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Statistical mechanics of phage λ

4.1 Lifecycle of phage λ

4.1.1 Why is it a good strategy for the λ phage to favor lysogeny when a
bacterium is infected simultaneously by many λs?

Answer By being infected by more than one λ, the phages have the
information that it is likely that there are more phages than bacteria in
the surroundings. As lysis reduces the available hosts and just produces even
more phages, lysis becomes a less optimal strategy. Notice that the phage
particle only lives a relatively short time outside the host, typically less than
a week.

4.1.2 One theorem in game theory states that for a single player there always
exists a deterministic strategy that is no worse than any random strategy. This
is apparently not true for λ. Argue how a random decision could be good, as
an alternative to deterministically going lytic or lysogenic as a function of
external conditions.

Answer Phages are produced in bursts of several hundreds. By allocating
some off-springs to one path, and others to the opposing path, there is a
bigger probability that one of the descendants will survive. A more thorough
discussion can be found in M. Avlund I.B. Dodd, S. Semsey, K. Sneppen
and S. Krishna. Why do phage play dice, J. Virol., 83: 11416, 2009. See also
12.3.2 and 12.3.3.

4.1.3 A λ lysogen is superinfected with another λ phage. Consider the situa-
tion where there is already a phage in a lysogenic state inside the bacterium
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and a second new λ phage infects. Which of the genes in the new λ is tran-
scribed, and which are not? Why does the new phage not induce lysis?

Answer The established lysogens have high concentrations of CI (as well
as RexA and RexB). This freely diffusing CI will bind to the operators of
the infecting λ phage and establish the same repression as in the integrated
phage. Thus the new phage will express CI, RexA and RexB, and nothing
else; in particular, it cannot express the proteins needed for replication of
itself and therefore the new phage cannot initiate the lytic pathway.

4.2 Biological growth and counting

4.2.1 There exist virulent phages that always lyse bacteria after infections. An
example is the phage T4 which infects E. coli. After infection, the phage copies
its genome through a rolling circle [169, 170],1 where one copy is generated
about every 10 s, giving a phage production rate γ ≈ 6min−1. If the bacteria
lyse at a latent time τ , the number of phage progeny would be β = γ(τ − τ0),
where τ0 ≈ 5min is the time needed before phage production starts. If the time
needed to find and infect a new E. coli is 1/(αρ), where α ≈ 10−9min

−1
ml

is the infection rate per phage per bacterium and ρ is the bacteria density.
Write an expression for the exponential growth rate, g. Show that the latent
time (τopt) that maximizes the phage growth rate (g) satisfies [172]:

1

α · ρ + τopt = (τopt − τ0) · log[γ · (τopt − τ0)]

Investigate the solution graphically.

Answer One has to count the total length of one phage infection cycle,
including the phage latency time and the time it takes the phage to locate
a now host. During time τ , one phage becomes β = γ(τ − τ0) phages. Each
of these phages then establishes a new infection within a time t ∼ τsearch =
1/(αρ). Thus, the total time, amplifying by a factor β is:

tβ =
1

αρ
+ τ

1Here simplified, as the early stage of phage growth often occurs through exponential θ
replication. The final burst time depends on produced holin proteins [171], which puncture
the E. coli cell when their number reaches a critical threshold.
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Figure 4.1 Graphical solutions for an average time for locating a bacteria of
100 min, and 1000 min, corresponding to bacterial densities of 107 ml and 106

ml, respectively. The optimal latency time accordingly changes with bacterial
density.

The growth rate g:

exp(tβ · g) = β = γ(τ − τ0) ⇒ g =
ln(γ(τ − τ0))

τ + 1/(αρ)

and maximal growth rate is obtained when:

dg

dτ
= 0 ⇒ 1

(τ − τ0)(τ + 1/αρ)
− ln(γ(τ − τ0))

(τ + 1/αρ)2
= 0

1

α · ρ + τopt = (τopt − τ0) · log[γ · (τopt − τ0)]

which is indeed the desired equation for τ = τopt. For graphic illustration we
use a bacterial density ρ = 106 ml−1 giving 1/αρ = 1000 min which, with
γ = 6 min−1 and τ0 = 5 min gives the equation:

1000 + τopt = (τopt − 5) · log[6 · (τopt − 5)]

which can be inspected in Fig. 4.1. Notice that the derivation uses that
all phages reach their targets at the same average time. A more correct
treatment would take into account that the phages that reach their target
early, contribute disproportionally more to the growth.
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4.3 Chemical binding and counting

4.3.1 Consider a titration experiment where one varies CI concentration for a
fixed operator concentration in order to probe the first-order chemical reaction
CI + O ↔ CIO. Compare the fraction of bound [CIO] to the operator as
a function of [CIT] for the case where [OT] = 10 · K, and a case where
[OT] = K/10.

Answer As explained in the main text:

[CIO]

[Ot]
=

[CI]

K + [CI]
(4.1)

where K is the CI concentration at which [O] is half occupied. Here the free
concentration [CI] is less than the total concentration, as.

[CItotal] = [CI] + [CIO] (4.2)

The equation where we ignore the effect of operators on the free concentration
of CI is:

[CIO]

[Ot]
=

[CItotal]

K + [CItotal]

In contrast, the complete equation is:

K =
([CItotal]− [CIO])([Ot]− [CIO])

[CIO]
⇒

[CIO] =
[CItotal] + [Ot] +K

2
−

√
([CItotal] + [Ot] +K)2

4
− [CItotal][Ot]

which we investigate in Fig 4.2 for the case where K = 1 and [Ot] = 0.1, and
[Ot] = 10 [CIO]/[Ot] in both cases plotting.

4.3.2 Consider one DNA-binding protein that may bind to L=5 000 000
possible positions on the E. coli DNA with a binding free energy ΔG =
−3 kcalmol bp−1 (counted as the energy for each of the L = 5 000 000 posi-
tions). Alternately the protein may be anywhere in the volume V = 1μm3.
Express the statistical weight for being in each of these two states, and cal-
culate which is the most likely.
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Figure 4.2 Comparison between a case where there is a lot of DNA, and a
case with little operator DNA, using K = 1.

Answers The statistical weight for each binding of a protein C is:

Zs = (1/V ) · exp(−ΔG/kBT ) = (1/V ) · exp(−3/0.62)

For binding to L = 5000 000 sites:

Zu = (L/V ) · exp(−ΔG/kBT ) = (L/V ) · exp(3/0.62) = 0.005 · 126 = 0.6

using 1/V = 1nM = 10−9 M, corresponding to a bacterial volume with
1 000 000 000 states competing with a DNA with 5 000 000 positions. The
statistical weight to be free is in this normalization:

Zunbound = 1

Thus the probability to be bound to the DNA non-specifically is:

P (bound−non−specific) = 0.6

1 + 0.6
= 0.38

thus it is marginally more likely to be free.

4.3.3 If there are N of the above DNA-binding proteins, write the equation
for the probability of possible partitions of the proteins in the DNA-bound
state.

Answers As there is plenty of space, the binding of each protein to the
DNA somewhere is denoted p and the probability to bind n out of N proteins
becomes:

P (n) =
N !

(N − n)!n!
· pn(1− p)N−n (4.3)
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i.e. a standard binomial expression with an average number of non-specific
binders of N · p.
4.3.4 If a living system demanded 1012 different proteins to work, instead
of a diversity of ∼ 103, a cell would have a volume 1mm3. With about one
regulator of each type per cell, what would then be the expected binding energy
between the proteins and an operator? How much would the time for finding
a particular operator be changed?

Answers The binding energy should be on a scale where any binding is
accessible by changing the concentration. Thus the binding should not be
stronger than exp(−ΔG/kBT ) = 1/V and, on the other hand, not so weak
that one needs millions of proteins to obtain substantial binding. Overalls we
therefore expect a binding energy given by (as 1/V is counted in units of M
= molar):

(e−ΔG/kBT ∼ 100

V
∼ 10−7 ⇒ ΔG = −10 kcal mol−1 (4.4)

for a bacterium with volume 1μm3. On the other hand, an increase in pro-
tein diversity from 1000 to 1012 should be associated with a proportionate
increase in volume, from 1μm3 to 1mm3. Accordingly the expected binding
would be:

e−ΔG/kBT ∼ 100

V
∼ 10−16 ⇒ ΔG = −23 kcal mol−1 (4.5)

When volume is increased by a factor of 1 000 000 000, the time for two
molecules to find each other will also be increased by a factor 1 000 000 000.
As we will explain later, this time is at present of the order of seconds in an
E. coli, but would then be of the order of 30 years in this “superbug.”

4.4 Chemistry and co-operativity as statisti-

cal mechanics

4.4.1 Develop a computer program to calculate the activity of PRM and PR
as a function of CI concentration, given the tabulated free energies for CI
to OR sites in Fig. 4.13. To simplify the problem disregard the RNAP in
the partition sum, and include only the eight states that bind CI dimers in
various ways. Activity is then given by the states that allow for RNAP binding
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to respective promoters, i.e. PRM with OR3 free and PR with both OR1
and OR2 free. Remember that the PRM activity of states with CI on OR2
is ten times larger than that of states without CI on OR2. Also remember
that co-operativity between OR1–OR2 and OR2–OR3 is mutually exclusive.
First, calculate PR and PRM activity as a function of CI, assuming that CI
dimerization energy is −∞ (all CI in dimers). Second, calculate the same
activity using a dimerization constant KDim = [1M] · e−11.1/0.62. Third, in
the last calculation investigate the effect of removing the co-operative binding
between CI bound to OR1 and CI bound to OR2.

Answer In terms of the dimer concentration [C], the statistical weight for
the eight states is:

Z(0, 0, 0) = 1

Z(1, 0, 0) = [C] · e−ΔG3/kBT = [C] · e9.7/0.62

Z(0, 1, 0) = [C] · e−ΔG2/kBT = [C] · e11.0/0.62

Z(0, 0, 1) = [C] · e−ΔG3/kBT = [C] · e12.8/0.62

Z(1, 1, 0) = [C]2 · e−(ΔG3+ΔG2+ΔG2−3)/kBT = [C]2 · e24/0.62

Z(1, 0, 1) = [C]2 · e−(ΔG3+ΔG1)/kBT = [C]2 · e22.5/0.62

Z(0, 1, 1) = [C]2 · e−(ΔG2+ΔG1+ΔG1−2)/kBT = [C]2 · e26.4/0.62

Z(1, 1, 1) = [C]3 ·
(
e−(ΔG3+ΔG2+ΔG1+ΔG1−2)/kBT + e−(ΔG3+ΔG2+ΔG1+ΔG2−3)/kBT

)
= [C]3 · (e36.8/0.62 + e36.1/0.62)

where the double sum in Z(1, 1, 1) expresses the alternating cooperativity:
that CI at OR2 can only bind to OR1 or to OR3, but not to both simulta-
neously. The promoter activities are:

PRM = BasalPRM · Z(0, 0, 0) + Z(0, 0, 1) + 9 · Z(0, 1, 0) + 9 · Z(0, 1, 1)∑
i,j,k Z(i, j, k)

PR = BasalPR · Z(0, 0, 0) + Z(1, 0, 0)∑
i,j,k Z(i, j, k)
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where we use that an unstimulated PRM is nine times weaker than a PRM
where CI on OR2 can recruit the RNAP.2 As given in the main text, the
dimer concentration:

[C] =
1

2
([CIT]− [CIM])

=
1

2

(
[CIT] +

KD

4
− KD

4

√
1 +

8

KD

[CIT]

)

with KD = e−11.1/0.62 = 1.7 · 10−8 i.e. 17 nM. The results can be inspected
in Fig. 4.3. Notice that the wild-type λ provides the sharpest onset of PRM
activity (positive feedback), as well as negative feedback around lysogenic
levels of CI that will stabilize this state. The cyan and blue curves lack co-
operativity between CI bound to OR2 and CI bound to neighbor operators.
The magenta curve has infinitely strong dimerization, and therefore stronger,
but less co-operative, CI binding.

The lower panels examine the full model with proper inclusion of RNAP
binding as an active state. Qualitatively, the results are similar, although the
repression of PR is weaker.

4.4.2 If CI is cleaved by RecA, its dimerization is prevented. What concen-
tration of CI monomers is needed to maintain a similar probability of having
OR1 occupied as 100 nM of CI dimers does. Assume that monomer–OR1
binding is half of the dimer CI–OR1 binding (= −12.8 kcalmol−1), and also
simplify the problem by assuming that only one CI monomer can bind to the
operator.

Answer The dimer concentration is (with [CIT] = 100 nM):

[C] =
1

2
([CIT]− [CIM])

=
1

2

(
[CIT] +

KD

4
− KD

4

√
1 +

8

KD

[CIT]

)
= 37 nM

2The basal activities of the two promoters are quite different, with unstimulated PRM
activity every 150 s, whereas non-repressed PR should have one initiation every 15 s.
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Figure 4.3 Promoter activity in phage λ. The upper two panels are for the
simplified model specified in Question 4.3.1. The lower two panels are for the
full model with RNAP binding as an explicit state, assuming that RNAP
binding to OR3 and CI binding to OR2 provides nine times the activity of
non-stimulated RNAP binding to OR3. The Gray area refers to a dilution
rate associated with cell division, which should correspond to about 300 nM
CI in a wild-type lysogen.

using KD = 17 nM. Each monomer binds with half the energy of a dimer,
and therefore we require a monomer concentration X, determined from:

37 · 10−9 exp(12.8/0.62)

1 + 37 · 10−9 exp(12.8/0.62)
=

X · exp(6.4/0.62)
1 +X · exp(6.4/0.62) ⇒

X = 37 nM · exp((12.8− 6.4)/0.62) = 1 130 000 nM

thus similar repression demands an increase from 100 CI proteins to about
one million CI monomers per E. coli cell.

c© K. Sneppen



27

4.4.3 Often there are very few molecules of a given transcription factor inside
a cell. Accordingly, it may be useful to consider the partition function for the
case where occupancy of the single operator depletes the amount of free CI
substantially. Argue that for a state characterized by nM free monomers, nD

free dimers and an operator state s where i = i(s) dimers are bound to
operators, the exact statistical weight is [175]:

Z(s, nM) =
V nD

nD!
· V

nM

nM!
·KnD+i(s)

D · eG(s)/kBT

where nD = (N − nM − 2i)/2, since the number of free dimers in the cell
is fixed by the conservation requirement: N = nM + 2nD + 2i, with N being
the total numbers of repressors in the cell. Hint: each of the nD + i dimers
contribute by their dimerization binding free energy through KD =eΔGD/kBT ,
whereas only the dimers bound to operators contribute to −ΔG(s). Again the
total partition function can be written as a sum over all the states s, nM that
the N molecules can be in: Z =

∑
Z(s, nM).

Answer Consider binding of one molecule out ofN molecules in a volume V ,
The statistical weight for unbound versus bound option being normalized in
various equivalent forms:

Zfree = 1 and Zbound =
N

V
e−ΔG/kBT

Zfree =
V N

V !
and Zbound =

V N−1

(N − 1)!
· eΔG/kBT

Iterating the above to a situation where the bound state involves i bound C
molecules with a total binding energy ΔGi, then:

Zi =
V N−i

(N − i)!
· eΔGi/kBT

If there are both monomers and dimers, then each dimer contributes to bind-
ing with exp(ΔGdimer/kBT ) = KD Thus, partitioning N CI proteins into nD

dimers and nM = N − 2nD monomers is associated with a statistical weight:

Z(nD) =
V nD

nD!
· V

nM

nM!
·KnD (4.6)
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The statistical weight for a state s where i dimers are bound to operators with
total binding energy ΔGi = ΔG(s), nD dimers are free and the remaining
nM = N − 2nD − 2i are freely floating monomers:

Z(i, nD) =
V nD

nD!
· V

nM

nM!
·KnD+i · exp(ΔGi/kBT )

The message here is that at any instant there will be cell to cell variation in
actual occupancy of the various states.

4.5 Distant DNA in gene regulation

4.5.1 The linear dimensions of a human cell are about 10 times that of a
bacterium. Human DNA consists of 3 · 109 base pairs. If one (wrongly!) as-
sumes that the human cell can be viewed as one big “bag” of proteins and
DNA, what would be the non-specific binding energy that makes a protein as
equally likely to be on the DNA as in the cell volume?

Answer Equal statistical weight for being free is Zfree = 1, whereas weight
for being bound is:

Zbound =
L

V
· e−ΔG/kBT =

3 · 109
1012

· eΔ−Gu/kBT

Where we set cell volume to be 1000 times that of E. coli, and thus 1/v =
0.001nM. Setting them equal gives:

eΔ−Gu/kBT = 333 ⇒ ΔGu = −0.62 · log(333) kcal mol−1 = −3.6 kcalmol−1

a slightly larger binding affinity than the similar estimate E. coli.

4.5.2 Consider a DNA-binding protein in an E. coli cell that binds to 90%
of the its DNA with ΔG = −3 kcalmol−1 and to 10% of its DNA with ΔG =
−5 kcalmol−1 What is the probability that such a protein will be free in the
cell? Hint: The statistical weight for one repressor to be bound to a sample
of binding sites with energies ΔGi, i = 1, . . . is Z =

∑
i e

−ΔGi/kBT .

Answer The statistical weight for being bound is:

Zbound =
0.9 · 5000000

109
· e3/0.62 + 0.1 · 5000000

109
· e5/0.62 = 2.2

when setting kBT = 0.62 kcal mol−1.

c© K. Sneppen



29

4.5.3 The interaction between a DNA-binding protein and the DNA can be
written as a sum of individual interactions between amino acids and the
base pairs at the corresponding positions [200, 201]. Assume, for a repres-
sor in E. coli, that each of the 5 000 000 non-specific bindings are drawn
from a Gaussian distribution with mean −3 kcalmol−1 and standard devia-
tion 2 kcalmol−1. What must the binding energy to the specific operator site
O be in order that a protein should spend at least half its time at O?

Answer The normalized Gaussian distribution is:

P (G) =
1

2
√
2π

· exp(−(G+ 3)2/8)

Thus, the statistical weight for being bound to L = 5 000 000 potential
sites is:

Znon−spec =
5000 000

V ·
√
2π · 2

·
∫ ∞

−∞
exp(−(G+ 3)2/8) · exp(−G/kBT ) · dG

=
5 000 000

V ·
√
2π · 2

·
∫ ∞

−∞
exp

(
−1

8
G2 −

(
3

4
+

1

kBT

)
G− 9

8

)
· dG

=
5 000 000

V ·
√
2π · 2

·
∫ ∞

−∞
· exp

(
−1

8

(
G+ 3 +

4

kBT

)2

+
1

8

(
3 +

4

kBT

)2

− 9

8

)
dG

=
5 000 000

V
exp

(
1

8

(
3 +

4

kBT

)2

− 9

8

)

=
5 000 000

V
· e10.0 = 5 000 000

109
· 23 · 103 = 115

where we use kBT = 0.62. This binding to DNA in general should be com-
pared to the non-specific binding of:

Zoff = 1 (4.7)

and a specific binding:

Z =
1

V
· exp(−ΔGspec/kBT ) = 10−9 exp(−ΔG/kBT )
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To have 1/2 occupation of a specific binding site:

Zspec

Zspec + Znon-spec + Zoff

=
1

2
⇒

Zspec = Znon-spec + Zoff = 116 · 109 ⇒ ΔG = −15.8 kcalmol−1

4.5.4 Repeat above question if the typical non-specific binding was +3kcal/mol.
(trick question, remember that the protein may also be free)

Answer The non-specific binding is now a factor of exp(6/kBT ) =
exp(6/0.62) = 16 000 lower than in the previous question, so Znon-spec =
115/16000 << 1. Accordingly non-specific DNA binding does not contribute
and 1/2 occupancy occurs when:

1

V
· exp(−ΔG/kBT ) = 1 ⇒ ΔG = −0.62 · log(109) kcal mol−1

= 12.9 kcalmol−1

4.5.5 Simulate a lattice polymer on a 3-dimensional cubic lattice. Let it start
at position (0,0,0) and make 12 steps, each in a random, uncorrelated di-
rection compared to its previous step. What is the likelihood that it returns
to the origin after exactly 12 steps and exactly 20 steps. Repeat the above
questions for a polymer where we do not allow self-interactions, apart from
the last point.

Answer This question demands simulations on a cubic lattice, starting each
walk at position 0, and then walking 12, or 20 steps. One finally scores
whether the walk ended at the start point or not. Fig. 4.4 shows such walks,
comparing in both cases the walk that returns (thick line) with a typi-
cal walk, where we allow self-intersections: L = 12, P = 0.015; L = 20,
P = 0.0073.

Self-avoiding walk: L = 12, P = 0.0037, L = 20, P = 0.0017.
One can observe that longer walks are less likely to return to the

origin.

4.5.6 Other temperate phages are also governed by two antagonistic promot-
ers, with one promoter directing the production of a lysogen-maintenance
protein that one may call CI. In [202] the CI promoter PL in phage 186
shows an activation curve with respect to its product CI, which resembles
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Figure 4.4 Looping of a polymer of 12 kuhn lengths, and 20 kuhn lengths,
respectively (a kuhn length is the double persistance length, and is defined
such that a random walk on a corresponding cubic lattice represents the
random configurations of the polymer.)
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Figure 4.5 PL activity in a simple model for indirect interference from a PR
promoter. The left part of the figure illustrates the model as it would work
in the wild-type phage, whereas the right part illustrates the predicted PL
activity as a function iof CI, when CI is given from outside.

that of PRM in phage λ in Fig. 4.17. In 186 the self-activation comes from
an indirect effect of CI that represses a PR promoter that would otherwise
initiate RNAP, which removes RNAP that is bound to the promoter for CI.
Assume that this interference is of the form PL = PL0/(PR + PL0) with
PR = PR0/(CI + 1) and deduce the activity of PL as a function of CI. Set
the base promoter activities to PR0 = 10 · PL0.
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Answer Express:

PL =
PL0

PR + PL0

=
PL0

PR0/(CI + 1) + PL0

=
PL0 · (CI + 1)

PR0 + PL0 · (CI + 1)
(4.8)

=
PL0 + PL0 · CI

PR0 + PL0 + PL0 · CI
(4.9)

=
0.1 + 0.1 · CI

1.1 + 0.1 · CI
(4.10)

This function is shown in Fig. 4.5.
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