absolute wvalue, are set

% equal to zero.

N=length(f); Nc=floor (Nxc);

ff=sort (abs(hatf));

cutoff=abs( ff (Nc+1));

hatfc=(abs(hatf)>=cutoff).xhatf;
fc=ifft (hatfc);
L2error=norm(f—fc ,2)/norm(f); %Relative L2 information loss

subplot (1,2 ,1)

plot (t,f) %Graph of f
title (’Original ’)
axis ([0 2xpi 0 9])

12



xlabel ('t ")
ylabel (7f)

subplot (1,2,2)

plot(t, fc,’'r’) % Graph of compression of f

title ([ "Compressed ,_.c=0.5,_err=" num2str(L2error)])
axis ([0 2xpi 0 9])

xlabel ('t )

ylabel('f_c )

Solution:

Original ° Compressed, ¢c=0.5, err=0.0067527

Figure 2: Exercise 6.19
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Solutions to Chapter 7

Exercise 7.1 Verify that each of these four examples y)(n) defines a time-independent,
causal, FIR filter, compute the associated impulse response vector h)(k) and deter-
mine the number of taps.

Solution: yM(n) =37 h(k)z(n—i), where h(k) = 0 except for h(1) = h(2) = 1/2.
h(k) is independent of n, thus it is time-independent. h(k) = 0 for k < 0, thus it is
causal. h(k) # 0 for only finite k = 0, 1, thus it is FIR. The number of taps is 2.
yP(n) =300 h(k)x(n — i), where h(k) = 0 except for h(0) = 1/2,h(1) = —1/2.
h(k) is independent of n, thus it is time-independent. h(k) = 0 for k£ < 0, thus it is
causal. h(k) # 0 for only finite & = 0, 1, thus it is FIR. The number of taps is 2.

Yy (n) =32 h(k)x(n —1i), where h(k) = 0 except for h(i) = 1/150,i = 0,.. ., 149.

k=—o00

h(k) is independent of n, thus it is time-independent. h(k) = 0 for & < 0, thus it is
causal. h(k) # 0 for only finite k = 0, ..., 149, thus it is FIR. The number of taps is
150.

yWH(n) = Y02 h(k)z(n — i), where h(k) = 0 except for h(0) = 149/150, h(i) =
—1/150,7 =1,...,149. h(k) is independent of n, thus it is time-independent. h(k) =0
for k < 0, thus it is causal. h(k) # 0 for only finite £ = 0, ..., 149, thus it is FIR. The
number of taps is 150.

Exercise 7.2 Suppose the only nonzero components of the input vector z and the impulse
response vector h are xg = 1,27 = 2 and hg = 1/4,hy = 1/2, hy = 1/4. Compute the
outputs vy, = ( * h),. Verify in the frequency domain that Y (w) = H(w)X (w).

Solution: yy = hoxg = 1/4,y1 = xoh1 +21ho = 1,y2 = xoho+x1hy = 5/4,y3 = x1hy =
1/2.

Y(w)=1/4+e™ +5e 2 /44 e )2,

Hw)=1/4+e /242w /4.

X(w)=1+2e™

It is apparent to see that Y (w) = H(w)X (w).

Exercise 7.3 Iterate the averaging filter H of Exercise 7.2 four times to get K = H*. What
is K(w) and what is the impulse response k,,?

Solution: K(w) = H*(w) = 1/256 + =% /32 4 Te™2¥ /64 + Te 3" /32 4 3571 /128 +
Te5i /32 4 Te~0i /64 + e~ T /32 4 =8 /256,

ThUS, k’o = 1/256, ]{?1 = 1/32, ]{?2 = 7/64, k’g = 7/32,]{54 = 35/128, ]{?5 = 7/32, ]{36 =
7/64, ky = 1/32, ks = 1/256.



Exercise 7.4 Consider a filter with finite impulse response vector h. The problem is to
verify the convolution rule Y = HX in the special case that h; = 1 and all other
h, = 0. Thus
h=(..,0,001,0,...).
It will be accomplished in the following steps:
1. Whatisy=h*xxz=hx(...,z_1,29,21,...)7
2. What is H(w)?
3. Verify that Y y,e™ ™ agrees with H(w)X (w).

Solution: 1. y, = x5_1.

2. H(w) =e™™.

3. Y(w) = Y, zpe D9 and X(w) = >, mpe™*@. Thus, it is easy to see that
Y(w) = H(w)X (w).

Exercise 7.5 e Write down the infinite matrix (| 3) that executes the downsampling:
(l/ 3)1:71 = T3n-

e Write down the infinite matrix (1 3) that executes the upsampling:

0, otherwise

5, if 3 divides n

e Multiply the matrices (1 3)(J 3) and ({ 3)(1 3). Describe the output for each of
these product operations.

Solution:

100 0 00O
13)= 0001000
000 O0O0OO0T1

1 00

0 00

0 00

(13) = 010

0 00

000

0 01




—~

—

w

N~—

—

F

w

N—

Il
OO OO OO
O OO OO oo
O OO OO oo
O OO O OO
O OO OO OO
O OO OO OO
O OO oo oo

(13)(13) = L.
Exercise 7.6 Show that if z € ¢; then x € ¢5.

Solution: If z € /1, then

oo
Z |zk| < o0.

k=—oc0

Thus, we have

oo oo 2
Z |z |* < (Z |5Uk|> < 00,

k=—o00 k=—o00

which indicates z € #.

Exercise 7.7 Verify the property (7.4) for the Z transform of the composition of two FIR
filters.

Solution: Since the Z transform of y = ®x = h xy is Y[z] = H[2]X][z], and the Z
transform of w = Wy = kxy is W|z] = K[z]Y[z], thus W[z] = K[z]H[z]X|z], which is
the Z transform of w = ¥ (®x) =k * (h x x).

Exercise 7.8 For each of the operators R, L, ({ 2), (1 2), A, F, AIF determine which of the
properties of time invariance, causality and finite impulse response are satisfied.
Solution: R: time invariance, causality, finite impulse response.

L: time invariance, non-causality, finite impulse response.

(4 2): time invariance, non-causality, infinite impulse response.
(1 2): time invariance, non-causality, infinite impulse response.
ATF': time-dependent, non-causality, infinite impulse response.

Exercise 7.9 A direct approach to the convolution rule Y = HX. What is the coefficient
of 27" in (Z hkz*k) (Z xgz%)? Show that your answer agree with > hyz, .

Solution: The coefficient of 2™ in (3 hyz™%) (3 p27¢) is

a = Z thL’g = thxn_k
k

k+l=n



Exercise 7.10 Let H be a causal filter with six taps, i.e., only coefficients hg, hy, ..., hs
can be nonzero. We say that such a filter is anti-symmetric if the reflection of h
about its midpoint (5/2 in this case) takes h to its negative: hy = —hs_j. Can such an
antisymmetric filter ever be low pass? Either give an example or show that no example

exists.
Solution: No, it cannot be a low pass filter. Since hy = —hs_x, we have H(0) =
22:0 hy = 0.



Solutions to Chapter 8

Exercise 8.1 Show directly that PPx =1 on V.

Solution: Let ¢ € V'. Using (8.6), (8.7), (8.8) we have

PP*¢=P(/01¢(x1,y ) Z/¢n+w1,

o0

1
_ Z 627rznx2/ e—27rzny¢<x1’y)dy:¢($17x2)7
0

n=—oo

so PP*=T1on V'

Exercise 8.2 Using the results of Exercise 4.15, show that the Shannon-Whittaker sampling
procedure can be interpreted to define a tight frame. What is the frame bound?

Solution: Let the inner product be (f,g) = [~ f(t) (t)dt and f9(t) = 6(t — o), a
Dirac delta function. From Exercise 4.15 we have

117 = 5 210 7P

so {fW} is a tight frame with frame bound B/7.

Exercise 8.3 Using the definition (8.22) of T* show that if | T|| < K for some constant K
then ||T*|| < K. Hint: Choose f = T*¢.

Solution: Let f = T*¢, then

IT*¢]|* = (T*¢, T*¢)
=< & TTE >
< [I€]- 7T
< [l€]? - T,

thus
T¢I

which means
IT*)|* < | T - | T

Therefore, we have
[T < [|T]| < K.



Exercise 8.4 Verlfy that the requirement f t)dt = 0 ensure that C' is finite, where
C = [ |u( 2% in the Plancherel formula for continuous wavelets.
Solution: If C is finite, we must have

0 |, 2 € | .~ 2
/ [DVF 4 < 0 and / [PVE g < o,
RY o Al

—€

where € is an arbitrary positive real number and e — 07. If w(0) # 0, we can always
find positive real number a and b such that

/0’“’()‘2@ /0 dA—)ooad/’ "D / —d)\ — o0,
oA RY Al

Thus, w(0) = [ w(t)e ’Otdt [ w(t)dt must be zero to ensure C' to be finite. Here,
we only prove that f t)dt = 0 is the necessary condition for C' being finite.

Exercise 8.5 Consider the Haar mother wavelet

-1, 0<t<3
wit)=< 1, i1<t<1
0, otherwise.

Compute the explicit expression for the wavelet transform. Find the explicit integral
expression for C'. Can you determine its exact value?

Solution: The continuous wavelet transform is

b+|al /2 b+]al
Fy(a,b) = |a|~'/? (/b —f(t)dt + /b+| y f(t)dt)

1/2 1
— ‘ayl/Z (/ —f(au + b)du + f(au—l—b)du),
0

1/2
Since
00 ‘ 1/2 ‘ 1
w(A) = / w(t)e Mdt = / —e Mt + / e~ Mt
o 0 1/2
0= 2iem M2 4 e
N A
B _4sin2()\/4)(sin()\/2) +icos(A/2))
- : ,
we have 4()\/4)
N . - 16 sin
|w()\)|2 = w(\) xw(A) = e
Therefore o , .
o= [T 1B d)\—2/ msm—MdA—Zln2

2



Exercise 8.6 Show that the derivatives of the Gaussian distribution
1
\V2To

each satisfy the conditions for reconstruction with a single wavelet in the case a > 0,
provided the constant K, is chosen so that ||w(™]| = 1. In common use is the case
n = 2, the Mexican hat wavelet. Graph this wavelet to explain the name.

w® () = Kn%(}(t), G(t) =

exp(—t*/20%), n=1,2,...

Solution: Since
W ™(N) = K, (i\)" exp(—o?\?),

we have @™ (0) = 0 to satisfy the conditions for reconstruction with a single wavelet.

For n = 2,

W (1) = 22 (* — o) exp(—t?/20?).

- \V2rod
If [[w®]| = 1, we should have Ky = —(2/3)v/67'/40%/2. Let ¢ = 1, then we have

w® (t)

= ¥W1/4(1 — t*) exp(—t?/2).

The plot of w® () is shown in Figure 1, whose shape is similar to a Mexican hat.

Exercise 8.7 Show that the continuous wavelets w™ are insensitive to signals t* of order
k < n. Of course, polynomials are not square integrable on the real line. However, it
follows from this that w™ will filter out most of the polynomial portion (of order < n)
of a signal restricted to a finite interval.

Solution: Let’s prove it by induction. Obviously, [~ @™ (t)dt = [~ w™(t)dt = 0.
Assume that for certain n > 1, we have

F,(a,b) = |a]*/? /OO (at + b)k@™ (t)dt = 0, for 0 <k < n.
Thus,
Fpy1(a,b) = |a|*/? /OO (at + 0)Fo™ V()dt (1<k<n+1)
= |a|'/? /OO (at + b)’“d(w“‘)(t))

o0

= |a|'/? ((at + b)Fw™ (t)‘io — ak/_ (at + b)* o™ (t)dt).

[e.e]

Since @™ (t) has the form of P,(t)e /%" where P(t) is a n-th polynomial respected
to t, we always have (at + b)*w™ (t)‘ = 0 for the first part. Furthermore, [~ (at +

b)k=1w™ (t)dt = 0 is obtained by the assumption. Hence, we prove that F, ;1 x(a,b) = 0
for0<k<n+ 1.



w(t)

Figure 1: Exercise 8.6

Exercise 8.8 For students with access to the MATLAB wavelet toolbox. The MATLAB
function cwt computes F'(a,b), (called C,;, by MATLAB) for a specified discrete set
of values of a and for b ranging the length of the signal vector. Consider the signal
f(t) = e ¥/(sint + 2 cos 2t + sin(5t + cos 8t 4 2t22),0 < t < 27. Discretize the signal
into a 512 component vector and use the Mexican hat wavelet gau2 to compute the
continuous wavelet transform C,; for a taking integer values from 1 to 32 A simple
code that works is

t=linspace (0,2xpi,2"8);
f=exp(—t."2/10).x(sin(t)+2«xcos(2x*t)+sin(5xt)+cos(8*t)+2xt."2);
c=cwt(f,1:32, gau2’)

For color graphical output an appropriate command is
cc=cwt(f,1:32, 'gau2’, 'plot’)

This produces four colored graphs whose colors represent the magnitudes of the real
and the imaginary parts of C,;, the absolute value of C,; and the phase angle of
Cap, respectively, for the matrix of values (a,b). Repeat the analysis for the Haar



wavelet 'db1’ or "haar’ and for 'cgaud’. Taking Exercise 8.7 into account, what is your
interpretation of the information about the signal obtained from these graphs?

Solution: The above Matlab command can only work with the wavelet 'cgau3’ in
Matlab of newer versions. The output is shown in Figure 2. Those graphs indicate
that the signal has weak oscillation in high frequency regime (a — 1.0), but noticeable

oscillation in intermediate and low frequency regimes (a — 32.0).

Real part

Imaginary part

29.00 | 29.00 |
25.00 | 25.00
21.00 | 21.00 |
© ©
1] 1]
9 17.00 9 17.00
[0 [o]
O O
9 13.00 9 13.00
9.00 9.00 f
5.00 5.00 F
1.00 : : : : : 1.00
50 100 150 200 250 50 100 150 200 250
Time b Time b
Modulus
29.00 | 29.00
25.00 | 25.00
21.00 | 21.00
®© ©
%) %]
9 17.00 9 17.00
®© ®
(8] (8]
@ 13.00 9 13.00
9.00 9.00 f
5.00 5.00 |
1.00 1.00
50 100 150 200 250 50 100 150 200 250
Time b Time b

Figure 2: The output with ‘cgau3’ wavelet of Exercise 8.8.

Exercise 8.9 Show that the affine translations w(®%(¢) span Lo(R) where w(t) = G(t), the

Gaussian distribution.

Solution: If f(t) € Ly(R) and (f,w@?) = 0 for all @ > 0 and b € R. According to



Plancherel theorem, we have

/f WED (B)dt = /fw‘“’)

= /_OO af()\)e’(“‘”) P2\ = 0,

where the RHS is the inverse Fourier transform of af(\)e~(@?/2 respected to b.

Due to the umqueness of Fourier/inverse Fourier transform, we can conclude that
af(\)e~(@N?/2 = 0 and therefore f(A\) = 0. Consequently, f(¢) = 0, which means
w®?)(t) span LZ(R).

Exercise 8.10 Show that the set of affine translations of a complex Gaussian w )(t) span
Ly(R). Hint: We already know that the affine translations of the real Gaussian (8.45)
span Lo(R).

(a,b)
Solution: Similar to Exercise 8.9, if f(t) € Ly(R) and (f, (wfjn)> )=0foralla >0

and b € R. According to Plancherel theorem, we have

[ (o) = & [ oo a) o

00
1 [~ .

= af(N)e 7 @V 2\ d) = 0,

where the RHS is the inverse Fourier transform of a.f(X)e="“~*V)*/2(;X) respected to
b. Due to the uniqueness of Fourier/inverse Fourier transform, we can conclude that
af(N)e " @=aN*/2(;\)n = 0 and therefore f(A\) = 0. Consequently, f(t) = 0, which

(m)) (*?)
means (ww > (t) span Lo(R).

Exercise 8.11 This is a continuation of Exercise 8.5 on the Haar mother wavelet. Choosing
the lattice ag = 27, by = 1, for fixed integer j # 0, show that the discrete wavelets w™"
for m,n =0,£1,£2,... form an ON set in Ly(R). (In fact it is an ON basis.)

Solution: If the discrete wavelets w™" for m,n = 0, £1, 42, ... based on Haar mother
wavelet form an ON set in Ly(R), the Haar mother wavelet should be defined in the
internal (0, 1] as

1, l<t<1

wit)y=4 -1, 0<t<3
0, otherwise.
Thus,
. (n+1/2)2md . (n+1)2m 1 1
wwuwm:4rwﬂf/ duwrmﬂf/ dt=-+-=1
n2mi (n+1/2)2mi 2 2



1ol . . .
For m # m/ or n # n/, w™ and w™™ are either have non-overlapping domains of

definition, or the domain of definition of w™" (w™™') is completely encompassed in
either arm of the domain of definition of w™™ (w™"). Therefore,

Ion!
(wm",wm”> =0, form#m' orn#n'

Exercise 8.12 For lattice parameters ag = 2,0y = 1, choose wy = x[12) and w_ = x(—2,—1]-
Show that w, generates a tight frame for H™ with A = B = 1 and w_ generates a tight
frame for X~ with A = B = 1, so {w]",w™"} is a tight frame for L(R). (Indeed, one
can verify directly that w™ is an ON basis for Ly(R).)

Solution: For any integer m/ and any 1 < v < 2, we can have a w = v/(2"'27) > 0
which is ranged in (0, o], such that 1 < a™ 27w = 2™ 27w < 2, and it is obvious that
a™ 127w < 1 and @™ 127w > 2. Thus

Y [Fwiagw)’ = [ (ag2mw)|?

=...0+0+1+0+0...
=1

According to Lemma 8.21, {wT"} is a tight frame for H* with A = B = 1/by = 1.
Similarly, we can show that {w™"} is a tight frame for H~ with A = B = 1/by = 1.
Hence, {w7", w™"} is a tight frame for Ly(R).

Exercise 8.13 Let w be the function such that

0, fw<t
nx w—~ .
.F'UJ((U _ 1 S11 51)(2((1—1))7 lf g < w g a€
Vina | cos %v(&;ﬁ%)j if al < w < a2l
0, if w> a?l

where v(z) is defined as in (8.27). Show that Fw(w) is a tight frame for H™ with
A = B =1/blna. Furthermore, for w™ = w and w_ = w show that {w]"} is a tight
frame for Lo(R).

Solution: For any w > 0, there must be certain m’ such that ¢ < a™w < al. Let
W' = a™/, then

1 F— 1 F—
Z|fw(amw)|2=...0+0+—Sin2zv(£w g)) + COSQEU<W—CL£) +0+0...

— Ina 2 (a—1 Ina 2 \al(a—1)
~ Ina 2 \U(a—1) 2 \U(a—1)
B 1
" Ina’



According to Lemma 8.21, {w™"} is a tight frame for H™ with A = B = 1/blna.

For w_ = w, we have Fw_(w) = Fw(—w) = Fw(—w), which has the support in the
interval [—a®(,—/¢]. Thus, {w™"} is a tight frame for H~ with A = B = 1/blna.
Consequently, {w"} is a tight frame for Ly(R).

Exercise 8.14 Verify formulas (8.2), using the definitions (8.3).

Solution:

/ t|gterm2l (1) 2 dt :/ t|e* 2 g(t 4 21)|2dt

oo —0o0

= / tlg(t + m1)|2dt

::/iw—xmanﬁm
= [ rlatPar =i [ lgtopar
—ty — 1y

| el epds = [ wolF (g )] P

o0 —00

:/ w|e* TG (t — xy)Adt

—00
[e.9]

=/ (v + 2) 5(v) P

—00

=/umw%%m/|www
:’LU()—FZL‘Q

Exercise 8.15 Derive the inequality (8.5).

Solution: Since j(w) = §(27w) and ||g||* = [|9]|* = 5=|g]|* = 1, we have

/;Oo(t—to)2’g(t)‘2dt/oo(w_w0>2‘§(w)|2dw:/_Oo(t_to)2|g<t)’ dt/oo(w_wo)QQTI'lg(Qﬂ'w)l d

s o0 o0 gl J 1911
B <A 5 27[G(A)|* dA
= (D1y9) /_OO(% — wo) TG 2r

1 > g
— _— (D \ — 27wp)? d\
471'2( tog) /oo< 7T-WO) ||§||2
1 .
= R(Dtog)(DQWwog)'
The Heisenberg’s inequality ensures that
. 1
(Dtog)(DQWwog) > Z_l’



thus

/w@—mfwwfﬁ/muw—mfmwmmwz

e e 1672°
Exercise 8.16 Given the function

1, 0<t<1
g(t) = o(t) = { 0, otherwise,

i.e., the Haar scaling function, show that the set {g"™"} is an ON basis for Ly(R).
Here, m, n run over the integers. Thus ¢l*»*2! is overcomplete.

Solution: Since g™l (t) = €2 g(t + m), we have
(9.0 = [ 0 gt -+ m)g(t -+ )t
[—m,—m~+1]U[—m/,—m/+1]

If m=mand n=rn/, (g[mvn], g[m'v”/]) =1;

If m #m/, g(t +m)g(t +m’) = 0 and therefore (g™, g™ "1} = 0;
If m=m' and n #n/, (gm", g "l) = 01 p2mitin—n') gy — ().

Hence, the set {gI™"} is an ON basis for Ly(R).

Exercise 8.17 Verify expansion (8.19) for a frame.

Solution: According to the definition of T*, we have
(T, f) =< & Tf >= S &1 J0) = S 6(f9, 1) = (Z 619, f> .
J J J

Thus, T*E = 33, & f9).

Exercise 8.18 Show that the necessary and sufficient condition for a frame fM, ... f
in the finite-dimensional inner product space V, is that the N x M matrix 2, (8.21),
be of rank N. In particular we must have M > N.

(M)

Solution: The condition that {f)} be a frame is that there exist real numbers 0 <
A < B such that B B B
A¢tr¢ S ¢trQQ*¢ S B¢tr¢’

for all N-tuples ¢.

Let Ay > A3 > --- > Ay > 0 be the N eigenvalues of QQ*. Apparently, A < Ay and
B > \;. If such 0 < A < B exists, we have Ay > A > 0, which means rank(Q2Q*) = N
and therefore rank(Q2) = N.

Conversely, if rank(£2) = N, then we have rank(Q22*) = N and consequently Ay > 0.
Therefore, there exist real numbers A, B with 0 < A < Ay < A\; < B such that

Aq_strgb S QgtrQQ*QZS S qutr(rb’
for all N-tuples ¢, which means that { £} is a frame.

9



Exercise 8.19 Show that the necessary and sufficient condition for a frame fM, ... f()
in the finite-dimensional inner product space V), to be a Riesz basis is that M = N.

Solution: According to Exercise 8.18, the necessary and sufficient condition for a
frame M, ..., fM) in the finite-dimensional inner product space V), is that the N x M
matrix  be of rank N. In addition, to be a Riesz basis, fV, ..., f®) must be linearly
independent. Therefore, the necessary and sufficient condition for a frame ), ... fO)
to be a Riesz basis is rank(2) = N and M = N.

Exercise 8.20 Show that the N x M matrix defining the dual frame is (QQ*)~1Q.

Solution: According to the definition of dual frame {S™'fU)}, where S = T*T = QQ*,
it is obviously that the dual frame is (QQ*)~1€Q.

Exercise 8.21 Verify that \; = 0]2-, for j =1,..., N where the o; are the singular values of
the matrix €2, (8.21). Thus optimal values for A and B can be computed directly from
the singular value decomposition of §2.

Solution: Let UXV* = Q be the singular value decomposition of €2, where ¥ =

diag|oy, 09, ..., 0n]. Therefore, UN2U* = QO* is the eigenvalue decomposition of Q2§2*,

where ¥* = diag[o},03,...,0%] = diag[A1, Ay, ..., An]. Hence, \; = o3, for j =

1,...,N.

Exercise 8.22 Show that expansion (8.21) for a frame in the finite-dimensional real inner
product space Vy corresponds to the matrix identity ¢ = QQ*(QQ*) ¢

Solution: don’t know what exactly does the question mean.

Exercise 8.23 Find the matrix identity corresponding to the expansion (8.21) for a frame
in the finite-dimensional real inner product space Vy.

Solution: don’t know what exactly does the question mean.

Exercise 8.24 By translation in ¢ if necessary, assume that [~ tlwy(¢)]*dt = 0. Let

0
y|Fw_(y)|*dy.

by — / Y| Fuw, () dy, k. = /
0

Then w4 are centered about the origin in position space and about k4 in momentum
space. Show that

/ thol™ () Pdt = —b, i/ y| Ful? (£y)Pdy = a ke,
oo 0

so that wgf ) are centered about —b in time and a'ky in frequency.

10



Solution: Since w(@?)(t) = |a|7/?w(2), thus

oo a o t_b
| el opar= [t 0

[e.e]

= /OO (au+b) |wi(u)‘2adu

= a/oo u‘wi(u)]2du + b/oo ‘wi(u)]2du
=0.

Moreover, Fw(@® (y) = e=2™%|q|'/2 Fw(ay), thus
i/ ylFw (iy)IZdyzi/ ay|Fw(Fay)|*dy
0 0

:j:/ z| Fwg(£2)
0

= a_lki.

|2dz
a

Exercise 8.25 Show that if the support of w, is contained in an interval of length ¢ in
the time domain then the support of w}’ ) is contained in an interval of length |all.
Similarly, show that if the support of Fw, is contained in an interval of length L in
the frequency domain then the support of F wgf’b) is contained in an interval of length
la|7*L. This implies that the length and width of the “window” in time-frequency
space will be rescaled by @ and a~! but the area of the window will remain unchanged.

Solution: Since w®?(t) = |a|7?w (L) and Fw @ (y) = e 27|a|'/2 Fw(ay), it is
obvious that there intervals are rescaled by |a| and |a| ™!, respectively.

11



Solutions to Chapter 10

Exercise 10.1 For each of the Figures 10.1, 10.2, 10.3, determine the significance of the
horizontal and vertical scales

Solution: For Figure 10.1, 10.2 and 10.3, the horizontal scales can be mapped to
the support internal [0, 3], [0, 5] and [0, 7] for D4, Dg and Dg. The vertical scales are
adjusted according to the number of discretized points of the Daubechies wavelets in
the support internals, so that the norm of the vectors for the wavelets’ values is unit.

Exercise 10.2 Apply the cascade algorithm to the inner product vector of the ith iterate
of the cascade algorithm with the scaling function itself

%%z/m¢um@@—kMu

and derive, by the method leading to (10.1), the result

Solution:
i = [ o)d e syt = [ o+ 9d ey
=2 ol / P2t + 25 — 0)pD (2t — K)dt
k.0 -0
=> cwk/ Pt 4 25 — OV (t — k)dt
k.0 —o0
= Z Cﬁékbg;s)ff+k = Z C25+mém+jb§i)7
kL m,j
thus

bt = 1p = (| 2)CCH .

Exercise 10.3 The application of Theorem 10.1 to the Haar scaling function leads to an
identity for the sinc function. Derive it.

Solution: If ¢(t) is the Haar scaling function, then ¢(t) = e=*/?sinc (w/(2m)) and we
have the identity

a 2

Alw) = Z sinc (2i +n>

sin(w/2 + nr) [?
w/2+nm

If
=

n=—oo n=—oo




Exercise 10.4 The finite 7" matrix for the dilation equation associated with a prospective
family of wavelets has the form

1
SIEY
T=10 L 1 o 0
o o T
0 016 0 2 0
16
Designate the components of the low pass filter defining this matrix by co, ..., cy.

1. What is N in this case? Give a reason for your answer.

2. The vector ay = [ ¢(t)p(t — k)dt, for k = —2,—1,0,1,2 is an eigenvector of the
T matrix with eigenvalue 1. By looking at 7" can you tell if these wavelets are
ON?

3. The Jordan canonical form for 7" is

-

Il
OO OO -
O O o O
O Owikr O O
OO O O
== O O O

What are the eigenvalues of 717

4. Does the cascade algorithm converge in this case to give an Ls scaling function
¢(t)? Give a reason for your answer.

5. What polynomials P(t) can be expanded by the ¢(t — k) basis, with no error.
(This is equivalent to determining the value of p.) Give a reason for your answer.

Solution: [-1/16,0,9/16,1,9/16,0, —1/16] are the coefficients of the halfband filter

P[z] for the Daubechies wavelet D,. Thus, ¢q = 1:\/;, c = 3:\/‘/;, Cy = 34_\/5, c3 = 14_\/*/5.

1. The dimension of T"is 2N — 1 =5, so N = 3.

2. T.‘t[lesej wavelets are ON because for Plz] = —{c28+ %2+ 1+ 21 — 1273, Plz]+
Pl—z] =2.

3. The eigenvalues of T" are 1

11

1
;5,7 and g.

4. Yes, because T has all its eigenvalues |\| < 1 except for the simple eigenvalue
A=1.

5. Any polynomial with order p < 2 can be expanded by the ¢(t — k) basis with no
error, since N = 2p — 1 = 5 and therefore p = 2.



Solutions to Chapter 11

Exercise 11.1 Verify that the 2-spline scaling function ¢,(t) can be embedded in a 5/3
filter bank defined by

SO[z] = (1 +Z_1)2, HO[2] = (1 Jr2_1)2[—1 + 4271 — 277,

2 2

i.e. p = 2 This corresponds to Daubechies Dy (which would be 4/4). Work out the filter
coefficients for the analysis and synthesis filters. Show that the convergence criteria
are satisfied, so that this defines a family of biorthogonal wavelets.

Solution: The synthesis filter coefficient is sg = % = %, S9 = }1
The analysis filter coefficient is hy = _Zv hy = % hy = %, hs = %, hy = —}l.
Its halfband filter is PO[z] = SO]JHO[2] = =L+ 22+ 1+ 2271 — L2753, Thus
its finite 7" matrix is

0 —1—16 0 0 0

9 1
1 i 0 6 0
T=10 G 1 0 0
0 —3% 0 G 1
0 0 0 —35 0

and its eigenvalues are 1 which satisfies the convergence criteria of Theorem

10.2.

’2’4’8’

Exercise 11.2 Verify Lemma 11.14.
Solution: Since (1 M) means up sampling by M times, by definition we have

yx, if M divides k
I‘k e M .
0, otherwise

In frequency domain, as Y (w) = >, yre 7% we have X (w) Y, zpe ™ = 3 yre MM =

Y (Mw).
For the Z transform, as Y[z] = >, y2 ™", we have X[z] = Y, apzF =3, ypzMF =
Y [2M].
For u = ({ M)(T M)z, as
M—1 M-1 __omikn/M
1 . <Zk € )
- X[Z@ka/M an =0 Z—n’
k=0
where
M-1

o—2rikn/M _ { M, if M divides n

£ 0, otherwise

o

1



Therefore,

<

M

i

0

1 )
X[ZGka/M] _ Z kaZ—kM’
k

which is a subset of X|[z] only taking the n-th term when M divides n.

Exercise 11.3 Let x = (xg, 21, %2, x3) be a finite signal. Write down the infinite signals

obtained from x by (a) zero padding, (b) constant padding with ¢ = 1, (¢) wraparound,

(d) whole-point refection, (e) halfpoint refection.

Solution: (a)
[ 0<Kk<3
Tk = 0, otherwise -

(b)
Tk = 1, otherwise

Tp, = Tn mod 3-

Ty = Tp mod 6, Where x4 = T9, T5 = 1.

Ty, = Tp mod 8, Where xy = x3,T5 = 9, T¢ = T1,T7 = Xo.

Exercise 11.4 Verify explicitly that the circulant matrix ® of Example 11.18 is diagonal in

the DFT frequency space and compute its diagonal elements.

Solution:
11 0
D® = FloF = iF@F = -3
— = —
0



Solutions to Chapter 12

Exercise 12.1 Consider the image immediately above. Use a contrast stretch to construct
this image from the image

5 8 8 6
0000
799 6
0000

Solution: By using

_ 234(a[m, n] — min[a(m, n)])

b
[m, ] max[a(m,n)] — min[a(m,n)]’
we have
130 208 208 156
,_ |0 0 0 0

182 234 234 156
0 0 0 0

Exercise 11.2 Assume we have a system producing a dynamic range of 256, i.e., 8 bits
and the system adds two percent (of the dynamic range) random noise to the image.
Suppose we measure the dark image first and then add two percent random noise to it
as shown. Show that the contrast stretching has no effect on the dynamic range/noise
ratio.

Solution: Since Inpise = Isignal+noise — signat and the stretching operator is

(2N — 1)(I[m, n] — min[I(m,n)])
max/[/(m,n)] — min[I(m,n)]

I'lm,n] =

9

we have

[m7 TL] _ (2 - 1)(ISngal[m7 n] 5(In0ise)

max(]signal+nosie) — min (Isignal-i-nosie)

I/

singal+noise

Exercise 12.3 Consider the examples already studied. For a suitable structuring element K
of your choice, calculate (1) The boundary of the element below using the structuring
element shown. (2) The boundary of the nuts and bolts example using a dilation of 2.
(3) Study the thickened boundary (AdK) N (AeK). What do you find?



Solution: (1) Let

[0 00 00 0 0]
0001O0O0°O0
0011100 111
A=101 1 111 0,K=|111
0011100 111
0001O0O0O0
00 0000 0]
then the boundary of A is
[0 0 0 00 0 0]
0001O0O0O0
0010100
0A=1({0 1 0 0 0 1 0
0010100
0001O0O0O0
00000 0 0]

The thickened boundary (AdK) N (A°dK) is

0001000
0011100
01101710
(AdK)N (AdK)= (1100 0 1 1
01101710
0011100
0001000

Exercise 12.4 Apply the skeletal algorithm above to the nuts and bolts example above.

Solution: For another picture with circles, the comparison of the original and skele-
tonized pictures is shown in Figure 1.

Exercise 12.5 Take FTs of two images. Add them using a suitable morphology operator
for example a blend, and take the inverse Fourier Transform of the sum. Explain the
result.

Solution: Two pictures for blending is shown in Figure 2. The blended picture is
shown in Figure 3.

Exercise 12.6 Add different sorts of noise to two images and compare the FT’s. Investigate
if the Fourier Transform is distributive over multiplication.

Solution:



skeletonized

orginal

Figure 1: Exercise 12.4.

carl

Figure 2: Two pictures used in Exercise 12.5.

Exercise 12.7 Show that P(B|C') is a probability set function on the subset of C.

Solution: Since B N C' is a subset of C, and P(B|C) is the probability of BN C in
the space C. Hence, P(B|C) is a probability set function on the subset of C'.

Exercise 12.8 Prove (12.1) and give its interpretation for the handwriting problem.

Solution: Since A;,j7 =0,...,9 are mutually disjoint, thus

It means that the occurrence of a subset B of the handwriting characters is the sum
of the occurrences of handwriting characters in each class A; from B.

3



blended

Figure 3: Blended picture for Exercise 12.5.

Exercise 12.9 Suppose the set of training vectors is such that a = 1,¢ = 5 in the proof of
Theorem 12.6 and we start the Perceptron algorithm with w™® as the zero n + 1-tuple.
Find the smallest k such that the algorithm is guaranteed to terminate in at most k
steps.

Solution: If a = 1,¢ =5 and w" =0, ||2'||' = 1, we have

2 k
< S92 < 5k,

J=1

k

320

J=1

K <

Thus
E—5k<0 = k<H5.

There,the algorithm is guaranteed to terminate in approximately 5 steps.

Exercise 12.10 Find an example in two dimensions and an example in three dimensions of
Class 1 and Class 2 training vectors that are not linearly separable.

Solution: In two dimension
Class 1 = {v = (z,y) | 2 + 3> <r’}, Class 2= {v=(z,y) | 2> +¢* > r’},
is not linearly separable.

In three dimension
Class 1 = {v = (z,y,2) |2 +yP + 22 < 7’2}, Class 2 = {v = (2,y,2) |2 +y* + 22 > 7’2},

is not linearly separable.



Exercise 12.11 Show that E(C®) = C, i.e., the expectation of C* is C.

Solution:

Exercise 12.12 Verify the following properties of the n x n sample covariance matrix C°
and the n x m matrix (12.6). (1) C¥ = X" X, (2) (C®)" = C¥. (3) The eigenvalues
A; of C% are nonnegative.

Solution: (1) Since

thus % = X" X,
(2) As C’fj = C']SZ = (C%¥" = O,
(3) for any z € R", z # 0, we have
MMC%% = 2TXTX 2 = || X 2|2 >0,
therefore C*¥ is semi-definite positive, i.e. the eigenvalues \; of C° are nonnegative.

Exercise 12.1(1) Take each of the examples below, with 16 pixels and 3 bit dynamic range
monochrome values and apply a contrast stretch and histogram normalization. What
would you expect to see in real images of these types?

0111 76 5 4
0216 6 7 5 5
(A)'1165’(B)5567
6 7 7 7 4 5 7 6
23 2 3
32 3 5
(C)'3656
6 5 6 5



(2) Suppose that in a binary image you have k white pixels in a total of N pixels. Find
the mean and variance of the image.

(3) (a) Show that the mean of an image with dynamic range of n bits is 1/2(2n — 1)
if histogram normalization has been applied to it. (b) Write down a formula for the
variance of the images in (a). (c) What is the implication of (a)-(b) for contrast and
brightness?

Solution: (1) The results of stretching (A), (B), (C) are

0111 75 20 020 2
0216 0716 20 2 5
116 5| (22 5 7" |2 757
6 7 7 7 0275 75 7 5

Nothing has change in (A). The contrast of (B) and (C') has been enhanced.
(2)

I 1 i\ 2 E\*\ k(N -k
mean = -, variance = N_1 (k (1 — N) + (N — k) <N> ) = N((N _ 1))
(3) Problem??

Exercise 12.2 (a) Consider each of the three images below. Each is the Fourier transform
of an image. Roughly sketch the original image

space space space space - space space
(A): . . . , (B): |space space space space
space space space space - space space

space space space space space
(C): - space space
space space space space space

(b) Suppose we take an image which consists of spaces everywhere except on the
diagonal where it has a high pixel value. What will its Fourier transform look like?
Explain your answer.

Solution: (a)

a b c a a a a
(A |F )| =1]a b c|, B):|F**)|=1|b b b b
a b c c ¢ ¢ ¢

a b c d e

C):|F ') =]a b c d e

a b c d e



(b) The Fourier transform of a squared diagonal graph looks like

*

which has its dominate values along the —1st anti-diagonal and the upper-left corner.
This is because the 2D DFT for squared diagonal graph x is

X =WaW,

where W is the conjugate of the Fourier transform matrix. If  has large values along

its diagonal, then
X =~ cW?,

where c¢ is a large positive real number. Since W is symmetric unitary, and its column
has the relationship w, = e**™~Y¥/Ny, the dominate entries of X should be X,,,,

where
mod (m+mn—2,N)=0.

Since 1 <m,n < N,thusm+n=N+2orm=n=1.

Exercise 12.13 Gray scale morphology operators: (a) Show that the following is true: if f
is the intensity function for an image and k is a hemisphere structuring function then
o fdk = TIU[f)AU[H].
o fek =T[U[fleU|
o fok = T[U[f]OU[k]]
o fck =TIU[f]cU[K]].

(b) Prove the Umbra Homomorphism Theorem:

o Ulfdg| = U[f]dU]g].
o Ulfeg] = U[fleUlg].
e Ulfog] = UlfegldU[g] = U[f]oU[g].

Solution: (a) T[U[f]|dU[k|] = T[f]dTU[k] = fdk.

TU[f]eUlK]] = TU[fleTU[k] = fek
TU[f]oUlk]] = TU[floTUK] = fok
TU[f]eUK]] = TU[f]cTU[K] = fck
(b) Ulfdg] = U[T[f]dT[g]] = UT[f]dUT[g] = U[f]dU]g]-
Ulfegl = U[T[fleT(g]] = UT[f]eUT[g] = U[f]eUlg].
Ulfog] = Ul(feg)dg] = UlfegldUlg] = (U[fleUlg])dU[g] = U[f]oU]g].
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Exercise 12.14 Find the opening and closing of the images (A)-(C) in Exercise 254 for
suitable structuring elements of your choice.

Solution: Exercise 2547
Exercise 12.15 Prove that if A and B are umbras, then so is AdB.
Solution: if A and B are umbras, we have
AdB =UT(A)dUT(B) = U[T(A)dT(B)].
Thus, AdB is an umbra.

Exercise 12.16 Consider an image with pixels over [0,4]. The gray scale function for the
image intensity is given by f(z) =z —1for 1 <z <2 f(zr) =3 -z for 2 <z <3 and
0 elsewhere. The structuring function is a hemisphere of radius 0.25, i.e.,

k(z) = v0.0625 — 22, —0.25 < x < 0.25.

Find the opening and closing of f by k£ and discuss what this should do to the visual
aspects of the image.

Solution: The shapes of feg, fdg, fcg, fog are shown in Figure 4 and Figure 5.

fe fd
0.7 T T T T 9 T T T 1.4 T T T T 9
\
Il
0.6 // \ 1 121
/ \
[\
05 [\ § 1r
[\
/
/ \
[
0.4 F | \ b 0.8
/ \
| \
/ \
0.3r / \ 1 0.6
| \
/ \
/ \
021 / \ 1 041
/ \
// \\
oLr / \ 1 02f
// \\
/ \
/ \
0 [ ) ) 0
0 0.5 1 15 2 25 3 35 4 0 4

Figure 4: feg and fdg for Exercise 12.16.

Exercise 12.17 Write a program to implement the 3 x 3 skeletonization algorithm described
above and try it out on some images

Solution:



fog fcg

0.9 T T T /,\\ T T T 1
0.8 - 1 0.9r
07k 0.8
0.7 F
0.6
0.6
05
05
0.4 f
0.4
03r
03[
02} ozl /
0.1 1 0.1F / AN
0 : 0
0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 2.5 3 35 4

Figure 5: fog and fcg for Exercise 12.16.

BW1 = imread (’circbw. tif ’);
BW2 = bwmorph (BWI, ’skel ’ | Inf);
figure

subplot (1,2 ,1)

imshow (BW1)

title (’orginal’)

subplot (1,2,2)

imshow (BW2)

title ('skeletonized’)

orginal skeletonized
)

Figure 6: Exercise 12.17.



Exercise 12.18 Consider the pattern classes {(0,0),(0,1)} and {(1,0),(1,1)}. Use these
patterns to train a perceptron algorithm to separate patterns into two classes around
these. [Do not forget to augment the patterns and start with zero weights.]

Solution: Let w(® = (0,0,0),2; = (0,0,1),25 = (0,1,1),25 = (1,0,1),24 = (1,1,1);
Class 1 requires (w, —x;) > 0 and Class 1 requires (w, z;) > 0.

(w®, —z1) = 0= w® = w® —w, =(0,0,-1);

(W, —z5) = -1 < 0= w? =w® —w, = (0, -1, -2);

(W, 23) = -2 < 0= w® = w® +wy = (1,1, -1);

(w®, 1) = -1 < 0= w? =w® +w, =(2,0,0);

(W, —z1) = 0= w® = w® —w, =(2,0,-1);
(w®, —x5) =1 > 0;
(w®, 23) =1 > 0;
(w®, 24) =1 > 0;

Thus, the hyperplane for separating the two classes is 2z — 1 = 0.

Exercise 12.19 Suppose we have a collection of pattern classes and in each case the dis-
tribution of the patterns around the cluster center is Gaussian. Suppose also that
the pattern components are uncorrelated. [This means the covariance matrix is the
identity.] Find a formula for the probability that a given pattern vector x belongs to
cluster w; . In this case, given a pattern vector z, deduce that the decision as to which
class it belongs to would be made simply on its distance to the nearest cluster center.

Solution: Since the distribution of each class is Gaussian and they are independent,
the value of the probability density function (PDF) of each case for each class reveals
the chance of that case belonging to the indicated class Thus, we can assign pattern
vector  to cluster w; with have the maximal PDF with assumed mean (center) among
all the clusters. Apparently, higher PDF indicates closer distance of the pattern vector
to the center of the cluster. Therefore, the decision of which class a x belonging to
would be made on its distance to the nearest cluster center.

Exercise 12.20 Consider the following 20 two-dimensional vectors:

(21 =4.1,2.8,0.5,3.1,4.8,1.5,3.8,2.4,1.7,2.0,0.2,3.5,2.1,0.8,2.9,4.4,3.7, 5,4, 1.3)
(22 =9.7,6.3,2.4,7.2,10.2,4.4,9,5.4,4.7,4.8,1.5,8,5.7,2.5,6.7, 10, 8.8, 10.5,9.3, 3.3)

Without using a MATLAB program, find its principal components and comment on
the results.

Solution: Since

. 188.38 433.49
- \433.39 1005..02
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its eigen-polynomial is
A? — 1193.40) + 1412.0875 = 0.

thus, its eigenvalues are
A = 1192.216, Xy = 1.1844,

and therefore its principle components is the eigenvector

b 0.396447
1710918057 )

Since A1 > Ao, the distribution of z;,7 = 1,...,20 is dominated along v, direction.

Exercise 12.21 In this chapter, we have given a self-contained introduction to some tech-
niques dealing with the parsimonious representation of data. MATLAB offers several
toolboxes which allow one to implement demos on data. Study the imaging and sta-
tistical pattern toolbox demos given in the links:

http://cmp.felk.cvut.cz/cmp/software /stprtool /examples.html
http://www-rohan.sdsu.edu/doc/matlab/toolbox/images/images.html

Solution:
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