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Problems for Chapters 19 of

Advanced Mathematics for Applications

Infinite-Dimensional Spaces

by Andrea Prosperetti

Notation. The following notation is used in the problems that follow:

• Ck[a, b] is the set of functions continuous with their first k derivatives on the closed interval a ≤ x ≤ b.

• Lp(a, b) is the set of functions u such that |u|p is integrable (in the sense of Lebesgue) on the interval
a < x < b.

• `p is the set of infinite numerical sequences A = {an} = (a1, a2, . . . , an, . . .), real or complex, such
that

∑∞
n=0

|an|p < ∞.

1 General

1. Let x1, x2 and x3 be the component of a vector with respect to a certain orthogonal basis in the
ordinary real three-dimensional space R

3. Do vectors of the types
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constitute subspaces of R
3?

2. In a four-dimensional real Cartesian linear space R
4, for what values of the constant a, if any, do sets

of the form
x1 + x2 + x3 + x4 = a

constitute a linear vector subspace? Answer the same question for sets of the form

x2
1 + x2

2 + x2
3 + x2

4 = a2 .

3. Characterize the subspace S of R
4 spanned by the set {1, 0, 1, 0}, {0, 1, 0, 0} , {0, 0, 0, 1}, i.e. give the

general form of the vectors belonging to it.

4. (a) In R
4 find the most general form of the vectors belonging to the subspace S spanned by {(1, 1, 0, 0) , (1, 0, 1, 1)}.

Repeat for the subspace spanned by the two vectors {(2,−1, 3, 3) , (0, 1,−1,−1)}. Is this subspace dif-
ferent from the previous one?

5. Show that the set of polynomials which assume the value a at x = η is not a linear space if a = 1, but
is a linear space if a = 0.

6. Let u(x) denote a generic element of the space of continuous functions C[0, 1]. Which, if any, of the
following subsets of C[0, 1] constitutes a linear subspace?

(a) All functions such that u(0) = u(1);
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(b) All functions such that u(0) = u(1) = 0;

(c) All functions such that u(x1) = u(x2) for x1 + x2 = 1;

(d) All functions such that u(0) = 0;

(e) All functions such that u(0) = 1;

(f) All functions such that
∫ 1

0
u(x) dx = 0;

(g) All functions such that
∫ 1

0
u(x) dx = 1.

7. Let {Sn} be a set of linear subspaces of a linear vector space S. Show that ∩nSn (namely, the set of
elements of S common to all the Sn’s) is a linear subspace of S. Is the same statement true for ∪nSn,
the union of the Sn?

8. In the (complex) space C[−π, π] consider the functions einx, n = 0, ±1, ±2, . . .. By differentiating
K − 1 times a generic linear combinations of K such functions prove that any finite set of them is
linearly independent. Argue, on the basis of this result, that C[−π, π] is infinite-dimensional.

9. Show that a set of elements of a linear vector space is linearly independent if and only if every finite
subset of them is linearly independent.

10. Let f1(x), f2(x), . . . , fN(x) be a set of square-integrable functions over the interval 0 < x < 1, and
consider all the square-integrable functions u(x) such that

∫ 1

0

fj(x)u(x) dx = 0 j = 1, 2, . . . , N .

Is this a closed linear subspace of the space of square-integrable functions?

11. Consider the set S of all functions u(x) defined for 0 ≤ x ≤ 2π having the form

u(x) = a cos (x + φ),

where a and φ are real constants. (a) Is this a linear space with the usual definitions of sum of two
functions and product of a function by a number? (b) What is its dimension? Give a suitable basis.

2 Normed spaces

1. Consider the set of all finite numerical sequences A = (a1, a2, . . . , an) for any finite n. Show that this
set is a normed space with the norm

‖A‖ = sup
n

|an|

but it is not a Banach space.

2. Show that the set of infinite convergent numerical sequences A = {an} = (a1, a2, . . .) (real or complex)
is a normed space with the norm

‖A‖ = sup
n

|an| .

3. Consider the set of all infinite bounded numerical sequences A = {an} such that |ak| < C for any k;
the constant C depending on the particular sequence considered. Show that this set is a normed space
with the norm

‖A‖ = sup
n

|an|
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4. Show that the set of infinite numerical sequences A = {an} (real or complex) such that the series
|∑∞

n=0
n!an| < ∞ is a normed space with the norm

‖A‖ =

∞
∑

n=0

n!|an| .

5. Show that the set of infinite numerical sequences A = {an} (real or complex) such that an → 0 is a
normed linear space under the norm

‖A‖ =
∞
∑

n=0

|an+1 − an| .

6. Show that the space of real functions u(x) belonging to C1[0, 1] is a normed space with the definition

‖u‖2 = u2(0) +

∫ 1

0

[u′]2 dx .

Can the first term u2(0) be omitted without compromising the normed nature of the space?

7. Let A = {an} be an infinite numerical sequence such that limn→∞ an = 0 and set fn = an sin nx. Is
this a Cauchy sequence in the space C[0, 2π] equipped with the max norm?

8. In a normed linear space consider a sequence {un} → u. Let v be an element of the space such that
‖un − v‖ < a, where a is a constant, for all n’s. Show that, then, ‖u− v‖ < a as well.

9. Show that, if a Cauchy sequence {un} has a convergent subsequence, then it is itself convergent.

10. Consider the space C1 of continuously differentiable functions defined on the interval −π ≤ x ≤ π. Do
the following definitions

‖ u ‖1= max(|u| + |u′|), ‖ u ‖2= max|u′|,

give rise to properly defined norms? If not, are they norms in a suitable subspace of C1? Is the
sequence an(x) = (sin nx)/n strongly convergent in the previous norm(s)? Is it convergent according
to the usual maximum norm

‖ u ‖∞ = max |u| ?

11. Consider the set S of all functions u(x) defined for 0 ≤ x ≤ 2π having the form

u(x) = a cos (x + φ),

where a and φ are real constants. Would the relation ‖u‖ = |u(t = π)| define a proper norm in S?

12. Consider over the interval [0, 1] the linear space S of all polynomials p(x) ≡ a0 +a1x+a2x
2 + . . . aNxN

of degree not greater than N with complex coefficients. (a) Does the relation

‖p‖2 =

N
∑

j=0

|aj |2

define a proper norm over S?
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3 Hilbert spaces

1. Consider the set S of all functions u(x) defined for 0 ≤ x ≤ 2π having the form

u(x) = a cos (x + φ),

where a and φ are real constants. Would the relation ‖u‖ = |u(t = π)| define a proper norm in S?
Define a suitable scalar product in terms of the constants a1, φ1, a2, φ2 defining two elements of the set
S.

2. (a). Would the expression

(f, g) =

∫ b

a

f
′
(x) g′(x) dx .

define a proper scalar product in the space C1[a, b]? Would it in the subspace of C1[a, b] consisting of
all the functions such that u(a) = 0?

3. Consider over the interval [0, 1] the linear space S of all polynomials p(x) ≡ a0 +a1x+a2x
2 + . . . aNxN

of degree not greater than N with complex coefficients equipped with the norm

‖p‖2 =
N

∑

j=0

|aj |2 .

Can this norm be extended to a scalar product? What is its explicit expression?

4. The sets of either sines or cosines on which the Fourier series is based are a very simple illustration
that, in general, an infinity of independent unit vectors does not necessarily constitute a basis. For a
less trivial example consider the following construction. Let {en} be an orthonormal basis for a Hilbert
space H and define hn = e1 + en+1/(n + 1).
(a) Show that the set {hn} is linearly independent;
(b) Show that the sets {hn} and {en} have the same closed span. (Note that e1 is in the closed span
of {hn} since hn → e1 for n → ∞);
(c) Show that e1 cannot be expanded in a series in the set {hn}. (Hint: Assume that e1 = a1h1 +
a2h2 + . . ., take the inner product with respect to each ek to arrive at the conclusion).

5. (a) Let the set {en}, n = 0, 1, 2, . . . be orthonormal and complete in a Hilbert space H and define the
new set {wn} by wn = en + e0, n = 1, 2, . . .. Is there a non-zero vector g ∈ H such that g is orthogonal
to all the wn’s? Can {wn} be taken as a basis in H? (b) Answer the same question if the definition of
the wn’s is changed to wn = en−1 + 2en, n = 1, 2, . . .. (Hint: Expand g on the basis {en} and use the
coefficients of this expansion.)

6. Let H1 and H2 be two Hilbert spaces equipped with the scalar products (u1, v1)1 and (u2, v2)2 for any
pair of vectors u1, v1 ∈ H1 and u2, v2 ∈ H2. Now form the sum space (pp. 541, 555)) H consisting of
all the possible ordered pairs of vectors u = {u1, u2}, in which the first element belongs to H1 and the
second one to H2. Show that the definition

(u, v) = (u1, v1)1 + (u2, v2)2,

leads to a good scalar product in the space H , i.e. that the scalar product axioms are satisfied for any
pair of elements of H.

7. Find an orthonormal basis for the solution space of the two linear equations

x1 + 3x2 + x3 − x4 = 0, −2x1 + 2x2 − x3 + x4 = 0 .
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8. Consider the linear space of real or complex solutions of the differential equation

d2y

dx2
+ π2y = 0, −1 ≤ x ≤ 1.

Give an orthonormal basis in this space and define a suitable scalar product only expressed in terms
of the components of the elements along the basis vectors. Show that the value of this scalar product
is independent of the set of basis vectors chosen.

9. It is mentioned on p. 552 that, in a Hilbert space, un → u strongly if and only if un → u weakly and
‖un‖ → ‖u‖; prove this statement.

10. Show that in the space `1 weak convergence implies strong convergence.

11. Give the proper form of the polarization procedure (19.3.13) p. 551 for a real normed space.

12. Show that, in any inner product space (real or complex),

(u, v) + (v, u) =
1

2
(||u + v||2 − ||u − v||2),

while, for a complex inner product space,

(u, v) − (v, u) =
i

2
(||u − iv||2 − ||u + iv||2) .

Deduce from this the polarization procedure (19.3.13) p. 551 defining the scalar product in terms of
suitable norms.

13. Let u and v be non-zero elements of a complex inner-product space. Show that

(a) ‖u + v‖ = ‖u‖+ ‖v‖ if and only if v is a positive multiple of u;

(b) ‖u − v‖ = |‖u‖ − ‖v‖| if and only if v is a positive multiple of u;

(c) the equality ‖u− v‖ = ‖u−w‖+ ‖w − v‖ implies that w = λu + (1− λ)v for some real number λ
with 0 < α < 1.

14. Show that for a sequence {un} in an inner product space the conditions ‖un‖ → ‖u‖ and (u, un) → ‖u‖2

imply ‖u − un‖ → 0.

15. Show that any three elements u, v, w of an inner product space satisfy the so-called Apollonius identity

‖w − u‖2 + ‖w − v‖2 =
1

2
‖u − v‖2 + 2‖w − 1

2
(u + v)‖2 .

16. Show that in an inner product space u ⊥ v if and only if ‖u + av‖ = ‖u − av‖ for all scalars a.

17. Let u and v be elements of an inner-product space and suppose that‖λu + (1 − λ)v‖ = ‖u‖ for all λ
with 0 ≤ λ ≤ 1. Show that, if this is true, then u = v. Is this conclusion true also in the absence of an
inner product?

18. In an inner product space define the function f(λ) = ‖u1 − λu2‖, where u1 and u2 are linearly
independent. For what λ is f(λ) a minimum? Give a geometrical interpretation of the result.

19. Consider the set of all complex functions u(z), v(z), . . . analytic and square-integrable in the unit disc.
(a) Show that

∫

|z|<1

v u dz

defines a proper scalar product. (b) Show that the functions en =
√

n/πzn−1, for n = 1, 2, . . ., form
an orthonormal basis. (c) Compare the coefficients of the expansion of the elements u on this bases
with those of the power series expansion.
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20. Show that the complex functions en(z) = zn−1/
√

2π, with n = 1, 2, 3, . . ., form an orthonormal basis
in the space of continuous complex functions defined on the unit circle |z| = 1 with respect to the inner
product

(v, u) =

∫

C

v(z) u(z) dz ,

in which the integral is taken around the unit circle.

21. Given the generic vector x ≡ (a, b, c, d) in R
4, find its orthogonal projection s onto the subspace S

spanned by {(1, 1, 0, 0) , (1, 0, 1, 1)} and the vector y such that x = s + y.

22. Let M and N be orthogonal linear subspaces of a Hilbert space H . Is the orthogonal complement of
M orthogonal to the orthogonal complement of N?

23. Consider the subspace of L2(−1, 1) spanned by the functions u1(x) = x and u2(x) = sinπx. Determine
the operator which projects the general element of L2(−1, 1) onto this subspace.

24. Consider the linear manifold C[−1, 1] of the space L2(−1, 1). In this manifold, consider all odd func-
tions, i.e., functions such that f(−x) = −f(x). Determine the orthogonal complement of this subset
in L2(−1, 1). What is the unique decomposition predicted by the orthogonal projection theorem?

25. In L2(−1, 1) consider the linear manifold consisting of functions u(x) such that

∫ 1

−1

u dx = 0 .

Determine the orthogonal complement of this subset in L2(−1, 1). What is the unique decomposition
predicted by the orthogonal projection theorem?

26. Consider the scalar product

(f, g) =

∫ ∞

−∞

exp(−x2) f(x) g(x) dx , (∗)

and the norm induced by it. By use of the Gram-Schmidt orthogonalization procedure construct,
starting with the family of monomials {xn}, n = 0, 1, . . ., the first few polynomials {Qk} orthogonal
according in the sense of the scalar product (∗) and having unit norm. The Hermite polynomials {Hk}
(p. 335) are proportional to the Qk’s and are defined by the normalization condition

(Hn, Hm) = 2nn!
√

πδn,m.

Write down the Hk’s corresponding to the Qk’s that you have calculated. Recall that

∫ ∞

−∞

exp(−x2)x2n dx =
1 · 3 · . . . · (2n − 1)

2n

√
π ,

while, for n = 0, the integral equals
√

π.

27. Given the generic vector wT ≡ |a b c| of R
3, find the vector closest to it in the subspace spanned by

the two vectors uT
1 = |1 1 1| and uT

2 = |1 − 1 1|.

28. Obtain the best approximation (in the least-squares sense, p. 556) to the function sin(πx/2) in the
interval −1 ≤ x ≤ 1 using the first 4 Legendre polynomials. Calculate both the L2 and the max norms
of the error (within a 5-10% accuracy is enough). Recall that P0 = 1, P1 = x, P2 = (3x2 − 1)/2, P3 =
(5x3 − 3x)/2. These are orthogonal, but not orthonormal.
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29. Section 19.4.2 p. 556 describes the best approximation procedure (in a least-squares sense) applied to
vectors in a Hilbert space. The same technique can be adapted to the problem of finding the “best”
approximate solution to an equation. Consider e.g. the problem

Lu = f

in a region Ω, with u = 0 on the boundary ∂Ω of Ω. Here L is a linear operator and f is given.
Suppose that {vj} , j = 1, 2, . . . , N are a set of functions (not necessarily orthonormal) defined in Ω
and vanishing on ∂Ω. Find the best approximation (in the sense of the L2 - norm) to the solution of
the equation in terms of the vj ’s. Assume for simplicity that everything is real. After deriving the
general formulae, consider in Ω ≡ [0, 1] the simple case

L =
d2

dx2
+ k2,

with k a given constant, with, and take v1 = sin πx, v2 = sin 2πx. Give explicit expressions for the
coefficients of the linear combination of v1 and v2 that best approximates the solution to the problem.

30. In the linear space of the real or complex solutions of the differential equation

d2y

dx2
+ π2y = 0, −1 ≤ x ≤ 1,

find the element closest to the solution of

1

2
x2 d2w

dx2
− x

dw

dx
+ w = 0, w(−1) = 0, w(1) = 2,

in the sense of the L2 norm. (Solve the equations first.)

31. (a) In the three-dimensional subspace of L2(−1, 1) spanned by the monomials 1, x, x2 find the best
approximation (in the least-squares sense) to the solution of the Fredholm integral equation

∫ 1

−1

sin (axy) u(y) dy + µu = f(x),

where µ, a are given parameters and f a given function. (Leave indicated the integrals you cannot
carry out in closed form). (b) What happens if µ → 0? Why? (c) How would you set up a numerical
calculation of this type involving many more monomials by computer? (d) Can you think of another
approximation scheme if a � 1?

4 Linear functionals

1. Is the functional ` on C[0, 1] defined by

`(u) = max
0≤x≤1

u(x)

linear? Is it bounded?

2. Equip the space of all infinite bounded sequences A = (a0, a1, . . . , an, . . .) (i.e., such that |ak| < C
for any k, the constant C depending on the particular sequence) with the norm

‖A‖ = sup
n

|an|

Define the functional `(A) by `(A) = aK , with a fixed K. Is this a linear functional? Is it continuous?
Answer the same questions for the functional defined by

`(A) = sup
n

an .
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3. Let `1 and `2 be two continuous linear functionals on a space S. Show that the set of elements u ∈ S

such that `1(u) = `2(u) is a closed subset of S.

4. For each f ∈ L2(0, 1) let u(x) be the solution of the equation

du

dx
+ au = f . u(0) = 0 ,

with a > 0 a given constant. Define the linear functional

`(f) =

∫ 1

0

u(x) dx .

Show that ` is bounded and find its representation in the form of a scalar product (λ, u).

5. Consider the linear space of all real polynomials in the variable x ∈ [0, 1] up to and including the degree
N . For the generic polynomial pk(x) in this space define the linear functional

`φ(pk) =

∫ 1

0

φ(x) pk(x) dx ,

where φ is some fixed continuous function in 0 ≤ x ≤ 1. (a) Set up a Hilbert space structure in this
space by selecting a proper scalar product; (b) Show that this functional is bounded in the natural
norm induced by the scalar product; (c) Since the functional is bounded and is defined over the entire
space, by Riesz’s theorem its action can be represented by a scalar product with an element of the
space. Find this element.

6. It is pointed out on p. 566 that, in principle, the second step in the derivation of (19.6.9) might be
legitimate but the series so obtained might diverge, although this does not happen in a Hilbert space.
Prove this fact by considering the scalar product (λ, u), with λ defined in Example 19.6.5 p. 566.
Show, by a proper choice of u, that the assumption that λ does not have a finite norm leads to a
contradiction.

7. Fill in the missing details in the following sketch of a proof of Riesz’s representation theorem (p. 566)
in a real linear vector space S. The functional ` will take on positive values for elements of S belonging
to a subspace S+ and negative values for elements of S belonging to a subspace S−. The two subspaces
must be separated by a linear manifold (or hyperplane) N of co-dimension 1 (p.501; roughly speaking,
having one fewer dimension than S; think e.g. of a plane in ordinary three-dimensional space), and `
applied to elements of N vanishes. Now decompose any vector u as u = u‖ + u⊥, with u‖ ∈ N and u⊥

orthogonal to all the elements of N . Thus `(u) = `(u⊥), which is the same as the scalar product (e, u)
with e a suitable unit vector perpendicular to N .
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