
 

Exercises on Ch.1 Basic concepts of thermodynamics 

1.1 External state variables. Exercise 1 

1.3 The first law of thermodynamics. Exercises 1, 2 and 3 

1.6 The second law of thermodynamics. Exercises 1, 2, 3, 4 and 5 

1.9 The combined first and second law. Exercise 1 

1.11 Characteristic state functions. Exercises 1 and 2 

1.12 Entropy. Exercise 1 

 

1.1 External state variables 

Exercise 1.1.1 

A system consists of two subsystems with the values U1, V1, P1 and U2, V2, P2, where U is 
the internal energy. U and V are both extensive quantities. The law of additivity applies to 
them and we have for the complete system U = U1 + U2; V = V1 + V2. One often defines 
another function, enthalpy H = U + PV, where P is the external pressure. Evidently, H is 
also a state function and an extensive quantity. Discuss whether the law of additivity 
applies to H in a way that H = U1 + P1V1 + U2 + P2V2. 

Hint 

Before we discuss this question, it is necessary to define the situation better. How can the 
two different pressures be maintained? You may find two different cases. 

Solution 

In principle, one can change any one of V1, V2, U1 and U2 by making the opposite change 
in the surroundings. For the surroundings we get a change in volume of – dV = – dV1 – 
dV2 and in energy of – dU = – dU1 = dU2 and V and U are state variables of the complete 
system. For pressure there are two possibilities. One possibility is that the subsystems 
have direct contact with two different surroundings of pressures, P1 and P2. We may then 
accept that H is additive but actually we have to derive a whole new set of 
thermodynamic equations using two external pressures. Another possibility is that one 
subsystem (1) is enclosed in the other (2) and the surface tension of the interface gives 
the pressure difference P1 – P2 = 2σ/r. In the calculation of the total enthalpy of the 



 

system one must also include the surface energy of the interface Uint: H = U + P2V = U1 + 
U2 + Uint + P2(V1 + V2) = U1 + P2V1 + U2 + P2V2 + Uint. One will thus obtain H = H1 + H2 + 
Uint if one defines H1 = U1 + P2V1 instead of H1 = U1 + P1V1, which may be justified   
because P2 represents an external variable but P1 is an internal variable that cannot be 
controlled from the outside. 

1.3 The first law of thermodynamics 

Exercise 1.3.1 

Consider a system under such conditions that there is no exchange of heat or work with 
the surroundings. Suppose there is some spontaneous reaction inside the system. What 
can we say about the change of the internal energy? 

Solution 

It follows directly from the definition that U does not change, dU = dQ + dW = 0 + 0 = 0. 

Exercise 1.3.2 

Consider a system at TT1,P1,V1, which is composed of one mole of a ideal classical gas for 
which PV = RT and U = A + BT. Let the system change in four steps. The first step is a 
very slow compression to P2, V2 at a constant temperature of TT1. The second step is a very 
quick compression to TT3,P3,V3. The third step is a very slow expansion to P4, V4 at a 
constant temperature of TT3. The fourth step is a very quick expansion back to TT1,P1,V1. 
The second and fourth steps are so quick that there is no heat exchange. Calculate the 
relations between the total work done by the system, the absorbed heat of the first step 
and the heat of the third step, expressing the result in terms of TT1 and TT3. 

Hint 

ΣΔU = 0 because the system returns to the initial state. Thus, Q1 + Q3 + W1 + W2 + W3 + 
W4 = 0. Furthermore, U is only a function of T and thus Δ1U = 0 and Δ3U = 0 giving Q1 + 
W1 = 0 and Q3 + W3 = 0 and thus W2 + W4 = 0. Consequently, the net work done on the 
system W = W1 + W3. The problem is to calculate W1 ( = – Q1) and W3 ( = – Q3) and to 
relate them using TT1 and TT3. 

Solution 

W1 = – ∫PdV = – RT1∫dV/V = – RT1ln(V2/V1); W3 = – RT3ln(V4/V3). The second step where 
Q2 = 0 gives dU = dW; BdT = – PdV = – RTdV/V; Bln(TT3/TT1) = – Rln(V3/V2) and the 
fourth step Bln(TT1/TT3) = – Rln(V1/V4). Thus V3/V2 = V4/V1 or V1/V2 = V4/V3 and W1/TT1 = 
Rln(V1/V2) = Rln(V4/V3) = – W3/TT3. The work done by the system is – W = – W1 – W3 = – 
W1 + W1TT3/TT1 = W1(TT3 – TT1)/TT1 = – W3(TT3 – TT1)/TT3 = – Q1(TT3 – TT1)TT1 = Q3(TT3 – TT1)/TT3. By 
drawing the heat Q3 from a heat source at TT3 one may thus produce mechanical work in 
the amount of Q3(TT3 – TT1)/TT3 if the rest of the energy, Q3·TT1/TT3, can be disposed of as heat 



 

to a heat sink at TT1. The efficiency of this “heat engine” could be defined as –W/Q = (T  – 
T )/T

3 3

1 3. 

Exercise 1.3.3 

One mole of a fluid is heated from TT1 to TT2 under constant volume. Show how one can 
calculate the work done by the surroundings and the heat absorbed from the 
surroundings. What state function of the fluid do we need to know? 

Hint 

Since nothing is said about the exchange of work, suppose there is only hydrostatic work. 

Solution 

The work – PdV is zero if V is constant. The heat is dQ = dU + PdV = dU and we get Q = 
∫dU = U2 – U1 = U(TT2,V1) – U(TT1,V1). We must know U as a function of T at constant V. 

1.6 The second law of thermodynamics 

Exercise 1.6.1 

In exercise 1.6 suppose the heat of reaction, i.e. the absorption of heat necessary to keep 
the temperature constant, is ξK. Construct an expression for the total increase of entropy 
inside the system. Calculate the difference between the total increase of entropy of the 
system and the internal production of entropy, when ξ increases from zero to the 
equilibrium value at the experimental temperature. 

Hint 

Don't calculate each one. The difference can be calculated directly. 

Solution 

Under constant T and V the heat of reaction must be compensated by heat flow from the 
surroundings, Q = ξK and the total increase of entropy is ΔS = Q/T + ΔipS = ξK/T + ΔipS = 
– R[ξlnξ – (1 + ξ)ln(1 + ξ)]. However, we get the difference directly: ΔS – ΔipS = Q/T = 
ξK/T. Inserting the equilibrium value of ξ given by the preceding exercise gives ΔS – ΔipS 
= (K/T)/[exp(K/RT) – 1]. 

Exercise 1.6.2 

The fact that S is a state function is reflected by the fact that dS can be integrated for a 
reversible process and the resulting ΔS only depends upon the initial and final states. 
Show this for an ideal classical gas. 



 

Hint 

First, calculate dQ from the first law. Then use dS = dQ/T. For one mole of a classical 
ideal gas PV = RT and U = A + BT. 

Solution 

dU = dQ + dW = dQ – PdV; dQ = dU + PdV = BdT + (RT/V)dV; dS = dQ/T = (B/T)dT + 
(R/V)dV. It is interesting to note that by dividing dQ with T we have thus been able to 
separate the variables T and V and obtain a state function from Q which is not a state 
function itself. Integration yields ΔS = Bln(TT2/TT1) + Rln(V2/V1). 

Exercise 1.6.3 

Consider a Carnot cycle with a non-ideal gas and suppose that the process is somewhat 
irreversible. Use the second law to derive an expression for the efficiency. 

Hint 

For each complete cycle we have ΣΔU = 0 and ΣΔS = 0 because U and S are both state 
functions. 

Solution 

ΣΔU = W + Q1 + Q3 = 0; ΣΔS = Q1/TTa + Q3/TTb + ΔipS = 0 where W is the sum of Wi over the 
four steps and ΔipS is the sum of the internal entropy production over the four steps. We 
seek η = – W/Q3. We can eliminate Q1, which is negative, by combining the two 
equations: 

– Q1 = Q3TTa/Tb + ΔipS·Ta; 
– W = Q1 + Q3 = – Q3TTa/Tb – ΔipS·Ta + Q3 = Q3(Tb – Ta)/Tb – ΔipS·TTa

and thus η = – W/Q3 = (TTb – TTa)/TTb – ΔipS·TTa/Q3 < (TTb – TTa)TTb because ΔipS, TTa and Q3 are all 
positive. The efficiency is thus decreased by ΔipS·TTa/Q3.

Exercise 1.6.4 

Examine if it would be possible to have a system with a spontaneous process such that dS 
and dQ have different signs under spontaneous isothermal conditions. Try to find such a 
system. 

Hint 

Start from the second law. 

Solution 



 

TdS = dQ + TdipS. Since dipS > 0 we get TdS > dQ. If dQ is positive, dS must also be 
positive. However, if dQ is negative, dS could be positive or negative. In this case it is 
easier to make dS positive if the process is only slightly exothermic and if it has a high 
internal production of entropy. A possible case would be the mixing of two elements to 
form a solution with a slight negative heat of reaction. 

Exercise 1.6.5 

We have seen that a perpetuum mobile could be constructed from two reversible heat 
engines of different efficiencies (if they could be found) by running the less efficient one 
in reverse. However, this seems impossible and that is why we concluded that all 
reversible heat engines must have the same efficiency. On the other hand, an irreversible 
heat engine (i) will have a lower efficiency. It would thus seem tempting to run such an 
engine in reverse and couple it to a reversible engine (r). Evaluate the net work produced 
by such an arrangement. 

Hint 

The net work produced is  because we 
should make the size of the irreversible engine such that the heat it delivers to the warm 
reservoir, , is equal to the heat the reversible engine takes from the same reservoir, 

, i.e. . Furthermore, for each engine ΔS = 0 for each whole cycle. 
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One cannot produce work by this arrangement. 

1.9 The combined first and second law 

Exercise 1.9.1 

Formulate the combined law for a system, which interacts with the surroundings by 
means of two pistons working at different pressures. 

Hint 

One may speculate on what happens inside such a system, i.e. on the nature of the 
internal process, the progress of which we usually represent by ξ. However, that is not a 
problem we need to concern ourselves with now. 



 

Solution 

The first law becomes dU = dQ + dW1 + dW2 = dQ – P1dV1 – P2dV2 and the combined law 
becomes dU = TdS – P1dV1 – P2dV2 – Ddξ. 

1.11 Characteristic state functions 

Exercise 1.11.1 

Suppose a system, when it transforms between two states without change of the content 
of matter, can perform some work in addition to ∫PdV. Show that the maximum amount 
of work is obtained as the change in Gibbs energy if the two states are at the same 
pressure and temperature. 

Hint 

Start with the first law and introduce two kinds of work. If the additional work done on 
the system is dWa, then the additional work performed by the system is – dWa. Combine 
with the second law. In order to keep T and P constant they must be introduced as 
independent variables. 

Solution 

dU = dQ + dW = dQ – PdV + dWa = TdS – PdV + dWa – Ddξ where ξ measures the 
progress of the transformation. Introducing T and P as independent variables yields: dU – 
d(TS) + d(PV) = dG = – SdT + VdP + dWa – Ddξ. At constant T,P: – dWa = – dG – Ddξ. 
The work performed, – dWa, would be larger the smaller Ddξ is. The system would thus 
perform the maximum work if one could arrange that Ddξ = 0 because Ddξ cannot be 
negative for a spontaneous process. Then we would get: – dWa = – dG; – ΔWa = G1 – G2. 

Exercise 1.11.2 

A closed system is contained inside an elastic wall such that V = Vo(1 – αP). Derive the 
equilibrium condition for an internal process in such a container if the temperature is kept 
constant. 

Hint 

Since Vo is a constant and we are going to keep T constant, we should formulate the 
combined law with T and Vo as the variables and then keep them constant. (Since T is to 
be constant we do not need to consider the fact that the properties of the wall may depend 
on T.) First, we introduce Vo instead of P in the expression for dU. Then we must find a 
function f(V,Vo) such that the dV term in dU vanishes when we subtract df. This function 
is found by integrating the dV term under constant Vo. 

Solution 



 

P = 1/α – V/αVo; dU = TdS – (1/α – V/αVo)dV – Ddξ. We now want to subtract df from dU 
where f is a function such that dV will not appear in d(U – f). It is evident that we can 
choose f = – V/α + V2/2αVo and obtain df = – (1/α – V/αVo)dV + (V2/2α)d(1/Vo). We also 
subtract d(TS) and obtain d(U – TS – f) = TdS – TdS – SdT – (1/α – V/αVo)dV + (1/α – 
V/αVo)dV – (V2/2α)d(1/Vo) – Ddξ = – SdT – (V2/2α)d(1/Vo) – Ddξ. Equilibrium at constant 
T,Vo is given by D = – (∂[U – TS – f]/∂ξ)T,V o. The equilibrium condition is thus the 
minimum of a new function U – TS + V/α – V2/2αVo. 

1.12 Entropy 

Exercise 1.12.1 

Consider two pieces of Zn, one at each end of a sealed silica tube, filled with argon at 1 
bar pressure. The ends are kept at different temperatures. One piece may shrink by 
evaporization and the other grow by condensation. Which one would grow if the 
principle governing the process were the minimization of G? Discuss the conclusion. 

Hint 

Suppose the vapour pressure of Zn is small enough to be neglected in comparison with 1 
bar and thus dG/dT = – S. 

Solution 

With the usual convention, S is always positive and thus G is lower at the high-T end. If 
Zn would go from higher G to lower G, it seems that it would evaporate from the cold 
end and condense at the hot end. However, by experience we know that condensation will 
occur at the cold end. Actually, there is no basis for the suggestion that G should be 
minimized by a non-isothermal reaction because the difference in G depends upon the 
arbitrary choice of reference for S. ΔG between two systems at different temperatures has 
no physical significance. Instead, the reaction is governed by kinetic factors and depends 
upon the properties of the substance separating the two pieces, in our case the gas. The 
vapour pressure of Zn is greater at the higher temperature and Zn will diffuse through the 
gas from the higher temperature to the lower one. 
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